TW200538414A - Nano silicate platelet-organic polymer nanocomposite and use thereof - Google Patents

Nano silicate platelet-organic polymer nanocomposite and use thereof Download PDF

Info

Publication number
TW200538414A
TW200538414A TW93115511A TW93115511A TW200538414A TW 200538414 A TW200538414 A TW 200538414A TW 93115511 A TW93115511 A TW 93115511A TW 93115511 A TW93115511 A TW 93115511A TW 200538414 A TW200538414 A TW 200538414A
Authority
TW
Taiwan
Prior art keywords
nano
organic polymer
composite material
silicon wafer
nanometer
Prior art date
Application number
TW93115511A
Other languages
Chinese (zh)
Other versions
TWI284138B (en
Inventor
jiang-zhen Lin
Ying-Nan Zhan
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW93115511A priority Critical patent/TWI284138B/en
Publication of TW200538414A publication Critical patent/TW200538414A/en
Application granted granted Critical
Publication of TWI284138B publication Critical patent/TWI284138B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention provides a nano silicate platelet-organic polymer nanocomposite comprising an organic polymer and a nano silicate platelet, the nano silicate platelet is the reaction product of an intercalating agent represented by the following formula (I): and siloxy-layered nano silicate platelet in an acidic condition: wherein POP is a divalent moiety having the following formula (II): R is C1~C4 alkyl group, and n is an integer of between 1 and 68, and m is an integer of between 10 and 100. The present invention also provides a coating film with high hardness, which is obtained by coating a substrate with the above nano silicate platelet-organic polymer nanocomposite and heating for a sufficient time.

Description

200538414 玖、發明說明: 【發明所屬之技術領域】 本發明是關於一種奈米矽片/有機高分子奈米複合材料 及其應用。特別地,本發明是關於一種於有機高分子中摻 5 入經脫層分散之奈米矽片的奈米複合材料,且該奈米複合 材料可進一步製成具有優異機械性質、透明度及熱性質之 塗膜。 【先前技術】 無機黏土 /有機高分子奈米複合材料(inorganic clay-· 10 organic polymer nanocomposite)為目前業界努力開發之重要 材料之一。近年來,已有許多有關奈米複合材料之文獻及 專利被報導,例如:日本豐田公司將[NHACHOhCOCT]蒙 脫土(montmorillonite)分散於Nylon 6而開發出首件可實際 應用於市場上之無機黏土/有機高分子奈米複合材料。該等 15 文獻及專利揭示以天然或人工合成之層狀黏土(layered clay) 做為無機填充材來添加至觸媒及高分子材料,俾以改善高 分子材料之溶劑阻抗性(solvent resist)、阻氣性(gas barrier property)、機械性質及熱性質。 由於未經改質之層狀黏土的表面為親水的(hydrophilic) 20 ,與一般疏水的(hydrophobic)有機高分子的相容性甚差,以 致於容易產生因凝聚(aggregation)現象而無法均勻分散的缺 點。因此,複合材料之機械及熱性質的提昇取決於有機高 分子與層狀黏土之間是否具有良好的相容性,即,層狀黏 土於有機高分子中之分散程度。 200538414 為改善有機高分子與層狀黏土之間的相容性,可藉由 於黏土中加入插層劑(intercalating agent)來鬆動層狀黏土之 層間距離而造成較大之層間距離,以允許單體(monomer)進 入,再進一步經由高分子聚合反應而得到經插層 5 (intercalated)或經脫層(exfoliated)分散之無機黏土/有機高分 子奈米複合材料。 習知文獻中曾提及之插層劑包括:12-胺基十二烷酸 (12-aminolauric acid)、十六烧基胺(hexadecylamine)、脂肪 ' 族胺(fatty amine)、雙(2-羥基乙基)甲基牛脂烷基氯化銨® -10 (bis(2-hydroxyethyl)methyl tallow alkyl ammonium chloride) 、十八烧基胺(stearylamine)等胺類或四級銨鹽(quaternary ammonium salt)。該等低分子型之極性錄鹽基團會與帶電荷 之層狀無機黏土形成極性鍵(polar bond),並使黏土原有之 親水性變成具親油之性質,故可提昇層狀無機黏土與有機 15 高分子之間的相容性,並有利於下一步之脫層反應之進行 ,然對於材料機械性質之提升仍有待改善處。 藉由在有機高分子中添加經有機鐵鹽(organic onium . salt)處理之層狀黏土之技術,已揭示於許多專利文獻中,例 如:美國專利第6,552,113、6,552,114、6,486,252號及歐洲 20 專利第1,235,876號等,這些專利之目的主要為利用經處理 之層狀黏土來製備具有良好阻氣性及霧度(haze)之塗層。 此外,於本國專利公告第550246號中,本發明人曾利 用一系列分子量1800以上之聚醚胺(polyoxyalkylene amine) 作為插層劑來改質層狀黏土,而所獲得之插層型 7 200538414 (intercalation type)層狀黏土的層間距離可擴大至50〜92A, 並進一步可製備一奈米矽片/有機高分子奈米複合材料。在 該等聚醚胺插層劑中,以聚丙基醚二胺(polyoxypropylene diamine)為較佳,例如:聚丙二醇雙(2-胺基丙基醚 5 )[poly(propyleneglycol)bis(2-aminopropyl ether)],其之商品 名為Jeffamine⑧D-4000及D-2000。不過,當本發明人進一 步利用經Jeffamine^DdOOO插層分散之層狀黏土與有機高 分子進行反應時,雖可製得_層型(intercalating type)之奈 、 米矽片/有機高分子奈米複合材料,但因插層劑D-2000容易®, 10 混到有機高分子中,並會干擾有機高分子之交聯反應,而 無法大幅提昇複合材料之硬度及熱性質。 由上述可知,對於尋求一具備均勻分散程度及良好機 械性質(特別是硬度)、透明度與熱性質之無機/有機奈米複 合材料,仍存在一需求。 15 【發明内容】 發明概要 ·- 由於利用習知之低分子型插層劑無法獲得分散均勻及 . 高層間距離之奈米矽片,因此,本案發明人進一步利用較 大分子量之插層劑來增加層間距離,以期獲得更佳之矽片 20 分散(此部份之技術内容已揭示於本國專利公告第550246號 中)。 然而,在本國專利公告第550246號中,本案發明人利 用聚醚胺插層劑(例如Jeffamine® D-2000或D-4000)來對無 機黏土進行改質,雖獲得高層間距離之插層型奈米矽片, 8 200538414 但當被加入高分子材料並製成奈米複合材料時,所得之奈 米複合材料的硬度、透明度及熱性質等仍存在一改善之空 間。 本案發明人為進一步改善有機高分子與層狀黏土之間 5 10 15 20 的相容性以提昇複合材料之機械性質、透明度及熱性質, 延續插層之概念,除了使層狀黏土之片狀結構能有高層間 距離,並針對插層劑進行改良,以使層狀黏土達到脫層狀 態,進而改善有機高分子與層狀黏土之間的相容性。 ' 因此,本案發明人針對插層劑作進一步之改良,此改β ” 良係藉由使分子量為2000之聚丙二醇雙(2-胺基丙基醚)(即 市售商品 Jeffamine® D-2000)、對-苯酚(p-cresol)與曱醛 (formaldehyde)進行聚合反應,而獲得一直鏈型插層劑 (linear intercalating agent),亦即,末端為胺基之曼尼希募 聚物(Amine terminal-Mannich Oligomer,於下文中簡稱為「 AMO插層劑」)作為插層劑,如下列化學式(I)所示:200538414 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a nano silicon wafer / organic polymer nano composite material and its application. In particular, the present invention relates to a nano-composite material in which 5 nano-silicon wafers are dispersed and dispersed in an organic polymer, and the nano-composite material can be further prepared to have excellent mechanical properties, transparency and thermal properties. Its coating. [Previous technology] Inorganic clay- · 10 organic polymer nanocomposite is one of the important materials that the industry is working hard to develop. In recent years, many literatures and patents on nanocomposite materials have been reported. For example, Toyota Japan has dispersed [NHACHOhCOCT] montmorillonite in Nylon 6 and developed the first inorganic material that can be practically used in the market. Clay / organic polymer nano composites. These 15 documents and patents disclose natural or artificial layered clay as an inorganic filler to be added to catalysts and polymer materials, to improve the solvent resistivity of polymer materials, Gas barrier property, mechanical property and thermal property. Since the surface of the unmodified layered clay is hydrophilic 20, it has poor compatibility with general hydrophobic organic polymers, so that it is easy to produce uniform dispersion due to aggregation. Shortcomings. Therefore, the improvement of the mechanical and thermal properties of the composite material depends on whether the organic polymer has good compatibility with the layered clay, that is, the degree of dispersion of the layered clay in the organic polymer. 200538414 In order to improve the compatibility between organic polymers and layered clay, the interlayer distance of layered clay can be loosened by adding an intercalating agent to the clay, resulting in a larger interlayer distance to allow monomers. (Monomer) enters, and then through the polymer polymerization reaction to obtain intercalated 5 or exfoliated dispersed inorganic clay / organic polymer nano composite material. Intercalating agents mentioned in conventional literature include: 12-aminolauric acid, hexadecylamine, fatty amine, and bis (2- Hydroxyethyl) methyl tallow alkylammonium chloride® -10 (bis (2-hydroxyethyl) methyl tallow alkyl ammonium chloride), amines such as stearylamine or quaternary ammonium salt . These low-molecular polar salt-recording groups will form polar bonds with the charged layered inorganic clay, and make the clay's original hydrophilicity become oleophilic, so it can enhance the layered inorganic clay. Compatibility with organic 15 macromolecules is conducive to the next step of the delamination reaction. However, the improvement of the mechanical properties of materials still needs to be improved. The technology of adding layered clay treated with organic onium. Salt to organic polymers has been disclosed in many patent documents, for example: US Patent Nos. 6,552,113, 6,552,114, 6,486,252 and European 20 patent No. 1,235,876, etc., the purpose of these patents is mainly to use the treated layered clay to prepare coatings with good gas barrier properties and haze. In addition, in the National Patent Publication No. 550246, the inventor used a series of polyoxyalkylene amines with a molecular weight of 1800 or more as an intercalating agent to modify the layered clay, and the intercalation type 7 200538414 ( intercalation type) The interlayer distance of layered clay can be extended to 50 ~ 92A, and a nano silicon wafer / organic polymer nano composite material can be further prepared. Among these polyetheramine intercalating agents, polyoxypropylene diamine is preferred, for example: polypropylene glycol bis (2-aminopropyl ether 5) [poly (propyleneglycol) bis (2-aminopropyl ether)], whose trade names are Jeffamine (R) D-4000 and D-2000. However, when the present inventors further used layered clay dispersed by Jeffamine ^ DdOOO intercalation to react with organic polymers, although intercalating type of nano, silicon wafer / organic polymer nano can be prepared Composite materials, but because the intercalating agent D-2000 is easy to mix, 10 can be mixed into organic polymers, and it will interfere with the cross-linking reaction of organic polymers, which cannot greatly improve the hardness and thermal properties of composite materials. From the above, it is known that there is still a need for an inorganic / organic nano composite material with a uniform degree of dispersion and good mechanical properties (particularly hardness), transparency and thermal properties. 15 [Summary of the Invention] Summary of the Invention-Since conventional low-molecular-weight intercalating agents cannot be used to obtain uniform and dispersed nano-silicon wafers with high interlayer distances, the inventors of the present case further used intercalating agents with larger molecular weights to increase The distance between layers, in order to obtain better dispersion of the silicon wafer 20 (the technical content of this part has been disclosed in National Patent Bulletin No. 550246). However, in National Patent Publication No. 550246, the inventors of this case used polyetheramine intercalating agents (such as Jeffamine® D-2000 or D-4000) to modify the inorganic clay, although the intercalation type of the distance between the upper layers was obtained. Nano silicon wafers, 8 200538414 But when polymer materials are added to make nano composite materials, there is still room for improvement in the hardness, transparency and thermal properties of the obtained nano composite materials. The inventor of this case further improved the compatibility of 5 10 15 20 between organic polymer and layered clay to improve the mechanical properties, transparency and thermal properties of the composite material, and continued the concept of intercalation, in addition to making the sheet structure of layered clay There can be a distance between the upper layers, and the intercalation agent can be improved to make the layered clay reach a delaminated state, thereby improving the compatibility between the organic polymer and the layered clay. 'Therefore, the inventors of this case have made further improvements on the intercalating agent, and this change β ”is based on making polypropylene glycol bis (2-aminopropyl ether) with a molecular weight of 2000 (commercially available product Jeffamine® D-2000 ), P-phenol (p-cresol) and formaldehyde are polymerized to obtain a linear intercalating agent, that is, Amine-terminated Mannich polymer (Amine terminal-Mannich Oligomer (hereinafter simply referred to as "AMO intercalating agent") as an intercalating agent, as shown in the following chemical formula (I):

CH3 OH ▲ · CH2NH-POP-NH~H (I) .CH3 OH ▲ CH2NH-POP-NH ~ H (I).

JnJn

其中,POP為具有下列化學式(II)之二價部分: R R —CHCH2-[〇CH2Ch]^ (II) 而R為之烷基,且η為介於1至68之間的整數以及 m為介於10至100之間的整數。 9 200538414 5 10 15 20 本發明人利用上述之AMO插層劑與該矽氧層狀無機黏 土在一酸性環境下進行插層反應,進一步藉由控制酸化程 度來達到脫層狀態,再經由取代反應來獲得一級結構之 AMO/無機黏 土奈米石夕片(nano silicate platelet) 〇 因此,鑑於以上之實驗成果,本發明提供一種具備良 好機械性質、透明度及熱性質之奈米矽片/有機高分子奈米 複合材料,其係包含一有機高分子及上述之AMO/無機黏土 奈米矽片。本發明是藉由將該AMO插層劑之末端胺基予以 酸化而形成一個四級銨陽離子(quaternary ammonium cation) 並以該四級銨陽離子作為陽離子起始劑(cation initiator), 來促進該AMO/無機黏土奈米矽片與該有機高分子之間的交 聯反應,進而使得該奈米矽片於該有機高分子中可達到奈 米級之分散程度,並更進一步可提昇該複合材料之機械性 質、透明度及熱性質。 此外,本發明亦提供一種高硬度塗膜,係藉由將上述 之奈米矽片/有機高分子奈米複合材料塗佈至一基材上,繼 而加熱歷經一段足夠久之時間所製備而得。 發明之詳細說明 本發明提供一種奈米矽片/有機高分子奈米複合材料, 其包含一有機高分子及一奈米石夕片。 該奈米矽片係為一具有下列化學式(I)之AMO插層劑與 矽氧層狀無機黏土在一酸性環境下進行反應所得之產物:Among them, POP is a bivalent moiety having the following chemical formula (II): RR —CHCH2- [〇CH2Ch] ^ (II) and R is an alkyl group, and η is an integer between 1 and 68 and m is an intermediate An integer between 10 and 100. 9 200538414 5 10 15 20 The inventor used the above-mentioned AMO intercalating agent to perform an intercalation reaction with the siliceous layered inorganic clay in an acidic environment, and further achieved a delamination state by controlling the degree of acidification, and then a substitution reaction To obtain a primary structure of AMO / inorganic clay nano silicate platelet. Therefore, in view of the above experimental results, the present invention provides a nano silicon wafer / organic polymer with good mechanical properties, transparency and thermal properties. Nanocomposite material, which is composed of an organic polymer and the above-mentioned AMO / inorganic clay nano silicon wafer. The present invention promotes the AMO by acidifying the terminal amine group of the AMO intercalator to form a quaternary ammonium cation, and using the quaternary ammonium cation as a cation initiator. / Inorganic clay nano silicon wafer and the organic polymer cross-linking reaction, so that the nano silicon wafer in the organic polymer can reach the degree of nano-scale dispersion, and further enhance the composite material Mechanical properties, transparency and thermal properties. In addition, the present invention also provides a high-hardness coating film, which is prepared by coating the above-mentioned nano-silicon wafer / organic polymer nano-composite material on a substrate and then heating it for a sufficient period of time. DETAILED DESCRIPTION OF THE INVENTION The present invention provides a nano silicon wafer / organic polymer nano composite material, which comprises an organic polymer and a nano stone chip. The nano silicon wafer is a product obtained by reacting an AMO intercalating agent having the following chemical formula (I) with a siliceous layered inorganic clay in an acidic environment:

10 (I) 20053841410 (I) 200538414

OHOH

CH2NH-P〇P-NH—H Jn 5 其中,POP為具有下列化學式(II)之二價部分:CH2NH-P〇P-NH-H Jn 5 wherein POP is a bivalent moiety having the following chemical formula (II):

R R -CHCH2{〇CH2CH^ (II) 10 15 而R為CrC#之烷基,且η為介於1至68之間的整數,· 為介於10至100之間的整數。較佳地,於式(I)中,R為甲 基,m為33,以及η為1至10之間的整數。 在本發明之具體例中,該具有化學式(I)之ΑΜΟ插層劑 係為聚醚二胺、對-甲酚及甲醛之一反應產物;且較佳地, 該聚醚二胺為聚丙基醚二胺;更佳地,該聚醚二胺為聚丙 二醇雙(2-胺基丙基醚)[poly(propyleneglycol)bis(2-aminopropyl ether)],其商品名為 Jeffamine® D-2000。 @· 關於該具有化學式(I)之AMO插層劑的製備,可依據習 _ 知之合成方法來製備,或依據以下反應式來進行製備: 20 (1)於曱苯,90°C下攪拌 (2) 加入37wt%曱酿水溶液 對曱酚+ D-2000 -►AMO插層劑R R -CHCH2 {〇CH2CH ^ (II) 10 15 and R is an alkyl group of CrC #, and η is an integer between 1 and 68, and · is an integer between 10 and 100. Preferably, in the formula (I), R is a methyl group, m is 33, and η is an integer between 1 and 10. In a specific example of the present invention, the AMO intercalating agent having the chemical formula (I) is a reaction product of one of polyetherdiamine, p-cresol and formaldehyde; and preferably, the polyetherdiamine is polypropyl Ether diamine; more preferably, the polyether diamine is polypropylene glycol bis (2-aminopropyl ether) [poly (propyleneglycol) bis (2-aminopropyl ether)], and its trade name is Jeffamine® D-2000. @ · Regarding the preparation of the AMO intercalating agent having the chemical formula (I), it can be prepared according to the known synthetic method, or according to the following reaction formula: 20 (1) Stir in toluene at 90 ° C ( 2) Add 37wt% aqueous solution of Pyrogallol + D-2000 -►AMO intercalation agent

(3) 90oC—130oC (4) 130°C,5 小時 適用於本發明之矽氧層狀無機黏土可選自於由下列所 11 200538414 構成之群組:蒙脫土(montmorillonite)、高嶺土(kolin)、雲 母(mica)、滑石粉(talc),以及此等之一組合。較佳地,該石夕 氧層狀無機黏土為蒙脫土。而在本發明之具體例中,該矽 氧層狀無機黏土為一具有50至200meq/100g間之陽離子交 5 換當量(cation exchange equivalent,簡稱為「CEC」)之含鈉 陽離子交換型蒙脫土,且較佳地,該矽氧層狀無機黏土為 一具有100至150meq/100g間之陽離子交換當量之含鈉陽 離子交換型蒙脫土。當CEC低於50meq/100g時,經由離子 交換而達成的有機化並不足夠,而致使黏土不易膨潤;當 10 CEC高於200meq/100g時,夾層間的結合力太高,也會致 使黏土難以膨潤。 有關本發明中用以製備奈米複合材料之奈米矽片,係 為一具有化學式⑴之AMO插層劑與矽氧層狀無機黏土在一 酸性環境下進行反應所得之產物,而在本發明之一具體例 15 中,該奈米矽片係依據以下步驟進行製備: (a) 使一含鈉陽離子交換型蒙脫土分散於約80°C之熱水中 ,以形成一均勻分散液; (b) 使AMO插層劑與鹽酸水溶液於約80QC下混合均勻, 以形成一混合液; 20 (c)使該步驟(a)之分散液與步驟(b)之混合液予以混合,以 形成一插層劑-黏土混合液;以及 (d) 於該步驟(c)所獲得之插層劑-黏土混合液中加入一鹼性 溶液,以進行一脫層反應,俾獲得一反應液; (e) 以一適當溶劑清洗並過濾該步驟(d)所獲得之反應液, 12 200538414 即可獲得經AMO插層劑脫層分散之奈米矽片。 較佳地,在本發明之有機高分子組成物中,以該有機 高分子組成物之總重計,該奈米矽片於該組成物中之含量 為0.1〜70wt%,較佳為小於10wt%,更佳為不大於5wt%。 5 再者,適用於本發明之有機高分子包括,但不限於下 列所列舉者:環氧樹脂(epoxy resin)、聚醯胺(polyamide)、 聚苯乙烯(PS)、聚丙烯(PP)、聚胺基曱酸酯(PU)、聚對苯二 甲酸乙二酉旨(polyethylene terephthalate,PET)、聚曱基丙稀 〜 酸曱酯(PMMA),以及此等之一組合。較佳地,該有機高分# . 10 子為環氧樹脂;而在本發明之具體例中,該有機高分子為 雙紛-A 之二縮水甘油基醚(diglycidyl ether of bisphenol-A, 簡稱為「DGEBA」,商品名為「BE-188」),分子式如下:(3) 90oC—130oC (4) 130 ° C, 5 hours The siliceous layered inorganic clay suitable for the present invention can be selected from the group consisting of 11 200538414: montmorillonite, kaolin (kolin ), Mica, talc, and one of these combinations. Preferably, the layered inorganic clay clay is montmorillonite. In a specific example of the present invention, the siliceous layered inorganic clay is a sodium-containing cation exchange type montmorillonite having a cation exchange equivalent (CEC) of 50 to 200 meq / 100g. And preferably, the siliceous layered inorganic clay is a sodium-containing cation exchange type montmorillonite having a cation exchange equivalent between 100 and 150 meq / 100 g. When the CEC is less than 50meq / 100g, the organicization achieved through ion exchange is not enough, which makes the clay difficult to swell. When the CEC is higher than 200meq / 100g, the bonding force between the interlayers is too high, which also makes the clay difficult. Swelling. The nano silicon wafer used for preparing nano composite materials in the present invention is a product obtained by reacting an AMO intercalating agent having a chemical formula 与 and a layered silica clay in an acidic environment. In the present invention, In a specific example 15, the nano silicon wafer is prepared according to the following steps: (a) dispersing a sodium-containing cation exchange type montmorillonite in hot water at about 80 ° C to form a uniform dispersion; (b) The AMO intercalating agent and the hydrochloric acid aqueous solution are mixed uniformly at about 80 QC to form a mixed liquid; 20 (c) The dispersion liquid of step (a) and the mixed liquid of step (b) are mixed to form An intercalating agent-clay mixed liquid; and (d) adding an alkaline solution to the intercalating agent-clay mixed liquid obtained in step (c) to perform a delamination reaction to obtain a reaction liquid; e) Wash and filter the reaction solution obtained in step (d) with an appropriate solvent, and 12 200538414 can obtain nano silicon wafers delaminated and dispersed by AMO intercalation agent. Preferably, in the organic polymer composition of the present invention, based on the total weight of the organic polymer composition, the content of the nano silicon wafer in the composition is 0.1 to 70 wt%, preferably less than 10 wt. %, More preferably not more than 5 wt%. 5 Furthermore, the organic polymers suitable for the present invention include, but are not limited to, the following: epoxy resin, polyamide, polystyrene (PS), polypropylene (PP), Polyurethane (PU), polyethylene terephthalate (PET), poly (propylene terephthalate) (PMMA), and one of these combinations. Preferably, the organic high fraction #. 10 is epoxy resin; and in a specific example of the present invention, the organic polymer is diglycidyl ether of bisphenol-A (referred to as "DGEBA", trade name "BE-188"), the molecular formula is as follows:

15 另,本發明之奈米矽片/有機高分子奈米複合材料可選 擇地進一步包含一固化劑。固化劑之選擇,為熟習此項技® 術領域之人士所習知,可因應用途及所使用之有機高分子 種類來加以變化,譬如,當有機高分子為環氧樹脂且複合 20 材料之用途為硬塗層時,較佳之固化劑為酚型固化劑。在 本發明之具體例中,該固化劑為胺基三畊酚醛樹脂(amino triazine novolak,商品名為「LA-775 1」),其分子式如下:15 In addition, the nano silicon wafer / organic polymer nano composite material of the present invention optionally further includes a curing agent. The choice of curing agent is known to those who are familiar with this technology ® field, and can be changed according to the application and the type of organic polymer used. For example, when the organic polymer is epoxy resin and the use of composite 20 materials When it is a hard coat layer, a preferred curing agent is a phenol type curing agent. In a specific example of the present invention, the curing agent is amino triazine novolak (trade name “LA-775 1”), and its molecular formula is as follows:

13 200538414 T佳地’在本發明之有機高分子 分子與固化劑的當量比為〇.1:1〜1:15。 〒該有機高 5 10 15 可:進有 間的交聯密度。該催化劑亦可依據所使用分子 故在此不再資述。丨為^此技術領域人士所習知, 本發明之奈米石夕片/有機高分子奈米複合材料可廣泛地< 應用於各種封裝材料、塗料等,尤其適用於塗層之製、&。 而在本發明之具體例中,將該奈米有機高分子太= 合材料塗佈至-基材上,接著加熱歷時—収夠久:時; ,以製得一種高硬度塗膜。 【實施方式】 本發明將就以下實施例來作進一步說明,但應瞭解的13 200538414 T 佳 地 ’The equivalent ratio of the organic polymer molecules to the curing agent in the present invention is 0.1: 1 to 1:15. 〒 This organic high 5 10 15 can: the crosslink density between. The catalyst is also based on the molecules used and will not be described here.丨 It is well known to those in this technical field that the nano-stone chip / organic polymer nano-composite material of the present invention can be widely applied to various packaging materials, coatings, etc., and is especially suitable for coating systems, &;. In a specific example of the present invention, the nano-organic polymer polymer is coated on a substrate, and then heated for a period of time long enough to collect: to obtain a high-hardness coating film. [Embodiment] The present invention will be further described in the following examples, but it should be understood

是’該等實施例僅為例示說明之用,而不應被解釋為本發 明實施之限制。 x <製備例> AMO/MMT奈米矽片之製備 20 (I) AMO插層劑之製備: 於反應瓶中加入27.2g(0.25mole)之對-曱紛(ACROS公 司製造)、757.6g(0.38mole)之聚丙二醇雙(2_胺基丙基醚 )(Aldrich Chemical 公司製造,商品名為 Jeffamine® D· 2000)及600mL之曱苯,並於90°C溫度下加熱迴流3 14 200538414 5 10 15 20 小時。接著,再於反應瓶中加入61.4g(0.76mole)之 37wt%的曱醛水溶液(ACROS公司製造)。在將反應溫度 由90°C升高至130°C並加熱歷時5小時期間,上述混 合物會變成膠態,即可停止迴流,最後便可獲得AMO 插層劑。 (II)奈米矽片之製備: (a) 將100g之含鈉陽離子交換型蒙脫土(CEC=115meq/100g 的Na+-MMT,商品名為Kunipia F)分散於10L之80°C 、 熱水中,並利用均質機(祥泰精機股份有限公司製造,β · 型號為HD220)強力攪拌4小時,以使水溶液形成土色 之穩定均勻分散液。 (b) 將575g之步驟(I)所製得之ΑΜΟ插層劑及12g之 3 5wt%的濃鹽酸溶液於80°C下混合30分鐘,以形成一 混合液。 (〇)Yes' These examples are for illustrative purposes only and should not be construed as limiting the implementation of the invention. x < Preparation example > Preparation of AMO / MMT nanometer silicon wafer 20 (I) Preparation of AMO intercalating agent: Add 27.2g (0.25mole) of the pair-injection (manufactured by ACROS) to the reaction bottle, 757.6 g (0.38mole) of polypropylene glycol bis (2-aminopropyl ether) (manufactured by Aldrich Chemical, trade name Jeffamine® D · 2000) and 600 mL of toluene, and heated to reflux at 90 ° C 3 14 200538414 5 10 15 20 hours. Next, 61.4 g (0.76 mole) of a 37 wt% aqueous formaldehyde solution (manufactured by ACROS) was added to the reaction flask. When the reaction temperature is increased from 90 ° C to 130 ° C and heated for 5 hours, the above mixture will become colloidal, and the reflux will be stopped, and finally the AMO intercalation agent can be obtained. (II) Preparation of nano silicon wafers: (a) Disperse 100g of sodium-containing cation-exchange montmorillonite (CEC = 115meq / 100g of Na + -MMT, trade name Kunipia F) in 10L at 80 ° C, heat In water, a homogenizer (manufactured by Xiangtai Seiki Co., Ltd., β · Model: HD220) was vigorously stirred for 4 hours to make the aqueous solution a soil-colored stable and uniform dispersion. (b) Mix 575 g of the AMO intercalator prepared in step (I) and 12 g of a 35 wt% concentrated hydrochloric acid solution at 80 ° C for 30 minutes to form a mixed solution. (〇)

將該步驟(a)所獲得之分散液與該步驟(b)所獲得之混合 液予以混合,並於80°C下利用均質機強力攪拌5小時 ,以完成插層反應,並獲得上下兩層分離之插層劑-黏 土混合液。 (d) 將該步驟(c)所獲得之插層劑-黏土混合液加入46g(—倍 當量)之氫氧化鈉中,以進行脫層反應並形成一反應液 ,此時反應液為一淡黃色乳化狀態的黏稠液體。 (e) 接著,將該步驟(d)所獲得之反應液倒入7.5L之乙醇中 並予以過濾,過濾後所獲得之固體再倒入10L之乙醇 中並攪拌均勻,再經最後過濾後,即可獲得及淡黃色 15 200538414 半透明之經AMO插層劑脫層分散之奈米矽片(有機/無 機比例約為40/60,於下文中簡稱為「AMO/MMT奈米 矽片」)。The dispersion liquid obtained in step (a) and the mixed liquid obtained in step (b) are mixed, and vigorously stirred at 80 ° C for 5 hours with a homogenizer to complete the intercalation reaction, and obtain the upper and lower layers. Separated intercalator-clay mixture. (d) Add the intercalation agent-clay mixed solution obtained in step (c) to 46 g (-fold equivalent) of sodium hydroxide to carry out the delamination reaction and form a reaction solution. At this time, the reaction solution is light. Yellow viscous liquid in emulsified state. (e) Next, pour the reaction solution obtained in step (d) into 7.5L of ethanol and filter. The solid obtained after filtering is poured into 10L of ethanol and stirred well. After the final filtration, Can be obtained and light yellow 15 200538414 translucent nano silicon wafers delaminated by AMO intercalation agent (organic / inorganic ratio is about 40/60, hereinafter referred to as "AMO / MMT nano silicon wafers") .

10 15 20 〈比較製備例&gt; D-2000/MMT奈米矽片之製備10 15 20 <Comparative preparation example> Preparation of D-2000 / MMT nano silicon wafer

(a)將100g之含鈉陽離子交換型蒙脫土(商品名KunipiaF 之 CE0115meq/100g 之 Na+-MMT)分散於 10L 之 80°C 熱水中,並利用均質機(祥泰精機股份有限公司製造, α 型號為HD220)強力攪拌4小時,以使水溶液形成土色® ” 之穩定均勻分散液。 (b)將230g(0.115mol)之聚丙二醇雙(2_胺基丙基醚)(Aldrich Chemical公司製造,商品名為Jeffamine® D-2000)插層 劑溶於己醇中,再加入等莫耳數之鹽酸(HC1),並於常 溫下反應30分鐘,可獲得一酸化插層溶液。 (〇)(a) Disperse 100g of sodium-containing cation-exchange montmorillonite (CE0115meq of KunipiaF / Na + -MMT of 100g) in 10L of 80 ° C hot water, and use a homogenizer (manufactured by Xiangtai Precision Machinery Co., Ltd.) (Α model HD220) was stirred vigorously for 4 hours, so that the aqueous solution formed a stable and uniform dispersion of earth color®. (B) 230 g (0.115 mol) of polypropylene glycol bis (2-aminopropyl ether) (Aldrich Chemical (Product name: Jeffamine® D-2000), an intercalating agent, is dissolved in hexanol, and hydrochloric acid (HC1) of equal molar number is added, and reacted at room temperature for 30 minutes to obtain an acidified intercalating solution. 〇)

將該步驟(b)所獲得之酸化插層溶液倒入該步驟(a)之分 散液中,並於60〜70°C之溫度下強力攪拌6小時,以 進行陽離子交換反應。反應完成後,使反應液靜置分 層0 (d)過濾該步驟(c)所製得之反應液,並以水及乙醇清洗數 次,以除去未反應之D-2000與蒙脫土。將所得之產物 置於真空烘箱中乾燥24小時,最後獲得經d-2000插 層劑改質之矽氧層狀無機黏土(於下文中簡稱為「D-2000/MMT奈米矽片」)。 16 200538414 &lt;實施例&gt; &lt;物性測試&gt; 下列實施例及比較例分別利用前述製備例與比較製備 例所製得之奈米矽片來製備奈米複合材料,並進一步被製 5 成ΙΟΟμηι之塗膜,而以下列測試方法進行評估: (i) 粒子分散狀況:利用Zeiss公司製造,型號為 EM902A 之穿透式電子顯微鏡(transmission electron micrograph,以下簡稱為「TEM」)觀察 Si02粒子大小以及於高分子中之分散狀況。 1 10 (ii)鉛筆硬度:利用錦亮實業有限公司製造,型號為 B-3084T3之鉛筆硬度測試儀,並依據ASTM D3363-74之標準方法進行測試。 (iii)熱膨脹係數:利用Du Pont公司製造,型號為 TMA2940之熱機械性質分析儀(TMA)進行測定。 15 (iv)透明度:利用 Perkin-Elmer公司製造,型號為 之Lambda 20之紫外線-可見光(UV-VIS)光譜儀於 550 nm/T%之紫外光-可見光光譜範圍進行測定。 &lt;化學品來源&gt; ⑴有機高分子(雙酚_A之二縮水甘油基醚):南亞化學 20 公司製,品名為「BE-188」,環氧當量(epoxide equivalent weight)為 188° (ii) 固化劑(胺基三喷酴酸樹脂):Dainippon Ink &amp; Chemicals公司製,品名為「LA-7751」。 &lt;實施例1&gt; 17 200538414 (1) 含AMO/MMT奈米矽片之奈米複合材料的製備: 於 100ml ΡΕ 瓶中加入 29.98g(85.66mmol)之 ΒΕ-188 及8.62g(26.85mmol)之LA-7751,並以均質機利用 機械攪拌方式(l〇〇〇rpm)攪拌5分鐘,接著,於其 5 中緩慢加入〇.65g之上述製備例1所製得之 AMO/MMT奈米矽片,並持續攪拌(3500rpm)15至 20分鐘,而得到一含有0.5wt%之AMO/MMT奈米 矽片之奈米複合材料。 (2) 塗膜之製備: &lt; 10 上述之(1)所得之奈米複合材料係利用真空烘箱來予 以消泡,直至無氣泡存在為止。接著,利用平板式 塗膜機(環洋股份有限公司製造,型號UNI 012)加 以塗膜(ΙΟΟμπι),並於180。(:之烘箱中硬烤3小時 ,得到一含有〇.5wt%之AMO/MMT奈米石夕片之塗 15 膜,並對其進行鉛筆硬度、熱膨脹係數及透明度之 測試,結果列於表1中。 &lt;實施例2&gt; (1) 含AMO/MMT奈米矽片之奈米複合材料的製備: 除了將該AMO/MMT奈米矽片之添加量改為13g 20 之外,其餘步驟皆與實施例1相同。最後,可獲得 一含有lwt%之AMO/MMT奈米矽片之奈米複合材 料。 (2) 塗膜之製備: 步驟與實施例1相同,惟最後獲得一含有lwt%之 18 200538414 AMO/MMT奈米矽片之塗膜,並對其進行鉛筆硬度 、熱膨脹係數及透明度之測試,結果列於表1中。 &lt;實施例3&gt; (1) 含ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材料的製備: 5 除了將該ΑΜΟ/ΜΜΤ奈米矽片之添加量改為4.0g 之外,其餘步驟皆與實施例1相同。最後,可獲得 一含有3wt%之ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材 料。 (2) 塗膜之製備: 10 步驟與實施例1相同,惟最後獲得一含有3wt%之 ΑΜΟ/ΜΜΤ奈米矽片之塗膜,並對其進行鉛筆硬度 、熱膨脹係數及透明度之測試,結果列於表1中。 另外亦進行分散狀況之觀察,結果如圖1所示。 &lt;實施例4&gt; 15 (1)含ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材料的製備: 除了將該ΑΜΟ/ΜΜΤ奈米矽片之添加量改為6.6g 之外,其餘步驟皆與實施例1相同。最後,可獲得 一含有5 wt%之ΑΜΟ/ΜΜΤ奈米矽片之奈米複合材 料。 20 (2)塗膜之製備: 步驟與實施例1相同,惟最後獲得一含有5wt%之 ΑΜΟ/ΜΜΤ奈米矽片之塗膜,並對其進行鉛筆硬度 、熱膨脹係數及透明度之測試,結果列於表1中。 &lt;比較例1&gt; 19 200538414 (1) 環氧樹脂材料之製備: 除了未添加該AMO/MMT奈米矽片之外,其餘步驟 皆與實施例1相同。最後,可獲得一環氧樹脂材料 〇 5 (2)塗膜之製備: 步驟與實施例1相同,最後獲得一塗膜,並對其進 行鉛筆硬度、熱膨脹係數及透明度之測試,結果分 別列於表1中。 &lt;比較例2〜5&gt; 10 (1)含D-2000/MMT奈米矽片之奈米複合材料之製備: 除了以比較製備例所製得之D-2000/MMT奈米矽片 來替代該AMO/MMT奈米矽片之外,其餘步驟及各 組成用量皆分別與實施例1〜4相同。最後,分別獲 得含有 〇_5wt%、1 wt%、3wt% 及 5wt% 之含 D-15 2000/MMT奈米矽片之奈米複合材料。 (2) 塗膜之製備: 步驟與實施例1相同,惟最後分別獲得含有lwt% 、3wt%及5wt%之含D-2000/MMT奈米矽片之塗膜( 分別對應為比較例2、3、4及5),並對該等塗膜進 20 行鉛筆硬度、熱膨脹係數及透明度測試,結果列於 表1中。 20 200538414 AMO/MMT奈米矽 片(脫層型)的含量 (wt%) 表1 熱膨服係數a〇am/m°C) Μ000/ΜΜΓ 奈 米石夕片(插層型)的 含量(Wf/〇) 硬度(Η)透明度(%)The acidified intercalation solution obtained in step (b) is poured into the dispersion liquid in step (a) and stirred vigorously at a temperature of 60 to 70 ° C for 6 hours to perform a cation exchange reaction. After completion of the reaction, the reaction solution was allowed to stand in layer 0 (d). The reaction solution obtained in step (c) was filtered and washed several times with water and ethanol to remove unreacted D-2000 and montmorillonite. The obtained product was dried in a vacuum oven for 24 hours, and finally a siliceous layered inorganic clay modified with a d-2000 intercalator (hereinafter referred to as "D-2000 / MMT nano silicon wafer") was obtained. 16 200538414 &lt; Example &gt; &lt; Physical property test &gt; The following examples and comparative examples use the nano silicon wafers prepared in the foregoing preparation examples and comparative preparation examples to prepare nano composite materials, and are further prepared into 5 IOOμηι coating film, and evaluated by the following test methods: (i) Particle dispersion: Observe the size of Si02 particles using a transmission electron micrograph (hereinafter referred to as "TEM") manufactured by Zeiss, model EM902A. And dispersion in polymers. 1 10 (ii) Pencil hardness: A pencil hardness tester of model B-3084T3 manufactured by Jinliang Industrial Co., Ltd. was used, and tested in accordance with the standard method of ASTM D3363-74. (iii) Thermal expansion coefficient: The thermomechanical property analyzer (TMA) manufactured by Du Pont Co., Ltd. was used for measurement. 15 (iv) Transparency: The ultraviolet-visible light (UV-VIS) spectrometer manufactured by Perkin-Elmer, model No. is Lambda 20, and measured in the ultraviolet-visible light spectral range of 550 nm / T%. &lt; Source of Chemicals &gt; ⑴Organic polymer (bisglycidyl ether of bisphenol_A): manufactured by Nanya Chemical 20, product name is "BE-188", epoxy equivalent weight is 188 ° ( ii) Curing agent (amino-trifluoroacetic acid resin): manufactured by Dainippon Ink & Chemicals, under the product name "LA-7751". &lt; Example 1 &gt; 17 200538414 (1) Preparation of nano composites containing AMO / MMT nano silicon wafers: In a 100 ml PE bottle, 29.98 g (85.66 mmol) of Beta-188 and 8.62 g (26.85 mmol) were added. LA-7751, and stirred in a homogenizer using a mechanical stirring method (1000 rpm) for 5 minutes, and then slowly added 0.65 g of AMO / MMT nanosilica prepared in the above Preparation Example 1 to 5 And agitate (3500 rpm) for 15 to 20 minutes to obtain a nano-composite material containing 0.5 wt% AMO / MMT nano-silicon wafer. (2) Preparation of coating film: &lt; 10 The nanocomposite material obtained in (1) above was defoamed using a vacuum oven until no bubbles existed. Next, a flat film coating machine (manufactured by Universal Ocean Co., Ltd., model UNI 012) was used to apply a coating film (100 μm) to 180 ° C. (: Hard roasted in an oven for 3 hours to obtain a coated 15 film containing 0.5% by weight of AMO / MMT nanostone tablets, and tested for pencil hardness, thermal expansion coefficient and transparency, the results are shown in Table 1 &Lt; Example 2 &gt; (1) Preparation of nano-composite material containing AMO / MMT nano-silicon wafer: Except that the addition amount of the AMO / MMT nano-silicon wafer was changed to 13g 20, the rest of the steps were all Same as in Example 1. Finally, a nano-composite material containing 1% by weight of AMO / MMT nano silicon wafer can be obtained. (2) Preparation of coating film: The steps are the same as in Example 1, except that one with 1% by weight is finally obtained 18 200538414 AMO / MMT nanometer silicon wafer coating film, and tested for pencil hardness, thermal expansion coefficient and transparency, the results are shown in Table 1. &lt; Example 3 &gt; (1) AMO / MMT nano-containing Preparation of silicon wafer nanocomposite material: 5 Except that the addition amount of the ΑΜΟ / ΜΜΤ nanometer silicon wafer was changed to 4.0g, the rest of the steps were the same as in Example 1. Finally, a 3wt% ΑΜΟ was obtained. / MMT nano-silicon nano-composite material. (2) Preparation of coating film: 10 steps are the same as in Example 1. However, a coating film containing 3wt% ΑΜΟ / ΜΜΤ nanometer silicon wafer was finally obtained and tested for pencil hardness, coefficient of thermal expansion, and transparency, and the results are shown in Table 1. In addition, the observation of the dispersion status was also performed. As shown in Figure 1. &lt; Example 4 &gt; 15 (1) Preparation of nano-composite material containing ΑΜΟ / ΜΜΤ nano silicon wafer: In addition to changing the addition amount of ΑΜΟ / ΜΜΤ nano silicon wafer to 6.6 g In addition, the remaining steps are the same as in Example 1. Finally, a nano-composite material containing 5 wt% AMO / MMT nano-silicon wafer can be obtained. 20 (2) Preparation of coating film: The steps are the same as in Example 1, However, a coating film containing 5 wt% of ΑΜΟ / ΜΜΤ nano silicon wafer was finally obtained and tested for pencil hardness, thermal expansion coefficient, and transparency, and the results are shown in Table 1. &lt; Comparative Example 1 &gt; 19 200538414 (1 ) Preparation of epoxy material: Except that the AMO / MMT nano silicon wafer is not added, the other steps are the same as in Example 1. Finally, an epoxy resin material 05 (2) coating film preparation: The steps are the same as in Example 1. Finally, a coating film is obtained, and It was tested for pencil hardness, thermal expansion coefficient, and transparency, and the results are listed in Table 1. &lt; Comparative Examples 2 to 5 &gt; 10 (1) Preparation of nano-composite material containing D-2000 / MMT nano-silicon wafer: Except for replacing the AMO / MMT nano silicon wafer with the D-2000 / MMT nano silicon wafer prepared in the comparative preparation example, the rest of the steps and the amount of each composition are the same as those in Examples 1 to 4. Finally, nano-composites containing D-15 2000 / MMT nano-silicon wafers containing 0-5 wt%, 1 wt%, 3 wt%, and 5 wt% were obtained. (2) Preparation of coating film: The steps are the same as in Example 1, except that coating films containing D-2000 / MMT nano-silicon wafers containing lwt%, 3wt%, and 5wt% were respectively obtained (corresponding to Comparative Example 2 and 2 respectively). 3, 4 and 5), and test the pencil hardness, thermal expansion coefficient and transparency of these coating films for 20 times. The results are shown in Table 1. 20 200538414 Content (wt%) of AMO / MMT nanometer silicon wafer (delamination type) Table 1 Thermal expansion coefficient aoam / m ° C) M000 / MMMΓ Content of nanometer stone wafer (intercalation type) ( Wf / 〇) Hardness (Η) Transparency (%)

結果 ⑴AMO/MMT奈㈣片於有機高分子中之分布狀況觀察: ίο -般而言’無機點土本身於片狀與片狀間有狼強的 表面作用力’並在交聯反應發生時,因為不同位置之作 用力大小不同的掩壓,會產生片與片之間部分相連接之 傾向。但由圖1(實施例3)中可清楚觀察到單一 於有機高分子的情形,亦即趙〇/丽奈切 = 分散於有機高分子中D ^ (2)硬度及透明度之比較: 由表1中可得知,本發明之實施例卜 膜的硬度皆遠較比較例u未添加奈米石冗)為古成之塗 明顯地可由2H提昇至8h ·&quot;、巧,硬度 风歼至以及透明度亦維 範圍内,因此可見奈米石夕 牧不錯的 機複合材料之機械性質及維持極度提昇無機/有 再者,由實施例1〜4與對廉 對應用篁之比較例2〜5的比較中 21 15 200538414 可看出,添加AMO/MMT對硬度之提升較添加D-2000/MMT之效果來得佳,尤其本發明僅需添加0.5wt% 之AMO/MMT奈米矽片,即可獲得具有優異硬度及透 明度之奈米複合材料。 (3)熱膨脹係數之比較: 在表1中,相較於比較例1,本發明之實施例1〜4 ίο 15 20 所製成之塗膜的熱膨脹係數有明顯下降的趨勢,且下降 比例約為30%〜50%。這是因為當脫層型AMO/MMT奈 米矽片加入有機高分子中時,致使有機高分子之鏈段的 活動空間受到限制,而改善了有機高分子系統本身所具 有之體積收縮問題。 綜上所述,本發明是藉由將經AMO插層劑脫層分散之 奈米矽片添加至有機高分子來製備一奈米矽片/有機高分子 奈米複合材料。特別地,本發明之奈米矽片的添加量僅需 0.5wt%,即可獲得具備優異機械性質、透明度及熱性質之 奈米複合材料。且更值得一提的是,本發明可藉由該AMO 插層劑之末端胺基經酸化後所形成之四級銨陽離子作為陽 離子起始劑,以促進該奈米矽片與該有機高分子之間的交 聯反應,進而使得該奈米矽片於該有機高分子中可達到奈 米級之分散程度,並更進一步可提昇該複合材料之機械及 熱性質。而當該奈米複合材料被做成塗膜時確實具有優異 之機械性質(尤其是硬度)、透明度及熱性質。 惟以上所述者,僅為本發明之較佳實施例而已,當不能 以此限定本發明實施之範圍,即大凡依本發明申請專利範Results: The distribution of AMO / MMT nanopyrene tablets in organic polymers was observed: In general, 'the inorganic dot soil itself has a strong surface force between the flakes and the flakes' and when the crosslinking reaction occurs, Because the masking force with different magnitudes in different positions will cause the tendency of the parts to connect with each other. However, it can be clearly observed from FIG. 1 (Example 3) that it is single-organic polymer, that is, Zhao 0 / Linaiche = D ^ (2) Comparison of hardness and transparency dispersed in organic polymer: From Table 1 It can be seen that the hardness of the film of the embodiment of the present invention is much higher than that of the comparative example (without the addition of nanostone). The ancient coating is obviously improved from 2H to 8h. Transparency is also within the range, so it can be seen that the mechanical properties and maintenance of nano-stone samura ’s good organic composite materials are extremely improved. Comparing 21 15 200538414, it can be seen that the hardness increase by adding AMO / MMT is better than that of D-2000 / MMT. In particular, the present invention only needs to add 0.5% by weight of AMO / MMT nano silicon wafers to obtain Nano composite material with excellent hardness and transparency. (3) Comparison of thermal expansion coefficients: In Table 1, compared with Comparative Example 1, the thermal expansion coefficients of the coating films prepared in Examples 1 to 4 of the present invention 15 20 have a significant downward trend, and the reduction ratio is about It is 30% to 50%. This is because when the delaminated AMO / MMT nano silicon wafer is added to the organic polymer, the movement space of the organic polymer chain segment is limited, and the volume shrinkage problem of the organic polymer system itself is improved. In summary, the present invention is to prepare a nano silicon wafer / organic polymer nano composite material by adding nano silicon wafers delaminated and dispersed by an AMO intercalator to an organic polymer. In particular, the nano silicon wafer of the present invention only needs to add 0.5 wt% to obtain a nano composite material having excellent mechanical properties, transparency, and thermal properties. What's more, it is worth mentioning that in the present invention, the quaternary ammonium cation formed by acidifying the terminal amine group of the AMO intercalating agent can be used as a cationic initiator to promote the nano silicon wafer and the organic polymer. The cross-linking reaction between them further enables the nano silicon wafer to achieve nano-level dispersion in the organic polymer, and further improves the mechanical and thermal properties of the composite material. When the nanocomposite is made into a coating film, it does have excellent mechanical properties (especially hardness), transparency, and thermal properties. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited in this way, that is, where anyone applies for a patent according to the present invention

22 200538414 圍及發明說明書内容所作之簡單的等效變化與修飾,皆應 仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1為本發明之實施例3之含有3wt°/〇之AMO/MMT奈 5 米矽片之奈米矽片/有機高分子奈米複合材料所製成之塗膜 的TEM圖。 【圖式之主要元件代表符號說明】(無) 2322 200538414 and simple equivalent changes and modifications made to the contents of the invention description should still fall within the scope of the invention patent. [Brief description of the figure] FIG. 1 is a drawing of a coating film made of a nano silicon wafer / organic polymer nano composite material containing 3 wt ° / 0 AMO / MMT nano 5 meter silicon wafer in Example 3 of the present invention. TEM image. [Description of Symbols of Main Components of the Drawings] (None) 23

Claims (1)

200538414 拾、申請專利範圍: [-種奈米矽片/有機高分子奈米複合材料,包含: 一有機高分子;及 一奈米矽片,焱&amp; θ . 係為一具有下列化學式(I)之插層劑與 石-層狀無機黏土在—酸性環境下進行反應所得之產物 J ΟΗ H2N POP·叫H2c«^^jpCH2NH屮。p N吟η ⑴ 其中,POP為具有下列化學式(π)之二價部分; R R —CHCHa+OCHaCHj~ (丨丨) 而R為(^〜(:4之燒基,並且η為介於1至68之間的整 數,m為介於10至1〇〇之間的整數。 2.如申月專利範圍帛j項之奈米石夕片/有機高分子奈米複合 材料j其中,該有機高分子係選自由下列所構成之群組 • %氧樹脂、聚醯胺、聚苯乙烯(ps)、聚丙烯(pp)、聚 胺基甲酸醋(PU)、聚對苯二甲酸乙二酯(pET)、聚甲基丙 烯酸甲酯(PMMA),以及此等之一組合。 3·如申請專利範圍第2項之奈米石夕片/有機高分子奈米複合 材料,其中,該有機高分子為環氧樹脂。 4.如申請專利範圍第丨項之奈米矽片/有機高分子奈米複合 24 200538414 至 材料,其中,該化學式⑴中之m為3 # ίο之間的整數。 為)丨於 5. 如申請專利範圍第丨項之奈米矽 材料,其中,該具有化學式⑴之插:;:子奈米複合 m ^ 9剛為聚醚二胺、 對-甲酚及甲醛之一反應產物。 6. 如申請專利範圍第1項之奈米矽 U +:i甘士 匕 有機南分子奈米複合 科、中,财氧層狀無機黏土係選自於由下列 =之群組1脫土—咖。仙。_)、高嶺土〇、雲 (mica)、滑石粉(talc),以及此等之一組人 7. =請專利範圍第1項之奈米石夕片/有機高口分子奈米複合 其中,該矽氧層狀無機黏土之陽離子交換當量 (CEC)係介於 50至 2〇〇meq/1〇〇g 之間。 8·如:請專利範圍第7項之奈米石夕片/有機高分子奈米複合 9 料八中,該矽氧層狀無機黏土之陽離子交換當量 (CEC)係介於 1〇〇至 15〇meq/1〇〇g 之間。 如月專利範圍第1項之奈米石夕片/有機高分子奈米複合 材料其中,以该奈米複合材料之總重計,該奈米矽片 於該奈米複合材财之含量$ 〇1〜7〇wt%。 女=吻專利範圍第9項之奈米矽片/有機高分子奈米複合 材料,其中,以該奈米複合材料之總重計,該奈米矽片 於該奈米複合材料中之含量係小於1〇wt%。 1 ·如申睛專利範圍第1〇項之奈米矽片/有機高分子奈米複 一材料其中’以該奈米複合材料之總重計,該奈米梦 片於該奈米複合材料中之含量係不大於5wt%。 25 200538414 Ή專利範圍第1或3項之奈米梦片/有機高分子奈米 專利範圍冑12項之奈切片/有機高分子奈米複 °料,其中,該固化劑為酚型固化劑。 14,=請專職圍第13項之奈_片/有機高分子奈米複 I枓’其中’所包含之有機高分子與固化劑的當量比 馬 〇·1:1〜1:1·5 〇 15.2請專利範圍第3項之奈㈣片/有機高分子奈米複合 何科,其係被用於塗層之製造上。 16·:::硬度塗膜’其係藉由將如申請專利範圍第!或3 二=片/有機高分子奈米複合材料塗佈至-基材上 邊而加熱歷經一段足夠久之時間所製備而得。 26200538414 Scope of patent application: [-a kind of nano silicon wafer / organic polymer nano composite material, including: an organic polymer; and a nano silicon wafer, 焱 &amp; θ. It is a system with the following chemical formula (I The intercalation agent) and the stone-layered inorganic clay are reacted under an acidic environment. The product J 〇 H2N POP is called H2c ^^ jpCH2NH 屮. p N Yin η ⑴ where POP is a bivalent moiety having the following chemical formula (π); RR —CHCHa + OCHaCHj ~ (丨 丨) and R is (^ ~ (: an alkyl group of 4, and η is between 1 to Integer between 68, m is an integer between 10 and 100. 2. For example, the nano-stone sheet / organic polymer nano-composite material of item #j of the patent application, where the organic high The molecular system is selected from the group consisting of:% oxygen resin, polyamide, polystyrene (ps), polypropylene (pp), polyurethane (PU), polyethylene terephthalate ( pET), polymethyl methacrylate (PMMA), and one of these combinations. 3. The nanometer stone chip / organic polymer nanocomposite material, such as the second item of the patent application scope, wherein the organic polymer It is epoxy resin. 4. For example, the nano silicon wafer / organic polymer nano composite 24 200538414 to the material in the scope of the patent application, where m is an integer between 3 # ίο.丨 In 5. If the nano-silicon material according to the scope of the patent application item 丨, wherein the chemical formula has an insertion ::: nano-composite m ^ 9 is just the reaction product of one of polyetherdiamine, p-cresol and formaldehyde. 6. For example, the nano-silicon U +: iganshijia organic south molecular nanocomposite, medium and financial The oxygen layered inorganic clay system is selected from the group 1 of the following = soil removal-coffee. Xian. _), Kaolin 0, mica, talc, and one of these groups 7. = The nanometer stone chip / organic high-molecular nanometer compound of the first item of the patent scope is compounded therein. The cation exchange equivalent (CEC) of the siliceous layered inorganic clay is between 50 and 200meq / 1OOg. between. 8. For example, please apply the nanometer stone chip / organic polymer nanometer compound 9 in the patent scope No. 7. In the silicon oxide inorganic inorganic clay, the cation exchange equivalent (CEC) is between 100 and 15 〇meq / 1〇〇g. The content of nanometer silicon wafer / organic polymer nanometer composite material in the first item of the monthly patent scope is based on the total weight of the nanometer composite material, and the content of the nanometer silicon wafer in the nanometer composite material property is 〇1 ~ 70% by weight. Female = nano silicon wafer / organic polymer nano composite material in the ninth scope of the patent, where the content of the nano silicon wafer in the nano composite material is based on the total weight of the nano composite material Less than 10 wt%. 1. The nano silicon wafer / organic polymer nano composite material as claimed in item 10 of the patent scope, where 'based on the total weight of the nano composite material, the nano dream tablet is in the nano composite material. The content is not more than 5wt%. 25 200538414 奈 Nano Dream Tablets / Organic Polymer Nano-Patents No. 1 or 3 in the patent scope 奈 12 Nano-chips / Organic Polymer Nano-composite in the patent scope No. 12, wherein the curing agent is a phenol type curing agent. 14, = Please take a full-time job in the 13th edition of _ Tablets / Organic Polymer Nanocomposite I 枓 where “equivalent ratio” of the organic polymer and curing agent contained in the polymer is 1: 1 to 1: 1. 5 〇 15.2 Please use the nano-sheet / organic polymer nano-composite Hoco in item 3 of the patent, which is used in the manufacture of coatings. 16 · ::: Hardness coating film ’is based on the scope of patent application! Or 3 Two = sheet / organic polymer nano composite material is prepared by coating on the substrate and heating it for a long enough time. 26
TW93115511A 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof TWI284138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115511A TWI284138B (en) 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115511A TWI284138B (en) 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof

Publications (2)

Publication Number Publication Date
TW200538414A true TW200538414A (en) 2005-12-01
TWI284138B TWI284138B (en) 2007-07-21

Family

ID=39455004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115511A TWI284138B (en) 2004-05-31 2004-05-31 Nano silicate platelet-organic polymer nanocomposite and use thereof

Country Status (1)

Country Link
TW (1) TWI284138B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796926B (en) * 2022-01-06 2023-03-21 矽光顧問有限公司 Nylon/nsp nanocomposite and method for producing the same and its application to polymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501807B (en) * 2007-12-07 2015-10-01 Univ Nat Taiwan A method for dispersing metal oxide nanoparticles
AT12729U3 (en) * 2012-04-24 2013-09-15 Nedschroef Fraulautern Gmbh screw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796926B (en) * 2022-01-06 2023-03-21 矽光顧問有限公司 Nylon/nsp nanocomposite and method for producing the same and its application to polymer

Also Published As

Publication number Publication date
TWI284138B (en) 2007-07-21

Similar Documents

Publication Publication Date Title
US6323270B1 (en) Polybenzoxazine nanocomposites of clay and method for making same
CN110205023A (en) With hydrophobic, antiseptic property composite Nano coating material and its preparation method and application
Schmidt et al. Silicate dispersion and mechanical reinforcement in polysiloxane/layered silicate nanocomposites
Chen et al. Synthesis of disordered and highly exfoliated epoxy/clay nanocomposites using organoclay with catalytic function via acetone− clay slurry method
US20120296012A1 (en) Room temperature ionic liquid-epoxy systems as dispersants and matrix materials for nanocomposites
US11248106B2 (en) Method of forming an exfoliated or intercalated filler material
KR101609649B1 (en) Inorganic fiber reinforced organic-inorganic hybrid ion exchange membrane with high dimensional stability and high thermal resistance and method for manufacturing the same
TWI431045B (en) Organic/inorganic hybrid material and fabrication method thereof
US8168698B2 (en) Method of using hyperbranched polyamine to exfoliate inorganic clay into random form of nanosilicate platelet
WO2014057976A1 (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
TWI464116B (en) Reactive monomer dispersed silica sol, method for producing the same, curing composition and cured product from the same
Prasad et al. Imidazole-supported silica one-pot processed nanoparticles to enhance toughness of epoxy based nanocomposites
US20050080180A1 (en) Method for producing nanosilica plates
Ma et al. Cage and linear structured polysiloxane/epoxy hybrids for coatings: Surface property and film permeability
Ambilkar et al. In situ zirconia: A superior reinforcing filler for high-performance nitrile rubber composites
Jlassi et al. Efficient photoinduced In situ preparation of clay/poly (glycidyl methacrylate) nanocomposites using hydrogen‐donor silane
JP4997705B2 (en) Surface-coated flame-retardant particles and production method thereof, and flame-retardant resin composition and production method thereof
Bondioli et al. Epoxy resin modified with in situ generated metal oxides by means of sol–gel process
TW200538414A (en) Nano silicate platelet-organic polymer nanocomposite and use thereof
Chiu et al. Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites
Pavlacky et al. Polymer/clay nanocomposite plasticization: elucidating the influence of quaternary alkylammonium organic modifiers
Yuan et al. A novel LDH nanofiller intercalated by silsesquioxane for preparing organic/inorganic hybrid composites
CN115960464B (en) Liquid vinyl cage polysilsesquioxane modified addition type liquid silicone rubber and preparation method thereof
WO2020130945A1 (en) Modifier, modified clay material, composite, and related methods
JP2003055030A (en) Modified sheet clay material and epoxy/clay nano composite material containing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees