TWI284559B - Self-rotating micromixer and the method of making the same - Google Patents

Self-rotating micromixer and the method of making the same Download PDF

Info

Publication number
TWI284559B
TWI284559B TW94101730A TW94101730A TWI284559B TW I284559 B TWI284559 B TW I284559B TW 94101730 A TW94101730 A TW 94101730A TW 94101730 A TW94101730 A TW 94101730A TW I284559 B TWI284559 B TW I284559B
Authority
TW
Taiwan
Prior art keywords
spin
substrate
micromixer
inlet
mixing
Prior art date
Application number
TW94101730A
Other languages
Chinese (zh)
Other versions
TW200626224A (en
Inventor
Che-Hsin Lin
Yue-Feng Lin
Lung-Ming Fu
Chien-Hsiung Tsai
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW94101730A priority Critical patent/TWI284559B/en
Publication of TW200626224A publication Critical patent/TW200626224A/en
Application granted granted Critical
Publication of TWI284559B publication Critical patent/TWI284559B/en

Links

Abstract

This invention proposes a novel 3-dimensional (3-D) vortex micromixer for micro-total analysis systems (muTAS) applications which utilizes self-rotation effects to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer is fabricated in a three-layer glass structure for delivering fluid sample in parallel. The fluids are driven into the circular mixing chamber by means of hydrodynamic pumps from two fluid inlet ports. The two inlet channels divide into 8 individual channels tangent to a 3-D circular chamber for mixing purpose. Numerical simulation of the microfluidic dynamics is employed to predict the self-rotation phenomenon and to estimate the mixing performance under various Reynolds number conditions. Experimental flow visualization by mixing dye samples is performed in order to verify the numerical simulation results. A good agreement is found to exist between the two sets of results. The numerical results indicate that the mixing performance can be as high as 90% within a mixing chamber of 1 mm diameter when the Reynolds number is Re=4. Additionally, the results confirm that self-rotation in the circular mixer enhances the mixing performance significantly; even at low Reynolds numbers. The novel micromixing method presented in this study provides a simple solution to mixing problems in the Lab-chip system.

Description

1284559 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種微型混合器及其製造方法,特別是 一種具有一混合室以供混合流體產生自旋現象之微型混合 器及其製造方法。 【先前技術】 目前,利用微全分析系統(Micro-Total Analysis Systems) 之製程技術,製作出一可用來研究分析生物化學之生物晶 片(Lab-on_a-chip),此製程技術已相當成熟,如[Ashton R, Microfluidic separation of DNA5 Current Opinion Biotechnology, 14, pp.479-504,(2003)]、[Service R F, DNA analysis: Microchip arrays put DNA on the spot,Science,282,pp.396-9,(1998)]及1284559 IX. Description of the Invention: [Technical Field] The present invention relates to a micromixer and a method of manufacturing the same, and more particularly to a micromixer having a mixing chamber for generating a spin phenomenon of a mixed fluid and a method of manufacturing the same . [Prior Art] At present, a bio-a biochip (Lab-on_a-chip) can be fabricated by using the process technology of Micro-Total Analysis Systems, which is quite mature, such as [Ashton R, Microfluidic separation of DNA5 Current Opinion Biotechnology, 14, pp. 479-504, (2003)], [Service RF, DNA analysis: Microchip arrays put DNA on the spot, Science, 282, pp. 396-9, (1998)] and

[Culbertson C? Electroosmotically in- duced hydraulic pumping on microchips: differential ion transport, Analytical Chemistry,723 pp.2285-91,(2000)]所揭示。為了進行完整的分析,將各種不 同功能的元件整合在一微晶片上,此晶片稱為實驗室晶片 (Lab-on-a-chip),如[Lu L. H·,Journal of Microelectro-mechanical System,11,ρρ· 801-808,(2002)]及[Lemoff Α· V·,Lee A. P·,Sensors and Actuators B,63, ρρ·178_185,(2000)]所揭示0 微型混合器之應用,一般多用於生物化學上之樣本分析。 這是因為微型混合器可在微小區域内達到化學或生物樣本 混合之目的,其具有高分析效率及低成本的特性。但在目 前的技術中,欲使流體在微結構裡達到混合之目的,仍然 屬於困難之技術。原因在於在微型結構中流體的雷諾數相 98155.doc 1284559 當低,當流體之雷諾數低時,流體在微管道流動成層流狀 態。此種層流狀態會使兩種不同流體產生相當明顯之分 界,而使流體在微管道中不易混合。因此,許多學者便開 始著手設計微流體之微型混合器。[Culbertson C? Electroosmotically in-duced hydraulic pumping on microchips: differential ion transport, Analytical Chemistry, 723 pp. 2285-91, (2000)]. For complete analysis, components of various functions are integrated on a microchip called Lab-on-a-chip, such as [Lu L. H., Journal of Microelectro-mechanical System , 11, ρρ· 801-808, (2002)] and [Lemoff Α·V·, Lee A. P., Sensors and Actuators B, 63, ρρ·178_185, (2000)] The application of the 0 micro-mixer It is generally used for biochemical analysis of samples. This is because the micro-mixer achieves the purpose of mixing chemical or biological samples in a small area with high analytical efficiency and low cost. However, in the current technology, it is still a difficult technique to achieve fluid mixing in the microstructure. The reason is that the Reynolds number phase of the fluid in the microstructure is low. When the Reynolds number of the fluid is low, the fluid flows in a laminar flow state in the microchannel. This laminar flow condition creates a fairly distinct boundary between the two different fluids, making the fluid less prone to mixing in the microchannel. Therefore, many scholars have begun to design microfluidic micromixers.

目前微型混合器依結構型態分類可分為兩大類,分別 為:主動式及被動式兩種。大多數主動式混合器之混合原 理則是利用外力之驅動,使流體在微型結構中產生不穩定 之擾動而混合。這些外力可為機械式(如[Lu L. H.,Journal of Microelectro- mechanical System, 11,pp. 801-808,(2002)]戶斤揭 示)、流體磁場式(如[Lemoff A_ V·,Lee A. P·,Sensors and Actuators B,63,pp· 178-185,(2000)]所揭示)、電激發磁場 (士口 [Lin C H,Rapid microfluidic T-form mixer utilizing switching electroosmotic flow,Analytical Chemistry,76, in press,(2004)]所 揭示)、壓力擾動式(如[Niu X,Efficient spatial-temporal chaotic mixing in microchannels, Journal of Micromechanics and Microengineering 13, pp. 454_62,(2003)]所揭示)、微型陣列喷 射式(如[Yang R,A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets, Journal of Micromechanics and Microengineering,14,ρρ·1345·51,(2004)·]所揭示)及聲波擾動 式(如[Yang Z,Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration,Electrophoresis,21,pp. 116-9,(2000)]所揭示)來 建立流體在微管道中的次級微小擾動。但大多數之主動式 微型混合器多屬於複雜之微結構設計,及需外加力量或電 98155.doc 1284559 場來增進混合效果,晶片設計及製程上較為困難,且操作 成本較高。At present, micro-mixers can be classified into two categories according to their structural types: active and passive. The hybrid principle of most active mixers is the use of external forces to cause the fluid to mix in an unstable disturbance in the microstructure. These external forces can be mechanical (such as [Lu LH, Journal of Microelectro- mechanical System, 11, pp. 801-808, (2002)]), fluid magnetic field (such as [Lemoff A_ V·, Lee A. P., Sensors and Actuators B, 63, pp. 178-185, (2000)], electrically excited magnetic field (Lin CH, Rapid microfluidic T-form mixer utilizing switching electroosmotic flow, Analytical Chemistry, 76, In press, (2004)], pressure perturbation (such as [Niu X, Efficient spatial-temporal chaotic mixing in microchannels, Journal of Micromechanics and Microengineering 13, pp. 454_62, (2003)]), microarray Jet type (as disclosed in [Yang R, A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets, Journal of Micromechanics and Microengineering, 14, ρρ·1345·51, (2004)·)) and acoustic disturbance (eg [Yang Z, Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration, Electrophoresis, 21, pp. 116-9, ( 2000)]) to establish secondary fine perturbations of fluids in microchannels. However, most of the active micro-mixers are complex microstructure designs, and require additional power or power to improve the mixing effect, the wafer design and process are more difficult, and the operating cost is higher.

最近,被動式微型混合器漸漸地被發展及研究。如 Bessoth 等人[Bessoth F G,Microstructure for efficient continuous flow mixing,Anal· Commun· 36,ρρ·213,5,(1999)]發 展之被動式微型混合器可減小混合及流體再混合時所需之 尺度範圍。Liu 等人[Liu R H,Passive mixing in a three-dimensional serpentine micro- channel Journal of Microelectro- mechanical System,9,ρρ·190·7,(2000)]及 [Park S J,Rapid three-dimensional passive rotation micromixer using the breakup process, Journal of Micromechanics and Microengineering ,14 ,pp.6-14,(2004)] 則製作出立體三維蜿蜒結構之被動式微型混合器,並證明 了在約70的低雷諾數下,仍可使流體達到混合之效果。 Johnson 等人[Johnson T J,Rapid microfluidic mixing Analytical Chemistry,74 ρρ·45_51,(2002)]則在 T字型晶片 的交匯處,利用電滲透之原理使流體產生混合現象。這些 研究結果皆顯示有效的使流體旋轉或產生不規則之流動, 都會提升流體混合之效果,如[Stroock A D,Chaotic mixer for microchannels,Science,295,pp.647-51,(2002)]所揭示。Recently, passive micromixers have been gradually developed and studied. Passive micromixers developed by Bessoth et al. [Bessoth FG, Microstructure for efficient continuous flow mixing, Anal Commun 36, ρρ·213, 5, (1999)] reduce the scale required for mixing and fluid remixing range. Liu et al [Liu RH, Passive mixing in a three-dimensional serpentine micro-channel Journal of Microelectro- mechanical System, 9, ρρ·190·7, (2000)] and [Park SJ, Rapid three-dimensional passive rotation micromixer using The breakup process, Journal of Micromechanics and Microengineering, 14, pp. 6-14, (2004)] produced a passive micro-mixer with a three-dimensional three-dimensional structure and proved that at a low Reynolds number of about 70, The fluid is brought to the effect of mixing. Johnson et al. [Johnson T J, Rapid microfluidic mixing Analytical Chemistry, 74 ρρ·45_51, (2002)] used a principle of electroosmosis to create a mixing phenomenon at the intersection of T-shaped wafers. These findings all show that effective fluid rotation or irregular flow increases the effect of fluid mixing, as revealed by [Stroock AD, Chaotic mixer for microchannels, Science, 295, pp. 647-51, (2002)]. .

Burke 等人[Burke B J,Stopped-flow enzyme assays on a chip using a microfabricated mixer, Analytical Chemistry ,75 pp. 1786-91,(2003)]利用微型混合器來進行靜態流體酵素分 析,實驗結果亦證明利用微型混合器進行輔助分析,與利 98155.doc 1284559Burke et al. [Burke BJ, Stopped-flow enzyme assays on a chip using a microfabricated mixer, Analytical Chemistry, 75 pp. 1786-91, (2003)] using a micromixer for static fluid enzyme analysis, the experimental results also prove the use Micro-mixer for auxiliary analysis, with benefit 98155.doc 1284559

用大型儀器所分析之結果相符。Chung等人[Chung Υ C?Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber,Lab on a Chip,4,ρρ·70-7,(2004)]發展被 動式微型混合器,此混合器之特點為利用流體因壓力關 係,而產生自旋現象來進行混合。結果發現此混合器用於 20至400之低雷諾數間,混合效果較好。Kim等人[Im D S,A barrier embedded Kinics micromixer, Journal of Micromechanics and Microengineering,14,pp· 1294-301,(2004)]著手發展在低雷 諾數範圍下利用特殊立體三維結構,在此結構裡設計出許 多障礙,來獲得流體在約28之低雷諾數的混合。所以,微 型混合器在微全分析系統(Micro-Total Analysis Systems) 中,由於使用樣本量少、製作成本低,相當適合於應用在 輔助生物化學分析上之裝置,例如聚合臃連鎖反應分析 (PCR)或DNA之雜交分析研究上。The results analyzed with large instruments are consistent. Chung et al. [Chung Υ C? Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab on a Chip, 4, ρρ·70-7, (2004)] developed a passive micro-mixer, the characteristics of this mixer In order to utilize the fluid due to the pressure relationship, a spin phenomenon is generated for mixing. As a result, it was found that the mixer was used for a low Reynolds number of 20 to 400, and the mixing effect was good. Kim et al. [Im DS, A barrier embedded Kinics micromixer, Journal of Micromechanics and Microengineering, 14, pp. 1294-301, (2004)] set out to develop a special three-dimensional structure in the low Reynolds number range, designed in this structure Many obstacles are made to obtain a mixture of fluids at a low Reynolds number of about 28. Therefore, in the Micro-Total Analysis Systems, the micro-mixer is suitable for devices used in assisted biochemical analysis due to the small sample size and low production cost, such as polymerization and hydrazine chain reaction analysis (PCR). ) or hybridization analysis of DNA.

Greiner 等人[Greiner Κ·,Α Rapid Vortex Micromixer for Studying High-Speed chemical Reactions, presented at uTAS 2001]以發展被動式微型混合器為主,此混合器亦是利用流 體自旋之效果來達到混合之目的。整體晶片製程利用反應 離子蝕刻(DRIE)製程設備為主,此製程設備屬於貴重儀 器,所以在成本上較為昂貴。入口端之設計數目為8組共16 個,但欲使此微型混合器產生自旋現象之流速必須大於1 〇 m/s,且混合之雷諾數高達200。不論以製程成本或是以雷 諾數及流速數值觀察,皆是屬於不符合經濟效率之混合器。 因此,有必要提供一創新且富進步性的微型混合器及其 98155.doc 1284559 製造方法,以解決上述問題。 【發明内容】 本發明之主要目的係提供一種自旋微型混合器,其在大 於2.32之雷諾數時,流體便會在其内之混合區中產生自旋 現象而達成流體混合之效果,因此適用於低雷諾數之情 況,且混合效率最高可達90%以上,而流體速度低僅為5·72 cm/s,可解決流體在微小尺度下混合困難之問題。當其應 用於生物或化學之PCR或DNA分析上,可減少分析樣本之 使用量及分析樣本所花費之龐大成本。 本發明之另一目的係提供一種自旋微型混合器,其製程 係以一般玻璃光刻顯影製程為主,免去利用貴重儀器之製 作成本,因此製作成本低廉、製程過程穩定。 為達上述目的,本發明提供一種自旋微型混合器,包括 複數個入口管道、一混合區及一出口管道。該等入口管道 係用以注入所欲混合之流體。該混合區係為一中空區域, 該等入口管道係分別連接至該混合區,使該等所欲混合之 流體於該混合區内進行混合。該出口管道係連接至該混合 區,用以導出混合後之流體。 【實施方式】 參考圖1,顯示本發明自旋微型混合器之立體示意圖。該 自旋微型混合器丨包括複數個入口管道10、一混合區12、一 出口管道14、一第一入口端16、一第二入口端18、一出口 端20及一壓力源(圖中未示)。 該第一入口端16係連接一第一注入管22,用以注入一第 98155.doc -9- 1284559 一、/;,L體。該第二入口端1 8係連接一第二注入管24,用以注 入一第二流體。在本實施例中,係具有二入口端16、, 用以注入所欲混合之第一及第二流體,然而可以理解的 是,該入口端之數目不限於二個,其可以是三、四或五個 以上,視所欲混合之流體而定。 晴同時參考圖2,顯示本發明自旋微型混合器中入口管道 之第一實施例之局部俯視示意圖。該等入口管道丨〇係分別 連接該第一入口端16及該第二入口端18,用以將所欲混合 之该第一流體及該第二流體注入至該混合區丨2以進行混 合。在本實施例中,該等入口管道1〇共有八個,分別為標 號 101、102、103、1〇4、1〇5、106、107及 108,然而可以 理解的是,該等入口管道1〇之數目不限於八個,其可以是 一個、四個、六個、十個、十二個、十四個、十六個或以 上。 在本實施例中,該等入口管道10係被分成一第一部份及 一第二部份’該第一部份包括入口管道1〇8、1〇2、1〇4及 106 ’其係分別藉由管道1〇9及11〇連接至該第一入口端16 ; 該第二部份包括入口管道101、103、105及107,其係分別 藉由管道111及112連接至該第二入口端μ。亦即,該第一 肌體係經由该第一注入管22進入該第一入口端1 6後,再進 入管道109及110’進入管道1〇9之流體再經由入口管道1〇8 及102進入混合區12,進入管道11〇之流體再經由入口管道 106及104進入混合區12 ;該第二流體係經由該第二注入管 24進入該第二入口端18後,再進入管道U1&112,進入管 98155.doc -10- 1284559 道111之流體再經由入口管道101及103進入混合區12,進入 管道112之流體再經由入口管道107及105進入混合區12。該 等入口管道10進入該混合區12之方向係為該混合區12之切 線方向,以增加混合效果。此外,在本實施例中,該第一 部份之入口管道108、102、104及106係與該第二部份之入 口管道101、103、105及107位於同一水平高度。然而,值 得注意的是,該第一部份之入口管道1〇8、1〇2、ι〇4及ι〇6 與該第二部份之入口管道101、103、1〇5及1〇7可以位於不 同水平高度。 請同時參考圖3,顯示本發明自旋微型混合器中混合區之 立體示意圖。該混合區12係為一縱向之中空區域。在本實 施例中,該混合區12係為一中空圓柱狀,然而可以理解的 是該混合區12可以是任何型式之中空區域。該等入口管道 10係分別連接至該混合區12,以導入所欲混合之第一流體 及第二流體於該混合區12内進行混合。 該出口管道14係連接至該混合區12,用以導出混合後之 流體至该出口端20。在本實施例中,該等入口管道丨〇於該 混合區12之開口係低於該出口管道14於該混合區12之開 口。但是值得注意的是,該等入口管道1〇於該混合區以之 開口亦可以高於該出口管道14於該混合區12之開口。 該壓力源(例如一幫浦)係連接該第一注入管22及該第二 注入管24,用以同時對該第一流體及該第二流體加壓,使 該第一流體及該第二流體可以進入該混合區12且產生自旋 之現象而達混合效果。因此,在本發明中,較佳地,該等 98155.doc -11 - 1284559Greiner et al. [Greiner Κ·, Α Rapid Vortex Micromixer for Studying High-Speed chemical Reactions, presented at uTAS 2001] is based on the development of passive micro-mixers, which also use the effect of fluid spins to achieve mixing. . The overall wafer process is dominated by reactive ion etching (DRIE) process equipment, which is a valuable instrument and therefore expensive. The number of designs at the inlet end is 16 in a total of 16 sets, but the flow rate for this micro-mixer to produce spin must be greater than 1 〇 m/s, and the Reynolds number of the mixture is as high as 200. Regardless of process cost or observation of Reynolds number and flow rate values, it is a mixer that is not economically efficient. Therefore, it is necessary to provide an innovative and progressive micro-mixer and its 98155.doc 1284559 manufacturing method to solve the above problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide a spin micromixer which, when having a Reynolds number greater than 2.32, causes a fluid to cause a spin phenomenon in a mixing zone therein to achieve a fluid mixing effect. In the case of low Reynolds number, the mixing efficiency is up to 90%, and the fluid velocity is only 5.72 cm/s, which can solve the problem of fluid mixing at small scales. When applied to biological or chemical PCR or DNA analysis, it reduces the amount of sample used and the cost of analyzing the sample. Another object of the present invention is to provide a spin micromixer whose process is based on a general glass lithography development process, thereby eliminating the cost of manufacturing expensive instruments, thereby making the manufacturing cost low and the process process stable. To achieve the above object, the present invention provides a spin micromixer comprising a plurality of inlet conduits, a mixing zone and an outlet conduit. The inlet ducts are used to inject the fluid to be mixed. The mixing zone is a hollow zone, each of which is connected to the mixing zone, such that the fluids to be mixed are mixed in the mixing zone. The outlet conduit is connected to the mixing zone for the purpose of deriving the mixed fluid. [Embodiment] Referring to Figure 1, a perspective view of a spin micromixer of the present invention is shown. The spin micromixer 复 includes a plurality of inlet ducts 10, a mixing zone 12, an outlet duct 14, a first inlet end 16, a second inlet end 18, an outlet end 20, and a pressure source (not shown) Show). The first inlet end 16 is connected to a first injection tube 22 for injecting a 98155.doc -9-1284559 one, /; L body. The second inlet end 18 is connected to a second injection tube 24 for injecting a second fluid. In this embodiment, there are two inlet ends 16 for injecting the first and second fluids to be mixed. However, it is understood that the number of the inlet ends is not limited to two, and may be three or four. Or more than five, depending on the fluid to be mixed. Referring also to Figure 2, a partial top plan view of a first embodiment of an inlet conduit in a spin micromixer of the present invention is shown. The inlet conduits are connected to the first inlet end 16 and the second inlet end 18, respectively, for injecting the first fluid and the second fluid to be mixed into the mixing zone 2 for mixing. In the present embodiment, there are eight inlet ducts 1 , which are numbers 101, 102, 103, 1〇4, 1〇5, 106, 107 and 108, respectively, however, it can be understood that the inlet ducts 1 The number of 〇 is not limited to eight, and it may be one, four, six, ten, twelve, fourteen, sixteen or more. In this embodiment, the inlet ducts 10 are divided into a first portion and a second portion. The first portion includes inlet ducts 1〇8, 1〇2, 1〇4, and 106' Connected to the first inlet end 16 by pipes 1〇9 and 11〇, respectively; the second portion includes inlet ducts 101, 103, 105 and 107 which are connected to the second inlet by pipes 111 and 112, respectively End μ. That is, after the first muscle system enters the first inlet end 16 via the first injection pipe 22, the fluid entering the pipes 109 and 110' entering the pipe 1〇9 enters the mixing through the inlet pipes 1〇8 and 102. Zone 12, the fluid entering the conduit 11 then enters the mixing zone 12 via the inlet conduits 106 and 104; the second flow regime enters the second inlet end 18 via the second injection conduit 24 and then enters the conduit U1 & 112, entering Tube 98155.doc -10- 1284559 Channel 111 fluid enters mixing zone 12 via inlet conduits 101 and 103, and fluid entering conduit 112 enters mixing zone 12 via inlet conduits 107 and 105. The direction in which the inlet ducts 10 enter the mixing zone 12 is the tangential direction of the mixing zone 12 to increase the mixing effect. Moreover, in the present embodiment, the inlet conduits 108, 102, 104 and 106 of the first portion are at the same level as the inlet conduits 101, 103, 105 and 107 of the second portion. However, it is worth noting that the first part of the inlet ducts 1〇8, 1〇2, ι〇4 and ι〇6 and the second part of the inlet ducts 101, 103, 1〇5 and 1〇7 Can be located at different levels. Referring also to Figure 3, there is shown a perspective view of the mixing zone in the spin micromixer of the present invention. The mixing zone 12 is a longitudinal hollow zone. In the present embodiment, the mixing zone 12 is a hollow cylindrical shape, however it will be understood that the mixing zone 12 can be any type of hollow zone. The inlet ducts 10 are connected to the mixing zone 12, respectively, for introducing the first fluid to be mixed and the second fluid to be mixed in the mixing zone 12. The outlet conduit 14 is coupled to the mixing zone 12 for directing the mixed fluid to the outlet end 20. In the present embodiment, the openings of the inlet ducts in the mixing zone 12 are lower than the openings of the outlet ducts 14 in the mixing zone 12. However, it is worth noting that the inlet ducts 1 may be open to the mixing zone or may be higher than the opening of the outlet duct 14 in the mixing zone 12. The pressure source (eg, a pump) is connected to the first injection tube 22 and the second injection tube 24 for simultaneously pressurizing the first fluid and the second fluid to make the first fluid and the second The fluid can enter the mixing zone 12 and create a spin phenomenon to achieve a mixing effect. Therefore, in the present invention, preferably, such 98155.doc -11 - 1284559

入口管道10及該等管道109、110、111及112之長度需經過 特殊設計,使所有流體流至該混合區12之距離皆相同,而 可以在同一時間流進該混合區12内,且所有管道内之壓力 才會相同,流體才能穩定地產生自旋現象。在其他之應用 中,流體流至該混合區12之距離可以不相同,其長度可以 為但不限於倍數差。此外,該出口管道14之截面積較佳係 等於該等入口管道10之截面積之總和,以防止流體流動時 產生流阻。 參考圖4a至4f’顯示本發明自旋微型混合器之製造過程 示意圖。首先,參考圖4a,提供一第一基材40,其係為一 低成本之鈉玻璃,這是由於玻璃接合為熔融接合,機械性 質或接合強度皆相當高,所以可承受高壓幫浦所產生之壓 力,因此可以取代一般晶片常用之塑膠或是矽為主之基 材。接著,利用一 piranha溶液(H2S04(%) : H202(%) = 3:1)清洗該 第一基材40。清洗後用一正光阻(AZ 4620,Clariant Corp., USA)塗佈在該第一基材40上。接著,再利用微影蝕刻技術 將一光罩上之圖形42轉移至該正光阻上。該圖形42係對應 該等管道109及110、該第一部份之入口管道1〇8、1〇2、1〇4 及106、該第二部份之入口管道1〇1、1〇3、1〇5及107之前半 段、該第一入口端16及部分該混合區12。 接著,參考圖4b,當該圖形42轉移至該正光阻後,再利 用一蝕刻緩衝液(buffered oxide etchant,B0E)進行微管道 之蝕刻。蝕刻期間,利用一超音波洗淨機之振動來加速該 第一基材40上微管道之蝕刻。蝕刻時間四十分鐘後,微管 98155.doc -12- 1284559 道之深度可達到36 μιη左右。因此於該第一基材4〇上形成該 等管道10 9及110、該第一部份之入口管道1〇8、102、104及 106、該第二部份之入口管道1〇卜1〇3、1〇5及1〇7之前半段、 該第一入口端16及部分該混合區12。 接著,參考圖4c,提供一第二基材44,其亦為一鈉玻璃。 該第二基材44之製程與該第一基材4〇之製程步驟相同,其 係塗佈一正光阻後利用微影蝕刻技術將一光罩上之圖形46 轉移至e玄正光阻上。該圖形46係對應該等管道1 1 1及1 1 2、 該第二部份之入口管道1〇1、103、105及107之後半段、該 第二入口端18及該混合區12之主要部分。 接著,參考圖4d,再進行微管道之蝕刻,而於該第二基 材44上形成該等管道ln及112、該第二部份之入口管道 101、103、1〇5及1〇7之後半段、該第二入口端18及該混合 區12之主要部分。由於該第二基材44之微管道除了包含該 心a區12外,亦有作為底部(該第一基材44)與頂部(第三基 材士圖4e)兩層連接之功用。所以必須將該混合區12及連 接管道區進行鑽孔,形成孔A、B、c、D及E。 接著,參考圖4e,提供一第三基材48,其亦為一鈉玻璃, 且於其上相對於該卜人口端16、該第二人口端18及該出 口端20之位置鑽孔,形成孔F、G及H。 最後,參考圖4f,將製作完成之該第一基材4〇、該第二 基材44及該第三基材48進行㈣接合。其方式如下,接合 前必須將此三層之基材4G、44及48進行清洗之動作,清洗 之溶液及條件與上述之玻璃清洗㈣。清洗完成後,先接 98155.doc -13- 1284559 合該第三基材48於該第二基材44之上表面,接合條件為580 ° C,持溫二十分鐘。之後再接合該第一基材40於該第二基 材44之下表面。最後,再利用二根内徑0.5 mm、外徑1.5 mm 之鐵氟龍管作為該第一注入管22及該第二注入管24而分別 連接於該第一入口端16及該第二入口端18,連接之方式則 利用環氧樹酯作為連接劑,如圖4g所示,以形成如圖1所示 之自旋微型混合器1。 在本實施例中,該自旋微型混合器1之尺寸為長37 mm、 寬26 mm。該混合區12形狀為圓柱型,尺寸大小為直徑750 μιη、高度為1 mm。該出口管道14之寬度為370 μιη、深度為 36 μχη。本實施例以一注射幫浦(KDS-200,KD scientific, USA)做為流體壓力源。 參考圖5,顯示本發明自旋微型混合器之混合效率圖。本 實施例之實驗條件如下,該第一流體係為濃度為1(Τ6 Μ之玫 瑰紅螢光染劑(Rhodamine Β)。該第二流體係為去離子水 (DI - water)。另外於實驗用之顯微鏡(E-400,Nikon,Japan) 上架有一汞燈,作為激發該玫瑰紅螢光染劑(Rhodamine Β) 之用。實驗結果利用顯微鏡上所架設之一 CCD攝影機 (DXC-190,Sony,Japan)配合一影像擷取卡(DVD PKB, V-gear,Taiwan)將實驗之動態檔拍攝擷取下。再依所拍設下 之實驗動態檔利用數位化技術,來評估該自旋微型混合器1 之混合效果。圖4中X軸為該入口流道10内流體之雷諾數大 小,Y軸則為該混合區12内之混合效率。由圖可知,雷諾數 一旦大於2.32雷諾數時,流體便會由原本層流狀態開始產 98155.doc -14- 1284559 生自旋之現象,使流體在該混合區12因自旋擾動而達到混 合之效果。 另外,由數值模擬流體流線與濃度分佈圖可看出,流體 可在該混合區12中因為本身之慣性力大於流體黏滯力而產 生自紋之現象,進而達到混合之效果。且於該混合區12内 之高度越是增加,流體之混合程度越高。此外,由實際照 片觀察,流體確實可在該混合區12中產生自旋之現象,同 時”亥混合區12之高度越是增加,自旋之中心會越偏離該 混合區12結構設計之中心,而偏向該出口管道14於該混合 區12之開口。 參考圖6,顯示本發明自旋微型混合器中入口管道之第二 實施例之局部俯視示意圖。在本實施例中,該等入口管道 30之數目係為十二個,其皆與該混合區12相切。 參考圖7’顯示本發明自旋微型混合器中入口管道之第三 實施例之局部俯視示意圖。在上述圖2所示之第一實施例 中,每一入口流道10本身從頭到尾之截面積皆相同。然而 在本實施例中,入口管道32包括一入口管道本體κι、一第 刀叉322及一第二分叉323,該入口管道本體321係經由該 第一分叉322及該第二分叉323連接至該混合區12。此一結 構设什為依照康達效應(c〇nada effect)結構設計概念設 計’以提升流體在未進入該混合區12時,先自行形成小型 漩渦混合,之後再進入該混合區12中進行二次混合,此設 計可提升混合效率。 參考圖8,顯示本發明自旋微型混合器中入口管道之第四 98155.doc •15- 1284559 實施例之俯視示意圖。在本實施例中,入口管道34與入口 管道之長度不相同,其中該入口管道之長度36係為該入 口管道34長度之倍數,較佳為五倍以上。 參考圖9,顯示本發明自旋微型混合器中另一種型式之出 口管道之俯視示意圖。本型式之出口管道5〇包括一出口管 道本體51及-三角形區52,該三角形區如括一頂點區域 521及一與該頂點區域521相對應之側邊區域522,該頂點區 域521係連接該混合區12,該側邊區域522係連接該出口管 道本體51之一端,該出口管道本體51之另一端係連接至該 出口端20。 上述實施例僅為說明本發明之原理及其功效,並非限制 本發明’因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】 _ 1顯示本發明自旋微型混合器之立體示意圖; 圖2顯示本發明自旋微型混合器中入口管道之第一實施 例之局部俯視示意圖; ® 3顯示本發明自旋微型混合器中混合區之立體示意圖; 圖4&至4g顯示本發明自旋微型混合器之製造過程示意 圖; ® 51員示本發明自旋微型混合器之混合效率圖; 圖6顯示本發明自旋微型混合器中入口管道之第二實施 4之局部俯視示意圖; 98l55.d〇c -16- 1284559 圖7顯示本發明自旋微型混合器中入 例之局部俯視示意圖; 圖8顯示本發明自旋微型混合器中入 例之俯視示意圖;及 圖9顯示本發明自旋微型混合器中另 道之俯視示意圖。 管道之第三實施 管道之第四實施 種型式之出口管The length of the inlet conduit 10 and the conduits 109, 110, 111 and 112 are specifically designed such that all fluid flows to the mixing zone 12 at the same distance and can flow into the mixing zone 12 at the same time, and all The pressure inside the pipe will be the same, and the fluid can stably produce spin phenomenon. In other applications, the distance that fluid can flow to the mixing zone 12 can vary, and the length can be, but is not limited to, a fold difference. Further, the cross-sectional area of the outlet duct 14 is preferably equal to the sum of the cross-sectional areas of the inlet ducts 10 to prevent flow resistance when the fluid flows. A schematic view of the manufacturing process of the spin micromixer of the present invention is shown with reference to Figs. 4a to 4f'. First, referring to FIG. 4a, a first substrate 40 is provided, which is a low-cost soda glass. Since the glass joint is a fusion joint, the mechanical properties or the joint strength are relatively high, so that it can withstand the high pressure pump. The pressure can therefore replace the plastic or enamel-based substrate commonly used in general wafers. Next, the first substrate 40 was washed with a piranha solution (H2S04 (%): H202 (%) = 3:1). After cleaning, it was coated on the first substrate 40 with a positive photoresist (AZ 4620, Clariant Corp., USA). Next, a pattern 42 on the mask is transferred to the positive photoresist by photolithography. The pattern 42 corresponds to the pipes 109 and 110, the inlet ducts 1〇8, 1〇2, 1〇4 and 106 of the first part, and the inlet ducts 1〇1, 1〇3 of the second part, The first half of the first and second inlets, the first inlet end 16 and a portion of the mixing zone 12. Next, referring to FIG. 4b, after the pattern 42 is transferred to the positive photoresist, an etch buffer (B0E) is used to etch the microchannel. During the etching, the vibration of an ultrasonic cleaner is used to accelerate the etching of the microchannels on the first substrate 40. After 40 minutes of etching time, the depth of the microtube 98155.doc -12- 1284559 can reach about 36 μηη. Therefore, the pipes 10 9 and 110 are formed on the first substrate 4, the inlet pipes 1〇8, 102, 104 and 106 of the first portion, and the inlet pipe 1 of the second portion are formed. 3. The first half of 1〇5 and 1〇7, the first inlet end 16 and a portion of the mixing zone 12. Next, referring to Figure 4c, a second substrate 44 is also provided, which is also a soda glass. The second substrate 44 is processed in the same manner as the first substrate 4, and after applying a positive photoresist, the pattern 46 on the mask is transferred to the e-positive photoresist by photolithography. The figure 46 corresponds to the main pipes 1 1 1 and 1 1 2, the second part of the inlet pipes 1〇1, 103, 105 and 107, the second inlet end 18 and the mixing zone 12 section. Next, referring to FIG. 4d, the etching of the micro-pipes is performed, and the pipes ln and 112 and the inlet pipes 101, 103, 1〇5 and 1〇7 of the second portion are formed on the second substrate 44. The second half, the second inlet end 18 and a major portion of the mixing zone 12. Since the microchannel of the second substrate 44 includes the core a region 12, it also functions as a connection between the bottom portion (the first substrate 44) and the top portion (the third substrate material Fig. 4e). Therefore, the mixing zone 12 and the connecting pipe zone must be drilled to form holes A, B, c, D and E. Next, referring to FIG. 4e, a third substrate 48 is provided, which is also a soda glass, and is drilled thereon at a position relative to the population end 16, the second population end 18, and the outlet end 20. Holes F, G and H. Finally, referring to Fig. 4f, the first substrate 4, the second substrate 44, and the third substrate 48 are bonded to each other. The method is as follows. The three layers of the substrates 4G, 44 and 48 must be cleaned before joining, and the cleaning solution and conditions are cleaned with the above-mentioned glass (4). After the cleaning is completed, the third substrate 48 is bonded to the upper surface of the second substrate 44 at a temperature of 580 ° C for 20 minutes. The first substrate 40 is then bonded to the lower surface of the second substrate 44. Finally, two Teflon tubes having an inner diameter of 0.5 mm and an outer diameter of 1.5 mm are used as the first injection tube 22 and the second injection tube 24 to be respectively connected to the first inlet end 16 and the second inlet end. 18. The joining method utilizes epoxy resin as a connecting agent, as shown in Fig. 4g, to form a spin micromixer 1 as shown in Fig. 1. In the present embodiment, the spin micromixer 1 is 37 mm long and 26 mm wide. The mixing zone 12 is cylindrical in shape and has a diameter of 750 μηη and a height of 1 mm. The outlet duct 14 has a width of 370 μηη and a depth of 36 μχη. In this embodiment, an injection pump (KDS-200, KD scientific, USA) is used as a fluid pressure source. Referring to Figure 5, a mixing efficiency diagram of the spin micromixer of the present invention is shown. The experimental conditions of this example are as follows. The first-flow system is a rose red fluorescent dye (Rhodamine®) having a concentration of 1 (Τ6 。. The second flow system is DI-water). The microscope (E-400, Nikon, Japan) was equipped with a mercury lamp as the excitation of the rose red fluorescent dye (Rhodamine Β). The experimental results were carried out using a CCD camera (DXC-190, Sony, Japan) took a dynamic image capture of the experiment with an image capture card (DVD PKB, V-gear, Taiwan), and then used the digital dynamics technique to evaluate the spin micro-mixing according to the experimental dynamic file. The mixing effect of the device 1. The X axis in Fig. 4 is the Reynolds number of the fluid in the inlet flow channel 10, and the Y axis is the mixing efficiency in the mixing zone 12. As can be seen from the figure, when the Reynolds number is greater than 2.32 Reynolds number The fluid will start to produce the phenomenon of spins from the original laminar flow state, so that the fluid will achieve the mixing effect due to the spin disturbance in the mixing zone 12. In addition, the numerical simulation fluid flow line The concentration profile shows that the fluid can be in the In the joint zone 12, since the inertial force of itself is greater than the viscous force of the fluid, the self-striking phenomenon is generated, thereby achieving the effect of mixing, and the higher the height in the mixing zone 12, the higher the mixing degree of the fluid. The actual photograph observes that the fluid does produce a phenomenon of spin in the mixing zone 12, and the more the height of the mixing zone 12 increases, the more the center of the spin deviates from the center of the structural design of the mixing zone 12, and the bias is An opening of the outlet conduit 14 in the mixing zone 12. Referring to Figure 6, a partial top plan view of a second embodiment of an inlet conduit in a spin micromixer of the present invention is shown. In the present embodiment, the number of such inlet conduits 30 is There are twelve, which are all tangent to the mixing zone 12. Referring to Figure 7', there is shown a partial top plan view of a third embodiment of the inlet conduit of the spin micromixer of the present invention. The first implementation shown in Figure 2 above In the example, the inlet pipe 10 itself has the same cross-sectional area from the beginning to the end. However, in the embodiment, the inlet pipe 32 includes an inlet pipe body κι, a first fork 322 and a second fork 323. The inlet duct body 321 is connected to the mixing zone 12 via the first branching 322 and the second branching 323. This structure is designed to enhance the design according to the c〇nada effect structure design When the fluid does not enter the mixing zone 12, it first forms a small vortex mixing, and then enters the mixing zone 12 for secondary mixing, which improves the mixing efficiency. Referring to Figure 8, the spin micromixer of the present invention is shown. A fourth schematic view of the embodiment of the inlet pipe. The multiple is preferably five times or more. Referring to Figure 9, there is shown a top plan view of another version of the outlet conduit of the spin micromixer of the present invention. The outlet duct 5 of the present type includes an outlet duct body 51 and a triangular region 52, which includes a vertex region 521 and a side region 522 corresponding to the vertex region 521, and the vertex region 521 is connected thereto. The mixing zone 12 is connected to one end of the outlet duct body 51, and the other end of the outlet duct body 51 is connected to the outlet end 20. The above-described embodiments are merely illustrative of the principles of the present invention and the advantages thereof, and are not intended to limit the present invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS _ 1 shows a schematic perspective view of a spin micromixer of the present invention; FIG. 2 shows a partial top view of a first embodiment of an inlet pipe in a spin micromixer of the present invention; ® 3 shows the spin of the present invention 3D to 4g show a schematic diagram of the manufacturing process of the spin micromixer of the present invention; ® 51 member shows the mixing efficiency diagram of the spin micromixer of the present invention; A partial top view of a second embodiment 4 of an inlet conduit in a micro-mixer; 98l55.d〇c -16-1284559 Figure 7 shows a partial top view of an example of a spin micromixer of the present invention; A top view of an example of a spin-on micromixer; and Figure 9 shows a schematic top view of the spin micromixer of the present invention. The third implementation of the pipeline The fourth implementation of the pipeline

【主要元件符號說明】 1 自旋微型混合器 10 入口管道 12 混合區 14 出口管道 16 第一入口端 18 第二入口端 20 出口端 22 第一注入管 24 第二注入管 30 入口管道 32 入口管道 34 入口管道 36 入口管道 40 第一基材 42 圖形 44 第二基材 46 圖形 48 第三基材 98155.doc -17- 1284559[Main component symbol description] 1 Spin micromixer 10 Inlet pipe 12 Mixing zone 14 Outlet pipe 16 First inlet end 18 Second inlet end 20 Outlet end 22 First injection pipe 24 Second injection pipe 30 Inlet pipe 32 Inlet pipe 34 inlet duct 36 inlet duct 40 first substrate 42 pattern 44 second substrate 46 pattern 48 third substrate 98155.doc -17- 1284559

50 出口管道 51 出口管道本體 52 三角形區 101 入口管道 102 入口管道 103 入口管道 104 入口管道 105 入口管道 106 入口管道 107 入口管道 108 入口管道 109 管道 110 管道 111 管道 112 管道 321 入口管道本體 322 第一分叉 323 第二分叉 521 頂點區域 522 側邊區域 A、B、 C、D、 E、F、 G、H -18 98155.doc50 outlet pipe 51 outlet pipe body 52 triangular zone 101 inlet pipe 102 inlet pipe 103 inlet pipe 104 inlet pipe 105 inlet pipe 106 inlet pipe 107 inlet pipe 108 inlet pipe 109 pipe 110 pipe 111 pipe 112 pipe 321 inlet pipe body 322 first point Fork 323 second fork 521 vertex area 522 side area A, B, C, D, E, F, G, H -18 98155.doc

Claims (1)

!284559 十、申請專利範圍: l 一種自旋微型混合器,包括: 複數個入口管道,用以注入所欲混合之流體; 一混合區,係為一中空區域,該等入口管道係分別連接 至該混合區,使該等所欲混合之流體於該混合區内進 行混合;及 出口 S道,連接至該混合區,用以導出混合後之流 體,其中該出口管道與該等入口管道係位於不同之水 平高度。 2·:請求項1之自旋微型混合器,其中該等入口管道係被 分成一第一部份及一第二部份,該第一部份係注入一第 一流體,該第二部份注入一第二流體。 3·如明求項1之自旋微型混合器,其中該第一部份及該第 二部份係位於同一水平高度。 4. 如請求们之自旋微型混合器,其中該第一部份及該第 二部份係位於不同水平高度。 5. 如請求们之自旋微型混合器,其中該混合區係為圓柱 6. 8. 如請求項5之自旋微型混合 係為該混合區之切線方向。 如請求項1之自旋微型混合 混合區之開口係低於該出口 如請求項1之自旋微型混合 混合區之開口係高於該出口 器,其中該入口管道之方向 器,其中該等入口管道於該 官道於該混合區之開口。 器,其中該等入口管道於該 管道於該混合區之開口。 98155.doc 1284559 9. 10 11. 12. 13. 14. 15. 16. 17. 18. 19. 士口古主本 明,項1之自旋微型混合器,其中該等入口管道之數 里係為八個。 月求項1之自旋微型混合器,其中該等入口管道之數 里係為十二個。 如睛求項1之自旋微型混合器,其中該所欲混合之流體 於忒入口管道内之雷諾數係至少為2.0。 如凊求項1之自旋微型混合器,其中該等入口管道之長 度皆相同。 月长項1之自旋微型混合器,其中該等入口管道之長 度係為其中長度最短者之倍數。 如請求項1之自旋微型混合器,其中每一入口管道本身 所有位置之截面皆相同。 如請求項1之自旋微型混合器,其中該入口管道包括一 入口皆道本體、一第一分又及一第二分又,該入口管道 本體係經由該第一分叉及該第二分叉連接至該混合區。 如叫求項1之自旋微型混合器,其中該出口管道之截面 積係等於該等入口管道之截面積之總和。 如叫求項1之自旋微型混合器,其中該出口管道包括一 出口管道本體及一三角形區,該三角形區包括一頂點區 域及一與該頂點區域相對應之側邊區域,該頂點區域係 連接4混合區,该侧邊區域係連接該出口管道本體。 如請求項1之自旋微型混合器,更包括一壓力源,用以 對該所欲混合之流體加壓。 一種自旋微型混合器之製造方法,包括·· 98155.doc -2 - 1284559 (a) 提供一第一基材; (b) /月洗該第一基材; (c) 塗佈一光阻於該第一基材上; (d) 顯影蝕刻該第一基材,使其上具有複數個第一微管 道; (e) 提供一第二基材; (f) 清洗該第二基材;!284559 X. Patent application scope: l A spin micro-mixer, comprising: a plurality of inlet pipes for injecting a fluid to be mixed; a mixing zone, which is a hollow zone, respectively connected to the inlet pipe The mixing zone, wherein the fluids to be mixed are mixed in the mixing zone; and the outlet S channel is connected to the mixing zone for deriving the mixed fluid, wherein the outlet pipe is located at the inlet pipe Different levels. 2: The spin micromixer of claim 1, wherein the inlet ducts are divided into a first portion and a second portion, the first portion is injected with a first fluid, the second portion Inject a second fluid. 3. The spin micromixer of claim 1, wherein the first portion and the second portion are at the same level. 4. The spin micro-mixer of the request, wherein the first portion and the second portion are at different levels. 5. A spin micro-mixer as claimed, wherein the mixing zone is a cylinder 6. 8. The spin micro-mixing system of claim 5 is the tangential direction of the mixing zone. The opening of the spin micro-mixing mixing zone of claim 1 is lower than the outlet, such as the opening of the spin micro-mixing zone of claim 1, which is higher than the outlet, wherein the inlet pipe is a directional device, wherein the inlets The pipe is at the opening of the official zone in the mixing zone. And wherein the inlet conduits are in the opening of the conduit in the mixing zone. 98155.doc 1284559 9. 10 11. 12. 13. 14. 15. 16. 17. 18. 19. Shikou Guzhu Benming, the spin micro-mixer of item 1, in which the number of such inlet pipes is Eight. The spin micromixer of Item 1 of the month, wherein the number of such inlet pipes is twelve. The spin micromixer of claim 1 wherein the fluid to be mixed has a Reynolds number of at least 2.0 in the inlet conduit. For example, the spin micromixer of item 1 wherein the lengths of the inlet pipes are the same. A spin micromixer of month 1 wherein the length of the inlet ducts is a multiple of the shortest length. The spin micromixer of claim 1 wherein each inlet pipe itself has the same cross section at all locations. The spin micromixer of claim 1, wherein the inlet pipe comprises an inlet body, a first branch and a second branch, the inlet pipe system via the first fork and the second branch The fork is connected to the mixing zone. A spin micromixer of claim 1, wherein the cross-sectional area of the outlet conduit is equal to the sum of the cross-sectional areas of the inlet conduits. The spin micromixer of claim 1, wherein the outlet pipe comprises an outlet pipe body and a triangular region, the triangular region comprising a vertex region and a side region corresponding to the vertex region, the vertex region A 4 mixing zone is connected that connects the outlet conduit body. The spin micromixer of claim 1 further comprising a pressure source for pressurizing the fluid to be mixed. A method for manufacturing a spin micromixer, comprising: 98155.doc -2 - 1284559 (a) providing a first substrate; (b) washing the first substrate; (c) coating a photoresist On the first substrate; (d) developing and etching the first substrate to have a plurality of first micro-pipes thereon; (e) providing a second substrate; (f) cleaning the second substrate; (g) 塗佈一光阻於該第二基材上; )*、、、貝〜蝕刻该第二基材,使其上具有複數個第二微管 道; _ (1)對忒第二基材上相對應於該等第一微管道之預設位 置處鑽孔; 。 ⑴提供—第三基材; 00對4第三基材上相對應於該等第二微 置處鑽孔; d位 ⑴接"該第三基材於該第二基材之上表面;及 ㈣接合該第一基材於該第二基材之下表面。 20·如請求項19之 璃。 次八中该第一基材之材質係為鈉玻 21 ·如請求項】 璃。、 中該第二基材之材質係為鈉玻 22·如清求項19之方法,i 璃。 、〒該第二基材之材質係為鈉破 98155.doc(g) applying a photoresist to the second substrate;)*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Drilling holes corresponding to the predetermined positions of the first micro-pipes; (1) providing a third substrate; 00 to 4 third substrate corresponding to the second micro-placement drilling; d-bit (1) connection " the third substrate on the upper surface of the second substrate; And (4) joining the first substrate to the lower surface of the second substrate. 20. The glass of claim 19 is as requested. In the eighth eighth, the material of the first substrate is sodium glass 21 · as requested. The material of the second substrate is sodium glass 22, such as the method of claim 19, i glass. 〒The material of the second substrate is sodium broken 98155.doc
TW94101730A 2005-01-20 2005-01-20 Self-rotating micromixer and the method of making the same TWI284559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94101730A TWI284559B (en) 2005-01-20 2005-01-20 Self-rotating micromixer and the method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94101730A TWI284559B (en) 2005-01-20 2005-01-20 Self-rotating micromixer and the method of making the same

Publications (2)

Publication Number Publication Date
TW200626224A TW200626224A (en) 2006-08-01
TWI284559B true TWI284559B (en) 2007-08-01

Family

ID=39445871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94101730A TWI284559B (en) 2005-01-20 2005-01-20 Self-rotating micromixer and the method of making the same

Country Status (1)

Country Link
TW (1) TWI284559B (en)

Also Published As

Publication number Publication date
TW200626224A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
Sudarsan et al. Fluid mixing in planar spiral microchannels
Schwesinger et al. A modular microfluid system with an integrated micromixer
Melin et al. A fast passive and planar liquid sample micromixer
US20070263477A1 (en) Method for mixing fluids in microfluidic channels
TWI230683B (en) The micromixer with overlapping-crisscross entrance
KR100941069B1 (en) Microfluidic dilution device
US20120300576A1 (en) Planar labyrinth micromixer systems and methods
AU2013220890B2 (en) Centrifugal microfluidic mixing apparatus and method
US20050213425A1 (en) Micro-mixer/reactor based on arrays of spatially impinging micro-jets
WO2004054696A1 (en) A mixing apparatus and method
JP3974531B2 (en) Microchannel mixing method and microchannel apparatus
JP2013040776A (en) Fluidic channel device, and method for mixing fluids
CN105289385A (en) Distorted arc-shaped micro mixer based on enhanced secondary flow effect
CN213193496U (en) Passive micro mixer
WO2005063368A9 (en) Method for mixing fluid streams, microfluidic mixer and microfluidic chip utilizing same
TWI284559B (en) Self-rotating micromixer and the method of making the same
KR100523983B1 (en) Kenics micromixer embedded barrier
TWI450852B (en) Micromixer
JP3873866B2 (en) Micro fluid mixer
JP4654378B2 (en) Flow control device for micro pump / mixer integrated device and flow control method for micro pump / mixer integrated device
KR102324465B1 (en) Microfluidic mixer and method of mixing fluid using the same
CN110975775A (en) High-flux three-dimensional microfluid mixing device based on dean flow effect and mixing method thereof
Chew et al. Fluid micromixing technology and its applications for biological and chemical processes
Thienthong et al. Mixing-performance evaluation of a multiple dilution microfluidic chip for a human serum dilution process
Kumar et al. Effect of geometry of the grooves on the mixing of Fluids in micro mixer channel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees