TWI282028B - Optically compensating film, polarizing plate and liquid crystal display - Google Patents

Optically compensating film, polarizing plate and liquid crystal display Download PDF

Info

Publication number
TWI282028B
TWI282028B TW092105290A TW92105290A TWI282028B TW I282028 B TWI282028 B TW I282028B TW 092105290 A TW092105290 A TW 092105290A TW 92105290 A TW92105290 A TW 92105290A TW I282028 B TWI282028 B TW I282028B
Authority
TW
Taiwan
Prior art keywords
film
polymer
optical compensation
liquid crystal
polymer film
Prior art date
Application number
TW092105290A
Other languages
Chinese (zh)
Other versions
TW200305043A (en
Inventor
Taku Nakamura
Yoji Ito
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW200305043A publication Critical patent/TW200305043A/en
Application granted granted Critical
Publication of TWI282028B publication Critical patent/TWI282028B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Abstract

To provide an optically compensating film has little change of optical characteristics resulted by being used under a severe circumstance, and has excellent durability. The invention provides an optically compensating film comprising a polymer film which is obtained from a polymer having an optical elasticity of less than 10x10<-12> m<2>/N and water permeability of less than 1 g/m<2>.24 hrs measured according to a test method of JIS Z 0208 and has retardation value Re in the range of from 0 to 100 nm determined according to the following formula (I): Re=(nx-ny)xd, and retardation value Rth in the range of from 70 to 500 nm determined according to the following formula (II): Rth={(nx+ny)/2-nz}xd, and an optically anisotropic layer consisting of liquid crystalline compounds over the polymer film.

Description

1282028 &lt; 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、內容、實施方式及圖式簡單說明) 一、 發明所屬之技術領域: 本發明係關於一種重量輕而且耐久性優異的光學補償 薄膜,以及關於一種使甩它之偏光板、影像顯示裝置。 二、 先前技術: 液晶顯示裝置與C RT比較之下,其係具有較薄型態、 重量輕、低耗電量等優異的特徵,因而一直被廣泛地使用在 筆記型個人電腦、顯示螢幕、電視、P D A、行動電話、汽車 追蹤器、錄影機、照相機等。但是,於現在主流的TN模式 液晶顯示裝置中,在原理上會產生依照觀察方向而變化顯示 色彩、及對比等視角特性上之問題。爲了改良此種視角特性 ,以及實現提高顯示品質之液晶顯示裝置,於日本專利第 2587398號中記載了一種將以碟狀液晶混雜配向之光學補 償薄膜間插在偏光板及液晶晶胞之間之手段。但是,依照此 種方法,會具有因光學補償薄膜及黏著劑的原故,而使得液 晶顯示裝置本紙變厚等問題。又且,在特開平7-1 9 1 2 1 7號 公報及歐洲專利第09 1 1 656A2號說明書上乃記載了 一種藉 由使用在透明支撐體上塗設由碟狀液晶所形成的光學各向 異性層之光學補償薄膜來做爲偏光膜之單面保護膜構成的 橢圓偏光板,以使得液晶顯示裝置之厚度不變厚,並得以改 良視角。 三、 發明內容: 【發明欲解決之課題】 1282028 然而,此種光學補償薄膜使用在高溫高溼等嚴格的環境 下,會產生應力及歪斜,且於該處易於發生相位差。由於此 相位差,可理解到在液晶顯示裝置上會生成邊框狀之光漏現 象(穿透上昇),而且使得液晶顯示裝置之顯示品質下降。特 別是在1 7吋以上的大型液晶顯示裝置之情況下,要能完全 地不光漏是很困難的。此外,曾提議將前述光學補償薄膜貼 合在偏光膜上,使具有做爲偏光膜之保護膜的功能,進而做 成簡單構造的液晶顯示裝置。但是,在使光學補償薄膜貼合 具有做爲偏光膜之保護膜的功能時,除了產生上述之問題以 外,當在高溫高溼下使用時水分會穿透光學補償薄膜,也產 生因該水分而使偏光膜之光學特性進一步下降等之問題。從 而,就光學補償薄膜而言,就需要求在高溫及高溼嚴格使用 條件下亦不會使光特性下降,而且水分不透過之耐久性等。 本發明即是鑑於前述問題,乃提供一種能夠於影像顯示 裝置上使用的情況下賦予視角之改良,同時前述影像顯示裝 置即使於嚴酷的條件下使用時也能減輕光漏等顯示品質下 降之光學補償薄膜及偏光板。又且,本發明之目的係在於提 供一種在嚴酷的條件下使用時所生成的光學特性變化少,而 且耐久性優異的光學補償薄膜及偏光板。又,本發明之其他 目的係在於提供一種廣視角,且在嚴酷的條件下使用情況可 減輕因所產生的光漏致使顯示品質下降,並且耐久性優異的 影像顯不裝置。 【解決課題之手段】, 本發明人等乃檢討光漏係使光學補償薄膜之光學特性 1282028 厚度)。 (2) 如(1)所記載之光學補償薄膜,其中聚合物之比重爲 1 . 2 0以下。 (3) 如(1)或(2)所記載之光學補償薄膜,其中聚合物爲環 狀聚烯烴。 (4) 如(3)所記載之光學補償薄膜,其中聚烯烴爲使四環 十二烯類之開環聚合物、或者四環十二烯類及降萡烯 類之開環共聚物進行加氫反應所得到的聚合物。 (5) 如(1)至(4)中任一項所記載之光學補償薄膜,其中聚 合物薄膜係包括具有至少二個芳香族環之芳香族化 合物。 (6) 如(5)所記載之光學補償薄膜,其中芳香族化合物係 具有1,3,5-三吖阱環之化合物。 (7) 如(1)至(6)中任一項所記載之光學補償薄膜,其中聚 合物薄膜係含有高熱傳導性粒子,且其熱傳導率爲 1 W/(m · K)以上。 (8) 如(1)至(6)中任一項所記載之光學補償薄膜’其中在 聚合物薄膜之至少一側之表面上,係設置一含有高熱 傳導性粒子的熱傳導層,且該具有熱傳導層的聚合物 薄膜之熱傳導率爲1 W/(m · K)以上。 (9) 如(1 )至(8)中任一項所記載之光學補償薄膜’其中液 晶性化合物係爲碟狀液晶性化合物。 (1 0)如(1 )至(9)中任一項所記載之光學補償薄膜’其中聚 1282028 合物薄膜係經拉伸而成。 (1 υ —種偏光板,其係由偏光膜、及配置在其兩側上的二 片透明保護膜所構成;其中透明保護膜中之至少一片係 爲如(1)至(10)中任一項所記載之光學補償薄膜。 (1 2) —種影像顯示裝置,其係具有二片偏光板、挾持前述 二片偏光板之液晶晶胞、以及至少一片挾持前述偏光 板和前述液晶晶胞的如(1)至(10)中任一項所記載之 光學補償薄膜。 (1 3)如(1 2)中任一項所記載之影像顯示裝置,其中液晶晶 胞係爲ΤΝ模式或OCB模式之液晶晶胞。 【發明之實施態樣】 以下,詳細地說明本發明。又,在本說明書中之「至 (〜)」前後所記載的數値係表示包括個別之最小値及最大 値之範圍。 【光學補償薄膜】 本發明之光學補償薄膜係由包括聚合物薄膜與液晶 性化合物之光學各向異性層積層而成。以下,說明在本發 明之光學補償薄膜中所可能使用的各種材料及其製造方 法。 可用於前述聚合物薄膜中之聚合物,其在633毫米波 長之光彈性係數爲1 0x1 (Γ12平方公尺/牛頓以下,而且依 照J I S Ζ0 2 0 8試驗法所測定之透溼度爲1克/平方公尺· 24小時以下。使用光彈性係數及透溼度在前述範圍之聚 1282028 合物時,於高溫高溼之環境下使用的情況下,將可以減輕 所生成的光學特性之變化,而成爲耐久性優良的光學補償 薄膜。在本發明中所使用的聚合物,其光彈性係數較宜是 7x1 〇_12平方公尺/牛頓。在本發明所使用的聚合物之前述 透溼度,較宜是0.6克/平方公尺· 24小時。 又在本發明中,透溼度之測定係使用JIS Z02 08試驗 法,並且以厚度爲3 0 0微米之聚合物做爲測定對象,於溫 度40 °C及相對溼度爲90%之條件下來進行。 在本發明中所使用的聚合物,其比重較宜是在1.2以 下。使用比重在前述範圍的聚合物時,可繼續地將光學特 性維持在理想之範圍,並可以減少重量,而使得偏光板、 影像顯示裝置輕量化。 使用光彈性係數及透溼度在前述範圍之聚合物的較 佳具體實施例,舉例來說,例如其可以是丙烯酸系樹脂( 例如,聚丙烯酸甲酯)、環狀聚烯烴(例如,從J S R市售可 得之安通G、安通F、從日本芮翁市售可得的芮諾阿1020R 、1060R、1420R、1600R、芮諾克斯 480、480R、280R 、490R、E48R、E28R、RS820)等。在彼等之中,特佳 是使用一種含有如芮諾阿之環狀聚烯烴,特別是將四環十 二烯類之開環聚合物、或四環十二烯類與降萡烯類之開環 聚合物予以加氫所得到的聚合物做爲構成成分之聚合物 。意即,在特公平2-9619號及特開平9-263627號之各 公報上詳細記載之四環十二烯(又稱爲二甲醯基-1,4,5, 1282028 8 -八氫-1,2, 3,4,4a,5,8,8a -奈)類之開環聚合物、或四 環十二烯類與降萡烯類(又稱爲二環-[2 · 2 ·丨]_七嫌類 之開環聚合物予以加氫所得到的聚合物做爲構成成分之 聚合物,因爲吸溼性極佳、透明性、成形加工性、耐水性 均優’故爲特佳。在此種聚合物中之四環十二嫌構造的比 例,依照耐熱性之觀點來看,通常是5 0莫耳。/。以上,較 且是在80旲耳。/。以上’特佳是在90莫耳%以上;而聚合 物之分子量係可以在開環聚合時添加烯烴或環燃烴等而 S周卽之’ 一般來說是1〇〇〇〜50萬,較宜是1萬〜萬。 聚合物薄膜係可以利用溶液流延法、或熔融製膜法來 製作。依照薄膜之表面外觀來看,以溶液流延法較佳,然 而,依生產性及成本之觀點來看,不使用溶劑之熔融製膜 法較爲優良。在溶液流延法中,係使用一種將聚合物溶解 在有機溶劑中之溶液,來製造薄膜。溶液流延法之乾燥, 大致上可分爲於鼓(或皮帶)表面之乾燥,以及搬送薄膜時 之乾燥。於鼓(或皮帶)表面之乾燥,較宜是以不超過所使 用的溶劑之沸點的溫度(超過沸點時就會發泡)而慢慢地 乾燥。又,搬送薄膜時之乾燥,較宜是以聚合物之玻璃轉 化溫度±30 °C來進行,更宜是在±20 °C下進行。 前聚合物薄膜,爲了下述之光學各向異性層,以及同 時影像顯示裝置之光學補償,因而有需要將遲滯値調整在 預定之範圍,又且,爲了防止因熱、應力或不均所引起的 影像顯示裝置之光漏,並維持顯示品質’則較宜是將聚合 -13- 1282028 物薄膜之厚度、熱傳導率、熱膨脹率等予以最適化。 以下,說明有關在本發明中所使用的聚合物之各種特 性的較佳範圍。又且,以溶液流延法所製作的聚合物薄膜 ,如後述那樣,由於其係依照在聚合物溶液之調製中所使 用溶劑之殘留量變化,其特性也會著變化,故也將於以下 說明有關溶劑之殘留量的較佳範圍。 在本發明中,聚合物薄膜之厚度較宜是40〜100微米 〇 在本發明中,聚合物薄膜之Re遲滯値和Rth遲滯値 係分別根據下式(I )和式(Π )定義: (I ) Re = (nx-ny) x d (Π ) Rth = {(nx + ny)/2-nz} x d 式中,nx及ny係分別代表在聚合物薄膜平面內之遲相 軸方向及進相軸方向的折射率;而nz則代表在聚合物薄膜 之厚度方向的折射率;以及d代表聚合物薄膜之厚度。 在本發明中,係將Re遲滯値調整在0〜1 00奈米之範 圍;並將Rth遲滯値調整在70〜500奈米之範圍。 將二片之本發明之光學補償薄膜使用於TN模式之液 晶顯示裝置的情況’聚合物薄膜之Rth遲滯値較宜是在 70〜2 50奈米之範圍;在使用一片光學補償薄膜之情況, 聚合物薄膜之Rth遲滯値較宜是在150〜400奈米之範圍 〇 將二片本發明之光學補償薄膜使用於OCB模式之液 1282028 晶顯示裝置的情況,聚合物薄膜之Re遲滯値較宜是在 30〜50奈米,Rth遲滯値較宜是150〜200奈米;在使用一 片光學補償薄膜之情況,聚合物薄膜之Re遲滯値較宜是 50〜1 00奈米,Rth遲滯値較宜是在300〜500奈米之範圍 〇 在本發明中,爲了調整聚合物薄膜之Re遲滯値和Rth 遲滯値,則較宜是使用後述之遲滯値控制劑。可使用來做 爲遲滯値控制劑,係包括溶解在聚合物中及/或分散薄膜 中者。 在本發明之聚合物薄膜中,如上述那樣,係可以使之 含有遲滯値控制劑。前述之遲滯値控制劑,係用來將聚合 物薄膜之遲滯値調整在預定之範圍內。可做爲前述之遲滯 値控制劑,較宜是使用一種具有至少二個芳香族環之芳香 族化合物。在本說明書中所使用之「芳香族環」的意義, 係包括於添加有芳香族烴環之芳香族雜環。前述之芳香族 化合物,較宜是記載於特開2001 -1 661 44號公報上之由 碟狀化合物所形成的纖維素酯薄膜用遲滯値控制劑。又且 ,遲滯値提昇劑之分子量,較宜是3 0 0〜8 0 0。 前述遲滯値控制劑,相對於1 0 0質量份之聚合物計, 宜是使用〇.〇1〜20質量份範圍;相對於1〇〇質量份之聚 合物計,較宜是使用〇 . 〇 5〜1 5質量份範圍;更宜是使用 0.1〜1 0質量份範圍。倂用二種類以上之化合物也可以。 在本發明中所使用的聚合物薄膜之熱傳導率,較宜是 1282028 1 W/(m · K)。當熱傳導率係在上述之範圍時,則在光學補 償薄膜之面內所生成的溫度分布就可以均一化,因而光學 特性及顯示裝置之光漏就會顯著地減低。熱傳導率愈高愈 好,以後述之添加高熱傳導性粒子之方法而言,一般是在 1 0 W/(m · Κ)以下者。在本發明中,所謂聚合物薄膜之 傳導率,係爲依照以下所測定之値。也就是說,將聚合物 薄膜挾持在TO-3型加熱盒與銅板之間,予以壓縮薄膜厚 度之1 〇 %。接著,以5W之電力施加在銅製加熱盒並保持 4分鐘,測定銅製加熱盒與銅板間之溫度差。將所測定之 溫度差値,利用下式算出熱傳導率。 熱傳導率{ W/(m · K)} = {電力(W)x厚度(m)}/{溫度差(K) X測定面積(m2)} 爲了控制前述之聚合物薄膜之熱傳導率,在聚合物薄 膜中較宜是含有高熱傳導性粒子。又且,爲了控制熱傳導 率,也可以在聚合物薄膜之一側表面上,另外設置一含有 高熱傳導性粒子的熱傳導層。該含有高熱傳導性粒子的熱 傳導層,也可以是與聚合物共流延而設置,並且將含有前 述粒子的塗布液塗布在聚合物薄膜而設置也可以。可以使 用的高熱傳導性粒子,舉例來說,例如其可以是氮化鋁、 氮化矽、氮化硼、氮化鎂、碳化矽、氧化鋁、氧化矽、氧 化鋅、氧化鎂、碳、金剛石、以及金屬等。爲爲不損及薄 膜之透明性,較宜是使用透明的粒子。高熱傳導性粒子之 平均粒徑較宜是在〇.〇5〜80微米之範圍,更宜是在〇.1〜1〇 -16 - 1282028 寬度方向之方法,例如於特開62-1 1 5035號、特開平 4-1 52 1 25號、特開平4-28421 1號、特開平4-2983 1 0號 、特開平11-48271號等各公報上所記載者。拉伸是在常 溫或加熱條件下實施。加熱溫度較宜是在薄膜之玻璃轉化 溫度以下。 在以溶液流延來製做聚合物薄膜之情況,也可以在製 膜後於乾燥步驟中進行拉伸。特別是在殘存溶劑之情況也 是有效的。於長軸方向拉伸之情況下,例如,可調節薄膜 搬送輥之速度,並且依照薄膜剝離速度、亦或依照捲曲速 度等方面而加速、連續地拉伸。在拉伸寬度方向的情況, 邊保持薄膜之巾於拉幅機上並邊搬送,然後可以使拉幅機 上之巾慢慢地變大而拉伸。也可以在乾燥薄膜之後,使用 拉伸機予以拉伸(較宜是使用長拉伸機予以單軸拉伸)。薄 膜之拉伸倍率(相對於原來長度之因拉伸所增加分量之比 率)較宜是5〜50%,更宜是1 0〜40%,最好是1 5〜35%。 從流延到乾燥之步驟,也可以是在空氣周圍環境下進 行,並且也可以是在氮氣氣體等之鈍性氣體周圍環境下進 行。 在本發明中所使用的聚合物薄膜,可以於製造之後’ 保存在捲曲之狀態並搬送。所使用的捲曲機,可以使用一 般所使用之物來進行捲曲,並以定張力法、定力矩法、帶 式拉伸法、定內應力之程式拉伸控制法等捲曲方法來進行 捲曲。 1282028 在本發明中所使用的聚合物薄膜,爲了設置後述之含 有液晶性化合物之光學各向異性層,較宜是實施表面處理 。具體的方法,舉例來說,例如電暈放電處理、輝光放電 處理、火炎處理、酸處理、鹼性處理或紫外線照射處理。 又,依照特開平7-333433號公報上之記載,較宜是設置 底塗層。 依照保持薄膜之平面性的觀點來看,此種表面處理之 溫度宜是在聚合物薄膜之Tg (玻璃轉化溫度)以下,具體而 言,較宜是在170 °C以下。 在本發明中所使用的聚合物薄膜之表面能,較宜是在5 5 毫牛頓/公尺以上,更佳爲60毫牛頓/米至75毫牛頓/米。固 體之表面能係可藉於「潤溼之基礎應用」(理解出版公司, 1 9 8 9年1 2月1 0日發行)所敘述之接觸角法、濕熱法或吸附 法來測量。在本發明之聚合物薄膜的情況下,以使用接觸角 法較佳。具體來說,係將2種已知表面能之溶液滴在纖維素 乙酸酯膜上,以按照液滴之表面與薄膜表面之交點,引拉接 於液滴之切線與膜表面間所形成的角,將包含液滴方向之角 度定義爲接觸角,再藉以計算膜之表面能。 本發明之光學補償薄膜,雖然是在所製做的聚合物薄 膜上積層一由液晶性化合物所形成的光學各向異性層,然 而進行表面處理之聚合物薄膜時,於設置在其上之光學各 向異性層間,較宜是設置配向膜。配向膜係可以使得所使 用的液晶性化合物配置成一定方向之配向。從而,在製造 -20- 1282028 本發明之光學補償薄膜中’配向膜雖然是必需的,然而在 將液晶性化合物予以配向後,若將之固定在配向狀態的話 ,則沒有配向膜也可以。也就是說’配向膜並不是光學補 償薄膜的必要構成要素;又,可以僅將配向狀態爲固定的 配向膜上之光學各向異性層,予以轉印在聚合物薄膜上來 製造光學補償薄膜。 配向膜係一種具有規定液晶性化合物之配向方向的 功能。配向膜是可以藉有機化合物(較佳爲聚合物)之摩擦 處理、無機化合物之斜方處理、形成具有微溝紋之層,或 者利用蘭格密阿•伯洛迪特法(LB膜)所累積有機化合物( 例如,ω -二十三酸、雙十八基甲基氯化銨、十八酸甲酯) 等手段來設置。在本發明中,配向膜較宜是藉由聚合物之 摩檫處理來形成。 配向膜較宜是聚乙烯醇衍生物。特佳者爲在其中結合 有疏水性基之改性聚乙烯醇。配向膜雖然是可以由一種之 聚合物來形成,然而也可以是藉由摩擦處理經交聯的二種 類聚合物所形成的層來形成。至少一種類的聚合物,乃是 可自我父聯之聚合物,或者藉由交聯而交聯的聚合物,較 宜是使用其中之任一者。配向膜係可將具有官能基之聚合 物或將官能基導入聚合物中,藉由光、熱、ph|等變化而 在聚合物間形成反應;或者是使用反應活性高的交聯劑並 將由父聯劑而來的鍵導入聚合物間,藉著聚合物間之交聯 作用製作而得。 1282028 配向膜之交聯反應,係藉由將含有上述之聚合物或含 有聚合物與交聯劑之混合物的配向膜塗布液,塗布於聚合 物薄膜上,然後依照期望之加熱等來實施。爲了在最終商 品階段能確保其耐久性爲優良之原故,將配向膜塗設於透 明支撐體上之後到得到最終光學補償片爲止之任一階段 中來進行交聯處理也可以。當考慮具有形成於配向膜上之 圓盤狀構造之化合物(光學各向異性層)之配向性時,也 可以在將具有圓盤狀構造之化合物予以配向之後,再充分 地進行交聯反應。配向膜之交聯反應,一般係將配向膜塗 布液塗布於聚合物薄膜上,並進行加熱乾燥。較宜是將此 種塗布液之加熱溫度設定低點,然後於形成光學各向異性 層之際,在加熱處理之階段中使配向膜進行充分之交聯。 配向膜較宜是如日本專利第2587398號公報上所記載之 物。 配向膜之厚度較佳爲0.1至1 0微米。加熱乾燥係可 以2 0至1 1 0 °C之加熱溫度來進行。爲了充分形成交聯, 溫度較佳爲6 0至1 0 0 °C,更佳爲8 0至1 0 0 °C。乾燥時間 可以1分鐘至3 6小時來進行,較佳爲5分鐘至3 0分鐘 。亦且,P Η較佳爲依照所使用之交聯劑而設定於最適値 。在使用戊二醛做爲交聯劑之情形下,則ρ Η較佳爲4.5 至5.5,特佳爲5。 摩擦處理係可以利用在L C D液晶之配向處理工程中 所廣爲採用之處理方法來進行。也就是說,配向膜之表面 -22- 1282028 ,係可以藉由使用紙、布、氈毛、橡膠或耐綸、聚酯纖維 等在一定方向上摩擦而予以配向。一般而言,其也可以藉 由使用長度與粗細均一之纖維均勻植毛而成之布等摩擦 數次來實施。 在本發明中,由液晶性化合物形成的光學各向異性層 ’較宜是形成在設置於聚合物薄膜上之配向膜上。 就用於光學各向異性層上之液晶性化合物而言,係包 括棒狀液晶性化合物及圓盤狀液晶性化合物,其可以是高 分子液晶,也可以是低分子液晶,更且,低分子液晶也包 括不顯示經交聯的液晶性。在彼等之中,理想上係爲圓盤 狀液晶性化合物。 光學各向異性層是將含有液晶性化合物及視情況需 要之單聚物、聚合起始劑、界面活性劑等的塗布液塗布、 配向在配向膜上製作而成。光學各向異性層的厚度較佳爲 0.1至20微米、更佳爲0.5至15微米、最佳爲1至10 微米。 本發明之光學各向異性層,理想上適合使用曰本專利 第2 587 3 98號公報上所記載之光學各向異性層。 在前述光學各向異性層中,較佳是使用圓盤狀液晶性化 合物。圓盤狀化合物係包括碟狀液晶。光學各向異性層係爲 將含有圓盤狀液晶性化合物、及後述之聚合起始劑及任意的 添加劑(例如,可塑劑、單聚物、界面活性劑、纖維素酯、 1,3,5 -三吖畊化合物、螫合劑)的液晶化合物(塗布液)’予以 -23- 1282028 塗布在配向膜之上,藉由將圓盤動液晶性化合物予以配向製 作而得。 可做爲圓盤狀(碟狀)液晶性化合物之實例,其係包括 C. De st rade等人之硏究報告,於Mol. Cry st.第71卷, 第111頁(1981年)所記載之苯衍生物;C.Destrade等人 之硏究報告,於Mol. Cryst.第122卷,第141頁(1985 年),Physics lett,A,第78卷,第82頁(1990)所記載之 三聚茚(truxene)衍生物;B· Kohne等人之硏究報告,於 八寧〜.(^巾.第96卷,第70頁(19 84年)所記載之環己 烷衍生物;及J· M. Lehn等人之硏究報告,於J. Chem. Commun.第1794頁(1985年),與J. Zhang等人之硏究 報告,於 J_ Am_ Chem. Soc.第 116 卷,第 2655 頁(1994 年)所記載之氮冠型或苯基乙炔型巨環化合物。更且,圓 盤狀液晶性化合物,一般而言,其係具有一種以此等做爲 分子中心之母核,並以直鏈之烷基、烷氧基、以取代苯甲 醯基爲其直鏈再以放射狀地取代之結構,而顯示出液晶性 。但是,分子本身係具有負的單軸性,而且賦予預定配向 之物並沒有特別地限定爲上述所記載之物而己。 又且,在本發明中,從碟狀化合物形成光學各向異性 層時,並不需要始終是上述化合物;例如,前述具有熱或 光反應性基之低分子量碟狀液晶化合物,最終將因熱或光 等之反應而聚合或交聯劑,並形成失去液晶性之高分子量 化物質。爲利用將圓盤狀液晶性化合物予以聚合而固定, -24- 1282028 則圓盤狀液晶性化合物之圓盤狀之中心上,就有需要結合 一聚合性基以做爲取代基。但是圓盤狀之中心與聚合性基 間’較宜是導入伸長物(連結基)。圓盤狀液晶性化合物之 較佳實例’係如於日本專利特開平第8 - 5 〇 2 〇 6公報中所記 載者;又關於圓盤狀液晶性化合物之聚合,係記載於特開 8-27284號公報中。 在本發明中’圓盤狀液晶性化合物之圓盤面與聚合物 薄膜面間之角度(傾斜角),係會隨著光學各向異性層之 深度方向而不同。也就是說,傾斜角係隨著自光學各向異 性層底部起之距離增加而變化;此種變化舉例來說,例如 有連續增加、連續減小、斷續增加、斷續減小、含連續增 加與減小之變化、及包括增加或減小之斷續變化。斷續變 化係包括傾斜角在層厚度方向路線不改變之區域。傾斜角 ’係包括傾斜角不變化之區域,較佳爲在層中全部增加或 減小。傾斜角更佳爲在層中完全增加.,而且特佳爲連續地 變化。 配向膜側之圓盤狀單位之傾斜角,一般係可以藉由選 擇圓盤狀液晶性化合物或配向膜之材料,或者藉由選擇摩 擦處理方法來調整。又且,在表面側(空氣側)上圓盤狀 單位之傾斜角,一般來說,通常可藉由選擇圓盤狀液晶性 化合物或與圓盤狀液晶性化合物一起使用之其他化合物 而予以調整。可與圓盤狀液晶性化合物同時使用之化合物 的例子,舉例來說,例如是塑化劑、表面活化劑、可聚合 -25- 1282028 單聚物與聚合物。更且,傾斜角之變化程度亦可藉由以上 之選擇而予以調整。 前述光學各向異性層也可以含有圓盤狀液晶性化合 物以外的其他添加劑。可與上述圓盤狀液晶性化合物同時 使用之塑化劑、表面活化劑及可聚合單聚物者,只要是與 碟狀化合物具有相溶性,並能賦予碟狀化合物變化之傾斜 角,或者不妨害配向者即可,任何此種化合物均可以使用 。此等之中,以可聚合單聚物(例如,具有乙烯基、乙烯 氧基、丙烯醯基、或甲基丙烯醯基之化合物)較佳。上述 化合物之添加量,相對於圓盤狀液晶性化合物計,一般是 1至50重量%,更宜是5至30重量%。此外,當與反應 性官能基之數量爲4個以上之單聚物混合使用時,將可以 提高配向膜和光學各向異性層間之密著性。 與圓盤狀液晶性化合物同時使用的聚合物只要是與 圓盤狀液晶性化合物具有相溶性、並能賦予圓盤狀液晶性 化合物變化之傾斜角即可,任何像這樣的聚合物均可以使 用。聚合物的範例,舉例來說,例如可以是纖維素酯。纖 維素酯,例如其可以是纖維素乙酸酯、纖維素乙酸酯丙酸 酯、羥丙基纖維素或纖維素乙酸酯丁酸酯。爲了不妨害圓 盤狀液晶性化合物之配向,上述聚合物之添加量相對於圓 盤狀液晶性化合物計,一般較佳爲〇 . 1至1 〇質量°/。,更 佳爲0.1至8質量%,最佳爲0.1至5質量%。 在本發明中,光學各向異性層,一般來說,通常係將 -26- 1282028 圓盤狀液晶性化合物與其他的化合物溶於溶劑中所形成 之溶液塗覆於配向層上,並予以乾燥,接著再加熱至碟狀 向列相之形成溫度爲止,然後保持在配向狀態(碟狀向列 相)使之冷卻而製得。或者,上述光學各向異性層係藉由 將圓盤狀液晶性化合物與其他的化合物(例如,可聚合單 聚物、光聚合引發劑)溶於溶劑中形成之溶液塗覆於配向 層上,使之乾燥,再加熱(例如,藉UV光輻射)至碟狀 向列相之形成溫度後再使之聚合,進一步#卻而製得。 在本發明中所使用的圓盤狀液晶性化合物之碟狀向 列相一固相轉移溫度,較佳爲7 0至3 0 0 °c,特別是7 0至 1 70°C ° 在本發明中,經配向的液晶性化合物,較宜是維恃固 定。固定化則較宜是藉聚合反應來實施。聚合反應係包括 使用熱聚合起始劑之熱聚合反應,以及使用光聚合起始劑 之光聚合反應;然而以光聚合反應較佳。光聚合起始劑之 實例,係包括α -羰基化合物(美國專利第2367661號、美 國專利第2 3 6 7 6 7 0號各說明書之記載)、偶因醚(美國專利 第2 448 828號說明書之記載)、α -羥取代芳香族偶因化合 物(美國專利第272251 2號說明書之記載)、多核醌化合物 (美國專利第3046127號、美國專利第2951758號各說明 書之記載)、三芳基咪唑二聚物與Ρ-胺基苯酮之組合(美國 專利第3549367號說明書之記載)、吖啶及啡阱化合物( 特開昭第60-105667號、美國專利第4239850號各說明 -27- 1282028 書之記載)、以及噚二唑化合物(美國專利第4 2 1 2 9 7 0號說 明書之記載)等等。 光聚合起始劑之使用量,較宜是塗布液中固體分之 0.01〜20質量份,更宜是0.5〜5質量份。 使液晶性化合物聚合之光照射較佳爲使用紫外光。 照射能較宜是2 0毫焦耳/平方公分〜5 0焦耳/平方公 分,更宜是20〜5000毫焦耳/平方公分,最宜是1〇〇〜8〇〇 毫焦耳/平方公分。又且,爲了促進光聚合反應,也可以 在加熱條件下實施光照射。 如以上之做法,藉由將光學各向異性層設於聚合物薄 膜上,將可以製做成本發明之光學補償薄膜。也可以在光 學各向異性層上方設置保護層。本發明之光學補償薄膜係 可以使用來做爲偏光板之組件、及影像顯示裝置之組件。 特別是使用於液晶顯示裝置時,將有助於改善視角。更且 在影像顯示裝置使用於嚴酷條件下(外力負荷、高溫度、 高溼度)的情況,將有助於減輕起因於光漏之顯示品質下 降。更且,在使用於偏光板及影像顯示裝置的情形,將有 助於彼等之薄化及輕量化。特別是,本發明之光學補償薄 膜,單獨地或以和偏光膜貼合而做爲偏光板之形態而用於 影像顯示裝置,特別是穿透型液晶顯示裝置。 以下,就適用於偏光板及影像顯示裝置上之本發明之 光學補償薄膜的實施形態分別予以說明。 【偏光板】 -28- 1282028 本發明之偏光板的實施形態之一,係一種由偏光膜及 在其兩側上配置二片透明保護薄膜所構成之偏光板;且係 一種具有該透明保護薄膜中之至少一者爲本發明之光學 補償薄膜的偏光板。僅有一方之保護膜使用本發明之光學 補償薄膜也可以,又使用本發明之光學補償薄膜來做爲雙 方之保護膜也可以。在做成有一方的保護膜的態樣,另一 方之保護膜係可以使用一般的纖維素乙酸酯薄膜。 可做爲本發明之偏光膜者,其係可以使用碘系偏光薄膜 、使用雙色性染料之染料系偏光薄膜、及聚烯系偏光薄膜中 之任一者。碘系偏光薄膜及染料系偏光薄膜,通常是使用聚 乙烯醇膜製造而得。 又,就偏光板之耐久性而言,保護膜之耐久性(耐溫 溼熱性)係重要的。也就是說,因影像顯示裝置之使用條 件(高溼下),使得水分進入偏光膜中時就會使偏光能力下 降。可做爲本發明之光學補償薄膜的聚合物薄膜,較宜是 使用一種透溼度在預定範圍的聚合物所形成的聚合物薄 膜。構成本發明光學補償薄膜的聚合物薄膜,係由四環十 二烯類之開環聚合物、或四環十二烯類與降萡烯類之開環 聚合物予以加氫所得到的聚合物構成時,透溼性就會顯著 地降低,因而成爲偏光板之較佳的保護膜。 【影像顯示裝置】 本發明之影像顯示裝置的實施形態之一,係一種由二 片偏光板、挾持前述二片偏光板之液晶晶胞、及至少一片 -29- 1282028 挾持前述偏光板和前述液晶晶胞的本發明之光學補償薄 膜之影像顯示裝置,較宜是液晶顯示裝置,更宜是穿透型 液晶顯示裝置。前述之偏光板係由偏光膜及在其兩側上配 置二片透明保護薄膜所構成之偏光板。本發明之光學補償 薄膜,係可以一片配置在液晶晶胞及一方之偏光板之間, 或者是以二片配置在液晶晶胞及雙方之偏光板之間也可 以。前述之液晶晶胞係在二片電極基板間擔持有液晶。 本發明之光學補償薄膜係可以和各種模式之液晶一 起組合來使用;例如,可以和τ N模式、〇C B模式組合來 使用。 四、實施方式 【實施例】 列舉以下之實施例藉以進一步說明本發明。在以下實施 例中所示之材料、試葯、比例、操作等,在不脫離本發明之 精神範圍內,係可以有限度適當地變更。然而,本發明之範 圍並不僅限於以下所示之具體實施例而已。 【實施例1】 (聚合物薄膜之製作) 將由100質量份之「芮諾阿1 020R」(日本芮翁製)、及 2 0 〇質量份之二氯甲烷所構成的組成物投入混合槽中,邊加 熱邊攪拌而調製成聚合物溶液。另外的混合槽中,則投入由 1 6質量份之以下式所代表之遲滯値控制劑、及1 〇〇質量份 之二氯甲烷所構成的組成物,邊加熱邊攪拌而調製成遲滯値 -30- 1282028 控制溶液。將474質量份之此種聚合物溶液對63質量份之 遲滯値控制劑予以混合,並充分地攪拌而調製成塗布液。相 對於1 〇 〇質量份之聚合物計,遲滯値控制劑之添加量係爲 5.5質量份。 遲滯値提昇劑1282028 &lt; 玖 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明An excellent optical compensation film, and a polarizing plate and an image display device for making it. Second, the prior art: Compared with C RT, the liquid crystal display device has the characteristics of thin profile, light weight, low power consumption, etc., and thus has been widely used in notebook personal computers, display screens, TV, PDA, mobile phone, car tracker, video recorder, camera, etc. However, in the current mainstream TN mode liquid crystal display device, in principle, problems such as display color change and contrast angle characteristics in accordance with the observation direction are generated. In order to improve such viewing angle characteristics and to realize a liquid crystal display device having improved display quality, Japanese Patent No. 2587398 discloses interpolating an optical compensation film in which a disc-like liquid crystal hybrid is interposed between a polarizing plate and a liquid crystal cell. means. However, according to this method, there is a problem that the paper of the liquid crystal display device becomes thick due to the optical compensation film and the adhesive. Further, in the specification of Japanese Patent Publication No. 7-1 9 1 2 1 7 and European Patent No. 09 1 1 656A2, an optical orientation formed by using a disk-shaped liquid crystal on a transparent support is described. The optical compensation film of the opposite layer is used as an elliptically polarizing plate composed of a single-sided protective film of a polarizing film, so that the thickness of the liquid crystal display device is not thick, and the viewing angle is improved. III. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] 1282028 However, such an optical compensation film is used in a strict environment such as high temperature and high humidity, and stress and skew are generated, and a phase difference is apt to occur there. Due to this phase difference, it is understood that a frame-like light leakage phenomenon (penetration rise) is generated on the liquid crystal display device, and the display quality of the liquid crystal display device is lowered. In particular, in the case of a large liquid crystal display device of more than 17 inches, it is difficult to completely leak out. Further, it has been proposed to bond the optical compensation film to a polarizing film to have a function as a protective film for a polarizing film, thereby making a liquid crystal display device of a simple structure. However, when the optical compensation film is bonded to have a function as a protective film of a polarizing film, in addition to the above-mentioned problems, when it is used under high temperature and high humidity, moisture penetrates the optical compensation film, and moisture is also generated due to the moisture. There is a problem that the optical characteristics of the polarizing film are further lowered. Therefore, in the case of the optical compensation film, it is required to have no deterioration in light characteristics under high-temperature and high-humidity strict use conditions, and durability against moisture permeation. The present invention has been made in view of the above problems, and provides an improvement in viewing angle when the image display device can be used in an image display device, and the optical display device can reduce the deterioration of display quality such as light leakage even when used under severe conditions. Compensation film and polarizing plate. Further, an object of the present invention is to provide an optical compensation film and a polarizing plate which are less resistant to changes in optical characteristics when used under severe conditions and which are excellent in durability. Further, another object of the present invention is to provide an image display device which is capable of reducing the display quality due to light leakage caused by a wide viewing angle and which is used under severe conditions, and which is excellent in durability. [Means for Solving the Problem] The inventors of the present invention reviewed the light leakage system to make the optical characteristics of the optical compensation film 1282028). (2) The optical compensation film according to (1), wherein the specific gravity of the polymer is 1.  2 0 or less. (3) The optical compensation film according to (1) or (2), wherein the polymer is a cyclic polyolefin. (4) The optical compensation film according to (3), wherein the polyolefin is a ring-opening polymer of tetracyclododecene or a ring-opening copolymer of tetracyclododecene and norbornene. The polymer obtained by hydrogen reaction. (5) The optical compensation film according to any one of (1) to (4) wherein the polymer film comprises an aromatic compound having at least two aromatic rings. (6) The optical compensation film according to (5), wherein the aromatic compound is a compound having a 1,3,5-trioxane trap ring. (7) The optical compensation film according to any one of (1) to (6) wherein the polymer film contains high thermal conductivity particles and has a thermal conductivity of 1 W/(m·K) or more. (8) The optical compensation film of any one of (1) to (6) wherein a surface of at least one side of the polymer film is provided with a heat conduction layer containing highly thermally conductive particles, and the The thermal conductivity of the polymer film of the heat conductive layer is 1 W/(m · K) or more. (9) The optical compensation film according to any one of (1) to (8) wherein the liquid crystalline compound is a discotic liquid crystalline compound. (10) The optical compensation film as described in any one of (1) to (9) wherein the poly 1282028 film is stretched. (1) A polarizing plate comprising a polarizing film and two transparent protective films disposed on both sides thereof; wherein at least one of the transparent protective films is as in (1) to (10) An optical compensation film according to the invention. (1) An image display device comprising two polarizing plates, a liquid crystal cell holding the two polarizing plates, and at least one of the polarizing plates and the liquid crystal cell The optical display film according to any one of (1), wherein the liquid crystal cell is in a ΤΝ mode or an OCB. MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. Further, the numbers described before and after "to (~)" in the present specification mean that the minimum and maximum 个别 are included. [Optical Compensation Film] The optical compensation film of the present invention is formed by laminating an optically anisotropic layer comprising a polymer film and a liquid crystalline compound. Hereinafter, various types of optical compensation films which can be used in the optical compensation film of the present invention will be described. Material and its Manufacturing method. The polymer which can be used in the above polymer film has a photoelastic coefficient at a wavelength of 633 mm of 10 0 1 (Γ 12 m ^ 2 /newton or less, and the moisture permeability measured according to the JIS Ζ 0 2 0 8 test method is 1 g / m ^ 2 · 24 hours or less. When the photo-elastic coefficient and the moisture permeability are in the above range of poly 1282028, when used in a high-temperature and high-humidity environment, the change in the optical characteristics generated can be alleviated. It is an optical compensation film excellent in durability. The polymer used in the present invention preferably has a photoelastic coefficient of 7 x 1 〇 12 square meters / Newton. The aforementioned moisture permeability of the polymer used in the present invention. , preferably 0. 6 g / m ^ 2 · 24 hours. Further, in the present invention, the moisture permeability is measured by using the JIS Z02 08 test method, and a polymer having a thickness of 300 μm is used as a measurement object, and the temperature is 40 ° C and the relative humidity is 90%. The polymer used in the present invention preferably has a specific gravity of 1. 2 below. When a polymer having a specific gravity in the above range is used, the optical characteristics can be continuously maintained in a desired range, and the weight can be reduced, and the polarizing plate and the image display device can be made lighter. A preferred embodiment of the polymer having a photoelastic coefficient and a moisture permeability in the foregoing range, for example, it may be an acrylic resin (for example, polymethyl acrylate) or a cyclic polyolefin (for example, from JSR City) Available for sale of Antong G, Antong F, and available from Japan's Oulong, 1020R, 1060R, 1420R, 1600R, Knox 480, 480R, 280R, 490R, E48R, E28R, RS820) Wait. Among them, it is particularly preferred to use a cyclic polyolefin such as quinolone, particularly a ring-opening polymer of tetracyclododecene, or a tetracyclododecene and a decene. The polymer obtained by hydrogenating the ring-opening polymer is used as a constituent polymer. That is, tetracyclododecene (also known as dimethyl hydrazin-1, 4, 5, 1282028 8 - octahydrogen) is described in detail in each of the publications of Japanese Patent Publication No. Hei 2-9619 and No. 9-263627. 1,2, 3,4,4a,5,8,8a-nai-type ring-opening polymers, or tetracyclododecenes and norbornenes (also known as bicyclo-[2 · 2 ·丨) The polymer obtained by hydrogenating the ring-opening polymer of the seven types is a polymer which is a constituent component, and is excellent in moisture absorption, transparency, moldability, and water resistance. The proportion of the tetracyclic and twelfth structures in such a polymer is usually 50 mol% from the viewpoint of heat resistance, and is more than 80 Å. At 90 mol% or more, the molecular weight of the polymer may be added to the olefin or the ring-burning hydrocarbon during the ring-opening polymerization, and the amount of the sulphur is generally from 1 〇〇〇 to 500,000, preferably from 10,000 to 10,000. The polymer film can be produced by a solution casting method or a melt film forming method. According to the surface appearance of the film, the solution casting method is preferable, however, depending on the productivity and the cost. In view of the above, the melt film formation method without using a solvent is excellent. In the solution casting method, a solution in which a polymer is dissolved in an organic solvent is used to produce a film. The solution casting method is dried, substantially It can be divided into the drying of the surface of the drum (or belt) and the drying of the film. The drying on the surface of the drum (or belt) is preferably at a temperature not exceeding the boiling point of the solvent used (when the boiling point is exceeded) It is slowly dried by foaming. Further, the drying of the film is preferably carried out at a glass transition temperature of the polymer of ± 30 ° C, more preferably at ± 20 ° C. The front polymer film, For the optically anisotropic layer described below, and the optical compensation of the simultaneous image display device, it is necessary to adjust the hysteresis 在 to a predetermined range, and to prevent image display devices caused by heat, stress or unevenness. It is preferable to optimize the thickness, thermal conductivity, thermal expansion coefficient, etc. of the film of the polymerization-13-1282028. It is explained below that the polyg which is used in the present invention is described. A preferred range of the various properties of the material. Further, the polymer film produced by the solution casting method has a characteristic which is changed in accordance with the residual amount of the solvent used in the preparation of the polymer solution, as will be described later. In the present invention, the thickness of the polymer film is preferably 40 to 100 μm. In the present invention, the retardation of the polymer film is delayed. And the Rth hysteresis system are defined according to the following formula (I) and formula (Π): (I) Re = (nx-ny) xd (Π) Rth = {(nx + ny)/2-nz} xd where Nx and ny represent the refractive index in the direction of the slow axis and the direction of the phase axis in the plane of the polymer film, respectively; and nz represents the refractive index in the thickness direction of the polymer film; and d represents the thickness of the polymer film. In the present invention, the Re hysteresis is adjusted to a range of 0 to 100 nm; and the Rth hysteresis is adjusted to a range of 70 to 500 nm. When two optical compensation films of the present invention are used in a TN mode liquid crystal display device, the Rth hysteresis of the polymer film is preferably in the range of 70 to 2 50 nm; in the case of using an optical compensation film, The Rth retardation of the polymer film is preferably in the range of 150 to 400 nm. When the optical compensation film of the present invention is used in the OCB mode liquid 1282028 crystal display device, the Re retardation of the polymer film is preferably It is 30~50nm, Rth hysteresis is preferably 150~200nm; in the case of using an optical compensation film, the Re retardation of polymer film is preferably 50~100nm, Rth hysteresis It is preferably in the range of 300 to 500 nm. In the present invention, in order to adjust the Re hysteresis and the Rth hysteresis of the polymer film, it is preferred to use a hysteresis controlling agent described later. It can be used as a hysteresis control agent, including those dissolved in a polymer and/or dispersed film. In the polymer film of the present invention, as described above, a hysteresis control agent can be contained. The aforementioned hysteresis control agent is used to adjust the hysteresis of the polymer film within a predetermined range. It can be used as the aforementioned hysteresis control agent, and it is preferred to use an aromatic compound having at least two aromatic rings. The meaning of the "aromatic ring" used in the present specification is included in the aromatic heterocyclic ring to which an aromatic hydrocarbon ring is added. The above-mentioned aromatic compound is preferably a hysteresis oxime controlling agent for a cellulose ester film formed from a discotic compound described in JP-A-2001-661. Moreover, the molecular weight of the retardation 値 lifter is preferably from 30,000 to 850. The aforementioned retardation enthalpy controlling agent is preferably used in comparison with 100 parts by mass of the polymer. 〇 1 to 20 parts by mass; relative to 1 part by mass of the polymer, it is preferred to use hydrazine.  〇 5 to 1 5 parts by mass; more preferably 0. 1 to 10 parts by mass range. It is also possible to use two or more kinds of compounds. The thermal conductivity of the polymer film used in the present invention is preferably 1282028 1 W/(m · K). When the thermal conductivity is within the above range, the temperature distribution generated in the plane of the optical compensation film can be made uniform, and the optical characteristics and the light leakage of the display device are remarkably reduced. The higher the thermal conductivity, the better, and the method of adding highly thermally conductive particles to be described later is generally 10 W/(m · Κ) or less. In the present invention, the conductivity of the polymer film is measured in accordance with the following. That is, the polymer film is held between the TO-3 type heating box and the copper plate to compress the film thickness by 1%. Next, it was applied to a copper heating box with a power of 5 W for 4 minutes, and the temperature difference between the copper heating box and the copper plate was measured. The measured temperature difference 値 was used to calculate the thermal conductivity by the following formula. Thermal conductivity { W / (m · K)} = {electricity (W) x thickness (m)} / {temperature difference (K) X measurement area (m2)} In order to control the thermal conductivity of the aforementioned polymer film, in polymerization Preferably, the film contains highly thermally conductive particles. Further, in order to control the thermal conductivity, a heat conducting layer containing highly thermally conductive particles may be additionally provided on one side surface of the polymer film. The heat conductive layer containing the highly thermally conductive particles may be provided by co-casting with the polymer, and the coating liquid containing the particles may be applied to the polymer film. Highly thermally conductive particles that can be used, for example, can be aluminum nitride, tantalum nitride, boron nitride, magnesium nitride, tantalum carbide, aluminum oxide, tantalum oxide, zinc oxide, magnesium oxide, carbon, diamond. And metal, etc. In order not to impair the transparency of the film, it is preferred to use transparent particles. The average particle size of highly thermally conductive particles is preferably in 〇. 〇5~80 microns range, more suitable is 〇. 1~1〇-16 - 1282028 Width direction method, for example, special opening 62-1 1 5035, special opening 4-1 52 1 25, special opening 4-28421 1 , special opening 4-2983 1 0 Japanese Patent Publication No. 11-48271 and other publications. The stretching is carried out at normal temperature or under heating. The heating temperature is preferably below the glass transition temperature of the film. In the case where a polymer film is formed by solution casting, stretching may be carried out in a drying step after film formation. Especially in the case of residual solvent, it is also effective. In the case of stretching in the longitudinal direction, for example, the speed of the film transport roller can be adjusted, and the film can be accelerated and continuously stretched in accordance with the film peeling speed or in accordance with the crimping speed. In the case of the stretching width direction, while holding the film towel on the tenter and transporting it, the towel on the tenter can be gradually enlarged and stretched. It is also possible to use a stretching machine to stretch after drying the film (preferably, uniaxial stretching using a long stretching machine). The stretching ratio of the film (ratio of the component of the original length due to the stretching) is preferably from 5 to 50%, more preferably from 10 to 40%, most preferably from 1 5 to 35%. The step from casting to drying may be carried out under the environment of air, or may be carried out under the environment of a passive gas such as nitrogen gas. The polymer film used in the present invention can be stored in a state of being curled and conveyed after being manufactured. The crimping machine to be used can be crimped by using a generally used object, and crimped by a crimping method such as a constant tension method, a fixed moment method, a belt stretching method, or a constant tensile stress control method. 1282028 The polymer film used in the present invention is preferably subjected to a surface treatment in order to provide an optically anisotropic layer containing a liquid crystal compound to be described later. The specific method is, for example, a corona discharge treatment, a glow discharge treatment, a flame treatment, an acid treatment, an alkaline treatment or an ultraviolet irradiation treatment. Further, it is preferable to provide an undercoat layer as described in Japanese Laid-Open Patent Publication No. Hei 7-333433. The surface treatment temperature is preferably not less than the Tg (glass transition temperature) of the polymer film, and particularly preferably 170 ° C or less, from the viewpoint of maintaining the planarity of the film. The surface energy of the polymer film used in the present invention is preferably at 5 5 mN/m or more, more preferably 60 mN/m to 75 mN/m. The surface energy of the solid can be measured by the contact angle method, the damp heat method or the adsorption method described in "Basic Application of Wetting" (Understanding Publishing Company, issued on January 10, 1989). In the case of the polymer film of the present invention, it is preferred to use a contact angle method. Specifically, two kinds of solutions of known surface energy are dropped on the cellulose acetate film to form a joint between the tangent of the droplet and the surface of the film according to the intersection of the surface of the droplet and the surface of the film. The angle of the droplet, which is defined as the contact angle, is used to calculate the surface energy of the film. The optical compensation film of the present invention is formed by laminating an optically anisotropic layer formed of a liquid crystalline compound on the prepared polymer film, but when the surface-treated polymer film is laminated, the optical film is disposed thereon. Preferably, an anisotropic film is provided between the anisotropic layers. The alignment film system allows the liquid crystal compound to be used to be aligned in a certain direction. Therefore, in the optical compensation film of the present invention, in the production of -20-1282028, the alignment film is necessary. However, if the liquid crystal compound is aligned, if it is fixed in the alignment state, the alignment film may not be provided. That is to say, the 'alignment film is not an essential component of the optical compensation film; and the optically anisotropic layer on the alignment film having the fixed alignment state can be transferred onto the polymer film to produce an optical compensation film. The alignment film is a function of defining an alignment direction of a liquid crystal compound. The alignment film can be treated by rubbing treatment with an organic compound (preferably a polymer), orthorhombic treatment of an inorganic compound, forming a layer having micro-grooves, or using a Lange Mi's Bloide method (LB film). Cumulative organic compounds (for example, ω-trisuccinic acid, dioctadecylmethylammonium chloride, methyl octadecanoate) are provided. In the present invention, the alignment film is preferably formed by a rubbing treatment of a polymer. The alignment film is preferably a polyvinyl alcohol derivative. Particularly preferred are modified polyvinyl alcohols having a hydrophobic group incorporated therein. Although the alignment film may be formed of one type of polymer, it may be formed by rubbing a layer formed of two types of crosslinked polymers. The at least one type of polymer is a self-parenting polymer or a polymer crosslinked by crosslinking, and it is preferred to use either of them. The alignment film system may introduce a functional group-containing polymer or a functional group into the polymer to form a reaction between the polymers by light, heat, ph|, etc.; or use a highly reactive crosslinking agent and The bond from the parent is introduced into the polymer and is produced by crosslinking between the polymers. 1282028 The crosslinking reaction of the alignment film is carried out by applying the above-mentioned polymer or an alignment film coating liquid containing a mixture of a polymer and a crosslinking agent onto a polymer film, followed by heating as desired or the like. In order to ensure excellent durability at the final commercial stage, the alignment film may be applied to the transparent support and then subjected to crosslinking treatment at any stage until the final optical compensation sheet is obtained. When the alignment property of the compound (optical anisotropic layer) having a disk-like structure formed on the alignment film is considered, the crosslinking reaction can be sufficiently carried out after the compound having a disk-like structure is aligned. The crosslinking reaction of the alignment film is generally carried out by applying an alignment film coating liquid onto a polymer film and heating and drying. It is preferred to set the heating temperature of the coating liquid to a low point, and then to form the optically anisotropic layer, the alignment film is sufficiently crosslinked in the heat treatment stage. The alignment film is preferably as described in Japanese Patent No. 2587398. The thickness of the alignment film is preferably 0. 1 to 10 microns. The heating and drying can be carried out at a heating temperature of 20 to 110 °C. In order to sufficiently form the crosslinking, the temperature is preferably from 60 to 100 ° C, more preferably from 80 to 100 ° C. The drying time can be from 1 minute to 36 hours, preferably from 5 minutes to 30 minutes. Further, P Η is preferably set to the optimum according to the crosslinking agent to be used. In the case where glutaraldehyde is used as the crosslinking agent, ρ Η is preferably 4. 5 to 5. 5, especially good for 5. The rubbing treatment can be carried out by a treatment method widely employed in the alignment processing of the L C D liquid crystal. That is to say, the surface of the alignment film -22- 1282028 can be aligned by rubbing in a certain direction using paper, cloth, felt, rubber or nylon, polyester fiber or the like. In general, it can also be carried out by rubbing a cloth which is uniformly planted with fibers of uniform length and thickness. In the present invention, the optically anisotropic layer ' formed of a liquid crystalline compound is preferably formed on the alignment film provided on the polymer film. The liquid crystalline compound used in the optically anisotropic layer includes a rod-like liquid crystal compound and a discotic liquid crystal compound, which may be a polymer liquid crystal, a low molecular liquid crystal, or a low molecular weight. The liquid crystal also includes liquid crystallinity which does not exhibit cross-linking. Among them, it is desirable to be a discotic liquid crystalline compound. The optically anisotropic layer is formed by coating and aligning a coating liquid containing a liquid crystal compound, and optionally a monomer, a polymerization initiator, a surfactant, and the like on an alignment film. The thickness of the optically anisotropic layer is preferably 0. 1 to 20 microns, more preferably 0. 5 to 15 microns, preferably 1 to 10 microns. The optically anisotropic layer of the present invention is preferably suitably used in the optically anisotropic layer described in Japanese Patent No. 2587 3 98. In the optically anisotropic layer, a discotic liquid crystalline compound is preferably used. The discotic compound includes a discotic liquid crystal. The optically anisotropic layer contains a discotic liquid crystalline compound, a polymerization initiator described later, and any additives (for example, a plasticizer, a monomer, a surfactant, a cellulose ester, 1, 3, 5). The liquid crystal compound (coating liquid) of the triterpene compound and the chelating agent is applied to the alignment film by -23 to 1282028, and is obtained by orienting the liquid crystal compound of the disk. It can be used as an example of a disc-shaped (disc) liquid crystal compound, which includes C.  A study report by De st rade et al., in Mol.  Cry st. Benzene derivatives as described in Vol. 71, p. 111 (1981); C. A study report by Destrade et al., Mol.  Cryst. Vol. 122, p. 141 (1985), Physics lett, A, vol. 78, p. 82 (1990), a derivative of truxene; a report by B. Kohne et al. Benin~. (^ towel. Cyclohexane derivatives described in Vol. 96, p. 70 (19 84); and J·M.  A study report by Lehn et al., J.  Chem.  Commun. Page 1794 (1985), with J.  Zhang et al.'s research report, at J_ Am_ Chem.  Soc. Nitrogen crown or phenylacetylene macrocyclic compounds described in Vol. 116, p. 2655 (1994). Furthermore, a discotic liquid crystalline compound generally has a core which is used as a molecular center, and has a linear alkyl group, an alkoxy group, and a substituted benzamidine group. The chain is then replaced by a radial structure to exhibit liquid crystallinity. However, the molecule itself has a negative uniaxiality, and the object to which the predetermined alignment is imparted is not particularly limited to the above-described matter. Further, in the present invention, when the optically anisotropic layer is formed from a disc-like compound, it is not always necessary to be the above compound; for example, the above-mentioned low molecular weight discotic liquid crystal compound having a heat or photoreactive group is eventually heated It is polymerized or cross-linked by reaction of light or the like, and forms a high molecular weight substance which loses liquid crystallinity. In order to fix the discotic liquid crystalline compound by polymerization, -24-1282028, in the center of the disk shape of the discotic liquid crystalline compound, it is necessary to bond a polymerizable group as a substituent. However, it is preferred that the disc-shaped center and the polymerizable group be introduced into an elongate (linking group). A preferred example of the discotic liquid crystalline compound is as described in Japanese Laid-Open Patent Publication No. Hei 8-5-1-2, and the polymerization of a discotic liquid crystalline compound is described in JP-A-H8- Bulletin No. 27284. In the present invention, the angle (inclination angle) between the disk surface of the discotic liquid crystalline compound and the surface of the polymer film varies depending on the depth direction of the optically anisotropic layer. That is to say, the tilt angle varies with the distance from the bottom of the optically anisotropic layer; such variations include, for example, continuous increase, continuous decrease, intermittent increase, intermittent decrease, continuous Increases and decreases in variation, and include intermittent changes in increase or decrease. The intermittent change system includes an area where the inclination angle does not change in the direction of the layer thickness direction. The inclination angle ′ includes a region where the inclination angle does not change, and it is preferable to increase or decrease all of the layers. The tilt angle is better to increase completely in the layer. And especially good for continuous changes. The tilt angle of the disc-shaped unit on the alignment film side can be generally adjusted by selecting a material of a discotic liquid crystal compound or an alignment film, or by selecting a rubbing treatment method. Further, the inclination angle of the disk-shaped unit on the surface side (air side) can be generally adjusted by selecting a discotic liquid crystalline compound or other compound used together with the discotic liquid crystalline compound. . Examples of the compound which can be used together with the discotic liquid crystalline compound are, for example, a plasticizer, a surfactant, a polymerizable -25-1282028 monomer and a polymer. Moreover, the degree of change in the tilt angle can also be adjusted by the above selection. The optically anisotropic layer may contain other additives than the discotic liquid crystalline compound. A plasticizer, a surfactant, and a polymerizable monomer which can be used together with the above-mentioned discotic liquid crystalline compound, as long as they are compatible with the disc compound and can impart a tilt angle to the change of the disc compound, or Anyone who occludes the aligning agent can use it. Among these, a polymerizable monomer (for example, a compound having a vinyl group, a vinyloxy group, an acrylonitrile group, or a methacryl group) is preferred. The amount of the above compound to be added is usually from 1 to 50% by weight, more preferably from 5 to 30% by weight, based on the discotic liquid crystalline compound. Further, when used in combination with a monomer having four or more reactive functional groups, the adhesion between the alignment film and the optically anisotropic layer can be improved. The polymer to be used together with the discotic liquid crystalline compound can be used as long as it is compatible with the discotic liquid crystalline compound and can impart a tilt angle to the discotic liquid crystalline compound. . An example of a polymer, for example, may be a cellulose ester. The cellulose ester, for example, may be cellulose acetate, cellulose acetate propionate, hydroxypropyl cellulose or cellulose acetate butyrate. In order not to impair the alignment of the discotic liquid crystalline compound, the amount of the above polymer added is generally preferably 〇 with respect to the discotic liquid crystalline compound.  1 to 1 〇 mass ° /. More preferably 0. 1 to 8 mass%, preferably 0. 1 to 5 mass%. In the present invention, the optically anisotropic layer is generally applied to a layer formed by dissolving a solution of a -26-1282028 discotic liquid crystalline compound and another compound in a solvent, and drying it. Then, it is heated to the formation temperature of the dish-like nematic phase, and then it is prepared by maintaining the alignment state (disc nematic phase) and cooling it. Alternatively, the optically anisotropic layer is applied to the alignment layer by a solution in which a discotic liquid crystalline compound and another compound (for example, a polymerizable monomer, a photopolymerization initiator) are dissolved in a solvent. It is dried, heated (for example, by UV light irradiation) to the formation temperature of the dish-like nematic phase, and then polymerized, and further produced. The disc-like nematic phase-solid phase transfer temperature of the discotic liquid crystalline compound used in the present invention is preferably 70 to 300 ° C, particularly 70 to 170 ° C ° in the present invention. In the case of the aligned liquid crystalline compound, it is preferred to be fixed by a vitamin. Immobilization is preferably carried out by polymerization. The polymerization reaction includes thermal polymerization using a thermal polymerization initiator, and photopolymerization using a photopolymerization initiator; however, photopolymerization is preferred. Examples of the photopolymerization initiator include α-carbonyl compounds (described in U.S. Patent No. 2,276,661, U.S. Patent No. 2,360,076, each specification), and even-alcohol (U.S. Patent No. 2,448,828) (a) a-hydroxy-substituted aromatic conjugate compound (described in the specification of U.S. Patent No. 2,725,251), a polynuclear ruthenium compound (described in the specification of U.S. Patent No. 3,046,127, U.S. Patent No. 2,591,758), and a triaryl imidazole a combination of a polymer and a fluorene-amino benzophenone (described in the specification of U.S. Patent No. 3,549,367), an acridine and a porphyrin compound (Japanese Patent Laid-Open No. 60-105667, and U.S. Patent No. 4,239,850 And oxadiazole compounds (described in the specification of U.S. Patent No. 4 2 1 2 7 7) and the like. The amount of the photopolymerization initiator to be used is preferably 0. 01 to 20 parts by mass, more preferably 0. 5 to 5 parts by mass. It is preferred to use ultraviolet light for the light irradiation for polymerizing the liquid crystalline compound. The irradiation energy is preferably 20 mJ/cm 2 to 5 0 joules/cm 2 , more preferably 20 to 5000 mJ/cm 2 , and most preferably 1 to 8 〇〇 mJ/cm 2 . Further, in order to promote the photopolymerization reaction, light irradiation may be carried out under heating. As described above, by providing the optically anisotropic layer on the polymer film, it is possible to manufacture the optical compensation film of the invention. It is also possible to provide a protective layer over the optically anisotropic layer. The optical compensation film of the present invention can be used as a component of a polarizing plate and a component of an image display device. Especially when used in a liquid crystal display device, it will help to improve the viewing angle. Furthermore, when the image display device is used under severe conditions (external force load, high temperature, high humidity), it will help to reduce the deterioration of display quality caused by light leakage. Moreover, in the case of using a polarizing plate and an image display device, it will contribute to thinning and weight reduction. In particular, the optical compensation film of the present invention is used as an image display device, particularly a transmissive liquid crystal display device, alone or in combination with a polarizing film as a polarizing plate. Hereinafter, embodiments of the optical compensation film of the present invention applied to a polarizing plate and an image display device will be separately described. [Polarizing Plate] -28- 1282028 One embodiment of the polarizing plate of the present invention is a polarizing plate comprising a polarizing film and two transparent protective films disposed on both sides thereof; and a transparent protective film At least one of them is a polarizing plate of the optical compensation film of the present invention. Only one of the protective films may be used as the optical compensation film of the present invention, and the optical compensation film of the present invention may be used as a protective film for both sides. In the case of having one protective film, the other protective film may be a general cellulose acetate film. The polarizing film of the present invention may be used, and any of an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyolefin-based polarizing film may be used. The iodine-based polarizing film and the dye-based polarizing film are usually produced by using a polyvinyl alcohol film. Further, in terms of the durability of the polarizing plate, the durability (temperature and humidity resistance) of the protective film is important. That is to say, due to the use conditions of the image display device (high humidity), when the moisture enters the polarizing film, the polarizing ability is lowered. The polymer film which can be used as the optical compensation film of the present invention is preferably a polymer film formed by using a polymer having a moisture permeability in a predetermined range. The polymer film constituting the optical compensation film of the present invention is a polymer obtained by hydrogenating a ring-opening polymer of tetracyclododecene or a ring-opening polymer of tetracyclododecene and norbornene. In the case of the composition, the moisture permeability is remarkably lowered, and thus it is a preferable protective film for the polarizing plate. [Image display device] One embodiment of the image display device of the present invention is a liquid crystal cell in which two polarizing plates are held, the liquid crystal cell holding the two polarizing plates, and at least one piece of -29-1282028 to hold the polarizing plate and the liquid crystal The image display device of the optical compensation film of the present invention of the unit cell is preferably a liquid crystal display device, and more preferably a transmissive liquid crystal display device. The polarizing plate described above is a polarizing film comprising a polarizing film and two transparent protective films disposed on both sides thereof. The optical compensation film of the present invention may be disposed between the liquid crystal cell and one of the polarizing plates, or may be disposed between the liquid crystal cell and the polarizing plates of both. The liquid crystal cell system described above holds liquid crystal between the two electrode substrates. The optical compensation film of the present invention can be used in combination with liquid crystals of various modes; for example, it can be used in combination with a τ N mode or a 〇C B mode. 4. Embodiments [Examples] The following examples are given to further illustrate the invention. The materials, reagents, ratios, operations, and the like shown in the following examples can be appropriately changed in a limited manner without departing from the spirit of the invention. However, the scope of the invention is not limited to the specific embodiments shown below. [Example 1] (Production of polymer film) A composition composed of 100 parts by mass of "Zenoa 1 020R" (manufactured by Nippon Seisakusho Co., Ltd.) and 20 parts by mass of methylene chloride was placed in a mixing tank. The mixture was stirred while heating to prepare a polymer solution. In the other mixing tank, a composition composed of a hysteresis controlling agent represented by the following formula of 16 parts by mass and 1 part by mass of methylene chloride is charged, and stirred while being heated to prepare a retardation 値- 30- 1282028 Control solution. 474 parts by mass of such a polymer solution was mixed with 63 parts by mass of a hysteresis controlling agent, and sufficiently stirred to prepare a coating liquid. The hysteresis 値 control agent is added in an amount of 1.5 parts by mass based on the mass of the polymer. 5 parts by mass. Hysteresis 値 enhancer

CHCH

II

丫 N 丫NH NH丫 N 丫NH NH

使用帶式流延機將所得到的塗布液予以流延,於1 50°C 之條件下,對殘留溶劑量爲1 5質量%之薄膜進行拉伸倍率 爲120%之縱向單軸拉伸,而製作成本發明之聚合物薄膜 (PF-01)。 藉由使用橢圓計(M-1 50,日本分光(股)公司製)測定此種 聚合物薄膜(PF-01)在550奈米波長下之遲滯値Re及遲滯値 Rth之値。將結果示於表1中。 更且,進一步以數位膜厚計(K-402B,安利茲(股)公司製 ),測定所製得之聚合物薄膜在面積爲1平方公尺(1公尺X 1 公尺)中之1〇〇點的膜厚。其平均値爲62.0微米,標準偏差 爲1 . 5微米。 -31- 1282028 (製做設有配向膜之聚合物薄膜) 其次,在對所製做的聚合物薄膜進行電暈處理之後’以 #16之瓦舍條塗機塗布(塗布量爲28毫升/平方公尺)由1〇質 量份之以下述構造式所代表的改性聚乙烯醇、3 7 1質量份之 水、1 1 9質量份之甲醇、及〇.5質量份之戊二醛(交聯劑)所 組成的塗布液,並以6 0 °C之熱風乾燥6 0秒,進一步以9 〇 °C之熱風乾燥1 50秒,而於本發明之聚合物薄膜上設置配向 膜。 改性聚乙烯醇 0—co-ch3The obtained coating liquid was cast using a belt casting machine, and a film having a residual solvent amount of 15% by mass was subjected to longitudinal uniaxial stretching at a draw ratio of 120% at 150 ° C. The polymer film (PF-01) of the invention was produced. The retardation 値Re and the retardation 値 Rth of the polymer film (PF-01) at a wavelength of 550 nm were measured by using an ellipsometer (M-1 50, manufactured by JASCO Corporation). The results are shown in Table 1. Furthermore, the polymer film obtained was measured in an area of 1 m ^ 2 (1 m X 1 m) by a digital film thickness meter (K-402B, manufactured by Anritz Co., Ltd.). The film thickness of the defect. The average enthalpy is 62.0 microns and the standard deviation is 1.5 microns. -31- 1282028 (Preparation of polymer film with alignment film) Secondly, after corona treatment of the prepared polymer film, 'coating with #16 tile strip coater (coating amount 28 ml / The square meter is composed of 1 part by mass of the modified polyvinyl alcohol represented by the following structural formula, 371 parts by mass of water, 191 parts by mass of methanol, and 5 parts by mass of glutaraldehyde ( The coating liquid composed of the crosslinking agent) was dried by hot air at 60 ° C for 60 seconds, and further dried by hot air at 9 ° C for 150 seconds, and an alignment film was provided on the polymer film of the present invention. Modified polyvinyl alcohol 0-co-ch3

-(CH2—〒H&gt;e7-e 一一 (CH2-(pH)0.2- 一 (CH2 - 〒ΗΗ2·ο— (光學補償薄膜之製作) 在設有配向膜之聚合物薄膜的長軸方向與4 5。方向進行 摩擦處理’並#3之瓦舍條塗機塗布(塗布量爲5毫升/平方公 尺)由將4 1 . 0 1克之以下述構造式所代表的碟狀液晶性化合 物、4 · 0 6克之環氧乙烷變性三羥甲基丙烷三丙烯酸酯(ν# 3 6 〇 ’大阪有機化學(股)公司製)、〇 · 2 3克之纖維素乙酸酯丁酸 酯(CAB551-0.2 ’伊斯托曼化學公司製)、〇·9〇克之纖維素 乙酸酯丁酸酯(C A Β 5 3 1 -1,伊斯托曼化學公司製)、1 . 3 5克 之光聚合起始劑(伊魯鎵克阿-9 0 7,日本化葯(股)公司製)、 -32- 1282028 之膜面溫度變爲40 °C,再以7(TC之熱風乾燥1分鐘,並從 帶上剝離並取出薄膜。接著,以1 4 0 °C之熱風將此薄膜乾燥 1 〇分鐘,而製做成殘留溶劑量爲0.3質量%之聚合物薄膜 (PF-02,厚度爲50微米)。 以和實施例1同樣的做法,對所製做的聚合物薄膜 (PF-02)進行光學特性之測定。將結果示於表1中。 (製做設有配向膜之聚合物薄膜) 在對所製做的聚合物薄膜進行電暈處理之後,以和實施 例1完全同樣的做法,而製做出設有配向膜之聚合物薄膜。 (光學補償薄膜之製作) 在設有配向膜之聚合物薄膜的長軸方向與平行方向進行 摩擦處理,並#3.6之瓦舍條塗機塗布(塗布量爲6.3毫升/平 方公尺)由將4 1 · 0 1克之在實施例1中所使用的碟狀液晶性 化合物、4 · 0 6克之環氧乙烷變性三羥甲基丙烷三丙烯酸酯 (V#360,大阪有機化學(股)公司製)、1.35克之光聚合起始 劑(伊魯鎵克阿- 907,日本化葯(股)公司製)、及〇_45克之增 感劑(伊魯鎵克阿-D E T X,日本化葯(股)公司製)溶解於1 〇 2 克之甲乙酮中所形成的塗布液。 於1 30°C之恒溫槽中對此加熱2分鐘,以將該碟狀液晶 性化合物予以配向。接著,於6〇t之周圍環境下,使用1 20 瓦/公分之高壓水銀燈照射UV1分鐘,以將碟狀液晶性化合 物予以聚合;放置並冷卻至室溫使形成光學各向異性層而製 做成光學補償薄膜(KH-02)。 -34- 1282028 · 【實施例3】 (聚合物薄膜之製作) 將由100質量份之「芮諾阿1020R」(日本芮翁製)、及 3 00質量份之二氯甲烷(第1溶劑)、以及30質量份之氮化硼 粉末所構成的組成物投入混合槽中,邊加熱邊攪拌使各種成 分溶解,而調製成聚合物溶液。將4 7 4質量份之此種聚合物 溶液對36質量份之與實施例1同樣的遲滯値控制劑予以混 合,並充分地攪拌而調製成塗布液。相對於1 0 0質量份之聚 合物計,遲滯値控制劑之添加量係爲3.5質量份。 使用該所得到的塗布液,以和實施例2完全同樣的做法 ’進而製做成(厚度爲50微米)本發明之聚合物薄膜(PF-03) 〇 對所得到的聚合物薄膜(P F - 〇 3)進行熱傳導率之測定,其 値爲1 .2 W/(m · K)。以和實施例1同樣的做法,進行光學 特性之測定。將結果示於表1中。 (製做設有配向膜之聚合物薄膜) 在對所製做的聚合物薄膜進行電暈處理之後,以和實施 例1完全同樣的做法,而製做出設有配向膜之聚合物薄膜。 (光學補償薄膜之製作) 除了使用聚合物薄膜(P F - 〇 3 )之外,均進行和實施例2 完I同樣的做法’而製做成本發明之光學補償薄膜(ΚΗ-0 3) 【比較例] -35- 1282028 (聚合物薄膜之製作) 將由1 00質量份之聚碳酸酯樹脂(純艾斯:帝人化成製) 、及350質量份之二氯甲烷所構成的組成物投入混合槽中, 邊加熱邊攪拌而調製成聚合物溶液(塗布液)。 使用帶式流延機將所得到的塗布液予以流延,使在帶上 之膜面溫度變爲4 0 °C,再以4 0 °C之熱風乾燥1分鐘,並從 帶上剝離並取出薄膜。接著,在1 50 °C之條件下,藉由拉幅 機予以拉伸,在垂直於搬運方向的方向拉伸2 5 %之後,並乾 燥1 〇分鐘,進一步在殘留溶劑量爲7.0質量%之狀態沿著搬 運方向拉伸2 5 %,而製做成比較例之聚合物薄膜(P F Η -1,厚 度爲80微米)。對所製做的聚合物薄膜(PFH-1)進行光學特 性之測定。將結果示於表1中。 (製做設有配向膜之聚合物薄膜) 在對所製做的聚合物薄膜進行電暈處理之後,以和實施 例1完全同樣的做法,而製做出設有配向膜之聚合物薄膜。 (光學補償薄膜之製作) 除了使用比較例1之聚合物薄膜之外,均進行和實施例 1完全同樣的做法’而製做成比較例之光學補償薄膜(Κ Η Η -1 ) -36- 1282028 表1 聚合物 聚合物薄膜 種 光彈性係數 透溼度 種 Re Rth 類 (x10_12平方公 (克/平方公 類 (奈米) (奈米) 尺/牛頓) 尺•小時) 實施例1 環狀聚 烯烴M 6.3 0.23 〜0_29 PF-01 40 185 實施例2 環狀聚 烯烴M 6.3 0_23 〜0.29 PF-02 4 78 實施例3 環狀聚 烯烴M 6.3 0.23 〜0.29 PF-03 5 79 比較例1 聚碳酸 酯*2 72 〜90 13 PFH-1 15 200 Μ: 「芮諾阿1020R」(日本芮翁製) *2 :純艾斯(帝人化成製) 【實施例4】 製做一將碘吸附在經拉伸的聚乙烯醇薄膜上的偏光膜, 對在實施例1中所製做的光學補償薄膜(KH-01)之聚合物薄 膜側進行電暈處理,再貼附於塗布有聚乙烯醇系黏著劑之偏 光膜的單側上。又,對市售的纖維素乙酸酯薄膜(富士技術 TD-80UF,富士照相軟片(股)公製司)進行鹼化處理,使用聚 乙烯醇系黏著劑貼附在偏光膜之相反側上,而製做成本發明 -37- 1282028 之偏光板(PP-01)。 除了使用(KH-02)、(KH-0 3)或(KHH-1)做爲聚合物薄膜 以外,均進行完全同樣的做法而製做成本發明之偏光板 (PP-02)、(PP-03)、以及比較例之之偏光板(ΡΡΗ-υ。 【實施例5】 將設置於使用ΤΝ型液晶晶胞的液晶顯示裝置(AQU〇S LC-20C1-S,夏普(股)公司製)上的一對偏光板,而代之以實 施例4中所製做的偏光板(PP-02)、及(PP-03),經由黏著劑 使光學補償薄膜側成爲液晶晶胞側,繼續在觀察者側及背光 側貼附一片而製做成本發明之TN型液晶顯示裝置(LCD-〇2) 及(L C D - 0 3 )。使觀察者側之偏光板的穿透軸和背光側之偏光 板的穿透軸成正交,而且將液晶晶胞的摩擦方向與光學各向 異性層之摩擦方向配置成逆向平行的狀態。 使用測定裝置(EZ-對比1 60D,ELDIM公司製),對所製 做的液晶顯示裝置測定從顯示黑色(L1 )至顯示白色(L8)等8個 級數之視角。將結果示於表2中。表2中之數字,以對比爲1 〇 以上來表示在黑側上無色調反轉(L1和L2間之反轉)之範圍。 表2 顯示裝置 上 下 左右 LCD-02 55 ° 52 0 118° LCD-03 53 0 56 0 120° (圖形邊緣之穿透率上昇之評量) 在溫度爲2 5 °C、相對溼度爲6 0 %之條件下,以配置於所 -38- 1282028 製做的LCD-02及03之背光連續點燈5小時之後,在全面 黑色顯示狀態的暗室中以目視觀察並評量光漏。結果,並沒 有產生圖形邊緣之穿透率上昇(光漏)。 【實施例6】 在附有ITO電極之玻璃基板上設置聚醯胺膜敞做配向膜 ,並進行摩擦處理。使所得到的二片玻璃與摩擦方向成平行 的方向一致,晶胞間距設定爲6微米,並注入△ η爲0.1 3 9 6 之液晶性化合物(ZLI1 132,美錄庫公司製)而製做成彎曲配 向液晶晶胞。以挾持此種彎曲配向晶胞狀,將在實施例4中 所製做的橢圓偏光板之偏光板(ΡΡ-01 )、及(ΡΡΗ-01 )予以貼 合在光學各向異性層之液晶晶胞側,而且使液晶晶胞的摩擦 方向與光學各向異性層之摩擦方向配置成逆向平行的狀態 ,而分別製做成〇C Β模式之液晶晶胞L C D - 0 1及0 4。以5 5 Η ζ 對此種液晶顯示裝置施加白色顯示2 V、黑色顯示5 V之矩形 波電壓,使用測定裝置(Ε Ζ -對比1 6 0 D,E L D丨Μ公司製), 測定從顯示黑色(L 1 )至顯示白色(L 8 )等8個級數之視角。將 結果示於表3中。表3中之數字,以對比爲1 〇以上來表示 在黑側上無色調反轉(L 1和L2間之反轉)之範圍。 表3 顯示裝置 上 下 左右 LCD-01 78 ° 76。 160° LCD-04 80 ° 78° 160° (圖形邊緣之穿透率上昇之評量) -39- 1282028 在溫度爲2 5 °C、相對溼度爲6 0 %之條件下’以配置於所 製做的L C D - 0 1及0 4之背光連續點燈5小時之後,在全面 黑色顯示狀態的暗室中以目視觀察並評量光漏。結果 LCD-01沒有產生圖形邊緣之穿透率上昇(光漏),然而 LCD-04則在圖面上發生圖形邊緣(特別是上、下方)之光漏 ,因而畫質變爲貧弱。 【發明效果】 設若依照本發明的話,將可以提供一種有助於改善在使 用於影像顯示裝置之情況下的視角,同時即使該前述之影像 顯示裝置係於嚴酷的條件下使用時,亦有助於減輕因光漏而 引起之顯示品質下降之光學補償薄膜、以及偏光板。又且, 依照本發明的話,將可以提供一種在嚴酷條件下使用時所生 成的光學特性變化變少,而且耐久性優良的光學補償薄膜及 偏光板。此外,依照本發明的話,將可以提供一種廣視角, 而且可以減輕因爲在嚴酷的條件下使用時所產生的光漏而 引起之顯示品質下降,以及耐久性優良的影像顯示裝置。 •40--(CH2—〒H&gt;e7-e one-to-one (CH2-(pH)0.2-一(CH2 - 〒ΗΗ2·ο— (production of optical compensation film) in the long-axis direction of the polymer film provided with the alignment film 4 5. The direction of the rubbing treatment 'and the #3 tile strip coater coating (coating amount of 5 ml / m ^ 2 ) is made up of 4 1 0 1 g of the disc-like liquid crystal compound represented by the following structural formula, 4 · 0 6 g of ethylene oxide-denatured trimethylolpropane triacrylate (ν# 3 6 〇 'Osaka Organic Chemical Co., Ltd.), 〇 · 2 3 g of cellulose acetate butyrate (CAB551) -0.2 'Istoman Chemical Co., Ltd.), 〇·9 gram of cellulose acetate butyrate (CA Β 5 3 1 -1, manufactured by Eastman Chemical Co., Ltd.), 1. 5 5 g of photopolymerization The film surface temperature of the initiator (Iru-Gerke A-9 0 7, manufactured by Nippon Kayaku Co., Ltd.) and -32-1282028 was changed to 40 °C, and then dried by 7 (TC hot air for 1 minute). The film was peeled off from the belt and the film was taken out. Then, the film was dried at a temperature of 140 ° C for 1 minute to prepare a polymer film having a residual solvent amount of 0.3% by mass (PF-02, thick). The optical properties of the prepared polymer film (PF-02) were measured in the same manner as in Example 1. The results are shown in Table 1. (Production of the polymerization film provided with the alignment film) (Film film) After the corona treatment of the produced polymer film, a polymer film provided with an alignment film was prepared in the same manner as in Example 1. (Production of optical compensation film) The long-axis direction and the parallel direction of the polymer film having the alignment film were rubbed, and the #3.6 tile coating machine was applied (coating amount was 6.3 ml/m 2 ) from 4 1 · 0 1 g in the example. The disc-like liquid crystal compound used in 1 and 4·6 6 of ethylene oxide-modified trimethylolpropane triacrylate (V#360, manufactured by Osaka Organic Chemical Co., Ltd.), 1.35 g of photopolymerization initiation Agent (Iru-Gola-A-907, manufactured by Nippon Kayaku Co., Ltd.), and 〇45 g of sensitizer (Iru-Gam-A-DETX, manufactured by Nippon Kayaku Co., Ltd.) dissolved in 1 〇 2 g of the coating solution formed in methyl ethyl ketone. This is in a thermostat at 30 ° C Heating the disc-like liquid crystalline compound for 2 minutes, and then irradiating the UV for 1 minute using a high-pressure mercury lamp of 1 20 W/cm under a surrounding environment of 6 Torr to polymerize the discotic liquid crystalline compound; And cooling to room temperature to form an optically anisotropic layer to form an optical compensation film (KH-02). -34- 1282028 · [Example 3] (Production of polymer film) will be 100 parts by mass of "Zeno A composition of 1020R" (manufactured by Nippon Seiki Co., Ltd.) and 300 parts by mass of methylene chloride (first solvent) and 30 parts by mass of boron nitride powder is put into a mixing tank, and stirred while heating. The ingredients are dissolved and prepared into a polymer solution. 474 parts by mass of such a polymer solution was mixed with 36 parts by mass of the same hysteresis oxime controlling agent as in Example 1, and sufficiently stirred to prepare a coating liquid. The hysteresis oxime controlling agent was added in an amount of 3.5 parts by mass based on 100 parts by mass of the polymer. Using the obtained coating liquid, the polymer film (PF-03) of the present invention was prepared in the same manner as in Example 2 (thickness: 50 μm) to obtain the polymer film (PF - 〇 3) The thermal conductivity was measured, and the enthalpy was 1.2 W/(m · K). The optical properties were measured in the same manner as in Example 1. The results are shown in Table 1. (Preparation of a polymer film provided with an alignment film) After the resulting polymer film was subjected to corona treatment, a polymer film provided with an alignment film was produced in the same manner as in Example 1. (Production of optical compensation film) The optical compensation film (ΚΗ-0 3) of the invention was produced by the same procedure as in Example 2 except that the polymer film (PF - 〇3) was used. Example] -35- 1282028 (Production of polymer film) A composition composed of 100 parts by mass of polycarbonate resin (manufactured by Ace: Teijin Chemical Co., Ltd.) and 350 parts by mass of methylene chloride was placed in a mixing tank. The mixture was stirred while heating to prepare a polymer solution (coating solution). The obtained coating liquid was cast using a belt casting machine so that the film surface temperature on the belt was changed to 40 ° C, dried by hot air at 40 ° C for 1 minute, and peeled off from the belt and taken out. film. Then, it was stretched by a tenter at 150 ° C, and stretched by 25% in a direction perpendicular to the conveyance direction, and dried for 1 minute, further having a residual solvent amount of 7.0% by mass. The state was stretched by 25% in the conveying direction to prepare a polymer film of the comparative example (PF Η -1, thickness 80 μm). The optical properties of the prepared polymer film (PFH-1) were measured. The results are shown in Table 1. (Preparation of a polymer film provided with an alignment film) After the resulting polymer film was subjected to corona treatment, a polymer film provided with an alignment film was produced in the same manner as in Example 1. (Production of Optical Compensation Film) An optical compensation film (Comparative Example 1) was prepared in the same manner as in Example 1 except that the polymer film of Comparative Example 1 was used. 1282028 Table 1 Polymer polymer film species Photoelastic coefficient Permeability species Re Rth Class (x10_12 square metric (grams / square male (nano) (nano) feet / Newton) feet • hour) Example 1 cyclic polymerization Olefin M 6.3 0.23 to 0_29 PF-01 40 185 Example 2 Cyclic polyolefin M 6.3 0_23 to 0.29 PF-02 4 78 Example 3 Cyclic polyolefin M 6.3 0.23 to 0.29 PF-03 5 79 Comparative Example 1 Polycarbonate Ester*2 72 ~90 13 PFH-1 15 200 Μ: "芮诺阿1020R" (made by 芮日本) *2 : Pure Ace (made by Teijin Chemicals Co., Ltd.) [Example 4] Preparation of iodine adsorption in the The polarizing film on the stretched polyvinyl alcohol film was subjected to corona treatment on the side of the polymer film of the optical compensation film (KH-01) prepared in Example 1, and then attached to a polyvinyl alcohol-coated film. Adhesive on one side of the polarizing film. Further, a commercially available cellulose acetate film (Fuji TD-80UF, Fuji Photo Film Co., Ltd.) was alkalized and attached to the opposite side of the polarizing film using a polyvinyl alcohol-based adhesive. , and made a polarizing plate (PP-01) of the invention -37-1282028. In addition to using (KH-02), (KH-0 3) or (KHH-1) as a polymer film, the same method was used to produce the polarizing plate (PP-02) of the invention, (PP- 03) and a polarizing plate of a comparative example (ΡΡΗ-υ. [Example 5] A liquid crystal display device (AQU〇S LC-20C1-S, manufactured by Sharp Corporation) using a ΤΝ-type liquid crystal cell The pair of polarizing plates are replaced by the polarizing plates (PP-02) and (PP-03) prepared in the fourth embodiment, and the optical compensation film side becomes the liquid crystal cell side via the adhesive, and continues The TN type liquid crystal display device (LCD-〇2) and (LCD - 0 3 ) of the invention are fabricated by attaching one piece to the observer side and the backlight side, so that the transmission axis of the polarizer on the observer side and the polarization side of the backlight side are polarized. The transmission axis of the plate is orthogonal, and the rubbing direction of the liquid crystal cell and the rubbing direction of the optical anisotropic layer are arranged in a reverse parallel state. Using a measuring device (EZ-Comp. 1 60D, manufactured by ELDIM Co., Ltd.) The manufactured liquid crystal display device measures the angle of view from eight levels of display black (L1) to white (L8). In Table 2, the numbers in Table 2 indicate the range of no-tone inversion (reversal between L1 and L2) on the black side by comparison of 1 〇 or more. Table 2 shows the device up and down left and right LCD-02 55 ° 52 0 118° LCD-03 53 0 56 0 120° (evaluation of the increase in penetration rate of the edge of the graph) Under the condition of a temperature of 25 ° C and a relative humidity of 60 %, it is placed in the -38- 1282028 After the LCD backlights of LCD-02 and 03 were continuously lit for 5 hours, the light leakage was visually observed and evaluated in a dark room with a full black display state. As a result, the transmittance of the edge of the pattern was not increased (light leakage) [Example 6] A polyimide film was placed on a glass substrate with an ITO electrode as an alignment film, and rubbing treatment was performed, and the obtained two sheets of glass were aligned in a direction parallel to the rubbing direction, and the cell pitch was It was set to 6 μm, and a liquid crystal compound (ZLI1 132, manufactured by Meishi Co., Ltd.) having a Δη of 0.1 3 9 6 was injected to prepare a curved alignment liquid crystal cell. a polarizing plate (ΡΡ-01) of an elliptically polarizing plate prepared in Example 4, and ΡΡΗ-01) is bonded to the liquid crystal cell side of the optically anisotropic layer, and the rubbing direction of the liquid crystal cell and the rubbing direction of the optical anisotropic layer are arranged in a reverse parallel state, and are respectively made into 〇C LCD mode LCD - 0 1 and 0 4 in Β mode. 5 Η ζ applies a rectangular display voltage of 2 V in white and 5 V in black to the liquid crystal display device, using a measuring device (Ε Ζ - contrast 1 6 0 D, manufactured by ELD Corporation, measures the angle of view from eight levels of display black (L 1 ) to white (L 8 ). The results are shown in Table 3. The numbers in Table 3 indicate the range of no-tone inversion (reversal between L 1 and L2) on the black side by comparison of 1 〇 or more. Table 3 shows the device up, down, left and right LCD-01 78 ° 76. 160° LCD-04 80 ° 78° 160° (evaluation of the penetration of the edge of the graph) -39- 1282028 Under the conditions of a temperature of 25 ° C and a relative humidity of 60 % The backlights of the LCD - 0 1 and 0 4 were continuously lit for 5 hours, and the light leakage was visually observed and evaluated in a dark room in a full black display state. As a result, LCD-01 did not produce an increase in the transmittance of the edge of the pattern (light leakage). However, LCD-04 caused light leakage on the edge of the pattern (especially upper and lower) on the surface, and the image quality became weak. [Effect of the Invention] According to the present invention, it is possible to provide a viewing angle which contributes to improvement in the case of use in an image display apparatus, and at the same time, even if the aforementioned image display apparatus is used under severe conditions, it is helpful. An optical compensation film and a polarizing plate for reducing the deterioration of display quality due to light leakage. Moreover, according to the present invention, it is possible to provide an optical compensation film and a polarizing plate which have little change in optical characteristics when used under severe conditions and which are excellent in durability. Further, according to the present invention, it is possible to provide a wide viewing angle, and it is possible to reduce the deterioration of display quality due to light leakage caused when used under severe conditions, and to provide an image display apparatus excellent in durability. •40-

Claims (1)

月6&gt;日修(哽)正本 板及影像顯示裝置」 1282028 第9 2 1 0 5 2 9 0號「光學補償薄膜、偏光 專利案 (2006年11月6日修正) 拾、申請專利範圍 1 · 一種光學補償薄膜,其係在一聚合物薄膜上方具有一包括 液晶性化合物的光學各向異性層,其特徵在於:該聚合物 薄膜係由具有光彈性係數爲1 〇 X 1 〇·12平方公尺/牛頓以 下,以及依照Jis Z0208試驗法所測定之透溼度爲1克/ 平方公尺· 24小時以下之聚合物所構成,並且根據下式(j ) 所定義之Re遲滯値係在0〜100奈米之範圍,而且根據下 式(Π )所定義的Rth遲滯値係在70〜500奈米之範圍; (I ) Re = (nx-ny) x d (Π ) Rth = {(nx + ny)/2-nz} x d (式中,nx及ny分別代表在聚合物薄膜平面內之遲相軸方向 及進相軸方向的折射率;而η z則代表在聚合物薄膜之厚度 方向的折射率;以及d代表聚合物薄膜之厚度),其中聚合 物爲環狀聚烯烴,液晶性化合物係爲碟狀液晶性化合物。 2. 如申請專利範圍第1項之光學補償薄膜,其中聚合物之比 重爲1.2 0以下。 3. 如申請專利範圍第2項之光學補償薄膜,其中環狀聚烯烴 爲使四環十二烯類之開環聚合物、或者四環十二烯類及降 萡烯類之開環共聚物進行加氫反應所得到的聚合物。 4 .如申請專利範圍第1項之光學補償薄膜,其中聚合物薄膜 係包括具有至少二個芳香族環之芳香族化合物。 5 .如申請專利範圍第4項之光學補償薄膜,其中芳香族化合 1282028 物係具有1,3,5 -三吖阱環之化合物。 6·如申請專利範圍第1項之光學補償薄膜,其中聚合物薄膜 係含有局熱傳導性粒子,且其熱傳導率爲1 W /(m · κ)以上。 7 ·如申請專利範圍第彳項之光學補償薄膜,其中在聚合物薄 膜之至少一側之表面上,係設置一含有高熱傳導性粒子的 熱傳導層’且該具有熱傳導層的聚合物薄膜之熱傳導率爲 1 W/(m · K)以上。 8 ·如申請專利範圍第彳項之光學補償薄膜,其中聚合物薄膜 係經拉伸而成。 9 · 一種偏光板,其特徵在於:該偏光板係由偏光膜、及配置 在其兩側上的二片透明保護膜所構成;其中至少一片透明 保護膜係爲如申請專利範圍第1至8項中任一項之光學補 償薄膜。 1 0 . —種影像顯示裝置,其係具有二片偏光板、挾持前述二 片偏光板之液晶晶胞、以及至少一片挾持前述偏光板和前 述液晶晶胞的如申請專利範圍第1至8項中任一項之光學 補償薄膜。 1 1 .如申請專利範圍第1 0項之影像顯示裝置,其中液晶晶胞 係爲T N模式或Ο C B模式之液晶晶胞。Month 6&gt;Ryoden (哽) Original Board and Image Display Device 1282028 No. 9 2 1 0 5 2 9 0 "Optical Compensation Film, Polarized Patent Case (Revised on November 6, 2006) Pickup, Patent Application Range 1 · An optical compensation film having an optically anisotropic layer comprising a liquid crystalline compound above a polymer film, characterized in that the polymer film has a photoelastic coefficient of 1 〇X 1 〇·12 square Below the ruler/Newton, and the polymer having a moisture permeability of 1 g/m 2 · 24 hours or less as measured by the Jis Z0208 test method, and the Re retardation system defined by the following formula (j) is 0 to 0 The range of 100 nm, and the Rth hysteresis defined by the following formula (Π) is in the range of 70 to 500 nm; (I) Re = (nx-ny) xd (Π) Rth = {(nx + ny )/2-nz} xd (wherein nx and ny represent the refractive index in the direction of the slow axis and the direction of the phase axis in the plane of the polymer film, respectively; and η z represents the refraction in the thickness direction of the polymer film) Rate; and d represents the thickness of the polymer film), wherein the polymer is a cyclic polyolefin 2. The liquid crystalline compound is a liquid crystalline compound. 2. The optical compensation film according to claim 1, wherein the specific gravity of the polymer is 1.20 or less. 3. The optical compensation film according to claim 2, The cyclic polyolefin is a polymer obtained by subjecting a ring-opening polymer of tetracyclododecene or a ring-opening copolymer of tetracyclododecene and norbornene to hydrogenation reaction. The optical compensation film of claim 1, wherein the polymer film comprises an aromatic compound having at least two aromatic rings. 5. The optical compensation film of claim 4, wherein the aromatic compound 1282028 has A compound of the 1,3,5-triterpene trap ring. 6. The optical compensation film of claim 1, wherein the polymer film contains local thermal conductive particles and has a thermal conductivity of 1 W /(m · κ The optical compensation film of claim 3, wherein a heat conducting layer containing high thermal conductive particles is disposed on at least one surface of the polymer film and the device is provided The thermal conductivity of the polymer film having the heat conductive layer is 1 W/(m · K) or more. 8 · The optical compensation film according to the scope of the patent application, wherein the polymer film is stretched. 9 · A polarizing light The plate is characterized in that the polarizing plate is composed of a polarizing film and two transparent protective films disposed on both sides thereof; at least one of the transparent protective films is one of the first to eighth aspects of the patent application scope. An optical compensation film of the present invention, which is characterized in that the image display device has two polarizing plates, a liquid crystal cell holding the two polarizing plates, and at least one piece of the polarizing plate and the liquid crystal cell. An optical compensation film according to any one of items 1 to 8. An image display device according to claim 10, wherein the liquid crystal cell is a liquid crystal cell of a T N mode or a Ο C B mode.
TW092105290A 2002-03-13 2003-03-12 Optically compensating film, polarizing plate and liquid crystal display TWI282028B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068782 2002-03-13

Publications (2)

Publication Number Publication Date
TW200305043A TW200305043A (en) 2003-10-16
TWI282028B true TWI282028B (en) 2007-06-01

Family

ID=27800310

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092105290A TWI282028B (en) 2002-03-13 2003-03-12 Optically compensating film, polarizing plate and liquid crystal display

Country Status (6)

Country Link
JP (1) JP2005520209A (en)
KR (1) KR20040089449A (en)
CN (1) CN1285929C (en)
AU (1) AU2003212651A1 (en)
TW (1) TWI282028B (en)
WO (1) WO2003076985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408425B (en) * 2007-10-24 2013-09-11 Nitto Denko Corp Polarizing plate, optical film and image display device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427336B (en) * 2004-12-28 2014-02-21 Fujifilm Corp Optical compensation sheet, process for producing the same, and polarizing plate and liquid crystal display device using the same
TWI383003B (en) * 2005-02-02 2013-01-21 Mitsubishi Gas Chemical Co Polyester film, the process thereof, and the use thereof
JP4618675B2 (en) * 2005-02-08 2011-01-26 日東電工株式会社 Retardation film, polarizing element, liquid crystal panel, and liquid crystal display device
JP4686301B2 (en) * 2005-08-22 2011-05-25 富士フイルム株式会社 Optical compensation film manufacturing method, optical compensation film, polarizing plate, and liquid crystal display device
JP2007098643A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Method for producing cyclic olefin-based resin film, cyclic olefin-based resin film, polarizing plate, and liquid crystal display
JP2007155972A (en) * 2005-12-02 2007-06-21 Fujifilm Corp Optical compensation film, polarization plate, and liquid crystal display device
KR20080086480A (en) * 2005-12-02 2008-09-25 후지필름 가부시키가이샤 Optical compensation film, polarizing plate and liquid crystal display device
JP2007248486A (en) * 2006-03-13 2007-09-27 Fujifilm Corp Optical compensation sheet, elliptically polarizing plate, and liquid crystal display device
JP2007277523A (en) * 2006-03-15 2007-10-25 Fujifilm Corp Cyclic polyolefin film, method for producing the film, and polarizing plate and liquid crystal display using the same
JP2008250234A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Liquid crystal display
JP5230221B2 (en) 2007-04-20 2013-07-10 富士フイルム株式会社 Thermoplastic film and method for producing the same
US8350996B2 (en) * 2007-07-06 2013-01-08 Fujifilm Corporation Optical compensation sheet, polarizing plate and TN-mode liquid crystal display device
JP2009098653A (en) * 2007-09-27 2009-05-07 Nitto Denko Corp Polarizing plate, optical film and image display device
JP5394662B2 (en) * 2008-06-17 2014-01-22 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display device
JP2011227337A (en) * 2010-04-21 2011-11-10 Nitto Denko Corp Polarizing plate, liquid crystal panel, and liquid crystal display device
TWI787246B (en) * 2017-03-30 2022-12-21 日商日本瑞翁股份有限公司 Optical film, manufacturing method thereof, polarizing plate, and liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220478B2 (en) * 1991-06-07 2001-10-22 日本ゼオン株式会社 Phase plate for liquid crystal display
US5516456A (en) * 1994-02-24 1996-05-14 Japan Synthetic Rubber Co., Ltd. Liquid crystal display panel
US6937307B1 (en) * 1999-02-17 2005-08-30 Fuji Photo Film Co., Ltd. Optical compensatory sheet having optically anisotropic layer formed from liquid crystal molecules
KR100807139B1 (en) * 2000-05-15 2008-02-27 후지필름 가부시키가이샤 Optical compensating sheet, polarizing plate, and liquid-crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408425B (en) * 2007-10-24 2013-09-11 Nitto Denko Corp Polarizing plate, optical film and image display device
US8824047B2 (en) 2007-10-24 2014-09-02 Nitto Denko Corporation Polarizing plate, optical film and image display

Also Published As

Publication number Publication date
CN1285929C (en) 2006-11-22
AU2003212651A1 (en) 2003-09-22
JP2005520209A (en) 2005-07-07
CN1509416A (en) 2004-06-30
WO2003076985A1 (en) 2003-09-18
TW200305043A (en) 2003-10-16
KR20040089449A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
TWI282028B (en) Optically compensating film, polarizing plate and liquid crystal display
CN100504463C (en) Optical film, method for producing same and image display device using the optical film
CN100363762C (en) Optical film, method for producing the same, and image display device using the same
JP4328243B2 (en) Liquid crystal display
KR101118354B1 (en) Liquid crystal display device
KR101130930B1 (en) Liquid crystal display device
KR20060050706A (en) Retardation film and method of producing the same, and optical film, liquid crystal panel, and liquid crystal display apparatus all using the retardation film
TW200537167A (en) Liquid crystal display device
US20110058127A1 (en) Optical compensation sheet, polarizing plate, liquid crystal display and method of manufacturing optical compensation sheet
JP2008181091A (en) Optical laminate and liquid crystal panel using the same
JPWO2006035635A1 (en) Liquid crystal display
WO2006067916A1 (en) Elliptic polarizing plate and image display employing it
JP2009053292A (en) Elliptically polarizing plate, method for manufacturing the same and liquid crystal display apparatus using the plate
JP4347466B2 (en) Optical film and liquid crystal display element
JP2018146637A (en) Production method of optical anisotropic layer
JP4486854B2 (en) Method for producing retardation film
JP2008209872A (en) Elliptically polarizing plate for vertically aligned liquid crystal display device and vertically aligned liquid crystal display device using the same
CN100380206C (en) Polarizing plate with optical compensating layer, and image display using the same
JP2007072213A (en) Viewing angle compensation plate for homeotropically oriented liquid crystal display device and homeotropically oriented liquid crystal display device using same
CN109416429B (en) Vertically aligned liquid crystal film and method for manufacturing the same
JP4413117B2 (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device and method for producing retardation film
TWI421597B (en) Optical film, optically compensatory film and polarizing plate and liquid crystal display using same
JP4333465B2 (en) Liquid crystal display
JP5204608B2 (en) Polarizing plate, optical film and image display device
JP5167059B2 (en) Polarizing plate, optical film and image display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees