1283934 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種薄膜半導體晶片之製造方法。 【先前技術】 薄膜半導體晶片例如由文件EP 0 905 797 A2中已爲人 所知。爲了製造此種薄膜半導體晶片,一種以ni/V_化合物 半導體材料(其適合用來發出電磁輻射)爲主之層序列須施 加在一種生長基板上。由於以III/V-化合物半導體材料來調 ® 整之生長基板大部份都可吸收該活性之層序列所產生的電 磁轄射之一部份,爲了使光效益提高,則該活性之層序列 須與生長基板相分離且施加在另一載體上。活性之層序列 和載體之間之連接藉由黏合或焊接來達成。 活性之層序列和載體之間存在著一種反射性之層序列。 此反射性之層序列之目的是使電磁輻射轉向至薄膜半導體 晶片之發出輻射用之前側且因此可使晶片之輻射效益提 高。此反射性之層序列通常包含至少一介電質層。 • 如文件DE 1 0 2004 004 780 Α1中所述,介電質層以微影 術結構化成活性之層序列之背面之電性接觸區,以便在至 活性之層序列之背面之介電質層中形成多個開口。然後, 施加一種金屬層,其塡入各開口中且互相連接,使活性之 層序列在背面具有多個接觸位置,其在電性上互相連接。 此金屬層例如包含金和至少一種摻雜物質(例如,鋅)。藉由 金屬層之退火,使該摻雜物質擴散至ΙΠ/V-化合物半導體材 料中。在適當地選取該摻雜物質時,則在至金屬層之界面 上之III/V-化合物半導體材料中電荷載體會以倍增的方式 1283934 而產生,這樣會形成一種具有歐姆特性之電性接觸位置。 此外,文件DE 1 0046 1 70 A1中描述一種方法’其藉助 於雷射使太陽電池之導電性之接觸位置可藉由鈍化層來產 生。 【發明內容】 本發明的目的是提供一種薄膜半導體晶片之已簡化的製 造方法,特別是活性之層序列之導電性接觸位置之製造方 上述目的以具有申請專利範圍第1項中所述步驟的方 法,申請專利範圍第4項之方法以及申請專利範圍第5項 之方法來達成。 本發明其它形式和構成描述在申請專利範圍第2,3,6 至1 2等各附屬項中。 申請專利範圍所揭示的內容將詳細描述在說明書中。 以III/V-化合物半導體材料(其適合用來產生電磁輻射) 爲主之薄膜半導體晶片之製造方法包含以下各步驟: -施加一種活性之層序列(其適合用來產生電磁輻射)至 生長基板上,此活性之層序列具有一種面向生長基板之前 側和一種遠離生長基板之背面, -施加至少一介電質層至活性之層序列之背面上以作爲 一種反射性之層序列之一部份, -藉助於雷射使能量施加至介電質層之邊界已確定之容 積區中,使容積區中形成至少一種面向該活性之層序列之 背面之開口, -施加至少一種金屬層以作爲該反射性之層序列之另一 1283934 _部份,使該開口之至少一部份以金屬材料塡入且形成至少 一種至活性之層序列之背面之背面導電性接觸位置, -施加一種載體至該反射性之層序列上,以及 -去除該生長基板。 , 活性之層序列和載體之間之反射性之層序列包含至少_ 種介電質層和一金屬層,其中介電質層例如含有SiNx且金 m 屬層例如含有金和鋅。此外,介電質層亦含有磷砂酸鹽玻 璃,其中此種具有磷矽酸鹽玻璃之介電質層較佳是由另一 鲁包封層(其例如包含氮化矽)所包封,以便廣泛地防止:濕氣 到達磷矽酸鹽玻璃層且形成磷酸。上述施加在πι/v-化合物 半導體材料上的反射性之層序列例如已描述在申請案DE 10 2004 040 277 ·9中,其已揭示的內容收納於此處以作爲參 考。 由於上述之反射性之層序列具有至少一介電質層,則須 經由該反射性之層序列來對該活性之層序列之背面形成至 少一接觸位置,以便對該活性之層序列之背面達成電性上 φ 的接觸。 依據本方法,須藉助於雷射而在介電質層內部中設置一 _ 至活性之層序列之背面之開口,然後在活性之層序列內部 中形成一種導電性之接觸位置。這樣所具有的優點是:在 « 製造此薄膜半導體晶片時微影術過程(其通常很耗時間且成 本高)之數目可下降。此外,本方法中可形成一種橫切面很 小的接觸位置,此乃因較以微影術所能達成者還小的結構 可以雷射來達成。 上述反射性之層序列除了介電質層和金屬層之外亦可包 1283934 .含其它之層。例如,可包含該介電質層-或金屬層之包封用 的各種層或包含各種在該反射性之層序列之各層之間作爲 黏合促進用之層。通常可藉助於雷射以經由這些層來設置 多個開口且在至該活性之層序列之背面之各開口內部中形 成電性上之接觸位置。 在本方法之較佳的實施形式中,在下一步驟中使背面之 接觸位置退火。藉由導電性之接觸位置之退火,則原子可 由各接觸位置之金屬材料擴散至背面之III/V-化合物半導 鲁體材料中。在考慮此背面之III/V-化合物半導體材料時適當 地選取金屬材料,則可製成一種至背面之III/V-化合物半導 體材料之導電性接觸位置,其具有歐姆特性。 背面之導電性接觸位置藉助於雷射來退火時特別有利。 藉助於雷射,則能量只能適當地施加至薄膜半導體晶片 之有限的容積區中。特別是在導電性的接觸區中可使能量 局部性地施加至III/V-化合物半導體材料之界面之區域 中。一種藉助於雷射來進行的表面處理方法描述在文件DE φ 1 〇 1 4 1 3 5 2.1中,其已揭示的內容收納於此處以作爲參考。本 方法之此一實施形式之優點是:爲了以局部性受限之方式 形成一種具有歐姆特性之電性接觸位置,則只有晶片之某 些需要高溫之區域需承受較高的溫度。1283934 IX. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a thin film semiconductor wafer. [Prior Art] Thin film semiconductor wafers are known, for example, from the document EP 0 905 797 A2. In order to fabricate such a thin film semiconductor wafer, a layer sequence mainly composed of a ni/V_ compound semiconductor material which is suitable for emitting electromagnetic radiation is applied to a growth substrate. Since most of the growth substrate is tuned by the III/V-compound semiconductor material, one part of the electromagnetic layer generated by the active layer sequence can be absorbed, and in order to improve the light efficiency, the active layer sequence It must be separated from the growth substrate and applied to another carrier. The connection between the active layer sequence and the carrier is achieved by bonding or welding. There is a reflective layer sequence between the active layer sequence and the carrier. The purpose of this reflective layer sequence is to divert electromagnetic radiation to the front side of the thin film semiconductor wafer for radiation and thus to increase the radiation efficiency of the wafer. The reflective layer sequence typically comprises at least one dielectric layer. • As described in the document DE 1 0 2004 004 780 Α1, the dielectric layer is lithographically structured into the electrical contact regions on the back side of the active layer sequence for the dielectric layer on the back side of the active layer sequence. A plurality of openings are formed in the middle. Then, a metal layer is applied which is inserted into the openings and connected to each other such that the active layer sequence has a plurality of contact positions on the back side which are electrically connected to each other. This metal layer comprises, for example, gold and at least one dopant species (for example zinc). The dopant is diffused into the ΙΠ/V-compound semiconductor material by annealing the metal layer. When the dopant is appropriately selected, the charge carrier in the III/V-compound semiconductor material at the interface to the metal layer is generated in a multiplicative manner 1283934, which forms an electrical contact position with ohmic characteristics. . Furthermore, a method is described in the document DE 1 0 046 1 70 A1, which makes it possible to produce a contact position of the conductivity of the solar cell by means of a laser by means of a passivation layer. SUMMARY OF THE INVENTION It is an object of the present invention to provide a simplified method of fabricating a thin film semiconductor wafer, in particular a manufacturer of conductive contact locations of active layer sequences, which has the object described above with the steps described in claim 1 The method is achieved by applying the method of item 4 of the patent scope and the method of claim 5 of the patent scope. Other forms and configurations of the present invention are described in the respective items of claims 2, 3, 6 to 12 and the like. The disclosure of the scope of the patent application will be described in detail in the specification. A method of fabricating a thin film semiconductor wafer based on a III/V-compound semiconductor material suitable for generating electromagnetic radiation comprises the following steps: - applying an active layer sequence (which is suitable for generating electromagnetic radiation) to a growth substrate The active layer sequence has a front side facing the growth substrate and a back surface away from the growth substrate, - applying at least one dielectric layer to the back side of the active layer sequence as part of a reflective layer sequence Applying energy to the defined volume region of the boundary of the dielectric layer by means of a laser, forming at least one opening in the volume region facing the back side of the active layer sequence, applying at least one metal layer as the The other 1283934 portion of the sequence of reflective layers is such that at least a portion of the opening is intercalated with a metallic material and forms at least one back conductive contact location to the back side of the active layer sequence, - applying a carrier to the The reflective layer sequence is followed by - removing the growth substrate. The layer sequence of the reflective layer between the active layer sequence and the carrier comprises at least one dielectric layer and a metal layer, wherein the dielectric layer, for example, contains SiNx and the gold matrix layer contains, for example, gold and zinc. In addition, the dielectric layer also contains a phosphorous phosphate glass, wherein the dielectric layer having a phosphonate glass is preferably encapsulated by another lu-encapsulated layer (which includes, for example, tantalum nitride). In order to prevent extensively: moisture reaches the phosphonium glass layer and forms phosphoric acid. The above-mentioned reflective layer sequence applied to the πι/v-compound semiconductor material is described, for example, in the application DE 10 2004 040 277 -9, the disclosure of which is incorporated herein by reference. Since the reflective layer sequence has at least one dielectric layer, at least one contact position is formed on the back side of the active layer sequence via the reflective layer sequence to achieve the back side of the active layer sequence. Electrically φ contact. According to the method, an opening of the back side of the active layer sequence is disposed in the interior of the dielectric layer by means of laser, and then a conductive contact position is formed in the interior of the active layer sequence. This has the advantage that the number of lithography processes (which are typically time consuming and costly) can be reduced during the manufacture of this thin film semiconductor wafer. In addition, in the present method, a contact position having a small cross-sectional area can be formed, which can be achieved by a laser having a smaller structure than that which can be achieved by lithography. The reflective layer sequence may include 1283934 in addition to the dielectric layer and the metal layer. For example, the dielectric layer or the various layers for encapsulation of the metal layer or layers comprising various layers of the reflective layer may be included as a layer for adhesion promotion. A plurality of openings can generally be provided via the layers by means of a laser and an electrically conductive contact location is formed in the interior of each opening to the back of the active layer sequence. In a preferred embodiment of the method, the contact position of the back side is annealed in the next step. By annealing the conductive contact sites, the atoms can diffuse from the metal material at each contact location to the III/V-compound semiconducting material on the back side. When a metal material is appropriately selected in consideration of the III/V-compound semiconductor material on the back surface, an electroconductive contact position to the III/V-compound semiconductor material to the back surface can be obtained, which has an ohmic property. The conductive contact position on the back side is particularly advantageous when it is annealed by means of a laser. By means of the laser, energy can only be suitably applied to the limited volume area of the thin film semiconductor wafer. In particular, in the electrically conductive contact region, energy can be locally applied to the region of the interface of the III/V-compound semiconductor material. A surface treatment method by means of lasers is described in the document DE φ 1 〇 1 4 1 3 5 2.1, the disclosure of which is hereby incorporated by reference. An advantage of this embodiment of the method is that in order to form an electrical contact location with ohmic properties in a locally limited manner, only certain regions of the wafer that require high temperatures are subject to higher temperatures.
I 因此,在退火時可使半導體晶片之其它區域有利地不會 受到高溫且金屬原子亦不會擴散至不期望的區域中。 若反射性之層序列之金屬層例如包含不同種類之金屬 (其中一種金屬之反射性不如另一種金屬且在退火時由於不 同的擴散性而將該二種金屬分開),則反射性較差之金屬原 1283934 . 子會局部性地累積且因此可使反射性之層序列之反射性下 降。例如,此處可考慮一種以P-摻雜之III/V-化合物半導體 材料爲主之反射性層序列,包含一種介電質層和一種金屬 層,其中金屬層含有金和鋅。金對可見光之紅色光譜區中 之電磁輻射具有很好的反射性。反之,鋅適合在退火時擴 散至P-摻雜之III-V-化合物半導體中且給予各導電性的接 觸位置一種最廣泛的歐姆特性。現在若反射性之層序列之 區域承受較高的溫度,則鋅原子亦會漫遊至介電質層之界 • 面上。但主要是對具有可見光之紅色區域中之波長的電磁 輻射而言由於鋅所具有的反射性較鋁者還小,則反射性之 層序列之品質對紅色光而言會下降。 此外,在非局部性的退火過程中金屬原子亦會擴散至活 性的層序列中,金屬原于在此處通常成爲一種缺陷,其會 促成光子之非輻射性的組合且因此會使薄膜半導體晶片之 效率下降。爲了防止此種現象,則在活性之層序列上通常 存在一種以非活性之III-V-化合物半導體材料爲主之足夠 • 厚的層。本發明中若此接觸區局部性地以雷射來退火,則 此種非活性之III-V-化合物半導體材料之厚度以及薄膜半 導體晶片之厚度都可有利地下降。 以III-V-化合物半導體材料(其適合用來產生電磁輻射) 爲主之薄膜半導體晶片之另一種製造方法特別是包含以下 各步驟: -施加一種活性之層序列(其適合用來產生電磁輻射)至 一種生長基板上,此活性之層序列具有一種面向生長基板 之前側和一種遠離生長基板之背面, -10- 1283934 . -在活性之層序列之背面上形成一種反射性之層序列,其 包含至少一金屬層和至少一介電質層, -藉助於雷射使能量施加至反射性之層序列之至少一邊 界已確定之容積區中,使此邊界已確定之容積區內部中形 成至少一種至該活性之層序列之背面之背面導電性接觸位 置, -施加一種載體至該反射性之層序列上,以及 -去除該生長基板。 # 在上述方法中,其與申請專利範圍第1項不同之處是該 反射性之層序列之各層係依序施加而成且隨後藉助於雷射 而使能量施加至該反射性之層序列之已限定的容積區中。 雷射對該介電質層和金屬層加熱,使介電質層分解或熔化 或此二種現象都發生。金屬層之局部性已熔化的材料因此 可形成一種至活性之層序列之背面之導電性之接觸位置。 本方法所提供的優點和申請專利範圍第1項中所述的方 法者相同。此外,本方法另有以下優點:該接觸位置通常 φ 不必退火,此乃因能量以局部性的方式施加至III-V-化合物 半導體材料之界面上且因此在形成該接觸位置時可同時使 金屬原子擴散至III-V-化合物半導體材料中。 仍有另一種以III-V-化合物半導體材料(其適合用來產生 電磁輻射)爲主之薄膜半導體晶片之製造方法,其特別是包 含以下各步驟: -施加一種活性之層序列(其適合用來產生電磁輻射)至 一種生長基板上,此活性之層序列具有一種面向生長基板 之前側和一種遠離生長基板之背面, -11- 1283934 • -施加至少一種金屬反射層,其形成一種至該活性之層序 列之背面之背面導電性接觸位置, n •藉助於雷射使背面導電性接觸位置退火, -施加一種載體至該反射性之層序列上,以及 -去除該生長基板。 與申請專利範圍第1,4項所述方法不同之處是:本方法 中在活性之層序列之待接觸之背面和該反射層之間未施加 介電質層。但在金屬層和活性之層序列之背面之間可存在 • 其它之層(例如,一種黏合促進層)。依據本方法,電性接觸 位置之背面藉助於雷射來退火,以獲得一種具有歐姆特性 之接觸位置。本方法之優點是:使背面之接觸區(特別是活 性之層序列)退火時不需在整個半導體晶片上進行。 在上述三種方法之一種較佳的實施形式中,在活性之層 序列之前側上施加一種調質用之層序列,其包含至少一種 介電質層。然後,至少一金屬層施加在此調質用之層序列 之至少一部份上且藉助於雷射使能量施加至該調質用之層 φ 序列和金屬層之邊界已限定之容積區中,以形成至少一種 至活性之層序列之前側之前側導電性接觸位置。 調質用之層序列例如可含有一種介電質層,其含有玻璃 且須被結構化,使電磁輻射可較佳地在薄膜半導體晶片之 "前側上發出。此外,調質用之層序列另外具有-或只具有一 種保護-和鈍化功能。 藉由一種調質用之層序列(其含有至少一種介電質層)以 形成至活性之層序列之前側之前側接觸位置時是與申請專 利範圍第4項中藉由反射性之層序列(其含有介電質層)來 -12- 1283934 β 形成背面接觸位置時相類似的過程來進行。藉助於雷射使 能量施加至金屬層-和調質用之層序列之邊界已界定之容積 ^ 區中,則又可使介電質層局部性地分解或熔化或此二種現 象都發生且金屬層之已局部性熔化之材料形成一種至活性 之層序列之前側之導電性接觸位置。藉助於雷射來形成前 側之接觸位置所具有的優點是與藉助於雷射來形成背面之 接觸位置時所具有的優點相同。 此外,在傳統之退火過程中在使前側的接觸區退火時, • 不只半導體晶片之局部性受限之容積區會受到高的溫度, 而且整個晶片亦會受到高的溫度,這樣會有以下的問題: 活性之層序列和載體之間的接合材料之耐溫性須限制在退 火時的溫度。因此,在傳統之非局部性之退火過程中各晶 片通常都施加一種較形成接觸區時所期望者還低的溫度。 當該接觸區須在事後進行退火時,上述問題可有利地避免。 例如,若一介電質層在活性之層序列之前側上成爲一種 調質用之層序列之一部份時,前側之接觸位置可另外經由 φ 該調質用之層序列來形成。此時藉助於雷射而經由該調質 用之層序列來形成一種開口。然後,如申請專利範圍第1 項之方法所述,在此開口上施加一種金屬層,其以金屬材 料塡入該開口中且因此形成一種至活性之層序列之前側之 導電性接觸位置。 此外,在上述二種方法中,至少一導電性之接觸位置施 加在活性之層序列之前側上,此接觸位置隨後藉助於雷射 來退火。本實施形式中在使此接觸位置退火時亦可有利地 不必在整個晶片上加溫。 -13- 1283934 , 此處須指出:可使用上述方法以製造前側之接觸區而與 其餘之薄膜半導體晶片之製造方法無關。 上述三種方法特別適合用來製造薄膜發光二極體晶片。 薄膜發光二極體晶片之特徵特別是以下各點: -在產生輻射之磊晶層序列之面向載體元件之第一主面 上施加或形成一種反射層或層序列,其使磊晶層序列中所 產生的電磁輻射之至少一部份反射回到磊晶層序列中; -磊晶層序列具有20微米或更小的厚度,特別是1〇微米。 • 磊晶層序列較佳是含有至少一種半導體層,其至少一面 上具有一混合結構,此混合結構在理想情況下會使磊晶層 序列中之光形成一種類似於遍壢(ergodic)之分佈,即,其較 佳是具有一種儘可能遍壢之隨機雜散特性。 薄膜發光二極體晶片之基本原理例如已描述在文件I. Schnitzer at al., Appl. Phys. Lett. 63 (16),18. October 1 993, 2174-2 1 76中,其已揭示的內容收納於此處以作爲參考。 通常,薄膜發光二極體晶片在背面區域中包含一種p-摻 • 雜之III/V-化合物半導體材料且在前側之區域中包含一種 η-摻雜之III/V-化合物半導體材料。但以相反之順序來進行 , 亦可行。 若活性之層序列之此側(其上施加該接觸位置)包含一種 Ρ-摻雜之磷化物-III/V-化合物半導體材料,則該接觸區較佳 是包含元素金和鋅中之至少一種。 磷化物-III/V-化合物半導體材料較佳是一種與摻雜無關 之 AlnGamln 卜 n-mP,其中 OSnS 1, OSmS 1 且 n + mS 1。此種材 料未必具有以上數學式所示之準確的組成。反之,其可具 -14- 1283934 . 有一種或多種摻雜物質以及其它的成份,其基本上不會改 變AlnGamlm.n.mP-材料之物理特性。然而,爲了簡單之故, 以上之式子中只包含晶格(Al,Ga,In,P)之主要成份,當這 些成份之一部份可由少量之萁它材料所取代時亦同。 金是一種對波長在可見光之紅色區域中之電磁輻射具有 良好反射性的材料。鋅在該接觸位置退火時擴散至p-摻雜 之磷化物-III/V-化合物半導體材料且在該處較佳是佔有族 -III-超晶格之晶格位置而產生電洞。因此,電荷載體(電洞) • 之數目會增加,這樣通常會造成電性接觸位置之較佳的特 性。 若活性之層序列之此側(其上施加該接觸位置)包含一種 η-摻雜之磷化物-III/V-化合物半導體材料,則該接觸區較佳 是包含元素金和鍺中之至少一種。 在此種情況下金由於其良好的反射性因此較佳是作爲接 觸區用的材料。鍺較佳是在該接觸區退火時同樣佔有族-III-超晶格之晶格位置,但鍺作爲族-IV-元素所承載的電子數目 φ 較族-III-超晶格之原子還多且因此會使該區域中的電子數 目增力口。 若活性之層序列之此側(其上施加該接觸位置)包含一種 Ρ-摻雜之氮化物-III/V-化合物半導體材料,則該接觸區較佳 β 是包含元素Pt, Rh,Ni, Au,Ru, Pd,Re和Ir中之至少一種。 氮化物-III/V-化合物半導體材料較佳是一種與摻雜無關 之 AlnGamlni + mN,其中 OSnSl,OSmSl 且 n + mSl。此種 材料未必具有以上數學式所示之準確的組成。反之,其可 具有一種或多種摻雜物質以及其它的成份,其基本上不會 •15- 1283934 . 改變AKGamlnmN-材料之物理特性。然而,爲了簡單之故, 以上之式子中只包含晶格(Al,Ga,In,N)之主要成份,當這 些成份之一部份可由少量之其它材料所取代時亦同。 若活性之層序列之此側(其上施加該接觸位置)包含一種 _ η-摻雜之氮化物-III/V-化合物半導體材料,則該接觸區較佳 是包含元素Ti,Α1和W中之至少一種。 若活性之層序列之此側(其上施加該接觸位置)包含一種 磷化物-III/V-化合物半導體材料,則此側亦可另外包含一種 • 砷化物-III/V-化合物半導體材料。這些材料依據摻雜度較佳 是用於接觸位置中且通常與上述材料並無差異。 若活性之層序列之此側(其上施加該接觸位置)包含一種 氮化物-III/V-化合物半導體材料,則此側同樣可另外包含一 種砷化物-III/V-化合物半導體材料。在此種情況下,這些材 料依據摻雜度較佳是用於接觸位置中且通常與上述材料並 無差異。 砷化物-III/V-化合物半導體材料較佳是一種與摻雜無關 之 AlnGamlni-n-mAs,其中 OSnS 1,1 且 n + mS 1。此種 材料未必具有以上數學式所示之準確的組成。反之,其可 I 具有一種或多種摻雜物質以及其它的成份,其基本上不會 改變 AlnGamlnmAs-材料之物理特性。然而,爲了簡單之 故,以上之式子中只包含晶格(Al, Ga,In,As)之主要成份, 當這些成份之一部份由少量之其它材料所取代時亦同。 本發明之其它優點和較佳之實施形式以下將依據第ia 至If圖,第2a至2b圖,第3a至3b圖,第4a至4c圖, 第5a至5d圖中所示之二個實施例來描述。 -16- 1283934 . 【實施方式】 各圖式和實施例中相同或作用相同之組件分別設有相同 的符號。各圖式之元件,特別是各層的厚度基本上未依比 例繪出’反之,爲了更佳地能使人理解,一些部份已放大。 , 在第la至If圖之實施例中,爲了製造薄膜發光二極體 晶片’須以磊晶方式施加一種以III/V-化合物半導體材料爲 主之活性之層序列至生長基板2上。活性之層序列1之面 向生長基板2之此側稱爲前側1 2且與前側1 2相面對的此側 ® 稱爲背面1 1。活性之層序列1適合用來發出電磁輻射且例 如具有一種輻射產生用之pn-接面或輻射產生用之單一-或 多重量子井結構。這些結構已爲此行的專家所知悉,此處 因此不再詳述。活性之層序列1例如包含 AlGalnP或 GalnN,其中活性之層序列1之前側12是η-摻雜且背面11 是Ρ-摻雜。若應以磊晶方式施加一種以氮化物-III/V-化合 物半導體材料爲主之活性之層序列1,則例如可使用GaN, SiC或藍寶石作爲生長基板2用之材料。以磷化物-III/V-化 φ 合物半導體材料爲主之活性之層序列1之磊晶生長用之一 種適當之生長基板2例如包含GaAs。 . 然後,在在活性之磊晶層序列1上施加一種介電質層3, 其例如包含SiNx。介電質層3中藉助於雷射而產生點形之 開口 4,使活性之層序列1之背面1 1可自由地位於開口 4 之內部。各開口 4通常具有1微米至20微米之直徑,使得 在隨後之步驟中形成一種具有此種大小之直徑之接觸位置 6 0 在下一步驟中,例如藉由蒸鍍或濺鍍而在介電質層3上 -17- 1283 934 •施加金屬層5。介電質層3和金屬層5 —起形成一種反射性 之層序列5 1。若活性之層序列1之背面丨丨包含一種p _摻雜 之磷化物-III/V-化合物半導體材料(例如,AlGalnP),則金 屬層5較佳是包含金和鋅。反之,若活性之層序列1之背 面1 1包含一種p-摻雜之氮化物-Πΐ/ν_化合物半導體材料(例 如,GalnN) ’則金屬層5較佳是包含pt,Rh,Ni,Au,Ru,Pd, Re 或 Ir o 在施加金屬材料時,開口 4中以金屬材料塡入且與金屬 # 材料互相連接’以形成至活性之層序列1之背面1 1之導電 性之接觸位置6,這些接觸位置導電性地互相連接。 爲了獲得一種具有最廣泛之歐姆特性之接觸位置6,此 接觸位置6隨後須進行退火。例如,整個晶片可載入一種 爐中,此爐使晶片承受一種450°C之環境溫度。但此接觸位 置6較佳是局部性地以雷射來退火。藉助於雷射來使電性 接觸位置6退火已描述在文件DE 101413521中,其已揭示 的內容收納於此處以作爲參考。 _ 若背面-或前側之接觸位置6應含有不同之金屬材料,則 亦可施加多個層,其含有各別的金屬材料。在此種情況下 各層之厚度較佳是很薄。在活性之層序列1之背面電性接 觸區完成之後,在金屬層5上例如藉由焊接或黏合來施加 一種載體7。在隨後的步驟中去除該生長基板2。 爲了在活性之層序列1之前側上達成電性接觸,須在活 性之層序列1之前側1 2上施加一種由金屬材料所構成的導 電性接觸位置6。若活性之層序列1之前側1 2含有一種n-摻雜之磷化物-III/V-化合物半導體材料(例如,AlGalnP), -18- 1283934 , 施中亦在生長基板2上施加一種活性之層序列1,其其適合 用來發出電磁輻射(請比較第5a圖)。與上述實施例不同之 處是,隨後在活性之層序列1之背面1 1上施加一種金屬反 射層5(其例如由銀構成),其不會由於介電質層3而與活性 之層序列1相隔開。在此種情況下,金屬層5對活性之層 序列1之背面1 1而言是一種電性接觸位置6。 但在金屬層5和活性之層序列1之背面1 1之間可配置另 一種層(例如,黏合促進層)。此種黏合促進層通常很薄且只 ®有數個奈米厚。 爲了在活性之層序列1之背面1 1和金屬層5之間使電性 之接觸區6獲得一種最廣泛的歐姆特性,則金屬層5可藉 助於雷射來退火,如第5b圖所示 在隨後的步驟中,如上所述,載體7固定在活性之層序 列1之背面1 1上,這例如藉助於接合層9 (其含有黏合劑或 焊接劑)來達成(請比較第5c圖)。然後,去除該生長基板2 且對活性之層序列1之前側1 2施加一種導電性之接觸區 • 6。此種前側之電性接觸位置6例如可像第2a,2b圖之實施 例或第4 a至4 c之實施例那樣施加而成。本申請案件主張德 國專利申請案號1 0 2004 047392.7和1 0 2004 06 1 865.8之優 先權,其已揭示的內容收納於此處以作爲參考。 當然,上述依據實施例之方法所作的說明不是對本發明 的一種限制。本發明特別是包含每一新的特徵和各特徵的 每一種組合,特別是包含各申請專利範圍中各特徵之每一 種組合,當此種組合未明確地顯示在各申請專利範圍中時 亦同。 •20-Therefore, other regions of the semiconductor wafer can be advantageously not subjected to high temperatures during annealing and metal atoms are not diffused into undesired regions. If the metal layer of the reflective layer sequence contains, for example, different kinds of metals (one of which is less reflective than the other metal and separates the two metals due to different diffusibility during annealing), the less reflective metal The original 1283934. will accumulate locally and thus the reflectivity of the reflective layer sequence will be reduced. For example, a reflective layer sequence based on a P-doped III/V-compound semiconductor material can be considered herein, comprising a dielectric layer and a metal layer, wherein the metal layer contains gold and zinc. Gold is highly reflective to electromagnetic radiation in the red spectral region of visible light. On the contrary, zinc is suitable for diffusion into the P-doped III-V-compound semiconductor upon annealing and imparts the most extensive ohmic characteristics to the contact positions of the respective conductivity. Now if the region of the reflective layer sequence is subjected to higher temperatures, the zinc atoms will also roam to the boundary of the dielectric layer. However, mainly for electromagnetic radiation having a wavelength in a red region of visible light, since the reflectivity of zinc is smaller than that of aluminum, the quality of the layer sequence of reflectivity is lowered for red light. In addition, metal atoms also diffuse into the active layer sequence during non-localized annealing, where the metal is often a defect that contributes to the non-radiative combination of photons and thus the thin film semiconductor wafer. The efficiency is reduced. In order to prevent this, there is usually a sufficiently thick layer mainly composed of an inactive III-V-compound semiconductor material on the active layer sequence. In the present invention, if the contact region is locally annealed by laser, the thickness of the inactive III-V-compound semiconductor material and the thickness of the thin film semiconductor wafer can be advantageously lowered. Another method of manufacturing a thin film semiconductor wafer based on a III-V-compound semiconductor material, which is suitable for generating electromagnetic radiation, comprises in particular the following steps: - application of an active layer sequence (suitable for generating electromagnetic radiation) To a growth substrate, the active layer sequence has a front side facing the growth substrate and a back surface away from the growth substrate, -10- 1283934. - forming a reflective layer sequence on the back side of the active layer sequence, Including at least one metal layer and at least one dielectric layer, - applying energy by means of a laser to at least one boundary of the sequence of reflective layers has been determined in the volume region, such that the boundary is determined to form at least the interior of the volume region A backside conductive contact location to the back side of the active layer sequence, - applying a carrier to the reflective layer sequence, and - removing the growth substrate. # In the above method, it differs from the first item of the patent application in that the layers of the reflective layer sequence are sequentially applied and then energy is applied to the layer of the reflective layer by means of a laser. In the defined volume area. The laser heats the dielectric layer and the metal layer to decompose or melt the dielectric layer or both. The locally melted material of the metal layer thus forms a conductive contact location to the back side of the active layer sequence. The advantages provided by this method are the same as those described in the first claim. In addition, the method has the additional advantage that the contact position is generally φ without annealing, since the energy is applied locally to the interface of the III-V-compound semiconductor material and thus the metal can be simultaneously formed when the contact position is formed The atoms diffuse into the III-V-compound semiconductor material. There is still another method of manufacturing a thin film semiconductor wafer which is mainly composed of a III-V-compound semiconductor material which is suitable for generating electromagnetic radiation, and which comprises, in particular, the following steps: - application of an active layer sequence (which is suitable for use) To generate electromagnetic radiation) onto a growth substrate having a layer facing the front side of the growth substrate and a back side away from the growth substrate, -11-1263834 • applying at least one metal reflective layer that forms one to the active The back surface conductive contact position of the layer sequence, n • annealing the back surface conductive contact position by means of a laser, applying a carrier to the reflective layer sequence, and removing the growth substrate. The difference from the method described in the claims 1 and 4 is that in the present method, no dielectric layer is applied between the back surface of the active layer sequence to be contacted and the reflective layer. However, there may be additional layers (e.g., an adhesion promoting layer) between the metal layer and the back side of the active layer sequence. According to the method, the back side of the electrical contact position is annealed by means of a laser to obtain a contact position having an ohmic characteristic. The advantage of this method is that the contact area of the back side (especially the active layer sequence) is not required to be etched over the entire semiconductor wafer. In a preferred embodiment of the above three methods, a layer sequence for quenching and tempering comprising at least one dielectric layer is applied to the front side of the active layer sequence. Then, at least one metal layer is applied to at least a portion of the sequence of layers for quenching and tempering and energy is applied to the layer φ sequence for quenching and tempering and the volume region defined by the boundary of the metal layer by means of laser, To form at least one front side conductive contact location on the front side of the active layer sequence. The layer sequence for quenching and tempering, for example, may comprise a dielectric layer containing glass and having to be structured such that electromagnetic radiation is preferably emitted on the "front side of the thin film semiconductor wafer. Furthermore, the layer sequence for quenching and tempering additionally has - or only one protection - and passivation function. By using a layer sequence for quenching and tempering (which contains at least one dielectric layer) to form a front side contact position on the front side of the active layer sequence, and a layer sequence by reflection in the fourth aspect of the patent application ( It contains a dielectric layer) to -12-1283934 β to form a back contact position when a similar process is performed. By applying energy to the metal layer by means of a laser - and in the volume region defined by the boundary of the layer sequence for quenching and tempering, the dielectric layer can be locally decomposed or melted or both phenomena occur. The partially melted material of the metal layer forms a conductive contact location on the front side of the active layer sequence. The advantage of forming the contact position on the front side by means of laser has the same advantages as when forming the contact position of the back side by means of laser. In addition, in the conventional annealing process, when the front side contact region is annealed, • not only the localized limited volume area of the semiconductor wafer is subjected to high temperature, but also the entire wafer is subjected to high temperature, so that the following Problem: The temperature resistance of the bonding material between the active layer sequence and the carrier must be limited to the temperature at the time of annealing. Therefore, in conventional non-localized annealing processes, each wafer typically applies a lower temperature than would be expected when forming the contact regions. The above problems can be advantageously avoided when the contact zone has to be annealed afterwards. For example, if a dielectric layer is part of a layer sequence for tempering on the front side of the active layer sequence, the contact position of the front side can be additionally formed via the layer sequence for φ tempering. At this time, an opening is formed by means of a laser through the layer sequence for the quenching and tempering. Then, as described in the method of claim 1, a metal layer is applied to the opening, which is impregnated into the opening with a metallic material and thus forms a conductive contact location on the front side of the active layer sequence. Furthermore, in both of the above methods, at least one electrically conductive contact position is applied to the front side of the active layer sequence, which is then annealed by means of a laser. In the present embodiment, it is also advantageous to not have to warm the entire wafer when annealing the contact position. -13- 1283934, it should be noted here that the above method can be used to manufacture the contact area on the front side regardless of the manufacturing method of the remaining thin film semiconductor wafer. The above three methods are particularly suitable for fabricating thin film light emitting diode wafers. The thin-film light-emitting diode wafer is characterized in particular by the following points: - applying or forming a reflective layer or layer sequence on the first main surface of the radiation-oriented epitaxial layer sequence facing the carrier element, which causes the epitaxial layer sequence to At least a portion of the generated electromagnetic radiation is reflected back into the epitaxial layer sequence; the epitaxial layer sequence has a thickness of 20 microns or less, in particular 1 micron. • The epitaxial layer sequence preferably comprises at least one semiconductor layer having a hybrid structure on at least one side which ideally causes the light in the epitaxial layer sequence to form an ergodic-like distribution. That is, it preferably has a random stray characteristic as much as possible. The basic principle of a thin film light-emitting diode wafer is described, for example, in the document I. Schnitzer at al., Appl. Phys. Lett. 63 (16), 18. October 1 993, 2174-2 1 76. It is hereby incorporated by reference. Typically, a thin film light-emitting diode wafer comprises a p-doped III/V-compound semiconductor material in the backside region and an n-doped III/V-compound semiconductor material in the region of the front side. But in the reverse order, it is OK. If the side of the active layer sequence on which the contact position is applied comprises a yttrium-doped phosphide-III/V-compound semiconductor material, the contact region preferably comprises at least one of the elements gold and zinc. . The phosphide-III/V-compound semiconductor material is preferably a doping-independent AlnGamln b-nP, wherein OSnS 1, OSmS 1 and n + mS 1 . Such materials do not necessarily have the exact composition shown in the above mathematical formula. Conversely, it may have -14-1283934. There are one or more dopants and other components that do not substantially alter the physical properties of the AlnGamlm.n.mP-material. However, for the sake of simplicity, the above formula contains only the main components of the crystal lattice (Al, Ga, In, P), and when one of these components can be replaced by a small amount of ruthenium. Gold is a material that has good reflectivity to electromagnetic radiation having a wavelength in the red region of visible light. When the zinc is annealed at the contact position, it diffuses to the p-doped phosphide-III/V-compound semiconductor material where it is preferred to occupy the lattice position of the family-III-superlattice to generate holes. Therefore, the number of charge carriers (holes) will increase, which usually results in better characteristics of the electrical contact position. If the side of the active layer sequence on which the contact location is applied comprises an η-doped phosphide-III/V-compound semiconductor material, the contact region preferably comprises at least one of the elements gold and rhodium. . In this case, gold is preferred as a material for the contact zone because of its good reflectivity. Preferably, the germanium also occupies the lattice position of the group-III-superlattice when the contact region is annealed, but the number of electrons carried by the group as the group-IV-element is more than that of the group-III-superlattice. And thus the number of electrons in the area is increased. If the side of the active layer sequence on which the contact location is applied comprises a ytterbium-doped nitride-III/V-compound semiconductor material, then the contact region preferably contains the elements Pt, Rh, Ni, At least one of Au, Ru, Pd, Re and Ir. The nitride-III/V-compound semiconductor material is preferably a doping-independent AlnGamlni + mN, wherein OSnSl, OSmSl and n + mSl. Such materials do not necessarily have the exact composition shown in the above mathematical formula. Conversely, it may have one or more dopant species and other components that are substantially non-15-1283934. The physical properties of the AKGamlnmN-material are altered. However, for the sake of simplicity, the above formula contains only the main components of the crystal lattice (Al, Ga, In, N), and when one of these components can be replaced by a small amount of other materials. If the side of the active layer sequence on which the contact location is applied comprises a η-doped nitride-III/V-compound semiconductor material, the contact region preferably comprises the elements Ti, Α1 and W. At least one of them. If the side of the active layer sequence on which the contact position is applied comprises a phosphide-III/V-compound semiconductor material, the side may additionally comprise an arsenide-III/V-compound semiconductor material. These materials are preferably used in the contact position depending on the degree of doping and are generally not different from the above materials. If the side of the active layer sequence on which the contact location is applied comprises a nitride-III/V-compound semiconductor material, the side may additionally comprise an arsenide-III/V-compound semiconductor material. In this case, these materials are preferably used in the contact position depending on the degree of doping and are generally not different from the above materials. The arsenide-III/V-compound semiconductor material is preferably a doping-independent AlnGamlni-n-mAs, wherein OSnS 1,1 and n + mS 1 . Such materials do not necessarily have the exact composition shown in the above mathematical formula. Conversely, it may have one or more dopant species and other components that do not substantially alter the physical properties of the AlnGamlnmAs-material. However, for the sake of simplicity, the above formula contains only the main components of the crystal lattice (Al, Ga, In, As), and the same is true when one of these components is replaced by a small amount of other materials. Further advantages and preferred embodiments of the invention will be hereinafter based on the ia to the If, the 2a to 2b, the 3a to 3b, the 4a to 4c, and the 5th to 5d. To describe. [16] [Embodiment] Each of the drawings having the same or the same functions as those in the embodiments is provided with the same reference numerals. The components of the various figures, and in particular the thickness of the layers, are not substantially drawn to the contrary. On the contrary, some parts have been enlarged for better understanding. In the embodiment of the Lath to If diagram, in order to fabricate the thin film light-emitting diode wafer, a layer sequence active on the III/V-compound semiconductor material is applied to the growth substrate 2 in an epitaxial manner. The side of the active layer sequence 1 on the side of the growth substrate 2 is referred to as the front side 1 2 and the side facing the front side 1 2 is referred to as the back side 1 1 . The active layer sequence 1 is suitable for emitting electromagnetic radiation and, for example, has a pn-junction for radiation generation or a single- or multiple quantum well structure for radiation generation. These structures are known to experts in this line and will not be detailed here. The active layer sequence 1 comprises, for example, AlGalnP or GalnN, wherein the active side of the sequence 1 of the active layer 1 is η-doped and the back side 11 is ytterbium-doped. If a layer sequence 1 mainly active of a nitride-III/V- compound semiconductor material is to be applied by epitaxy, for example, GaN, SiC or sapphire can be used as the material for the growth substrate 2. One of the suitable growth substrates 2 for epitaxial growth of the layer sequence 1 which is mainly active of the phosphide-III/V-formed φ compound semiconductor material contains, for example, GaAs. Then, a dielectric layer 3 is applied on the active epitaxial layer sequence 1, which for example comprises SiNx. In the dielectric layer 3, a dot-shaped opening 4 is produced by means of a laser, so that the back surface 1 1 of the active layer sequence 1 is freely located inside the opening 4. Each opening 4 typically has a diameter of from 1 micron to 20 microns such that a contact location 60 having a diameter of this size is formed in a subsequent step in the next step, for example by evaporation or sputtering in the dielectric. Layer 3 on -17-1283 934 • Metal layer 5 is applied. Dielectric layer 3 and metal layer 5 together form a reflective layer sequence 51. If the backside of the active layer sequence 1 comprises a p-doped phosphide-III/V-compound semiconductor material (e.g., AlGalnP), the metal layer 5 preferably comprises gold and zinc. On the other hand, if the back surface 1 1 of the active layer sequence 1 contains a p-doped nitride-Πΐ/ν_ compound semiconductor material (for example, GalnN), the metal layer 5 preferably contains pt, Rh, Ni, Au. , Ru, Pd, Re or Ir o When a metal material is applied, the opening 4 is infiltrated with a metal material and interconnected with the metal # material to form a conductive contact position 6 to the back surface 1 of the active layer sequence 1 These contact locations are electrically connected to each other. In order to obtain a contact location 6 having the widest ohmic characteristics, this contact location 6 is then annealed. For example, the entire wafer can be loaded into a furnace that subjects the wafer to an ambient temperature of 450 °C. However, this contact location 6 is preferably locally annealed by a laser. Annealing of the electrical contact position 6 by means of a laser has been described in the document DE 101413521, the disclosure of which is incorporated herein by reference. _ If the back- or front-side contact position 6 should contain different metal materials, multiple layers may be applied, each containing a separate metal material. In this case, the thickness of each layer is preferably very thin. After the electrical contact area of the back side of the active layer sequence 1 is completed, a carrier 7 is applied to the metal layer 5, for example by soldering or bonding. The growth substrate 2 is removed in a subsequent step. In order to achieve electrical contact on the front side of the active layer sequence 1, a conductive contact location 6 of a metallic material must be applied to the front side 1 of the active layer sequence 1. If the front side 1 of the active layer sequence 1 contains an n-doped phosphide-III/V-compound semiconductor material (for example, AlGalnP), -18-1283934, an active layer is also applied to the growth substrate 2. Layer sequence 1, which is suitable for emitting electromagnetic radiation (please compare Figure 5a). In contrast to the above-described embodiments, a metal reflective layer 5 (which consists, for example, of silver) is subsequently applied to the back side 1 of the active layer sequence 1 without the active layer sequence due to the dielectric layer 3. 1 phase is separated. In this case, the metal layer 5 is an electrical contact location 6 for the back side 1 1 of the active layer sequence 1. However, another layer (e.g., an adhesion promoting layer) may be disposed between the metal layer 5 and the back surface 1 1 of the active layer sequence 1. This adhesion promoting layer is usually very thin and only has a few nanometers thick. In order to obtain the most extensive ohmic properties of the electrical contact region 6 between the backside 1 1 of the active layer sequence 1 and the metal layer 5, the metal layer 5 can be annealed by means of a laser, as shown in Figure 5b. In a subsequent step, as described above, the carrier 7 is fixed on the back side 1 1 of the active layer sequence 1, which is achieved, for example, by means of the bonding layer 9 (which contains a binder or a solder) (please compare Fig. 5c) . Then, the growth substrate 2 is removed and a conductive contact zone is applied to the front side 1 2 of the active layer sequence 1 . Such a front side electrical contact position 6 can be applied, for example, as in the embodiment of Figs. 2a, 2b or the fourth to fourth embodiments. The present application claims the priority of the German Patent Application No. 1 0 2004 047392.7 and the priority of the entire disclosure of the entire disclosure of the disclosure of the disclosure of the disclosure of the entire disclosure of Of course, the above description of the method according to the embodiment is not a limitation of the present invention. The invention includes each novel feature and each combination of features, and in particular, each combination of features in the scope of the various patents, and the combination is not specifically shown in the scope of the claims. . •20-