TWI284330B - Magnetic nanomaterials and synthesis method - Google Patents

Magnetic nanomaterials and synthesis method Download PDF

Info

Publication number
TWI284330B
TWI284330B TW092103669A TW92103669A TWI284330B TW I284330 B TWI284330 B TW I284330B TW 092103669 A TW092103669 A TW 092103669A TW 92103669 A TW92103669 A TW 92103669A TW I284330 B TWI284330 B TW I284330B
Authority
TW
Taiwan
Prior art keywords
magnetic
nanoparticle
nanoparticles
ferromagnetic
core
Prior art date
Application number
TW092103669A
Other languages
English (en)
Other versions
TW200402743A (en
Inventor
Philippe Renaud
Frederic Dumestre
Bruno Chaudret
Marie Claire Fromen
Marie-Jose Casanove
Original Assignee
Freescale Semiconductor Inc
Centre Nat Rech Scient
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc, Centre Nat Rech Scient filed Critical Freescale Semiconductor Inc
Publication of TW200402743A publication Critical patent/TW200402743A/zh
Application granted granted Critical
Publication of TWI284330B publication Critical patent/TWI284330B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/81Of specified metal or metal alloy composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/827Nanostructure formed from hybrid organic/inorganic semiconductor compositions
    • Y10S977/83Inorganic core or cluster coated with organic or biological shell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/838Magnetic property of nanomaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

1284330 (Ο 玟、發明說明_ 技術領月域钦月發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) '本發明大致有關磁性奈米粒子與合成磁性奈米粒子之方 :。更明確地說’本發明有關在有機金屬先質 =之鐵磁性奈米粒子,其用於例如高密度資訊貯存媒、 又“曰曰片上讯號隔離、感應器等,以改善高頻積 體電路應用中之被動組件性能。 、、 先前技術 者在:::?電路應用,諸如用於無線可攜式電子裝置中 ,可以::、功能度更大、性能更強以及較低之成本 路了中=將被動組件(諸如感應器與變壓器)整合於積體電 電子^此导目的°積體電路中未整合被動組件係造成 ,糸統中被動與主動組件比高至脈!的因素。不過 =的被動組件與積體電路上之主動元件整合時,會消 :::石夕,使其整合經常無經濟效益。因此,已發展出 。夕、方去減少被動組件用掉積體電路上之空間。 料③在積體η中面積的途徑之-係透過磁性材 ::二Γ如渗透性大於-之材料。此途徑之目的係利用 = 材^電磁能量貯存能量提高,來提高每單位面 貝 < 弘感。伴隨之感應器 低寄生電衮…η“ 降低串聯電阻與降 同材# 11 1 σ ,此(更高Q係數)。在變壓器中’相 以提高嶋數,因此提高《器中之』 面積較小,因此可以提:裝置 =:該:性材料内使其 门衣罝封衣松度。達到此等被動裝 1284330
置改良的傳❹法係使用非晶相或結晶固態相磁性材料 ,諸如例如EP〇716433中所揭示者。不過,在高頻應用時: 例如高MHz或低GHz頻率下,因為渦流損失與損失產生之 鐵磁性共振(FMR)使諸如此種方法之方法有其性能限制。 克服此等伴隨缺點之嘗試會使磁性奈米粒子(即,奈米 尺寸之粒子)空間分離以及電絕緣,如使該材料在裝置操 作溫度時呈鐵磁性,而且其係由單一磁域組成為佳。由於 可以抑制渦流損失以及將該FMR衰減擴大至更高頻率,該 磁性奈米粒子得以提高MHz-GHz‘圍中之單位面積電感 密度。不過,重要的是該複合磁性奈米粒子材料具有某些 性質,諸如磁性滲透性(μ)(即大於丨(一)),以及對應損失 (μ”)使得例如重要之MHz-GHz頻率範圍内的(滲透性)/(損 失)大於5。 已嘗試數種方法,以製造具有此等品質其中某些部分的 奈米粒子’此等方法通常分成三類:物理方法、樣板方法 與化學方法。 物理方法係諸如丨賤錢與蟲晶法(分別詳見Y.Μ· Kim等人 之 IEEE Trans, on Magn. vol. 37, no. 4, 2001 與 m_ Dumm 等 人之 Journal of Applied Physics vol.87, ηο·9, 2000)製造薄層 。不過’這兩種方法產生高摩透性膜最高僅約500 MHz, 而且通常不大於2-3微米,以使渦流損失最小。不過,此種 性能不足以加強被動裝置所需之有效磁場吸持。 樣板方法係諸如 Cao, H.,Xu,Z·,Sang,H·,Sheng,D·,Tie, C· Adv· Mater· 2001,vol. 13· p. 121 所述之方法,通常為無 (3) (3)1284330 發曰ϋ說明續頁 機或微蚀刻有機基質溝内之電化學性奈米棒或奈米線。此 種^法的主要缺耗粒子形成之後,該有_無機基質會 毀壞’其中該粒子形成作用會產生副產物,該副產物通常 會干擾該奈米粒子。如此導致飽和磁化作用比整塊金屬之 飽和磁化作用降低,而且亦避免形成高密度材料。 化學方法諸如Sun,S· Murray之c B^办〆户咖1999, ν〇1· 85, P. 4325 或是 Alivisat〇s,p· puntes,ν ρ Krishnan,κ M. Appl’ Phys. Lett. 2001,ν〇1· 78, ρ·2187所述之化學減少 或分解一種羰基先質等係有關在溶液中合成奈米粒子。該 化學方法,更明確地說,Sun等人之方法可以由高密度記錄 用之羰基鈷先質製造自組單分散球形鈷粒子。不過,由於 其尺寸小,室溫下該粒子仍然保持超順磁性,因此不會產 生高滲透性材料所達到之所需磁場吸持。其他著作係用相 同作者揭示於Sun, S. Murray,C· B· Weller,D· Folks,L· Moseir,A. Science 2000, ν〇1· 287, ρ·1989,其產生鐵鉑 (Fe/Pt)粒子以加強邊材料之磁性各向異性。不過,與上述 相似’該材料中的粒子尺寸小使其呈超順磁性,因而不適 用於磁% 吸持。在puntes,v. F. Krishnan,K. M. Alivisatos, Α· Ρ· Science 2001,v〇l. 291,ρ·2115 中,使用油酸與氧化三 辛基料(TOPO) ’由魏基錄先質製造姑奈来棒。不過,其需 要例如約300°c之高溫處理。此外,以此種方式製得之奈米 棒热熱力安定性’而且通常在反應的前幾秒内自動重配置 成球形奈米粒子。近來亦有報告提出鐵與鎳奈米棒,其係 於存在配位體,諸如TOPO與十基烧胺(HDA)下,分別分解 1284330
Fe(CO)5(Park, Kim9 S.; Lee, S.;Khim5 Z.G.; Char, K.;
Hyeon,T. J. Am· Chem· s〇c 2〇〇〇, v〇1 122, p 85川與 Ni(COD)2(N. Cordente, C.Amiens,F Sen〇cq,M __以 及 B. Chaudret,Nano Letters 2001,i⑽,p.565)。兩種材料 均非單相(粒子不會顯示相同形狀)。此外,此等粒子於室溫 下呈超順磁性,因此不適於磁場吸持。 所以,而要一種由磁性奈米粒子所組成之磁性材料,其 於室溫及/或最高達例如約105力之操作溫度下呈鐵磁性’,、 而且具有單一尺寸、形狀與磁性定向。此外,需要一種製 造此等可以調整縱橫比之具有熱力安定性磁性奈米粒子$ =法’該奈米粒子係封裝在一種非磁性基質内,如此此等 取終磁性奈米粒子材料可以用於高頻積體電路應用,諸如 用於無線可攜式電子裝置,以加強在各種被動與主動裝置 中之磁場吸持。 發明内容 根據本發明,申請專利範圍第1項中提出-種磁性奈米粒 子,申請專利範圍第12項中主張—種磁性奈求材料,而申 請專利範圍第14項中主張合成磁性奈米粒子之方法。 實施方式 在高頻積體電路應用巾,諸如用於無線可携式電子裝置 ’可以經由與磁性奈米粒子材料整合,改善諸如感應器盥 變壓器等被動組件以及用於訊號隔離之結構。本發明實例 之特;係使用複合材料’該材料包括包含特定體 積部分之磁性奈米粒子的基質材料,該磁性奈米粒子具有 1284330
飽矛(Ms)與各向異性(Hk),其中這三者(體積部分、Ms與^^) 最佳化,如此使該複合材料,具有足夠高滲透性與足夠高 頰之鐵磁性共振,得以改善高%1^與0]9^頻率下之被動 裝置(諸如感應器、變壓器、隔離)。可以經由改變該奈米粒 子之化學組成使飽和磁化作用(Ms)最佳化。可以經由該結 晶結構、該奈来粒子與複合材料本身之形狀最佳化各向異 此外為了充分利用複合磁性奈米粒子材料之電場吸 持性貝,該粒子之各向異性軸必須全部彼此對準。符合此 一2求之代表性途徑係先提高該材料的整體各向異性,可 以糟由改善該粒子形狀達到此㈣。形成更需要之形狀, 諸如長形粒子(橢圓形、棒狀、線狀或其他矩形、非球形粒 子)代#幵/成奈米球體。在匕等粒子必帛大到I以在最大裝置 操作溫度(例如,105t)下呈鐵磁性,但是小到足以由單一 磁域(或僅由數磁域)所組成為佳,即,其尺寸直徑與長度二 者必須在2至30 nm之譜。然後,該奈米粒子具有自組性, 而且經由一種配位體外殼或其他絕緣層工具,諸如原有之 氧化物外殼、氧化石夕塗層或其他絕緣塗層,使之彼此電絕 緣。不過’理想狀態係’包含該奈米粒子之材料必須具有 高度抗性,作為該奈米粒子之抗氧化劑,而且在至少高達 例如約15 0 c之溫度時仍然具有化學安定性。 圖1顯示本發明實例製備磁性奈米粒子之方法10。該方法 係由12開始,將14之溶液A添加於羧酸中,以油酸等為佳, 其中溶液A包括-種溶劑,以驗或芳族溶劑為佳,諸如甲笨 、甲氧基苯、二辛基驗等。然後,將一種胺(以油婦基胺等 Ί2- 1284330 ⑹ 輕)添加於該溶劑與油酸溶液中,完成溶液a。當然,可 ^ 此處未列出之其他溶劑與胺類進行相同分解作用。 厂驟16包括將溶液八添加於金屬有機先質,諸如姑先質 〇h (^ΗηΧη^^Η^),形成溶液B。可使用其他金屬先質 ’諸如烴金屬複合物,諸如叫以也減叫⑽士等等 、:亦可以任何順序添加溶液之組份,並混合在—起,形成 洛液Β。於步驟18,例如在壓力為例如3巴Η2之下,藉由在 甲氧基苯中以約15代轄射加熱溶液Β約48小時。此實例中 ’在步驟18處理期間,球形單分散鈷奈米粒子結合成奈米 才午之句勻幵v狀’不過,反應約1〇小時之後,此實例的溶液 中開始顯現奈米棒。該奈米棒係封閉式六邊形㈣)晶體, 而且沿者該結構之生長。完成f要數小時之反應後,該 奈米棒呈#之熱力安定形式。㈣熱力安定料轉不會 重配置其他形^,諸如球形奈求粒子或任何其他形式。 本方法之高產率合成作用(例如在奈米棒中發現接近7〇% 最初導入該溶液中之鈷)係於奈米棒中發現,其係於步驟2〇 中、於空乳女定之奈米棒上,沿著相同軸例如,。軸對準, 而且具有均勻直徑尺寸,如圖2與3所示。 圖2顯示本發明實例形成磁性奈❹料之磁性奈米粒子 之組合體30的高解析度透射電子顯微相片(hrtem),並中 沿著c軸生長對準。圖2亦顯示該奈轉在二維晶格中自組 ’該奈米棒間具有真正的矩形空間。在比圖2低之磁化作用 下,圖3顯示出高密度或高體積部分(例如,磁性奈米棒之 體積部分大於30%)、生長方向沿^轴之自組⑽米棒。 -13- 1284330 |圓_ 該實例所形成之奈米粒子顯示出磁性性質,諸如例如·· ·)飽#磁化作用與整塊録之磁性特徵以及性質相似;ii)因形 狀各向異性’加強磁性各向異性以及大大強化矯頑磁場(與 整塊鈷與球形奈米粒子相較)。此處之矯頑磁場主要由形^ 各向/、II所决疋。例如,在直徑4·9 之球形奈米粒子中 、磁f生各向異性He = 800高士,但是以油烯基胺與油酸作 為安疋劑所製得之奈米棒He = 89〇〇高士;以及出)於室溫 (或以上)具有鐵磁性,同時仍然保持單一磁域。 圖4與5顯示本發明實例之鈷奈米粒子的磁性性質。圖*顯 不,在10高士固定弱磁場下,當溫度提高至2〖至3〇〇 κ,然 後自300K降至2K時,該磁性奈米粒子之磁化作用評估。 圖5本發明實例在另一組條件下的另一組結果,其中飽和 磁化作用(Ms)=160電磁單位(EMU)/gC〇 ,殘餘磁化作用 (MR) - 80 EMU/gCo ’矯頑磁場之各向異性(士)= 89〇〇高士 ,而磁矩(μ)=1,69μΒ。圖5顯示該磁性鈷奈米粒子於室溫 下之磁滯迴線(以磁化作用作為所施加磁場之函數)。該溫度 保持在300Κ,並將磁化作用記錄為所施加磁場之函數If二 至5Τ,前至-5Τ後至+5 丁,因此封密所施加之磁場週期ρ 在150°C甲氧基苯中,於例如48小時内可以達到步驟18 之有機金屬先質的分解作用,並且提供高產率,例如為组 織化奈米材料中約7〇%,本實例中該奈米材料係由尺寸為 例如直徑約9 nm ’長度為50-1〇〇 nm之個別奈米棒所组成, 如通2與3所示。將會明白,藉由修正胺/酸比,可以改變該 奈米材料之各向異性。圖6顯示本發明實例之熱力安定磁性 -14- 1284330
奈米粒子22之示意圖。該磁性核心24、24於室溫/操作溫度 下呈鐵磁性,而非磁性封裝材料26、36封裝該磁性核心, 其該磁性奈米粒子電絕緣,而且避免受到環境污染。該磁 性奈米粒子可能具有預定可調整縱橫比,如此可以根據該 胺/酸比修正直徑28、3 8與長度29、39。例如,可以修改胺 /酸比,製得具有不同尺寸與不同縱橫比[]l/d (29/28)]之奈 米棒,例如該直徑範圍可能自約5 11111至3〇 nm,長度可能自 約10 nm至1 〇〇 nm。因此,實例包括自j當量油酸至2當量油 酉文形成奈米線(約7 nmx600 nm)。同樣地,可以藉由改變胺 鏈長控制该奈米棒縱橫比(長度/寬度),例如丨當量油烯基胺 (8個碳原子)與1當量油酸產生1〇nmxl7nm之奈米棒。其他 實例中,1當量十六烷胺(16個碳原子)與1當量油酸產生6 nmxl25 nm之奈米棒。在另一實例中,使用i當量六八烷胺 (18個碳原子)與1當量油酸產生6nmx45nmi奈米棒。當然 ,可使用其他變數控制該奈米材料之各向異性。此實例中 ,該奈米粒子係單晶,而且顯示整塊鈷之hep結構,因此每 個粒子沿著該hep結構之c軸對準。該奈米粒子間隔距離例 如3 nm,其相當於介於兩個相鄰奈米粒子間之配位體外殼 總寬度。 因此,本實例中,合成之鐵磁性奈米粒子(例如奈米蜂) 包含一配位體外殼,例如油烯基胺與油酸,羧酸/胺或任何 胺或酸等之任何組合物,其具有多重有益影響。例如,該 有機配位體提供以下目的其中_部分:丨)引發奈米粒子之各 向/、f生生長,孩主軸與hCp結晶結構之〇軸一致;丨丨)避免該 -15- 1284330 奈米粒子接觸空氣氧化與發生其他化學反應,諸如形成表 面氫氧化物等等;出)使該奈米粒子在有機溶劑中分散,而、 且不會對於該奈米粒子磁性性質造成不良影響;卜)使夺米 粒子沿著每個奈米粒子結晶各向異性軸自動對準;以ϋ 產生電絕緣粒子’因此限制渴流損失,並避免跨多粒子形 成磁域,如此可以改善高頻表現;以及vi)得以在磁場中進 行粒子定向,使高頻裝置應用最佳化。 當然,將明白本方法可使用其他鐵磁性元素,諸如例如 鐵、鐵等,以及相關合金,諸如例如Feco、NiFeco等,並 且刻意與該粒子一同添加金屬或非金屬雜質,諸如鈕、删 、氧、氮等,以改善預定構造中之磁性材料性質,使其最 適用於特定應用,諸如積體被動組件裝置。 將明白,雖然前文已經說明本發明特定實例,但是熟悉 本技術之人士在不違背本發明範圍下,可以製得各種其他 修正與改良。 圖式之簡單說明 現在茲將參考圖式更詳細說明本發明實例,其中·· 圖1顯示製備本發明實例之磁性奈米粒子的方法; 圖2顯示本發明實例之沿著較佳軸生長排列(例如c軸)之 磁性奈米粒子的南解析度透射電子顯微相片(Hrtem); 圖3顯示本發明實例之高密度自組磁性奈米粒子之透射 電子顯微相片(TEM); 圖4顯示在2與300K間,於約10G之弱磁場下,根據零場 冷卻/場冷卻(ZFC/FC)法測量本發明實例磁化作用之圖,其 -16- 1284330 (10) 中以化學微分析測定之樣本中鈷含量使磁化值標稱化; 圖5顯示本發明實例之磁性奈米粒子在300K磁滯迴線介 於+5與-5T之間,其中以化學微分析測定之樣本中鈷含量使 磁化值標稱化;及 圖6顯示本發明具有可調整縱橫比之熱力安定磁性奈米 粒子的示意圖。
圖式代表符號說明 22 奈歩粒子22 23/24 磁性核心23/24 26/36 封裝材料26/36 28/38 直徑28/38 29/39 長度29/39 30 組合體30 -17-

Claims (1)

  1. 工284^^益⑽669號專利申請案 申請專利範圍替換本(95年1〇月) 说御,乙__正眷: •Ί 拾、申請專利範圍 ^ 一種熱力安定磁性奈米粒子(22),包括磁性核心(24,34) 與非磁性成份(26,36),該磁性核心於室溫/操作溫度下呈 鐵磁f生σ亥非磁性成份則封裝該磁性核心,使該磁性奈 米粒子電絕緣,並避免被環境污染,該磁性奈米粒子具 有預定可調整縱橫比,而且具有適用mmHz-GHz範圍頻 率之滲透性與鐵磁性共振。 2·如申請專利範圍第1項之熱力安定磁性奈米粒子(22),其 中該磁性核心(24,34)係由鐵磁性元素所組成,該鐵磁性 元素係選自鐵(Fe)、鈷(Co)與鎳(Ni)所組成之群組。 3·如申請專利範圍第1項之熱力安定磁性奈米粒子(22),其 中該磁性核心(24,34)由鐵磁性元素之二元或三元合金 所組成,該該鐵磁性元素係選自鐵(1^)、鈷((:〇)與鎳(Ni) 所組成之群組。 4·如前述申請專利範圍第1、2或3項之熱力安定磁性奈米 粒子(22) ’其中該磁性核心(24,34)包括單一磁域。,、 5·如前述申請專利範圍第I、2或3項之熱力安定磁性奈米 粒子(22),其中該磁性粒子的直徑(28,38)與長度 在約2至600 nm範圍内。 如申請專利範圍第5項之熱力安定磁性太 不木粒子(22), 其中該鐵磁性核心(24,34)之結晶結構你料p日丄 傅1糸封閉式六邊形 6. 1284330
    月\>曰修(乘)正替換頁 7.如申請專利範圍第5項之熱力安定磁性奈米粒子(22),其 中該鐵磁性核心(24,34)之結晶結構係體心立方體。 8·如申請專利範圍第5項之熱力安定磁性奈米粒子(22),其 中該鐵磁性核心(24,34)之結晶結構係面心立方體。 9·如前述申請專利範圍第丨、2或3項之熱力安定磁性奈米 粒子(22),其中封裝該磁性核心(24,34)之非磁性成份 (26,36)係一種有機配位體。 I 0.如申請專利範圍第9項之熱力安定磁性奈米粒子,其 中該有機配位體係胺與羧酸之組合物。 II ·如申請專利範圍第9項之熱力安定磁性奈米粒子(22),其 中《亥有機配位體係油稀基胺與油酸之組合物。 12.如申請專利範圍第丨、2或3項之熱力安定磁性奈米粒子 (22)其用於兩頻積體電路應用之被動組件中。 13· —種磁性奈米材料(3〇),包括前述申請專利範圍任一項 之熱力安定磁性奈米粒子(22)的組合體。 14·如申请專利範圍第13項之磁性奈米材料(3〇),其中各個 磁性奈来粒子(22)具有與其他磁性奈米粒子彼此對準之 各向異性轴。 1 5·如申請專利範圍第13或14項之磁性奈米材料(3〇),其中 該磁性奈米材料的每個磁性奈米粒子(22)係單一尺寸、 形狀與磁性定向。 16· 一種合成磁性奈米粒子(22)之方法,包括以下步驟: 提供第一溶液(14),該溶液包括一種溶劑與羧酸和胺; 將第一溶液添加(16)於金屬有機先質,形成第二溶液; 1284330 ^^__._ 1¾作修(粟)正替換頁 17. 在壓力之下加熱第二溶液(18)—段預定時間,製得熱 力安定磁性奈米粒子(22),其包括磁性核心(24,34)與非 磁性成份(26,36),該磁性核心於室溫/操作溫度下呈鐵磁 性’該非磁性成份則封裝該磁性核心,使該磁性奈米粒 子避免被環境污染並且電絕緣,該磁性奈米粒子具有預 疋可调整縱橫比,而且具有適用於MHz_GHz範圍頻率之 滲透性與鐵磁性共振。 如申请專利範圍第16項之磁性奈米粒子(22)之合成方法 ’其中提供第-溶液步驟(14)進—步包括添加—種鱗作 為溶劑。
    18. 19. 如申請專利範圍第16項之磁性奈米粒子(22)之合成方法 ’其中提供第-溶液步驟(14)進—步包括添加一種芳族 溶劑,其係選自甲苯與甲氧基苯所組 如申請專利範圍第一任—項之磁群:奈米粒子 (22)之合成方法,其中提供第一溶液步驟⑽進—步包 括添加一種油酸作為該鲮酸。 20. 21. 如申請專利範圍第16训中任—項之磁性奈来粒 (22)之合成方法’其中提供第一溶液步驟⑽進—步 括添加一種油烯基胺作為該胺。 如I請專㈣UK18射任-項之糾奈米粒子( 之合成方法,其中提供第一溶液步驟(A進一步包: 加一種烴金屬複合物作為該金屬有機先質。 如申請專利範圍第16·18項中 ° (22)之人&古、么甘士, 項之磁性奈米粒 ()之&成方法,其中提供第-溶液步驟⑽進—步
    22. 1284330
    1$°月作修(象)正替換頁 括/4、加種姑先質作為該金屬有機先質。 23.如申睛專利範圍第16-18項中任一項之磁性奈米粒子 (22)之合成方法,其中提供加熱步驟(18)進一步包括於 約1與10巴H2或含H2氣體混合物之壓力下,以100與250 °C之間的溫度加熱約3至60小時。
    -4 ·
TW092103669A 2002-02-25 2003-02-21 Magnetic nanomaterials and synthesis method TWI284330B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02290455A EP1339075A1 (en) 2002-02-25 2002-02-25 Magnetic nanomaterials and synthesis method

Publications (2)

Publication Number Publication Date
TW200402743A TW200402743A (en) 2004-02-16
TWI284330B true TWI284330B (en) 2007-07-21

Family

ID=27635904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092103669A TWI284330B (en) 2002-02-25 2003-02-21 Magnetic nanomaterials and synthesis method

Country Status (8)

Country Link
US (1) US7429339B2 (zh)
EP (1) EP1339075A1 (zh)
JP (1) JP2005518661A (zh)
KR (1) KR20050007435A (zh)
CN (1) CN1319081C (zh)
AU (1) AU2003206848A1 (zh)
TW (1) TWI284330B (zh)
WO (1) WO2003071561A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485366B2 (en) * 2000-10-26 2009-02-03 Inframat Corporation Thick film magnetic nanoparticulate composites and method of manufacture thereof
US20050128842A1 (en) * 2003-11-07 2005-06-16 Alexander Wei Annular magnetic nanostructures
ES2242528B1 (es) 2004-03-25 2006-12-01 Consejo Sup. Investig. Cientificas Nanoparticulas magneticas de metales nobles.
US7932721B2 (en) * 2006-04-07 2011-04-26 The United States Of America As Represented By The Department Of Health And Human Services Inductive decoupling of a RF coil array
US7680553B2 (en) * 2007-03-08 2010-03-16 Smp Logic Systems Llc Methods of interfacing nanomaterials for the monitoring and execution of pharmaceutical manufacturing processes
DE102008026658A1 (de) 2007-11-13 2009-05-14 Council Of Scientific & Industrial Research Verfahren zur Herstellung von Nanodrähten aus Metalloxiden mit Dotiermitteln in niedrigem Valenzzustand
WO2010071459A1 (en) 2008-12-19 2010-06-24 Victoria Link Limited Magnetic nanoparticles
WO2010079781A1 (ja) * 2009-01-06 2010-07-15 国立大学法人九州大学 ファイバー状ニッケルおよびその製造方法
AU2010232430B2 (en) 2009-04-03 2014-08-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Magnetic microstructures for magnetic resonance imaging
WO2011075516A2 (en) 2009-12-18 2011-06-23 President And Fellows Of Harvard College Active scaffolds for on-demand drug and cell delivery
FR2955853B1 (fr) 2010-02-02 2012-03-09 Inst Nat Sciences Appliq Procede de fabrication de nano-batonnets epitaxies sur un support, nano-batonnets epitaxies obtenus par un tel procede et support d'enregistrement de donnees numeriques
JP5175884B2 (ja) * 2010-03-05 2013-04-03 株式会社東芝 ナノ粒子複合材料、それを用いたアンテナ装置及び電磁波吸収体
SG10201608671SA (en) 2011-07-18 2016-12-29 Harvard College Engineered Microbe-Targeting Molecules and Uses Thereof
US8840800B2 (en) * 2011-08-31 2014-09-23 Kabushiki Kaisha Toshiba Magnetic material, method for producing magnetic material, and inductor element
FR2999976B1 (fr) 2012-12-24 2014-12-26 Centre Nat Rech Scient Nano-objets magnetiques recouverts par une enveloppe metallique
WO2014144325A1 (en) 2013-03-15 2014-09-18 President And Fellows Of Harvard College Methods and compositions for improving detection and/or capture of a target entity
JP6649250B2 (ja) 2013-05-21 2020-02-19 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 操作されたヘム結合性構成物およびその使用
WO2015013585A1 (en) 2013-07-26 2015-01-29 University Of Florida Research Foundation, Incorporated Nanocomposite magnetic materials for magnetic devices and systems
US9409148B2 (en) 2013-08-08 2016-08-09 Uchicago Argonne, Llc Compositions and methods for direct capture of organic materials from process streams
EP3912986B1 (en) 2013-12-18 2023-12-13 President and Fellows of Harvard College Crp capture/detection of bacteria
AU2015274334B2 (en) 2014-06-12 2020-12-17 Cedars-Sinai Medical Center Compositions and methods for treating cancers
FR3036979B1 (fr) 2015-06-03 2017-05-26 Ifp Energies Now Catalyseur comprenant un support poreux dans lequel se trouvent des particules metalliques presentant une morphologie de type " oursin ".
US10435457B2 (en) 2015-08-06 2019-10-08 President And Fellows Of Harvard College Microbe-binding molecules and uses thereof
KR20180033883A (ko) * 2016-09-26 2018-04-04 삼성전기주식회사 인덕터
US20190112731A1 (en) 2017-10-12 2019-04-18 Julianne Holloway Manufacturing gradient materials using magnetically-assisted electrospinning
WO2020148206A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456986A (en) * 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
GB2319253A (en) * 1996-11-16 1998-05-20 Eric Leigh Mayes Composition, for use in a device, comprising a magnetic layer of domain-separated magnetic particles
US7724558B1 (en) * 1999-03-19 2010-05-25 Nec Corporation Magnetic signal transmission line

Also Published As

Publication number Publication date
US7429339B2 (en) 2008-09-30
US20050200438A1 (en) 2005-09-15
CN1319081C (zh) 2007-05-30
KR20050007435A (ko) 2005-01-18
EP1339075A1 (en) 2003-08-27
CN1639810A (zh) 2005-07-13
WO2003071561A1 (en) 2003-08-28
AU2003206848A1 (en) 2003-09-09
JP2005518661A (ja) 2005-06-23
TW200402743A (en) 2004-02-16

Similar Documents

Publication Publication Date Title
TWI284330B (en) Magnetic nanomaterials and synthesis method
Ma et al. Magnetic nanoparticles: Synthesis, anisotropy, and applications
Gubin Magnetic nanoparticles
Sun Recent advances in chemical synthesis, self‐assembly, and applications of FePt nanoparticles
Hajalilou et al. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties
Zeng et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles
Liu et al. Exchange-coupled nanocomposites: chemical synthesis, characterization and applications
Shen et al. Chemical synthesis of magnetic nanoparticles for permanent magnet applications
De et al. Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy
Jing et al. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen
JP2005518661A5 (zh)
Li et al. Thermal stability, oxidation behavior and magnetic properties of Fe–Co ultrafine particles prepared by hydrogen plasma–metal reaction
Cui et al. High magnetization Fe-Co and Fe-Ni submicron and nanosize particles by thermal decomposition and hydrogen reduction
Lu et al. Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications
Gandha et al. Effect of ${\rm RuCl} _ {3} $ on Morphology and Magnetic Properties of CoNi Nanowires
Zhao et al. A simple method to prepare uniform Co nanoparticles
McHenry et al. Nanocrystalline materials for high temperature soft magnetic applications: A current prospectus
Panda et al. Magnetic properties of nanocrystalline γ-Fe–Ni–N nitride systems
Mizuno et al. Structural and magnetic properties of monolayer film of CoPt nanoparticles synthesized by polyol process
Jing et al. Composition-and Phase-Controlled High-Magnetic-Moment Fe $ _ {1-{\rm x}} $ Co $ _ {\rm x} $ Nanoparticles for Biomedical Applications
Lu et al. FePt and Fe nanocomposite by annealing self-assembled FePt nanoparticles
Shukla et al. Magnetic nanostructures: Synthesis, properties, and applications
de Moraes et al. Nanocomposites for permanent magnets
Varanda et al. Temperature dependence and magnetocrystalline anisotropy studies of self-assembled L10-Fe55Pt45 ferromagnetic nanocrystals
Adanur et al. Evaluation of nanoparticle formation and magnetic properties by boron doping in Ni/NiO δ nanoparticles

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees