TWI284138B - Nano silicate platelet-organic polymer nanocomposite and use thereof - Google Patents

Nano silicate platelet-organic polymer nanocomposite and use thereof Download PDF

Info

Publication number
TWI284138B
TWI284138B TW93115511A TW93115511A TWI284138B TW I284138 B TWI284138 B TW I284138B TW 93115511 A TW93115511 A TW 93115511A TW 93115511 A TW93115511 A TW 93115511A TW I284138 B TWI284138 B TW I284138B
Authority
TW
Taiwan
Prior art keywords
nano
organic polymer
composite material
stone
organic
Prior art date
Application number
TW93115511A
Other languages
Chinese (zh)
Other versions
TW200538414A (en
Inventor
Jiang-Jen Lin
Ying-Nan Jan
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW93115511A priority Critical patent/TWI284138B/en
Publication of TW200538414A publication Critical patent/TW200538414A/en
Application granted granted Critical
Publication of TWI284138B publication Critical patent/TWI284138B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention provides a nano silicate platelet-organic polymer nanocomposite comprising an organic polymer and a nano silicate platelet, the nano silicate platelet is the reaction product of an intercalating agent represented by the following formula (I) and siloxy-layered nano silicate platelet in an acidic condition, wherein POP is a divalent moiety having the following formula (II), R is C1-C4 alkyl group, and n is an integer of between 1 and 68, and m is an integer of between 10 and 100. The present invention also provides a coating film with high hardness, which is obtained by coating a substrate with the above nano silicate platelet-organic polymer nanocomposite and heating for a sufficient time.

Description

1284138 玖、發明說明: 【發明所屬之技術領域】 本發明是關於一種奈米矽片/有機高分子奈米複合材料 及其應用。特別地,本發明是關於一種於有機高分子中摻 5 入經脫層分散之奈米矽片的奈米複合材料,且該奈米複合 材料可進一步製成具有優異機械性質、透明度及熱性質之 塗膜。 【先前技術】 無機黏土 /有機高分子奈米複合材料(inorganic clay-10 organic polymer nanocomposite)為目前業界努力開發之重要 材料之一。近年來,已有許多有關奈米複合材料之文獻及 專利被報導,例如:曰本豐田公司將[NKb+CCHOuCOCT]蒙 脫土(montmorillonite)分散於Nylon 6而開發出首件可實際 應用於市場上之無機黏土 /有機高分子奈米複合材料。該等 15 文獻及專利揭示以天然或人工合成之層狀黏土(layered clay) 做為無機填充材來添加至觸媒及高分子材料,俾以改善高 分子材料之溶劑阻抗性(solvent resist)、阻氣性(gas barrier property)、機械性質及熱性質。 由於未經改質之層狀黏土的表面為親水的(hydrophilic) 20 ,與一般疏水的(hydrophobic)有機高分子的相容性甚差,以 致於容易產生因凝聚(aggregation)現象而無法均勻分散的缺 點。因此,複合材料之機械及熱性質的提昇取決於有機高 分子與層狀黏土之間是否具有良好的相容性,即,層狀黏 土於有機高分子中之分散程度。 1284138 為改善有機高分子與層狀黏土之間的相容性,可藉由 於黏土中加入插層劑(intercalating agent)來鬆動層狀黏土之 層間距離而造成較大之層間距離,以允許單體(monomer)進 入,再進一步經由高分子聚合反應而得到經插層 5 (intercalated)或經脫層(exfoliated)分散之無機黏土/有機高分 子奈米複合材料。 習知文獻中曾提及之插層劑包括:12-胺基十二烷酸 (12-aminolauric acid)、十六烧基胺(hexadecylamine)、脂肪 族胺(fatty amine)、雙(2-羥基乙基)甲基牛脂烧基氣化銨 10 (bis(2-hydroxyethyl)methyl tallow alkyl ammonium chloride) 、十八烧基胺(stearylamine)等胺類或四級銨鹽(quaternary ammonium salt)。該等低分子型之極性錄鹽基團會與帶電荷 之層狀無機黏土形成極性鍵(polar bond),並使黏土原有之 親水性變成具親油之性質,故可提昇層狀無機黏土與有機 15 高分子之間的相容性,並有利於下一步之脫層反應之進行 ,然對於材料機械性質之提升仍有待改善處。 藉由在有機高分子中添加經有機鏺鹽(organic onium salt)處理之層狀黏土之技術,已揭示於許多專利文獻中,例 如:美國專利第6,552,113、6,552,114、6,486,252號及歐洲 20 專利第1,235,876號等,這些專利之目的主要為利用經處理 之層狀黏土來製備具有良好阻氣性及霧度(haze)之塗層。 此外,於本國專利公告第550246號中,本發明人曾利 用一系列分子量1800以上之聚醚胺(polyoxyalkylene amine) 作為插層劑來改質層狀黏土,而所獲得之插層型 7 1284138 (intercalation type)層狀黏土的層間距離可擴大至50〜92 A, 並進一步可製備一奈米矽片/有機高分子奈米複合材料。在 該等聚醚胺插層劑中,以聚丙基_二胺(polyoxypropylene diamine)為較佳,例如:聚丙二醇雙(2-胺基丙基醚 5 )[poly(propyleneglycol)bis(2-aminopropyl ether)],其之商品 名為Jeffamine® D_4000及D-2000。不過,當本發明人進一 步利用經Jeffamine®D-2000插層分散之層狀黏土與有機高 分子進行反應時,雖可製得_層型(intercalating type)之奈 米矽片/有機高分子奈米複合材料,但因插層劑D-2000容易 10 混到有機高分子中,並會干擾有機高分子之交聯反應,而 無法大幅提昇複合材料之硬度及熱性質。 由上述可知,對於尋求一具備均勻分散程度及良好機 械性質(特別是硬度)、透明度與熱性質之無機/有機奈米複 合材料,仍存在一需求。 15 【發明内容】 發明概要 由於利用習知之低分子型插層劑無法獲得分散均勻及 高層間距離之奈米矽片,因此,本案發明人進一步利用較 大分子量之插層劑來增加層間距離,以期獲得更佳之矽片 20 分散(此部份之技術内容已揭示於本國專利公告第550246號 中)。 然而,在本國專利公告第550246號中,本案發明人利 用聚醚胺插層劑(例如Jeffamine® D-2000或D-4000)來對無 機黏土進行改質,雖獲得高層間距離之插層型奈米矽片, 1284138 但當被加入高分子材料並製成奈米複合材料時,所得之奈 米複合材料的硬度、透明度及熱性質等仍存在一改善之空 間。 本案發明人為進一步改善有機高分子與層狀黏土之間 的相容性以提昇複合材料之機械性質、透明度及熱性質, 延續插層之概念,除了使層狀黏土之片狀結構能有高層間 距離,並針對插層劑進行改良,以使層狀黏土達到脫層狀 態,進而改善有機高分子與層狀黏土之間的相容性。 ίο 15 因此,本案發明人針對插層劑作進一步之改良,此改 良係藉由使分子量為2000之聚丙二醇雙(2_胺基丙基醚)(即 市售商品 Jeffamine⑧D-2000)、對-苯齡(p-cresol)與曱酸 (formaldehyde)進行聚合反應,而獲得一直鏈型插層劑 (linear intercalating agent),亦即,末端為胺基之曼尼希寡 聚物(Amine terminal-Mannich Oligomer,於下文中簡稱為「 AMO插層劑」)作為插層劑,如下列化學式(I)所示: η2ν-ρορ-ην|η2ο1284138 发明, DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a nano crepe sheet/organic polymer nano composite material and use thereof. In particular, the present invention relates to a nanocomposite in which an organic polymer is doped into a delaminated nanosheet, and the nanocomposite can be further prepared to have excellent mechanical properties, transparency, and thermal properties. Coating film. [Prior Art] Inorganic clay-10 organic polymer nanocomposite is one of the important materials currently being developed in the industry. In recent years, many literatures and patents on nanocomposites have been reported. For example, Sakamoto Toyota has [NKb+CCHOuCOCT] montmorillonite dispersed in Nylon 6 and developed the first piece to be practically used in the market. Inorganic clay/organic polymer nanocomposite. These 15 documents and patents disclose the addition of natural or synthetic layered clay as an inorganic filler to the catalyst and polymer materials to improve the solvent resistance of the polymer material. Gas barrier property, mechanical properties and thermal properties. Since the surface of the unmodified layered clay is hydrophilic 20, it has poor compatibility with the general hydrophobic organic polymer, so that it is easy to be uniformly dispersed due to aggregation phenomenon. Shortcomings. Therefore, the improvement of the mechanical and thermal properties of the composite material depends on whether there is good compatibility between the organic high molecular layer and the layered clay, that is, the degree of dispersion of the layered clay in the organic polymer. 1284138 In order to improve the compatibility between organic polymer and layered clay, a large interlayer distance can be caused by the intercalating agent in the clay to loosen the interlayer distance of the layered clay to allow the monomer. (monomer) enters, and further, an intercalated or exfoliated dispersed inorganic clay/organic polymer nano composite material is obtained through a polymer polymerization reaction. Intercalating agents mentioned in the prior art include: 12-aminolauric acid, hexadecylamine, fatty amine, bis(2-hydroxyl) An amine or a quaternary ammonium salt such as bis(2-hydroxyethyl)methyl tallow alkyl ammonium chloride or stearylamine. These low-molecular polar salt groups form a polar bond with the charged layered inorganic clay, and the original hydrophilicity of the clay becomes oleophilic, thereby enhancing the layered inorganic clay. The compatibility with the organic 15 polymer is beneficial to the next step of the delamination reaction, but there is still room for improvement in the mechanical properties of the material. The technique of adding a layered clay treated with an organic onium salt to an organic polymer has been disclosed in many patent documents, for example, U.S. Patent Nos. 6,552,113, 6,552,114, 6,486,252 and Europe. 20 Patent No. 1,235,876, etc., the purpose of which is to use a treated layered clay to prepare a coating having good gas barrier properties and haze. Further, in the National Patent Publication No. 550246, the inventors have used a series of polyoxyalkylene amines having a molecular weight of 1800 or more as an intercalation agent to modify a layered clay, and the intercalated type 7 1284138 obtained ( Intercalation type) The interlayer distance of the layered clay can be expanded to 50 to 92 A, and a nano-sheet/organic polymer nano composite can be further prepared. Among the polyetheramine intercalators, polyoxypropylene diamine is preferred, for example, polypropylene glycol bis(2-aminopropyl ether 5 ) [poly(propyleneglycol) bis (2-aminopropyl) Ether)], its trade names are Jeffamine® D_4000 and D-2000. However, when the present inventors further reacted with an organic polymer by layered clay dispersed by Jeffamine® D-2000, an intercalating type of nanosheet/organic polymer naphthalene can be obtained. Rice composite material, but because the intercalating agent D-2000 is easily mixed into the organic polymer, it will interfere with the cross-linking reaction of the organic polymer, and cannot greatly improve the hardness and thermal properties of the composite material. From the above, there is still a need for an inorganic/organic nanocomposite material having a uniform degree of dispersion and good mechanical properties (especially hardness), transparency and thermal properties. 15 SUMMARY OF THE INVENTION Summary of the Invention Since the nano-powder sheet having a uniform dispersion and a high-level distance cannot be obtained by using a conventional low-molecular type intercalating agent, the inventors of the present invention further utilize a larger molecular weight intercalating agent to increase the interlayer distance. In order to obtain better film 20 dispersion (the technical content of this part has been disclosed in National Patent Publication No. 550246). However, in the National Patent Publication No. 550246, the inventors of the present invention used a polyetheramine intercalating agent (for example, Jeffamine® D-2000 or D-4000) to modify the inorganic clay, although the intercalation type of the inter-high-rise distance was obtained. Nano-ruthenium, 1284138 However, when it is added to a polymer material and made into a nano-composite material, there is still room for improvement in hardness, transparency and thermal properties of the obtained nano-composite material. The inventor of the present invention further improved the compatibility between the organic polymer and the layered clay to enhance the mechanical properties, transparency and thermal properties of the composite material, and continued the concept of the intercalation layer, except that the sheet-like structure of the layered clay can have a high-rise layer The distance and the intercalation agent are modified to achieve the delamination state of the layered clay, thereby improving the compatibility between the organic polymer and the layered clay. Ίο 15 Therefore, the inventors of the present invention further improved the intercalation agent by using polypropylene glycol bis(2-aminopropyl ether) having a molecular weight of 2000 (i.e., commercially available Jeffamine 8D-2000), p- The phenyl age (p-cresol) is polymerized with phthalic acid to obtain a linear intercalating agent, that is, an amine-based Mannich oligomer (Amine terminal-Mannich). Oligomer, hereinafter referred to as "AMO intercalating agent" as an intercalating agent, is represented by the following chemical formula (I): η2ν-ρορ-ην|η2ο

CH2NH-POP-NHj-H (丨)CH2NH-POP-NHj-H (丨)

其中,POP為具有下列化學式(II)之二價部分: R R 一 6hCH2+〇CH2Ch]^ (II) 而R為之烷基,且η為介於1至68之間的整數以及 m為介於10至100之間的整數。 20 1284138 本發明人利用上述之AMO插層劑與該矽氧層狀無機黏 土在一酸性環境下進行插層反應,進一步藉由控制酸化程 度來達到脫層狀態,再經由取代反應來獲得一級結構之 AMO/無機黏 土奈米石夕片(nano silicate platelet) 〇 5 因此,鑑於以上之實驗成果,本發明提供一種具備良 好機械性質、透明度及熱性質之奈米矽片/有機高分子奈米 複合材料,其係包含一有機高分子及上述之AMO/無機黏土 奈米矽片。本發明是藉由將該AMO插層劑之末端胺基予以 酸化而形成一個四級銨陽離子(quaternary ammonium cation) 10 並以該四級錄陽離子作為陽離子起始劑(cation initiator), 來促進該AMO/無機黏土奈米矽片與該有機高分子之間的交 聯反應,進而使得該奈米矽片於該有機高分子中可達到奈 米級之分散程度,並更進一步可提昇該複合材料之機械性 質、透明度及熱性質。 15 此外,本發明亦提供一種高硬度塗膜,係藉由將上述 之奈米矽片/有機高分子奈米複合材料塗佈至一基材上,繼 而加熱歷經一段足夠久之時間所製備而得。 發明之詳細說明 本發明提供一種奈米矽片/有機高分子奈米複合材料, 20 其包含一有機高分子及一奈米石夕片。 該奈米矽片係為一具有下列化學式(I)之AMO插層劑與 矽氧層狀無機黏土在一酸性環境下進行反應所得之產物: 10 1284138 OH h2n-pop-hn|h2cWherein POP is a divalent moiety having the following chemical formula (II): RR-6hCH2+〇CH2Ch]^ (II) and R is an alkyl group, and η is an integer between 1 and 68 and m is between 10 An integer between 100 and 100. 20 1284138 The present inventors used the above-mentioned AMO intercalating agent to carry out an intercalation reaction with the niobium oxide layered inorganic clay in an acidic environment, further controlling the degree of acidification to achieve a delamination state, and then obtaining a primary structure through a substitution reaction. AMO/inorganic clay nano silicate platelet 〇5 Therefore, in view of the above experimental results, the present invention provides a nano sized sheet/organic polymer nano composite having good mechanical properties, transparency and thermal properties. The material comprises an organic polymer and the above-mentioned AMO/inorganic clay nanosheet. The present invention facilitates the formation of a quaternary ammonium cation 10 by acidifying the terminal amine group of the AMO intercalating agent and using the quaternary cation as a cation initiator. The crosslinking reaction between the AMO/inorganic clay nanosheet and the organic polymer further enables the nanosheet to reach the nanometer level of dispersion in the organic polymer, and further enhance the composite material. Mechanical properties, transparency and thermal properties. In addition, the present invention also provides a high-hardness coating film which is prepared by coating the above-mentioned nano-ruthenium sheet/organic polymer nano composite material onto a substrate and then heating for a sufficiently long period of time. . DETAILED DESCRIPTION OF THE INVENTION The present invention provides a nanosheet/organic polymer nanocomposite, 20 comprising an organic polymer and a nanocrystalline sheet. The nanosheet is a product obtained by reacting an AMO intercalant of the following chemical formula (I) with a bismuth layered inorganic clay in an acidic environment: 10 1284138 OH h2n-pop-hn|h2c

CH2NH-POP-N汁Η (I) 其中,POP為具有下列化學式(II)之二價部分:CH2NH-POP-N juice Η (I) wherein POP is a divalent moiety having the following chemical formula (II):

R R —CHCH2-f〇CH2CH]^ (II) ίο 15 而R為(^〜山之烷基,且η為介於1至68之間的整數,m 為介於10至100之間的整數。較佳地,於式(I)中,R為甲 基,m為33,以及η為1至10之間的整數。 在本發明之具體例中,該具有化學式(I)之ΑΜΟ插層劑 係為聚醚二胺、對-甲酚及曱醛之一反應產物;且較佳地, 該聚醚二胺為聚丙基醚二胺;更佳地,該聚醚二胺為聚丙 二醇雙(2-胺基丙基 _ )[poly(propyleneglycol)bis(2_ aminopropyl ether)],其商品名為 Jeffamine® D_2000 〇 關於該具有化學式(I)之AMO插層劑的製備,可依據習 知之合成方法來製備,或依據以下反應式來進行製備: 20 (1)於曱苯,90°C下攪拌 (2) 加入37wt%甲搭水溶液 對-甲酚+ D-2000 -►ΛΜΟ插層劑RR —CHCH2-f〇CH2CH]^ (II) ίο 15 and R is (^~the alkyl group, and η is an integer between 1 and 68, and m is an integer between 10 and 100. Preferably, in the formula (I), R is a methyl group, m is 33, and η is an integer between 1 and 10. In a specific example of the present invention, the ruthenium intercalation agent of the formula (I) It is a reaction product of polyether diamine, p-cresol and furfural; and preferably, the polyether diamine is a polypropyl ether diamine; more preferably, the polyether diamine is a polypropylene glycol double ( 2-Aminopropyl ether], which is commercially available as Jeffamine® D_2000. For the preparation of the AMO intercalant having the formula (I), it can be synthesized according to the conventional method. Prepare, or according to the following reaction formula: 20 (1) in benzene, stirring at 90 ° C (2) adding 37 wt% aqueous solution of p-cresol + D-2000 - ► ΛΜΟ intercalant

(3) 90°C^130°C (4) 130°C,5 小時 適用於本發明之矽氧層狀無機黏土可選自於由下列所 11 1284138 5 10 15 20 構成之群組:蒙脫土(montmorillonite)、高嶺土(kolin)、雲 母(mica)、滑石粉(talc),以及此等之一組合。較佳地,該石夕 氧層狀無機黏土為蒙脫土。而在本發明之具體例中,該矽 氧層狀無機黏土為一具有50至200meq/100g間之陽離子交 換當量(cation exchange equivalent,簡稱為「CEC」)之含鈉 陽離子交換型蒙脫土,且較佳地,該矽氧層狀無機黏土為 一具有100至150meq/100g間之陽離子交換當量之含鈉陽 離子交換型蒙脫土。當CEC低於50meq/100g時,經由離子 交換而達成的有機化並不足夠,而致使黏土不易膨潤;當 CEC高於200meq/100g時,夾層間的結合力太高,也會致 使黏土難以膨潤。 有關本發明中用以製備奈米複合材料之奈米矽片,係 為一具有化學式(I)之AMO插層劑與矽氧層狀無機黏土在一 酸性環境下進行反應所得之產物,而在本發明之一具體例 中,該奈米矽片係依據以下步驟進行製備: (a) 使一含鈉陽離子交換型蒙脫土分散於約80。(:之熱水中 ,以形成一均勻分散液; (b) 使AMO插層劑與鹽酸水溶液於約80QC下混合均勻, 以形成一混合液; (c) 使該步驟(a)之分散液與步驟(b)之混合液予以混合,以 形成一插層劑-黏土混合液;以及 (d) 於該步驟(c)所獲得之插層劑-黏土混合液中加入一鹼性 溶液,以進行一脫層反應,俾獲得一反應液; (e) 以一適當溶劑清洗並過濾該步驟(d)所獲得之反應液, 12 1284138 即可獲得經AMO插層劑脫層分散之奈米矽片。 較佳地,在本發明之有機高分子組成物中,以該有機 高分子組成物之總重計,該奈米矽片於該組成物中之含量 為0.1〜70wt%,較佳為小於10wt%,更佳為不大於5wt%。 10 再者,適用於本發明之有機高分子包括,但不限於下 列所列舉者:環氧樹脂(epoxy resin)、聚醯胺(polyamide)、 聚苯乙烯(PS)、聚丙烯(PP)、聚胺基甲酸酯(PU)、聚對苯二 甲酸乙二醋(polyethylene terephthalate,PET)、聚曱基丙浠 酸甲酯(PMMA),以及此等之一組合。較佳地,該有機高分 子為環氧樹脂;而在本發明之具體例中,該有機高分子為 雙紛-A 之二縮水甘油基醚(diglycidyl ether of bisphenol-A, 簡稱為「DGEBA」,商品名為「BE-188」),分子式如下: 15 c(3) 90 ° C ^ 130 ° C (4) 130 ° C, 5 hours The oxygen-containing layered inorganic clay suitable for use in the present invention may be selected from the group consisting of 11 1284138 5 10 15 20: Montmorillonite, kolin, mica, talc, and combinations of these. Preferably, the layered inorganic clay is montmorillonite. In a specific example of the present invention, the cerium-oxygen layered inorganic clay is a sodium-containing cation exchange type montmorillonite having a cation exchange equivalent ("CEC") between 50 and 200 meq/100 g. And preferably, the cerium-oxygen layered inorganic clay is a sodium-containing cation exchange type montmorillonite having a cation exchange equivalent of between 100 and 150 meq/100 g. When the CEC is lower than 50meq/100g, the organicization achieved by ion exchange is not enough, and the clay is not easy to swell; when the CEC is higher than 200meq/100g, the bonding force between the interlayers is too high, which also makes the clay difficult to swell. . The nano-ruthenium sheet for preparing a nano composite material in the invention is a product obtained by reacting an AMO intercalating agent of the formula (I) with a cerium-oxygen layered inorganic clay in an acidic environment, and In one embodiment of the invention, the nanosheet is prepared according to the following procedure: (a) Dispersing a sodium-containing cation exchange type montmorillonite at about 80. (: in hot water to form a uniform dispersion; (b) mixing the AMO intercalant with aqueous hydrochloric acid at about 80QC to form a mixed solution; (c) dispersing the step (a) Mixing with the mixture of step (b) to form an intercalant-clay mixture; and (d) adding an alkaline solution to the intercalant-clay mixture obtained in the step (c), Performing a delamination reaction to obtain a reaction solution; (e) washing and filtering the reaction liquid obtained in the step (d) with a suitable solvent, 12 1284138 to obtain a nano-deposited lysate dispersed by the AMO intercalation agent Preferably, in the organic polymer composition of the present invention, the content of the nano tablet in the composition is 0.1 to 70% by weight based on the total weight of the organic polymer composition, preferably Less than 10% by weight, more preferably not more than 5% by weight. Further, organic polymers suitable for use in the present invention include, but are not limited to, the following: epoxy resin, polyamide, poly Styrene (PS), polypropylene (PP), polyurethane (PU), polyethylene terephthalate (polyethylene terephthalate, PET), polymethyl phthalic acid methyl ester (PMMA), and a combination thereof. Preferably, the organic polymer is an epoxy resin; and in a specific example of the present invention, the organic The polymer is diglycidyl ether of bisphenol-A ("DGEBA", trade name "BE-188"), and the molecular formula is as follows: 15 c

3Φ 5RCH3 Η2 HCDH H2CIO c I o η3Φ 5RCH3 Η2 HCDH H2CIO c I o η

CICICICI

-O-CHp \7 另,本發明之奈米矽片/有機高分子奈米複合材料可選 擇地進一步包含一固化劑。固化劑之選擇,為熟習此項技 術領域之人士所習知,可因應用途及所使用之有機高分子 種類來加以變化,譬如,當有機高分子為環氧樹脂且複合 材料之用途為硬塗層時,較佳之固化劑為酚型固化劑。在 本發明之具體例中,該固化劑為胺基三畊酚醛樹脂(amino triazine novolak,商品名為「LA-7751」),其分子式如下:-O-CHp \7 Further, the nanosheet/organic polymer nanocomposite of the present invention may optionally further comprise a curing agent. The choice of curing agent is known to those skilled in the art and can vary depending on the application and the type of organic polymer used, for example, when the organic polymer is an epoxy resin and the composite material is hard coated. In the case of a layer, a preferred curing agent is a phenol type curing agent. In a specific example of the present invention, the curing agent is an amino triazine novolak (trade name "LA-7751"), and the molecular formula is as follows:

13 1284138 車佳也在本發明之有機尚分子組成物中,該有機高 分子與固化劑的當量比為0·1:1〜1:1.5。 此外,本發明之奈米矽片/有機高分子奈米複合材料亦 5 彳選擇地進-步包含-催化劑,其係用於增加有機高分子 間的交聯密度。該催化劑亦可依據所使用之有機高分子與 固化劑來予以變化,此亦為熟習此技術領域人士所習知, 故在此不再贊述。 本發明之奈米矽片/有機高分子奈米複合材料可廣泛地 10 應用於各種封裝材料、塗料等,尤其適用於塗層之製造。 而在本發明之具體例中’將該奈米矽片/有機高分子奈米複 合材料塗佈至一基材上,接著加熱歷時一段足夠久之時間 ’以製得一種高硬度塗膜。 【實施方式】 15 本發明將就以下實施例來作進一步說明,但應瞭解的 是,該等實施例僅為例示說明之用,而不應被解釋為本發 明實施之限制。 &lt;製備例&gt; ΑΜΟ/ΜΜΤ奈米矽片之製備 2〇 (I) ΑΜΟ插層劑之製備·· 於反應瓶中加入27.2g(〇.25mole)之對-甲紛(ACROS公 司製造)' 757.6g(0.38m〇le)之聚丙二醇雙(2_胺基丙基醚 )(Aldrich Chemical 公司製造,商品名為 Jeffamine® D_ 2000)及600mL之甲苯,並於90〇c溫度下加熱迴流3 14 1284138 小時。接者’再於反應瓶中加入6i.4g(〇.76mole)之 37wt%的甲醛水溶液(ACR〇s公司製造)。在將反應溫度 由9〇°C升高至130°C並加熱歷時5小時期間,上述混 合物會變成膠態,即可停止迴流,最後便可獲得AMO 5 插層劑。 (II)奈米矽片之製備: (a) 將100g之含鈉陽離子交換型蒙脫土(CEC=115ineq/100g 的Na+_MMT,商品名為Kunipia F)分散於10L之80oC 熱水中’並利用均質機(祥泰精機股份有限公司製造, 10 型號為HD22〇)強力攪拌4小時,以使水溶液形成土色 之穩定均勻分散液。 (b) 將575g之步驟⑴所製得之AMO插層劑及12g之 35wt%的濃鹽酸溶液於8〇〇C下混合30分鐘,以形成一 混合液。 15 (c)將該步驟(a)所獲得之分散液與該步驟(b)所獲得之混合 液予以混合,並於80°C下利用均質機強力攪拌5小時 ’以完成插層反應,並獲得上下兩層分離之插層劑·黏 土混合液。 (d) 將該步驟(c)所獲得之插層劑-黏土混合液加入46g(一倍 20 當量)之氫氧化鈉中,以進行脫層反應並形成一反應液 ,此時反應液為一淡黃色乳化狀態的黏稠液體。 (e) 接著,將該步驟(d)所獲得之反應液倒入7.5L之乙醇中 並予以過濾,過濾後所獲得之固體再倒入10L之乙醇 中並授拌均勻,再經最後過滤後,即可獲得及淡黃色 15 1284138 半透明之經AMO插層劑脫層分散之奈米矽片(有機/無 機比例約為40/60,於下文中簡稱為「AMO/MMT奈米 矽片」)。 5 &lt;比較製備例〉D-2000/MMT奈米矽片之製備 (a) 將100g之含鈉陽離子交換型蒙脫土(商品名KunipiaF 之 CEC=115meq/100g 之 Na+_MMT)分散於 10L 之 80°C 熱水中,並利用均質機(祥泰精機股份有限公司製造, 型號為HD220)強力攪拌4小時,以使水溶液形成土色 10 之穩定均勻分散液。 (b) 將230g(0.115mol)之聚丙二醇雙(2·胺基丙基醚)(Aldrich Chemical公司製造,商品名為Jeffamine® D-2000)插層 劑溶於己醇中,再加入等莫耳數之鹽酸(HC1),並於常 溫下反應30分鐘,可獲得一酸化插層溶液。 15 (c)將該步驟(b)所獲得之酸化插層溶液倒入該步驟(a)之分 散液中,並於60〜70°C之溫度下強力攪拌6小時,以 進行陽離子交換反應。反應完成後,使反應液靜置分 層。 (d)過濾該步驟(c)所製得之反應液,並以水及乙醇清洗數 20 次,以除去未反應之D-2000與蒙脫土。將所得之產物 置於真空烘箱中乾燥24小時,最後獲得經D-2000插 層劑改質之矽氧層狀無機黏土(於下文中簡稱為「D-2000/MMT奈米矽片」)。 16 1284138 &lt;實施例&gt; &lt;物性測試&gt; 下列實施例及比較例分別利用前述製備例與比較製備 例所製得之奈米矽片來製備奈米複合材料,並進一步被製 5 成ΙΟΟμιη之塗膜,而以下列測試方法進行評估: (i) 粒子分散狀況:利用Zeiss公司製造,型號為 EM902A 之穿透式電子顯微鏡(transmission electron micrograph,以下簡稱為「TEM」)觀察 Si02粒子大小以及於高分子中之分散狀況。 10 (ii)鉛筆硬度:利用錦亮實業有限公司製造,型號為 B-3084T3之鉛筆硬度測試儀,並依據ASTM D3363-74之標準方法進行測試。 (iii)熱膨脹係數:利用Du Pont公司製造,型號為 TMA2940之熱機械性質分析儀(TMA)進行測定。 15 (iv)透明度:利用 Perkin-Elmer公司製造,型號為 之Lambda 20之紫外線·可見光(UV-VIS)光譜儀於 550 nm/T%之紫外光-可見光光譜範圍進行測定。 &lt;化學品來源&gt; (i) 有機高分子(雙紛-A之二縮水甘油基醚):南亞化學 20 公司製,品名為「BE-188」,環氧當量(epoxide equivalent weight)為 188 〇 (ii) 固化劑(胺基三讲紛酸樹脂):Dainippon Ink &amp; Chemicals公司製,品名為「LA-7751」。 &lt;實施例1&gt; 17 1284138 (1) 含AMO/MMT奈米矽片之奈米複合材料的製備: 於 100ml ΡΕ 瓶中加入 29.98g(85.66mmol)之 ΒΕ-188 及8.62g(26.85mmol)之LA-7751,並以均質機利用 機械攪拌方式(lOOOrpm)攪拌5分鐘,接著,於其 5 中緩慢加入0.65g之上述製備例1所製得之 AMO/MMT奈米矽片,並持續攪拌(3500rpm)15至 20分鐘,而得到一含有〇.5wt%之AMO/MMT奈米 矽片之奈米複合材料。 (2) 塗膜之製備: 10 上述之(1)所得之奈米複合材料係利用真空烘箱來予 以消泡,直至無氣泡存在為止。接著,利用平板式 塗膜機(環洋股份有限公司製造,型號UNI 012)加 以塗膜(ΙΟΟμιη),並於180°C之烘箱中硬烤3小時 ,得到一含有0.5wt%之AMO/MMT奈米矽片之塗 15 膜,並對其進行鉛筆硬度、熱膨脹係數及透明度之 測試,結果列於表1中。 &lt;實施例2&gt; (1) 含AMO/MMT奈米矽片之奈米複合材料的製備: 除了將該AMO/MMT奈米矽片之添加量改為1.3g 20 之外,其餘步驟皆與實施例1相同。最後,可獲得 一含有lwt%之AMO/MMT奈米矽片之奈米複合材 料。 (2) 塗膜之製備: 步驟與實施例1相同,惟最後獲得一含有lwt%之 18 1284138 AMO/MMT奈米矽片之塗膜,並對其進行鉛筆硬度 、熱膨脹係數及透明度之測試,結果列於表1中。 &lt;實施例3&gt; (1) 含ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材料的製備: 5 除了將該ΑΜΟ/ΜΜΤ奈米矽片之添加量改為4.0g 之外,其餘步驟皆與實施例1相同。最後,可獲得 一含有3wt%之ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材 料。 (2) 塗膜之製備: 10 步驟與實施例1相同,惟最後獲得一含有3wt°/〇之 ΑΜΟ/ΜΜΤ奈米矽片之塗膜,並對其進行鉛筆硬度 、熱膨脹係數及透明度之測試,結果列於表1中。 另外亦進行分散狀況之觀察,結果如圖1所示。 &lt;實施例4&gt; 15 (1)含ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材料的製備: 除了將該ΑΜΟ/ΜΜΤ奈米矽片之添加量改為6.6g 之外,其餘步驟皆與實施例1相同。最後,可獲得 一含有5 wt%之ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材 料。 20 (2)塗膜之製備: 步驟與實施例1相同,惟最後獲得一含有5wt%之 ΑΜΟ/ΜΜΤ奈米矽片之塗膜,並對其進行鉛筆硬度 、熱膨脹係數及透明度之測試,結果列於表1中。 &lt;比較例1&gt; 19 1284138 (1) 環氧樹脂材料之製備: 除了未添加該AMO/MMT奈米矽片之外,其餘步驟 皆與實施例1相同。最後,可獲得一環氧樹脂材料 〇 5 (2)塗膜之製備: 步驟與實施例1相同,最後獲得一塗膜,並對其進 行鉛筆硬度、熱膨脹係數及透明度之測試,結果分 別列於表1中。 〈比較例2〜5&gt; 10 (1)含D-2000/MMT奈米矽片之奈米複合材料之製備: 除了以比較製備例所製得之D_2000/MMT奈米矽片 來替代該AMO/MMT奈米矽片之外,其餘步驟及各 組成用量皆分別與實施例1〜4相同。最後,分別獲 得含有 〇.5wt%、1 wt%、3wt% 及 5wt% 之含 D-15 2000/MMT奈米矽片之奈米複合材料。 (2) 塗膜之製備: 步驟與實施例1相同,惟最後分別獲得含有lwt°/〇 、3wt%及5wt%之含D-2000/MMT奈米矽片之塗膜( 分別對應為比較例2、3、4及5),並對該等塗膜進 20 行鉛筆硬度、熱膨脹係數及透明度測試,結果列於 表1中。 20 1284138 表1 AMO/MMT奈米矽 片(脫層型)的含量 (wt%) I&gt;2000/MMT 奈 米石夕片(插層型)的 含量(Wt°/o) 魏⑻ 透明度(%) 熱膨脹係數 a〇Ltm/m°C) 實施例1 0.5 0 6 57.5 69.5 實施例2 1 0 7 56.1 51.4 — 實施例3 3 ο Ί 7 1 50.3 30.6 實施例4 5 0 8 43.6 1 - 比較例1 0 0 2 60.0 80.1 比較例2 0 0.5 4 59.3 52.0 比較例3 0 1 5 58.2 33.5 比較例4 0 3 5 56.8 32.3 ~~ 比車交例5 0 5 6 55.4 - (1) AMO/MMT奈米矽片於有機高分子中之分布狀況觀察: 5 一般而言,無機黏土本身於片狀與片狀間有很強的 表面作用力,並在交聯反應發生時,因為不同位置之作 用力大小不同的擠壓,會產生片與片之間部分相連接之 傾向。但由圖1(實施例3)中可清楚觀察到單一片狀分散 於有機高分子的情形,亦即ΑΜ〇/ΜΜΤ奈米矽片均勻鲁 10 分散於有機高分子中。 (2) 硬度及透明度之比較: 由表1中可得知,本發明之實施例卜4所製成之塗 膜的硬度皆遠較比較们(未添加奈米石夕片)為高,硬度 月,、、、貝地可由2Η提昇i 8Η以及透明度亦維持在不錯的 15 範圍内’因此可見奈米妙片的添加可有效提昇無機/有 機複合材料之機械性質及維持極佳的透明度。 再者,由實施例卜4與對應用量之比較例^的比較中 21 1284138 可看出,添加AMO/MMT對硬度之提升較添加D_ 2000/MMT之效果來得佳,尤其本發明僅需添加〇5wt% 之AMO/MMT奈米矽片,即可獲得具有優異硬度及透 明度之奈米複合材料。 5 (3)熱膨脹係數之比較:13 1284138 Che Jia is also in the organic molecular composition of the present invention, the equivalent ratio of the organic high molecular weight to the curing agent is from 0.1:1 to 1:1.5. Further, the nanosheet/organic polymer nanocomposite of the present invention is also selectively incorporated into a catalyst for increasing the crosslinking density between the organic polymers. The catalyst may also be varied depending on the organic polymer to be used and the curing agent, and is also known to those skilled in the art, and therefore will not be described here. The nanosheet/organic polymer nanocomposite of the present invention can be widely applied to various packaging materials, coatings, etc., and is particularly suitable for the manufacture of coatings. In the specific example of the present invention, the nanosheet/organic polymer nanocomposite is applied to a substrate and then heated for a sufficiently long period of time to obtain a high hardness coating film. The invention is further described in the following examples, but it should be understood that these examples are for illustrative purposes only and are not to be construed as limiting. &lt;Preparation Example&gt; Preparation of ΑΜΟ/ΜΜΤ奈矽片 2〇(I) Preparation of ΑΜΟ Intercalating Agent································ '757.6 g (0.38 m〇le) of polypropylene glycol bis(2-aminopropyl ether) (manufactured by Aldrich Chemical Co., trade name: Jeffamine® D_2000) and 600 mL of toluene, and heated to reflux at 90 ° C 3 14 1284138 hours. Then, 6 i.4 g (〇.76 mole) of a 37 wt% aqueous formaldehyde solution (manufactured by ACR®) was added to the reaction flask. During the reaction temperature being raised from 9 ° C to 130 ° C and heating for 5 hours, the above mixture became colloidal, and the reflux was stopped, and finally the AMO 5 intercalant was obtained. (II) Preparation of nanosheets: (a) Disperse 100g of sodium-containing cation exchange montmorillonite (CEC=115ineq/100g of Na+_MMT, trade name Kunipia F) in 10L of 80oC hot water' The mixture was vigorously stirred for 4 hours using a homogenizer (manufactured by Xiangtai Seiki Co., Ltd., model 10 was HD22) to form a stable and uniform dispersion of the earth color in the aqueous solution. (b) 575 g of the AMO intercalant prepared in the step (1) and 12 g of a 35 wt% concentrated hydrochloric acid solution were mixed at 8 ° C for 30 minutes to form a mixed solution. 15 (c) mixing the dispersion obtained in the step (a) with the mixture obtained in the step (b), and vigorously stirring at 80 ° C for 5 hours using a homogenizer to complete the intercalation reaction, and An intercalation agent/clay mixture obtained by separating the upper and lower layers is obtained. (d) adding the intercalant-clay mixture obtained in the step (c) to 46 g (one 20 equivalents) of sodium hydroxide to carry out a delamination reaction and forming a reaction liquid, at which time the reaction liquid is a A viscous liquid in a light yellow emulsified state. (e) Next, the reaction liquid obtained in the step (d) is poured into 7.5 L of ethanol and filtered, and the solid obtained after filtration is poured into 10 L of ethanol and uniformly mixed, and finally filtered. , can obtain and light yellow 15 1284138 translucent AMO intercalation agent delaminated and dispersed nano-powder tablets (organic / inorganic ratio of about 40 / 60, hereinafter referred to as "AMO / MMT nano-slices" ). 5 &lt;Comparative Preparation Example>Preparation of D-2000/MMT Nanosheets (a) Disperse 100 g of sodium-containing cation exchange type montmorillonite (trade name Kunipia F CEC=115 meq/100 g of Na+_MMT) in 10L The mixture was stirred in a hot water of 80 ° C for 4 hours using a homogenizer (manufactured by Xiangtai Seiki Co., Ltd., model HD220) to form a stable uniform dispersion of the earth color 10 in the aqueous solution. (b) 230 g (0.115 mol) of polypropylene glycol bis(2·aminopropyl ether) (manufactured by Aldrich Chemical Co., Ltd., trade name: Jeffamine® D-2000) is intercalated in hexanol, and then added. Hydrochloric acid (HC1) in the ear and reacted at room temperature for 30 minutes to obtain an acidified intercalation solution. 15 (c) The acidified intercalation solution obtained in the step (b) is poured into the dispersion of the step (a), and vigorously stirred at a temperature of 60 to 70 ° C for 6 hours to carry out a cation exchange reaction. After the reaction was completed, the reaction solution was allowed to stand to separate layers. (d) The reaction liquid obtained in the step (c) was filtered and washed several times with water and ethanol to remove unreacted D-2000 and montmorillonite. The obtained product was dried in a vacuum oven for 24 hours, and finally an oxygenated layered inorganic clay (hereinafter referred to as "D-2000/MMT nanosheet") modified with a D-2000 intercalator was obtained. 16 1284138 &lt;Examples&gt;&lt;Physical property test&gt; The following examples and comparative examples were respectively prepared using the nanosheets prepared in the above Preparation Examples and Comparative Preparation Examples to prepare a nanocomposite material, and further prepared into 5 parts. The coating of ΙΟΟμιη was evaluated by the following test methods: (i) Particle dispersion: The SiO 2 particle size was observed using a transmission electron micrograph (hereinafter referred to as "TEM" manufactured by Zeiss Corporation, Model EM902A). And the dispersion in the polymer. 10 (ii) Pencil hardness: A pencil hardness tester manufactured by Jinliang Industrial Co., Ltd., model B-3084T3, was used and tested according to the standard method of ASTM D3363-74. (iii) Thermal expansion coefficient: Measurement was carried out using a thermomechanical property analyzer (TMA) manufactured by Du Pont, Model TMA2940. 15 (iv) Transparency: UV-visible (UV-VIS) spectrometer manufactured by Perkin-Elmer, model Lambda 20, was measured at 550 nm/T% ultraviolet-visible spectral range. &lt;Chemical Source&gt; (i) Organic Polymer (Double-A diglycidyl ether): manufactured by Nanya Chemicals 20 Co., Ltd. under the name "BE-188", epoxide equivalent weight is 188 〇(ii) Curing agent (amino-based saponin): manufactured by Dainippon Ink & Chemicals, under the trade name "LA-7751". &lt;Example 1&gt; 17 1284138 (1) Preparation of nanocomposite containing AMO/MMT nanosheet: 29.98 g (85.66 mmol) of ΒΕ-188 and 8.62 g (26.85 mmol) were added to a 100 ml ΡΕ bottle. LA-7751, and stirred by a homogenizer by mechanical stirring (1000 rpm) for 5 minutes, and then slowly added 0.65 g of the AMO/MMT nanosheet prepared in the above Preparation Example 1 in 5, and continuously stirred. (3500 rpm) 15 to 20 minutes, and a nanocomposite containing 〇.5 wt% of AMO/MMT nanosheets was obtained. (2) Preparation of coating film: 10 The nanocomposite obtained in the above (1) was defoamed in a vacuum oven until no bubbles were present. Then, it was coated with a flat film coater (manufactured by Universal Co., Ltd., model UNI 012) and baked in an oven at 180 ° C for 3 hours to obtain an AMO/MMT containing 0.5 wt%. The film of the nano-film was coated with 15 films, and the pencil hardness, thermal expansion coefficient and transparency were tested. The results are shown in Table 1. &lt;Example 2&gt; (1) Preparation of nanocomposite containing AMO/MMT nanosheet: In addition to the addition amount of the AMO/MMT nanosheet to 1.3g 20, the remaining steps were Example 1 is the same. Finally, a nanocomposite containing 1% by weight of AMO/MMT nanosheets was obtained. (2) Preparation of coating film: The procedure was the same as in Example 1, except that a coating film containing 1 wt% of 18 1284138 AMO/MMT nanosheets was obtained, and the pencil hardness, thermal expansion coefficient and transparency were tested. The results are shown in Table 1. &lt;Example 3&gt; (1) Preparation of nanocomposite containing ruthenium/niobium nanosheet: 5 Except that the addition amount of the ruthenium/iridium nanosheet was changed to 4.0 g, the other steps were Example 1 is the same. Finally, a nanocomposite containing 3 wt% of lanthanum/niobium iridium chips was obtained. (2) Preparation of coating film: 10 The procedure was the same as in Example 1, except that a coating film containing 3 wt/min of yttrium/yttrium naphthalene film was finally obtained, and the pencil hardness, thermal expansion coefficient and transparency were tested. The results are shown in Table 1. In addition, the observation of the dispersion condition was also carried out, and the results are shown in Fig. 1. &lt;Example 4&gt; 15 (1) Preparation of nanocomposite containing ruthenium/niobium nanosheet: Except that the addition amount of the ruthenium/iridium nanosheet was changed to 6.6 g, the other steps were Example 1 is the same. Finally, a nanocomposite containing 5 wt% of ruthenium/iridium nanosheets was obtained. 20 (2) Preparation of coating film: The procedure was the same as in Example 1, except that a coating film containing 5 wt% of lanthanum/niobium bismuth film was finally obtained, and the pencil hardness, thermal expansion coefficient and transparency were tested. Listed in Table 1. &lt;Comparative Example 1&gt; 19 1284138 (1) Preparation of epoxy resin material: The same procedures as in Example 1 were carried out except that the AMO/MMT nanosheet was not added. Finally, an epoxy resin material 〇5 (2) coating film can be prepared: the same procedure as in the first embodiment, a coating film is finally obtained, and the pencil hardness, thermal expansion coefficient and transparency are tested, and the results are respectively listed in in FIG. 1. <Comparative Example 2 to 5> 10 (1) Preparation of a nano composite material containing D-2000/MMT nanosheets: In place of the AMO/, a D_2000/MMT nanosheet prepared by comparison of the preparation examples was used. Except for the MMT nanosheets, the remaining steps and the composition amounts were the same as in Examples 1 to 4, respectively. Finally, nanocomposites containing D-15 2000/MMT nanosheets containing 〇.5 wt%, 1 wt%, 3 wt%, and 5 wt% were obtained, respectively. (2) Preparation of Coating Film: The procedure was the same as in Example 1, except that coating films containing Dwt2000/MMT nanosheets containing lwt°/〇, 3 wt%, and 5 wt% were respectively obtained (corresponding to comparative examples, respectively) 2, 3, 4 and 5), and 20 lines of pencil hardness, thermal expansion coefficient and transparency test were applied to the films, and the results are shown in Table 1. 20 1284138 Table 1 Content of AMO/MMT nanosheet (delamination type) (wt%) I&gt;2000/MMT content of nano-stone (intercalation type) (Wt°/o) Wei (8) Transparency (% Thermal expansion coefficient a 〇 Ltm / m ° C) Example 1 0.5 0 6 57.5 69.5 Example 2 1 0 7 56.1 51.4 - Example 3 3 ο Ί 7 1 50.3 30.6 Example 4 5 0 8 43.6 1 - Comparative Example 1 0 0 2 60.0 80.1 Comparative Example 2 0 0.5 4 59.3 52.0 Comparative Example 3 0 1 5 58.2 33.5 Comparative Example 4 0 3 5 56.8 32.3 ~~ Specific vehicle example 5 0 5 6 55.4 - (1) AMO/MMT nanometer Observation of the distribution of the film in the organic polymer: 5 In general, the inorganic clay itself has a strong surface force between the sheet and the sheet, and when the crosslinking reaction occurs, the force varies depending on the position. The squeezing will result in a tendency to connect portions between the sheets. However, it can be clearly seen from Fig. 1 (Example 3) that a single sheet is dispersed in the organic polymer, that is, the ΑΜ〇/ΜΜΤ nanosheet is uniformly dispersed in the organic polymer. (2) Comparison of hardness and transparency: As can be seen from Table 1, the hardness of the coating film prepared in Example 4 of the present invention is much higher than that of the comparison (no addition of nano-stone tablets), hardness Month, , , and Becky can be upgraded by 2Η and the transparency is maintained within a good range of 15'. Therefore, the addition of nano-slices can effectively improve the mechanical properties of inorganic/organic composites and maintain excellent transparency. Furthermore, it can be seen from the comparison of the example 4 and the comparative example of the corresponding amount of 21 1284138 that the addition of AMO/MMT is better than the effect of adding D_2000/MMT, especially the invention only needs to add 〇. A 5wt% AMO/MMT nanosheet can be used to obtain a nanocomposite with excellent hardness and transparency. 5 (3) Comparison of thermal expansion coefficients:

在表1中,相較於比較例1,本發明之實施例丨〜4 所製成之塗膜的熱膨脹係數有明顯下降的趨勢,且下降 比例約為30%〜50%。這是因為當脫層型AMO/MMT奈 米矽片加入有機高分子中時,致使有機高分子之鏈段的H 〇 活動空間受到限制,而改善了有機高分子系統本身所具 有之體積收縮問題。 綜上所述,本發明是藉由將經AMO插層劑脫層分散之 奈米矽片添加至有機高分子來製備一奈米矽片/有機高分子 奈米複合材料。特別地,本發明之奈米矽片的添加量僅需 5 〇.5wt%,即可獲得具備優異機械性質、透明度及熱性質之 奈米複合材料。且更值得一提的是,本發明可藉由該am〇 插層劑之末知胺基經酸化後所形成之四級銨陽離子作為陽β 離子起始劑,以促進該奈米矽片與該有機高分子之間的交 聯反應,進而使得該奈米矽片於該有機高分子中可達到奈 1〇 米級之分散程度,並更進一步可提昇該複合材料之機械及 熱性質。而當該奈米複合材料被做成塗膜時確實具有優異 之機械性質(尤其是硬度)、透明度及熱性質。 惟以上所述者,僅為本發明之較佳實施例而已,當不能 以此限定本發明實施之範圍’即大凡依本發明申請專利範 22 1284138 圍及發明說明書内容所作之簡單的等效變化與修飾,皆應 仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1為本發明之實施例3之含有3wt%之AMO/MMT奈 5 米矽片之奈米矽片/有機高分子奈米複合材料所製成之塗膜 的TEM圖。 【圖式之主要元件代表符號說明】(無) 23In Table 1, compared with Comparative Example 1, the thermal expansion coefficient of the coating film produced in Examples 1-4 of the present invention showed a tendency to decrease remarkably, and the reduction ratio was about 30% to 50%. This is because when the delaminated AMO/MMT nanosheet is added to the organic polymer, the H 〇 activity space of the organic polymer segment is restricted, and the volume shrinkage problem of the organic polymer system itself is improved. . In summary, the present invention prepares a nanosheet/organic polymer nanocomposite by adding a nanosheet which is delaminated and dispersed by an AMO intercalation agent to an organic polymer. In particular, the nanosheet of the present invention is added in an amount of only 5 〇.5 wt% to obtain a nanocomposite having excellent mechanical properties, transparency and thermal properties. Moreover, it is worth mentioning that the quaternary ammonium cation formed by acidification of the amine group at the end of the amyl intercalation agent can be used as a positive β ion initiator to promote the nano bismuth tablet. The cross-linking reaction between the organic polymer further enables the nano-ruthenium sheet to reach a degree of dispersion of the nano-meter scale in the organic polymer, and further improve the mechanical and thermal properties of the composite material. When the nanocomposite is made into a coating film, it does have excellent mechanical properties (especially hardness), transparency, and thermal properties. However, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention as a simple equivalent change according to the scope of the invention and the contents of the description of the invention. And modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a TEM image of a coating film made of a nanosheet/organic polymer nanocomposite containing 3 wt% of AMO/MMT naphthalene 5 m wafer according to Example 3 of the present invention. . [Description of main components of the figure] (none) 23

Claims (1)

1284138 拾、申請專利範圍: 、米矽片/有機高分子奈米複合材料,包含: 一有機高分子;及 ^不米石夕片’係為一具有下列化學式⑴之插層劑與 夕氧層狀無機黏土在一酸性環境下進行反應所得之產物 0H HaN-POp.HNl^c^^^cHaNH pop NHi^ ⑴ 其中,POP為具有下列化學式(π)之二價部分; R R 一CHCHg+OCHgCHj·^ (||) 而R為(^〜(:4之烧基,並且n為介於1至⑽之間的整 數,m為介於1〇至1〇〇之間的整數。 2·如申睛專利範圍第^之奈米石夕片/有機高分子奈米複合 材t 2其中,該有機高分子係選自由下列所構成之群组 %氧树月曰、聚醯胺、聚苯乙烯(ps)、聚丙烯(pp)、聚 胺基甲ϊ文酉曰(pu)、聚對笨二甲酸乙二醋(pET)、聚甲基丙 烯酸甲酯(PMMA),以及此等之一組合。 3·如申請專利範圍第2項之奈米石川有口機高分子奈米複合 材料,其中,該有機高分子為環氧樹脂。 4.如申請專利範圍第工項之奈米石夕片/有機高分子奈米複合 24 1284138 :才二其中,該化學式⑴中之…,η為介於丨至 1 0之間的整數。 5.利範圍第1項之奈米秒片/有機高分子奈米複合 Π 該具有化學式⑴之插層劑為㈣二胺、 對-甲酚及甲醛之一反應產物。 6· nr圍第1項之奈㈣片/有機高分子奈米複合 枓,”氧層狀無機黏土係選自於由下列所構 =之群組:蒙脫土(则咖〇rillonite)、高嶺土(k〇iin)、雲 母(mica)、滑石粉(talc),以及此等之_組合 7· ^申請專利範圍第1項之奈米石夕片/有機子奈米複合 其中,該石夕氧層狀無機黏土之陽離子交換當量 (CEC)係介於 50 至 200 meq/1〇〇g 之間。 8·如申請專利範圍第7項之奈米石夕片4機高分子奈米複合 材料,其中,該石夕氧層狀無機黏土之陽離子交換當量 (CEC)係介於 1〇〇 至 15〇 meq/1〇〇g 之間。 9.如申請專利範圍第1項之奈米石夕片/有曰機高分子奈米複合 材料’其中’以該奈米複合材料之總重計,該奈米矽片 於該奈米複合材料中之含量為〇1〜7〇wt%。 1〇.如申請專職圍第9項之奈切片/有機高分子奈米複合 材料,其中,以該奈米複合材料之總重計,該奈米石夕片 於該奈米複合材料中之含量係小於 U.如申請專利範圍第10項之奈米石夕片/有機高分子奈米複 合材料,其中’以該奈米複合材料之總重計,該奈米矽 片於該奈米複合材料巾之含量係不大於5加%。 25 1284138 12. 13. 14. 15. 16. 如申請專利範圍第1或3項之牟半 斿人不未矽片/有機高分子奈米 複口材料,進一步包含一固化劑。 如申請專利範圍第12項之夺平 合材斜甘士 々不水石夕片/有機高分子奈米複 材枓、、中,該固化劑為酚型固化劑。 如申請專利範圍第13㉟之奈米矽 合材料,1巾^ . 月/有機鬲分子奈未複 ,、中,所包含之有機高分 為0.1:1〜1:1 5。 于與固化劑的當里比 如申請專利範圍第3項之 材料,童/、未夕片/有機高分子奈米複合 _ ^八係被用於塗層之製造上。 一種向硬度塗膜,其係 項之奈米矽片/右嫌曰、申知專利範圍第1或3 ,繼而加敎^ 子奈米複合材料塗佈至—基材上 力熱歷經—段足夠久之時間所製備而得。 261284138 Pickup, patent application scope:, rice bran sheet / organic polymer nano composite material, comprising: an organic polymer; and ^ no rice stone Xi's film is an intercalant and oxygen layer with the following chemical formula (1) The product obtained by the reaction of the inorganic clay in an acidic environment is 0H HaN-POp.HNl^c^^^cHaNH pop NHi^ (1) wherein POP is a divalent moiety having the following chemical formula (π); RR-CHCHg+OCHgCHj· ^ (||) and R is (^~(:4), and n is an integer between 1 and (10), and m is an integer between 1〇 and 1〇〇. The patent range is the nanometer stone tablets/organic polymer nano composites t 2 , wherein the organic polymer is selected from the group consisting of the following groups: Oxygen erythraea, polyamine, polystyrene ( Ps), polypropylene (pp), polyaminomethine (pu), poly(pET), polymethyl methacrylate (PMMA), and combinations of these. 3. The nanometer Ishikawa organic polymer nano composite material according to the second item of the patent application scope, wherein the organic polymer is an epoxy resin. The application of the patent scope of the project of nano-stone tablets / organic polymer nanocomposite 24 1284138: only two of which, in the chemical formula (1) ..., η is an integer between 丨 to 10 0. The nanosecond piece of the first item/organic polymer nanocomposite Π The intercalating agent of the chemical formula (1) is a reaction product of (iv) diamine, p-cresol and formaldehyde. 6·nr circumference item 1 (n) Sheet/organic polymer nanocomposite crucible," oxygen layered inorganic clay is selected from the group consisting of: montmorillonite (also known as rillonite), kaolin (k〇iin), mica (mica) , talc powder (talc), and the combination of the above-mentioned 7 _ ^ patent patent scope 1 of the nano-stone tablets / organic nano-composite, the cation exchange equivalent of the stone-like layered inorganic clay (CEC The system is between 50 and 200 meq/1〇〇g. 8. The nano-polymer nano-composite of nano-shixi tablets, according to item 7 of the patent application scope, wherein the stone-like layered inorganic clay The cation exchange equivalent (CEC) is between 1 〇〇 and 15 〇 meq / 1 〇〇 g. The nanometer stone slab/with the smashing polymer nano composite material 'where' the total weight of the nano composite material, the content of the nano slab in the nano composite material is 〇1~7〇 Ww%. 1〇.If applying for the full-length ninth section of the nano-section/organic polymer nanocomposite, the nano-stone composite is used in the nano composite according to the total weight of the nano composite. The content of the medium is less than U. The nano-stone film/organic polymer nano composite material according to the tenth item of the patent application scope, wherein the nano-side film is in the nanometer based on the total weight of the nano composite material The content of the rice composite towel is not more than 5% by weight. 25 1284138 12. 13. 14. 15. 16. If the patent application is not included in the first or third paragraph of the patent, the bismuth/organic polymer nanocomposite material further comprises a curing agent. For example, in the case of claim 12, the curing agent is a phenol type curing agent, which is a phenol type curing agent. For example, the nano-composite material of the patent application No. 1335, 1 towel ^. The monthly/organic 鬲 molecule is not recovered, and contains an organic high score of 0.1:1 to 1:1 5. In the case of the curing agent, for example, the material of the third item of the patent application, the child/, the eve film/organic polymer nano composite _ ^ eight series is used for the manufacture of the coating. A film for hardness coating, which is a series of nano-slices/right sputum, claiming patent range 1 or 3, and then applying 敎 子 纳米 nano composite material coated onto the substrate It is prepared by a long time. 26
TW93115511A 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof TWI284138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115511A TWI284138B (en) 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115511A TWI284138B (en) 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof

Publications (2)

Publication Number Publication Date
TW200538414A TW200538414A (en) 2005-12-01
TWI284138B true TWI284138B (en) 2007-07-21

Family

ID=39455004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115511A TWI284138B (en) 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof

Country Status (1)

Country Link
TW (1) TWI284138B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065053A1 (en) * 2007-12-07 2012-03-15 National Taiwan University Inorganic/organic dispersant and application thereof
AT12729U3 (en) * 2012-04-24 2013-09-15 Nedschroef Fraulautern Gmbh screw

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796926B (en) * 2022-01-06 2023-03-21 矽光顧問有限公司 Nylon/nsp nanocomposite and method for producing the same and its application to polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065053A1 (en) * 2007-12-07 2012-03-15 National Taiwan University Inorganic/organic dispersant and application thereof
US8653147B2 (en) * 2007-12-07 2014-02-18 National Taiwan University Inorganic/organic dispersant and application thereof
AT12729U3 (en) * 2012-04-24 2013-09-15 Nedschroef Fraulautern Gmbh screw

Also Published As

Publication number Publication date
TW200538414A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
Chiu et al. Intercalation strategies in clay/polymer hybrids
Yeh et al. Comparative studies of the properties of poly (methyl methacrylate)–clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion
Bao et al. Recent advances in the modification of polyacrylate latexes
US11248106B2 (en) Method of forming an exfoliated or intercalated filler material
JPWO2018168947A1 (en) Resin composition, molded article, laminate, gas barrier material, coating material and adhesive
TWI431045B (en) Organic/inorganic hybrid material and fabrication method thereof
JP2001316544A (en) Syndiotactic polystyrene nano composite material and method for producing the same
TW201012883A (en) Conductive coating composition
US20060287413A1 (en) Hyperbranched polyamine and its use to exfoliate inorganic clay into random form of nanosilicate platelet
TW200925133A (en) Organic/inorganic composite type dispersant and application thereof
JP4997705B2 (en) Surface-coated flame-retardant particles and production method thereof, and flame-retardant resin composition and production method thereof
TWI284138B (en) Nano silicate platelet-organic polymer nanocomposite and use thereof
Zhang et al. Preparation, characterization, and thermal properties of polystyrene‐block‐quaternized poly (4‐vinylpyridine)/Montmorillonite nanocomposites
Li et al. Regenerated cellulose/layered double hydroxide nanocomposite films with improved mechanical property
Hayashida et al. Miscible blends of poly (butyl methacrylate) densely grafted on fumed silica with poly (vinyl chloride)
WO2020218124A1 (en) Coating agent and laminate
TW201043657A (en) Modified layered material and unsaturated polyester nanocomposite comprising the same
KR102142333B1 (en) Graphene composite and method for preparing the same
Hao et al. Synthesis of poly (ethylene terephthalate)/clay nanocomposites using aminododecanoic acid‐modified clay and a bifunctional compatibilizer
JP2021169574A (en) Resin composition, gas barrier material, coating agent, and laminate
Şen et al. Synthesis of effective poly (4‐vinylpyridine) nanocomposites: in situ polymerization from edges/surfaces and interlayer galleries of clay
JP2000191925A (en) Organic and inorganic composite material
Lee et al. Effect of interfacial attraction on intercalation in polymer/clay nanocomposites
TW550246B (en) Siloxy layered inorganic clay/polyoxyalkylene amine composite and method for producing the same
JP7506370B2 (en) Resin composition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees