TWI281297B - Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system - Google Patents

Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system Download PDF

Info

Publication number
TWI281297B
TWI281297B TW93121599A TW93121599A TWI281297B TW I281297 B TWI281297 B TW I281297B TW 93121599 A TW93121599 A TW 93121599A TW 93121599 A TW93121599 A TW 93121599A TW I281297 B TWI281297 B TW I281297B
Authority
TW
Taiwan
Prior art keywords
charge
variable
variable capacitor
voltage
conductive plate
Prior art date
Application number
TW93121599A
Other languages
Chinese (zh)
Other versions
TW200525851A (en
Inventor
Brocklin Andrew L Van
Eric Martin
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/763,345 external-priority patent/US7400489B2/en
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW200525851A publication Critical patent/TW200525851A/en
Application granted granted Critical
Publication of TWI281297B publication Critical patent/TWI281297B/en

Links

Landscapes

  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A method of driving a parallel-plate variable micro-electromechanical capacitor (110-2, 130, 130-1) includes establishing a first charge differential across first and second conductive plates (135, 135-1, 140) of a variable capacitor (110-2, 130, 130-1) in which the first and second conductive plates (135, 135-1, 140) are separated by a variable gap distance (145, 145-1), isolating the first and second plates for a first duration, decreasing the charge differential to a second charge differential which is less than the first charge differential and in which the second charge differential corresponds to a second value of the variable gap distance (145, 145-1).

Description

1281297 九、發明說明:1281297 IX. Description of invention:

L發明戶斤屬之技術領域I 本申請案是2003年4月30日申請之第10/437, 522號美 國專利申請案「微機電裝置電荷控制技術」之部分繼續申 5 請案,該案之整個内容併供本案參考。 本發明是有關於用以驅動平行板可變微機電電容器之 系統與方法。 發明背景 10 微機電系統(MEMS)是一種使用薄膜技術所發展之系 統,且其包括電氣與微機械元件。MEMS裝置使用於各種應 用中,例如:光學顯示系統、壓力感測器、流動感測器、 以及充電控制致動器。MEMS裝置使用靜電力或能量,以移 動微機械元件或監視其移動。在微機電裝置之一種形式 15 中,為了達成所想要之結果,則藉由平衡靜電力與機械回 復力,以控制電極間之間隙距離。典型地,數位式MEMS裝 置使用兩種離散間隙距離,而類比式MEMS裝置使用可變之 間隙距離。 此種MEMS裝置是使用各種方法發展出。在一種方法 20 中,將一種可變形撓曲膜片設置於一電極上,且被靜電吸 引至此電極。其他方法使用矽或鋁之片(flap)或橫樑以形 成頂部導電層。以光學之應用,此導電層為反射式,而此 撓曲膜片變形,使用靜電力以導引入射於導電層上之光線。 一種用於控制電極間間隙距離之方法是對電極施加持 1281297 續控制電壓, 其中増加 控制電壓以增加間隙 控制電壓以減少間隙距離,或減少 距離。然而,此種方法會遭受到靜電 不穩定,其大幅滅 - 田'可有效控制間隙距離之可使用操作範 圍。此外,間隙路 ’、a雕之改變之速率主要取決於MEMS裝置之 物理特徵。當電壓 ^ ^改受捋’隨著MEMS裝置穩定在其最後位 等私極間間隙距離之改變落後於電壓之改變。 【發明内I】 發明概要 10 辱°動平形板可變微機電電容器之方法包括:建立跨 此可變電容器第〜逝 ^ ^ 、 ,、弟一蜍電板之第一充電差異,其中此 弟”第導包板藉由可變間隙距離分開,將第一與第二 導“反隔離帛時間期間,然後減少充電差異至小於第一 充異之第二充電差異,以及其中第二充電差異對應於 可變間隙距離之第二值。 15圖式簡單說明 此等所附圖式說明本發明裝置與方法之各種實施例, 且為本說明書之-部份。此等所說明之實施例僅為本發明 衣置契方法之例而已’但並不限制本發明裝置與方法之範 圍。 20 第1圖為簡單方塊圖,豆筇日日& u , /、况明根據本發明之典型實施例 之微機電(MEMS)裝置; 第2圖為橫截面圖,其說明根據本發明典型實施例之微 機電裝置; 第3A圖為概要圖,其說明根據本發明典型實施例之當 1281297 將充=差異從可變電容器絲時微機電敦置; 弟沌圖為概要圖,其說明根據本 充電前操4貫施例之在 明典型實施例之在 第3C圖為概要圖,其說明根據本發 充電脈衝操作期間之微機電裝置; 機 電裝置; ⑽在穩錢作期間之典型微 之典型 «==Γ,其說明在電荷去除操作期間 10 15 圖’此裝置具有在Μ 第4圖為說明典型MEMS裝置之方塊 X N陣列中之多個MEMS單元。 【貧施方式】 較佳實施例之詳細說明 此驅動平形板可變微機電電容器 此可變電容器第一與第二導電板之;—充電:建立跨 第-與第二導電板藉由可變間隙距離分開⑦將第=中此 導電板隔離第-時間期間,然後”弟二 也產異至小於繁一 充電i異之第二充電差異,以及其一 、 可變間隙距離之第二值。 “差異對應於 如同在此處與賴巾請專例範圍中使用,此曰 體”與“開關,,之竟義可以祐库# 1 Λ a曰曰 構,m P、、瞭解為任何裝置或結 構,其可被選擇性地啟動以響應信號。 在以下之說明中,為了說明目的列舉各種細節以提 L對於本發明方法餘置之徹底瞭 、向對於熟習此 20 1281297 技術人士為明顯,可以無須此等細節以實施本發明之方法 與裝置。在說明書中所提及之“一個實施例,,或“一實施 例之思義為:此所說明與此實施例有關之特殊特性、結 構、或特徵是包括於至少一實施例中。在本說明書中多處 5所出現之“一個實施例”之片語,並無須均指相同之實施 例。 典型結橋 第1圖為方塊圖其說明微機電系統(MEMS)(100)之典型 貫施例。此MEMS(IOO)包括:充電控制電路(1〇5)與微機電 ίο裝置(裝置)(11〇)。充電控制電路(1〇5)更包括:可變電源 (115)、控制器(12〇)、以及切換電路(125)。此MEM裝置(11〇) 更包括一可變電容器(13〇),其包括由可變間隙距離(145) 所分開之第一導電板(135)與第二導電板(14〇)。設計此充 迅控制電路(105),將所選擇之電壓提供給可變電容器 15 (13〇),此電壓之位準為:較將此可變電容器(130)充電至 第二或最後值所須更高位準。此過程可以稱為加速驅動此 電壓,其協助將第-與第二導電板(135、14())更快地移至 其最後機械位置,如同以下將更詳細討論者。 根據一典型實施例,此可變電源(115)為可變電壓源, 20其被設計經由通路(15〇)從控制器(120)接收電壓選擇信 號。此可變電源(115)根據電壓選擇信號,將所選擇電壓經 由通路(155)提供給切換電路(125)。 此分開之第-導電板(135)與第二導電板(14〇)之可變 間隙距離(145)、是在可變電容器(13〇)上所儲存電荷數量 1281297 之函數。為了適應第一導電板(135)與第二導電板⑽)間 之相對移動’可以將-導電板固^’而另—導電板可移動。 為了容易說明起見,根據此典型實施例可將第二導電板 (140)認為固定板。可以藉由將第一與第二導電板(135^4〇) 5置於相同之最初機電狀態,而將此可變間隙距離(145)最大 化。此最初狀態為最小值,或者此等板上之電荷可以藉由 將各第-與第二板(135、14〇)連接至各別電壓而建立,如 同以下將洋細讨論者。 可以設計此充電控制電路(105),藉由在第一與第二導 10電板(135、140)間由可變電源(115)所提供之選擇電壓施加 預先設定期間,因此造成在可變電容器(130)上累積所想要 數量之儲存電荷。如同先前討論,此儲存在可變電容器(130) 上之電荷對應於在第一與第二導電板(135、140)間之靜電 吸引力。因此,此在可變電容器(130)上所儲存之電荷量愈 大,則此第一與第二導電板(135、140)間之靜電吸引力愈 大。 此外,設計切換電路(125)經由通路(16〇)接收預設期 間之致能信號。響應此致能信號,經由通路(1防)在預設時 間期間將所選擇之電壓位準施加至MEMS裝置(110),因此造 成在可變電容器(130)上累積所想要數量之儲存電荷。在一 典型實施例中,設計此切換電路(125)經由通路(17〇)接收 來自控制器(120)之清除信號,以及響應於此清除信號,將 儲存在此可變電容器(130)上之電位儲存電荷去除。去除此 儲存電荷,則在施加此具有所選擇電壓位準之表考電壓之 1281297 前,將可變電容器(130)致於已知之電荷位準。 10 15 20 此最初所選擇施加至可變電容器(13〇)之電壓,可以提 供給MEMS裝置(110)之電荷較與最後所想要間隙有關之電 何更多。換句話說,此所選擇施加之電壓在可變電容器(13〇) 上可能造成較大數量之最初累積電荷,此電荷數量大於所 想要之最後電荷值’以及因此大於相對應之最後可變間隙 距離(145)。此儲存在可變電容器⑽)上之電荷是響應由 控制器(120)發出經由電荷控制通路(⑽而至切換電路 (125)之充電信號。此可變電容器可以藉由以下方式更快地 被移至其最後機械位置:增加對可變電容器(13〇)最初施加 之電壓位準,以及隨後將縣選擇數量電荷去除。 根據典型實施例,將選擇數量之電荷從第一與第二板 035、14〇)去除’以響應:隨後經由相同通路(170)使用於 清理信號之電荷調整作缺 正1口唬。如同先前討論,此施加至第一 與第二板⑽' 14〇)之參考電壓對應於:在第一與第二板 14G)切贿存較大數量n而其對應於最後 :隙值。此電荷調整信號導致從第_與第二板⑽、14〇) 並預先=擇數里之電荷。當此可變電容器⑴〇)具有儲存 較大數量電荷時,較其如果只以最後電荷值充電 '士私向彼此。馬此可變間隙距離⑽)接近所想要之最 才㈣先延擇之電荷數量去除。然後此第-與第二 (145)。14〇)被允許機械地穩定在可變最後間隙距離 作為使用清理㈣以絲所選擇數量電荷之替代方 10 1281297 式,此所選擇數量電荷可以藉由將Vref調整至加速驅動補償 電壓而去除,在此之後可以施加致能與充電致能信號。在 此專丨月形中,Vref使用於:以加速驅動電荷將可變電容界充 電’以及將所選擇數量電荷去除。The invention is a part of the application of the "Micro-Electro-Mechanical Device Charge Control Technology" of the U.S. Patent Application Serial No. 10/437,522, filed on Apr. 30, 2003. The entire content is also for reference in this case. The present invention is directed to systems and methods for driving parallel plate variable microelectromechanical capacitors. BACKGROUND OF THE INVENTION 10 Microelectromechanical systems (MEMS) are systems developed using thin film technology and include electrical and micromechanical components. MEMS devices are used in a variety of applications such as optical display systems, pressure sensors, flow sensors, and charge control actuators. MEMS devices use electrostatic forces or energy to move micromechanical components or monitor their movement. In one form of the MEMS device 15, in order to achieve the desired result, the gap distance between the electrodes is controlled by balancing the electrostatic force with the mechanical resilience. Typically, digital MEMS devices use two discrete gap distances, while analog MEMS devices use variable gap distances. Such MEMS devices have been developed using a variety of methods. In one method 20, a deformable flex film is placed on an electrode and electrostatically attracted to the electrode. Other methods use a flake or aluminum flake or beam to form the top conductive layer. For optical applications, the conductive layer is reflective, and the flex film is deformed, using electrostatic forces to direct light incident on the conductive layer. One method for controlling the inter-electrode gap distance is to apply a 1281297 continuous control voltage to the electrode, wherein the control voltage is applied to increase the gap control voltage to reduce the gap distance or reduce the distance. However, this method suffers from static instability, which greatly reduces the usable operating range of the gap distance. In addition, the rate at which the gaps, a, are changed depends primarily on the physical characteristics of the MEMS device. When the voltage ^ ^ is changed by 捋 ' as the MEMS device stabilizes at its last bit, the change in the gap distance between the private poles lags behind the voltage change. [Invention I] Summary of Invention 10 The method of insulting a flat-plate variable MEMS capacitor includes: establishing a first charging difference between the first and the second of the variable capacitors, wherein the brother The first guide board is separated by a variable gap distance, and the first and second guides are “re-isolated for a period of time, then the charging difference is reduced to be smaller than the second charging difference of the first insufficiency, and wherein the second charging difference corresponds to The second value of the variable gap distance. BRIEF DESCRIPTION OF THE DRAWINGS These drawings illustrate various embodiments of the apparatus and method of the present invention and are part of the specification. The embodiments described herein are merely illustrative of the method of the present invention, but are not intended to limit the scope of the device and method of the present invention. 20 is a simple block diagram, a day of the soybean meal & u, /, a microelectromechanical (MEMS) device according to an exemplary embodiment of the present invention; and FIG. 2 is a cross-sectional view illustrating a typical example according to the present invention The microelectromechanical device of the embodiment; FIG. 3A is a schematic view illustrating the micro-electromechanical holding when the 1281297 charges the difference from the variable capacitor wire according to an exemplary embodiment of the present invention; The first embodiment of the present invention is a schematic diagram of the exemplary embodiment in FIG. 3C, which illustrates a microelectromechanical device during operation of the charging pulse according to the present invention; an electromechanical device; (10) a typical micro during a stable operation. Typically «==Γ, which is illustrated during the charge removal operation 10 15 Figure 'This device has a plurality of MEMS cells in a block XN array illustrating a typical MEMS device. [Delayed Mode] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT This driving flat plate variable microelectromechanical capacitor has the first and second conductive plates of the variable capacitor; - charging: establishing across the first and second conductive plates by being variable The gap distance is separated by 7 to isolate the conductive plate from the first time period, and then the second generation difference is less than the second charge difference of the multi-charge, and the second value of the variable gap distance. "The difference corresponds to the use of the scope of the special case here, and the scorpion" and "switch," can be used to make a library #1 Λ a曰曰, m P,, understand any device or A structure that can be selectively activated to respond to a signal. In the following description, for purposes of explanation, various details are set forth in the description of the embodiments of the present invention, and the method and apparatus of the present invention may be practiced without departing from the scope of the invention. The phrase "one embodiment," or "an embodiment" is used in the specification to mean that the particular features, structures, or characteristics described in connection with this embodiment are included in at least one embodiment. In the present specification, the phrase "one embodiment" is used in a plurality of places, and does not necessarily refer to the same embodiment. Typical Junction Bridge Figure 1 is a block diagram illustrating a typical example of a microelectromechanical system (MEMS) (100). This MEMS (IOO) includes: a charge control circuit (1〇5) and a microelectromechanical device (device) (11〇). The charge control circuit (1〇5) further includes: a variable power supply (115), a controller (12A), and a switching circuit (125). The MEM device (11A) further includes a variable capacitor (13A) including a first conductive plate (135) and a second conductive plate (14A) separated by a variable gap distance (145). The charging control circuit (105) is designed to supply the selected voltage to the variable capacitor 15 (13〇), the level of the voltage being: charging the variable capacitor (130) to the second or final value Must be higher. This process may be referred to as accelerating the driving of this voltage, which assists in moving the first and second conductive plates (135, 14()) to their final mechanical position more quickly, as will be discussed in more detail below. According to an exemplary embodiment, the variable power supply (115) is a variable voltage source, 20 which is designed to receive a voltage selection signal from the controller (120) via a path (15A). The variable power supply (115) provides the selected voltage to the switching circuit (125) via the path (155) based on the voltage selection signal. The variable gap distance (145) between the separate first-conducting plate (135) and the second conductive plate (14) is a function of the amount of charge 1281297 stored on the variable capacitor (13A). In order to accommodate the relative movement between the first conductive plate (135) and the second conductive plate (10), the conductive plate can be fixed and the conductive plate can be moved. For ease of explanation, the second conductive plate (140) can be considered as a fixed plate according to this exemplary embodiment. This variable gap distance (145) can be maximized by placing the first and second conductive plates (135^4〇) 5 in the same initial electromechanical state. This initial state is a minimum value, or the charge on these boards can be established by connecting each of the first and second plates (135, 14A) to respective voltages, as will be discussed below. The charge control circuit (105) can be designed to apply a predetermined period of time by the selection voltage provided by the variable power source (115) between the first and second conductors 10 (135, 140), thereby causing a variable A desired amount of stored charge is accumulated on the capacitor (130). As previously discussed, this charge stored on the variable capacitor (130) corresponds to the electrostatic attraction between the first and second conductive plates (135, 140). Therefore, the greater the amount of charge stored on the variable capacitor (130), the greater the electrostatic attraction between the first and second conductive plates (135, 140). In addition, the design switching circuit (125) receives the enable signal for a predetermined period via the path (16A). In response to this enable signal, the selected voltage level is applied to the MEMS device (110) during the preset time via the path (1), thereby causing the desired amount of stored charge to accumulate on the variable capacitor (130). In an exemplary embodiment, the switching circuit (125) is designed to receive a clear signal from the controller (120) via a path (17) and, in response to the clear signal, to be stored on the variable capacitor (130). The potential stores charge removal. To remove this stored charge, the variable capacitor (130) is brought to a known charge level before applying this 1281297 with the reference voltage of the selected voltage level. 10 15 20 This initially selected voltage applied to the variable capacitor (13〇) provides more charge to the MEMS device (110) than to the last desired gap. In other words, the voltage applied by this selection may cause a larger amount of the initial accumulated charge on the variable capacitor (13〇), the amount of this charge being greater than the desired final charge value' and thus greater than the corresponding last variable Gap distance (145). The charge stored on the variable capacitor (10) is in response to a charge signal sent by the controller (120) via the charge control path ((10) to the switching circuit (125). This variable capacitor can be faster by the following means Move to its last mechanical position: increase the voltage level initially applied to the variable capacitor (13〇), and then remove the county selected quantity charge. According to an exemplary embodiment, the selected number of charges will be from the first and second plates 035 , 14 〇) remove 'in response: then the charge adjustment used to clean the signal via the same path (170) is used as a missing positive port. As previously discussed, the reference voltage applied to the first and second plates (10) '14' corresponds to: a large number n is cut at the first and second plates 14G) and corresponds to the last: slot value. This charge adjustment signal results in a charge from the first and second plates (10), 14A) and in advance. When the variable capacitor (1) 〇) has a large amount of charge stored, it is privately charged to each other if it is charged only with the last charge value. This variable gap distance (10) is close to the desired maximum (4). Then this first and second (145). 14〇) is allowed to be mechanically stabilized at a variable final gap distance as a substitute for cleaning (4) by the number of selected charges of the wire 10 1281297, the selected amount of charge can be removed by adjusting Vref to accelerate the drive compensation voltage, An enable and charge enable signal can be applied thereafter. In this special shape, Vref is used to: charge the variable capacitor boundary with an accelerated driving charge and remove the selected amount of charge.

第2圖為圖式其說明·· MEMS裝置(11〇 —丨)之典型實施 例。在典型實施例中,此MEMS裝置(110-1)至少部份顯示: 可顯示影像之像素,此MEMS裝置(11(M)包括:頂部反射器 (200)、底部反射器(21〇)、撓性件(22〇)、以及彈簧機構 10 (230)。共振光學空腔(240)由反射器(200、210)界定。此 兩個反射器(200、210)是由可變間隙距離(145-1)分開。此 頂部反射器(200)可以為半透明或半反射且可與底部反射 器(210)—起使用,其可以為高度反射或全反射,或反之亦 然。此彈黃機構(230)可以為任何適合之撓性材料例如聚合 15 物所製成,其具有線性與非線性彈簣功能。 可以使用光學干涉調整光學空腔(240),以選擇特定強 度之可見光波長。取決於MEMS裝置(110-1)之結構,此光學 空腔(240)可以所想要之強度反射或透射波長。這即是,此 光學空腔(240)之本質可以為反射或透射。根據此典型實施 2〇 例,光學空腔(240)並未產生光線。而是,此MEMS裝置(110-1) 依靠周圍光線或外部光源(未圖示)。光學空腔(240)可以傳 輸透射可見波長,且其強度取決於此頂部與底部反射器 (200,210)間之間隙距離(145-1)。因此,可以藉由控制間 隙距離(145-1)將此光學空腔(240)調整至在所想要強度之 1281297 所想要波長。 當在反射器(200、210)上儲存適當數量電荷時,撓性 件(220)與彈簧機構(230)允許改變間隙距離(i45—丨)。以致 於可以選擇在所想要強度之所想要波長。此最後電荷與其 所對應之a壓疋根據以下式1而決定,其提供反射器(、 mo)間之吸引力。因此,此反射器(200、21〇)與可變間隙 距離(145-1)所構成之平行板電容器並未考慮邊緣電場。Fig. 2 is a diagram showing a typical embodiment of a MEMS device (11 〇 - 丨). In an exemplary embodiment, the MEMS device (110-1) at least partially displays: pixels of an image displayable, the MEMS device (11(M) comprising: a top reflector (200), a bottom reflector (21〇), A flexure (22〇), and a spring mechanism 10 (230). The resonant optical cavity (240) is defined by a reflector (200, 210). The two reflectors (200, 210) are separated by a variable gap ( 145-1) Separate. This top reflector (200) may be translucent or semi-reflective and may be used with the bottom reflector (210), which may be highly reflective or totally reflective, or vice versa. The mechanism (230) can be made of any suitable flexible material, such as a polymeric material, having linear and nonlinear elastic functions. Optical interference can be used to adjust the optical cavity (240) to select a particular intensity of visible light wavelength. Depending on the structure of the MEMS device (110-1), the optical cavity (240) can reflect or transmit wavelengths at a desired intensity. That is, the nature of the optical cavity (240) can be reflective or transmissive. In this typical implementation, the optical cavity (240) does not produce light. Rather, the MEMS device (110-1) relies on ambient light or an external source (not shown). The optical cavity (240) can transmit visible wavelengths, and its intensity depends on the top and bottom reflectors (200, 210) The gap distance (145-1). Therefore, the optical cavity (240) can be adjusted to a desired wavelength of 1281297 at a desired intensity by controlling the gap distance (145-1). When the appropriate amount of charge is stored on the device (200, 210), the flexure (220) and spring mechanism (230) allow for varying the gap distance (i45 - 丨) so that the desired wavelength at the desired intensity can be selected. This final charge and its corresponding a pressure are determined according to the following formula 1, which provides the attraction between the reflectors (, mo). Therefore, the reflector (200, 21〇) and the variable gap distance (145-1) The parallel plate capacitors are not considered for the fringe field.

式I 2d2 ε 〇為自由空間之介電係數。,v為跨反射器(2〇〇、2ι〇) 之私壓Α為各反射(200、210)之面積,以及d為瞬間間 隙距離(145-1)。因此,錢25微米(m)之間隙距離 (145-1),此跨7〇平方微米像素之一伏特電壓可產生7χ1〇_7 牛頓(Ν)之靜電力。 因此,相對應於反射器(2〇〇、21〇)間之小電壓之電荷 數量,提供足夠力量以移動頂部反射器(200),且將其保持 以抵抗重力與例如實體振盪之其他之力。此儲存於反射器 (200、210)中之靜電電荷,足以將頂部反射器(2〇〇)保持定 位,而無須額外之電力。 此在式1中所界定之靜電力與由彈簧機構(230)所提供 之線性彈力平衡。此彈簧力之特徵由第二式所決定。 式II : F=k(d〇-d) 12 1281297 其中k為彈簧機構(230)之線性彈性常數,dO為間隙距 離(145-1)之最初值,以及(!為瞬間間隙距離(145-1)。 如同先前所討論,此範圍在其中式1所產生之力與式2 所產生之力是在穩定平衡狀態,是在當(d〇-d)值是在〇與 5 d〇/3之間時使用電壓控制而產生。在當(d。-d)大於d〇/3時, 式1之靜電力超過式2之彈簧力,以致於反射器(200、210) 突然接合在一起。此發生是因為當可變間隙距離小於山/3 時’由於增加之電容使得過剩的電荷被被吸引至反射器 (200、210)上,其再造成根據式1反射器(2〇〇、210)之間吸 ίο 引力之增加,因此造成此兩個反射器被吸引在一起。 然而,此式1之反射器(200、210)之間吸引力可以替代 地被寫成根據式3之電荷之函數。 式ΙΠ 2εΑ 15 其中Q為在電容器上之電荷。 而F為電荷Q而非d之函數,其可以看出可以在整個間隙 例如從幾乎從0至d〇之範圍,藉由控制在反射器(2〇〇、21〇) 上電荷數量而非電壓,而控制可變間隙距離(145-1)。 此外’ MEM裝置(110-1)具有機械時間常數,其由於可 2〇 變電容器上電荷Q中之改變,而造成反射器(200)移動中之 延遲。此機械時間常數除了其他方式外可以藉由:在彈菁 機構(230)中所使用之材料、以及MEMS裝置(110-1)之操作 環境而控制。例如,MEM裝置(iio-i)之機械時間常數在當 13 1281297 於空氣中操作時為一值,而當在氦之環境中操作時為另一 值。 此充電控制電路⑽)使用各上述特徵,以控制在實質 上整個間隙範圍上之間隙距離(H)。藉由根據致能信號 5之時間期間將可選擇之控制電壓施加至瞻裝置⑽, 而此期間小於MEM襄置⑽-1)之機械時間常數,則此瞧裝 置(110-1)之可變電容,在施加參考電壓之時間期間顯得似 乎被“固定住”。因此,由第四公式可以決定:此由於施 加所選擇之參考電壓而在反射器(2〇〇、21〇)上產生之所想 10 要之累積電荷Q。 式IV : Q=CintVref 其中,為所選擇之參考電壓,以及Cint為MEM裝置 (110-1)之最初電容。 15 因此’將比較高之參考電壓施加至頂部與底部反射器 (200、210)造成較大之最初充電差異。此在頂部與底部反 射器(200、210)間最初所建立之較大充電差異,造成頂部 與底部反射器(200、210)間較大之吸引力。此較大之吸引 力在當可變間隙距離(145-1)之值減少時,造成頂部與底部 20反射器(200、210)朝彼此移動之速率相對應增加。當此可 變間隙距離(145-1)接近其所想要或所欲之值時,在頂部與 底部反射器(200、210)之間建立預先選擇或最後電荷。一 旦在頂部與底部反射器(200、210)上建立最後充電值時’ 貝iJMEM裝置(Π0-1)為浮動或為三狀態,因此防止充電狀悲 14 1281297 大幅波動,且進一步使得能夠有效控制間隙距離,其相對 於MEM裝置(110-1)之直接電壓控制為所增加之控制範圍。 由於在反射為(200、210)之間增加之充電差異,此等 反射器(200、210)可以移動至其最後位置,此移動之時間 5期間實質上小於:在施加對應於最後充電值之最初參考電 壓後,MEM裝置(110-1)機械地穩定所須之時間。 雖然上述等段落是在理想之平行板電容器與理想之線 性彈簧回復力之上下文中說明,但熟習此技術人士瞭解, 此所說明之原理可以適用於其他MEM裝置,包括但並不受限 10於·以干涉為主或以繞射為主之顯示裝置、平行板致動器、 非線性彈簧、以及其他形式之電容器。 第3A至3E圖為MEMS(100-1)之概要圖,其允許較快地移 動可變電容器(130-1)之第一與第二板(135—i、14〇—υ。此 等板(135-1、140-1)藉由施加至可變電容器(1別_1)之電 15壓、與因此第一與第二板(135-1、140-1)間充電差異加速 驅動’而更快地移至其最後位置。 第3Α圖為在最初狀態中之MEMS(l〇〇-1)之概要圖。此 MEMS包括·清除電晶體(300)、第一或致能電晶體(gig)、 第一與第二清除結點(320-1、320-2)第二或充電致能電晶 2〇 體(330)、以及可變電容器(130-1)。可以使用開關型式裝 置以取代電晶體,如同先前討論,可以在將舰奶置入已知 充電狀態中後建立最初狀態。在最初狀態中,此頂部或第 一板(135-1)由清除電晶體(300)連接至第一清除節點 (320-1),而第二或底板(140-1)連接至第二清除節點 15 1281297 (320-2)。 更特定而言,在所說明之執行中,此第一板(135-1)連 接至第一清除節點(320-1),其藉由提供其間之通路而被設 定至第一清除電壓。在第3A圖中所說明之MEMS(lOO-l)中, 5 清除電晶體(300)與致能電晶體(310)導通,而充電致能電 晶體(330)被切斷。因此,第一板(130-1)連接至第一清除 節點(320-1),其被設定至第一清除電壓。 如同先前說明,第二板或底板(140-1)連接至節點 320-2,其被設定至第二清除電壓。此第一與第二清除電壓 10 是在實質上相同之電壓位準,以致於將其連接至第一與第 二板(135-1、140-1),會將第一與第二板(135-1、140-1) 置於實質上相同之充電狀態。在此情形中,其中,在第一 與第二板間(135-1、140-1)沒有充電差異,此可變間隙差 異(145-1)是在其最大值。 15 在某些情況中,可能想要將MEMS裝置清除至兩板之間 沒有充電差異狀態以外之已知充電狀態。在此等狀態中可 以獨立控制在第一與第二清除節點(320-1、320-2)上之電 壓位準,而將第一與第二板(135-1、140-1)置於:對應於 已知可變間隙距離(145-1)之已知充電狀態。 20 第3B圖為當輸入節點(340)被預先充電時MEMS(l〇(M) 之概要圖式。在可變電容器(130-1)被重新設定之後,將輪 入節點(340)預先充電。藉由將致能電晶體(310)與清除電 晶體(300)切斷、以及將充電致能電晶體(330)導通,而將 輪入節點(340)預先充電至所選擇之加速驅動參考電壓。此 16 1281297 預先充電之大小是大於此充電值,其對應於在第一與第二 板(135-1、140-1)間所想要之最後可變間隙距離(145—1)。 此輸入節點(340)被充電是因為:如同先前所提及清除電晶 體(300)與致能電晶體(31〇)被切斷。因此,此清除電晶體 5 (如〇)之汲極與致能電晶體(310)之源極、被與電容器節點 (110-2)以及第一清除節點(320—D隔離。此所累積電荷之 電流是由大箭頭(A)代表。 10 15 20 第3C圖為當電荷被脈衝至可變電容器(13〇_丨)時 MEMS(lOO-l)之概要圖式。如同於第沉圖中所示,充電致能 電晶體(330)如同致能電晶體(31〇)被導通,而造成致能電 晶體(310)與充電致能電晶體(33〇)作為導體,因此,在Equation I 2d2 ε 〇 is the dielectric constant of free space. , v is the area of the transreflector (2〇〇, 2ι〇), the area of each reflection (200, 210), and d is the instantaneous gap distance (145-1). Therefore, the gap distance (145-1) of 25 micrometers (m), which is one volt across a 7 square micron pixel, can produce an electrostatic force of 7χ1〇_7 Newtons. Therefore, corresponding to the amount of charge of the small voltage between the reflectors (2〇〇, 21〇), sufficient force is provided to move the top reflector (200) and hold it against gravity and other forces such as solid oscillations. . This electrostatic charge stored in the reflector (200, 210) is sufficient to hold the top reflector (2〇〇) in place without additional power. The electrostatic force defined in Equation 1 is balanced with the linear spring force provided by the spring mechanism (230). The characteristics of this spring force are determined by the second formula. Formula II: F=k(d〇-d) 12 1281297 where k is the linear elastic constant of the spring mechanism (230), dO is the initial value of the gap distance (145-1), and (! is the instantaneous gap distance (145- 1) As discussed earlier, this range is in which the force generated by Equation 1 and the force generated by Equation 2 are in a stable equilibrium state, when the (d〇-d) value is at 〇 and 5 d〇/3. The voltage control is used between them. When (d.-d) is greater than d〇/3, the electrostatic force of Equation 1 exceeds the spring force of Equation 2, so that the reflectors (200, 210) are suddenly joined together. This occurs because when the variable gap distance is less than the mountain/3, the excess charge is attracted to the reflector (200, 210) due to the increased capacitance, which in turn causes the reflector according to Equation 1 (2, 210) The increase in gravitation between the two causes the two reflectors to be attracted together. However, the attraction between the reflectors (200, 210) of Equation 1 can alternatively be written as a function of the charge according to Equation 3. ΙΠ 2εΑ 15 where Q is the charge on the capacitor. And F is a function of charge Q instead of d, which can be seen throughout The gap controls the variable gap distance (145-1) by controlling the amount of charge on the reflector (2〇〇, 21〇), for example, from almost 0 to d〇. In addition, the 'MEM device ( 110-1) has a mechanical time constant which causes a delay in the movement of the reflector (200) due to a change in the charge Q on the 2 〇 variable capacitor. This mechanical time constant can be used, among other things, by The material used in the mechanism (230) and the operating environment of the MEMS device (110-1) are controlled. For example, the mechanical time constant of the MEM device (iio-i) is a value when 13 1281297 is operated in air. Another value is used when operating in an environment. The charge control circuit (10) uses each of the above features to control the gap distance (H) over substantially the entire gap range. By applying a selectable control voltage to the looking device (10) during the time period according to the enable signal 5, which is less than the mechanical time constant of the MEM device (10)-1), the device (110-1) is variable The capacitor appears to be "fixed" during the time the reference voltage is applied. Therefore, it can be determined by the fourth formula that this is the desired accumulated charge Q generated on the reflector (2〇〇, 21〇) due to the application of the selected reference voltage. Equation IV: Q = CintVref where is the selected reference voltage and Cint is the initial capacitance of the MEM device (110-1). 15 Therefore, applying a higher reference voltage to the top and bottom reflectors (200, 210) results in a larger initial charging difference. This large difference in charge initially established between the top and bottom reflectors (200, 210) results in greater attraction between the top and bottom reflectors (200, 210). This greater attraction increases the rate at which the top and bottom 20 reflectors (200, 210) move toward each other as the value of the variable gap distance (145-1) decreases. A preselected or last charge is established between the top and bottom reflectors (200, 210) as the variable gap distance (145-1) approaches its desired or desired value. Once the final charge value is established on the top and bottom reflectors (200, 210), the 'iJMEM device (Π0-1) is floating or in a three-state, thus preventing the charge-like sorrow 14 1281297 from fluctuating greatly and further enabling effective control The gap distance, which is controlled with respect to the direct voltage of the MEM device (110-1), is an increased control range. Due to the increased charging difference between the reflections (200, 210), the reflectors (200, 210) can be moved to their last position, during which time 5 of the movement is substantially less than: the application corresponds to the last charge value. After the initial reference voltage, the MEM device (110-1) is mechanically stabilized for the required time. Although the above paragraphs are described in the context of an ideal parallel plate capacitor and an ideal linear spring restoring force, those skilled in the art will appreciate that the principles described herein can be applied to other MEM devices, including but not limited to • Display devices that rely primarily on interference or diffraction, parallel plate actuators, nonlinear springs, and other forms of capacitors. 3A to 3E are schematic views of MEMS (100-1), which allow the first and second plates (135-i, 14〇-υ) of the variable capacitor (130-1) to be moved relatively quickly. (135-1, 140-1) is accelerated by the electric 15 voltage applied to the variable capacitor (1), and thus the difference in charge between the first and second plates (135-1, 140-1) And move to its final position more quickly. Figure 3 is a schematic diagram of MEMS (l〇〇-1) in the initial state. This MEMS includes · clear transistor (300), first or enabling transistor ( Gig), first and second clearing nodes (320-1, 320-2) second or charge enabling transistor 2 (330), and variable capacitor (130-1). Switch type device can be used In place of the transistor, as previously discussed, the initial state can be established after placing the ship's milk in a known state of charge. In the initial state, the top or first plate (135-1) is connected by a clearing transistor (300). To the first clear node (320-1), and the second or bottom plate (140-1) is connected to the second clear node 15 1281297 (320-2). More specifically, in the illustrated execution, this first Board (135-1) even To the first clearing node (320-1), which is set to the first clearing voltage by providing a path therebetween. In the MEMS (100-l) illustrated in FIG. 3A, 5 clearing the transistor (300) The charge transistor (310) is turned on, and the charge enable transistor (330) is turned off. Therefore, the first board (130-1) is connected to the first clear node (320-1), which is set to the first A clear voltage. As previously explained, the second or bottom plate (140-1) is coupled to node 320-2, which is set to a second clear voltage. The first and second clear voltages 10 are at substantially the same voltage. Leveling so that it is connected to the first and second plates (135-1, 140-1), placing the first and second plates (135-1, 140-1) in substantially the same state of charge In this case, there is no charging difference between the first and second boards (135-1, 140-1), and the variable gap difference (145-1) is at its maximum value. 15 In some cases In the middle, it may be desirable to clear the MEMS device to a known state of charge other than the state of no difference between the two plates. In these states, the first and second can be independently controlled. Clearing the voltage levels on the nodes (320-1, 320-2) and placing the first and second plates (135-1, 140-1): corresponding to the known variable gap distance (145-1) Known state of charge. 20 Figure 3B is a schematic diagram of MEMS (l〇(M)) when the input node (340) is pre-charged. After the variable capacitor (130-1) is reset, the wheel will be turned The node (340) is pre-charged. The wheeling node (340) is precharged to the selected accelerating drive reference voltage by disconnecting the enabling transistor (310) from the clearing transistor (300) and turning the charging enabled transistor (330) on. . The 16 1281297 precharged size is greater than this charge value, which corresponds to the desired final variable gap distance (145-1) between the first and second plates (135-1, 140-1). This input node (340) is charged because the eraser (300) and the enable transistor (31) are cut off as previously mentioned. Therefore, the drain of the clearing transistor 5 (e.g., germanium) and the source of the enabling transistor (310) are isolated from the capacitor node (110-2) and the first clearing node (320-D. The current is represented by the large arrow (A). 10 15 20 Figure 3C is a schematic diagram of MEMS (100-1) when the charge is pulsed to the variable capacitor (13〇_丨). As shown, the charge-enabled transistor (330) is turned on like the enabling transistor (31〇), causing the enabling transistor (310) and the charge-enabled transistor (33〇) to act as conductors, thus

Vref(350)與第一導電板(135-1)之間建立通路。如同先前討 論,VrEF(350)被加速驅動,以致於在第一板與第二板 (135-1、140-1)間之充電差異大於所想要之最後充電值。 此最後之充電值直接對應於所想要之可變間隙距離 (145-1)。因為此清除電晶體(3〇〇)被切斷,而防止此輸入 節點(340)之電位下降至存在於第__節點(32(M)上之^一 清除電壓。因此,累積於輸入節點(340)上之電荷可以流 動’或被脈衝至可變電容器⑽-1)。此脈衝之電荷跨致能 電晶體(31G)而流至第—板⑽—1)。此致能電晶體⑽ 通或保持在導電狀態之時間被稱為脈衝期間。 洲从上况明,此脈衝期間之時間期間是小於麵裝置 ⑴0-2)之機械時間常數。此外,此脈衝期間至少可以:: 可變電容器以及相對應_⑽―丨)電路之電性時間常數或 17 1281297 叱時間常數一樣長。如同先前討論,此機械時間常數導致 弟板與弟二板(135-1、140-1)移動中之延遲,而此移動 是由可變電容器(130-1)上電荷之Q改變所造成。因此,藉 由概據致能信號之時間期間將來自VREF(350)之可選擇控 制電壓施加至MEM裝置(110-2),此在參考電壓施加期間, 此mem裝置(no-2)之可變電容顯得好像被“固定”。 此外’藉由將參考電壓(350)加速驅動此致能信號之時 間期間,此在第一板與第二板(135—i、140—D間所造成之 充電差異大於將此可變間隙距離(丨沾—丨彡移至最後值之所 頊。此較大之充電造成兩板(135-1、140-1)間較大之吸引 力、如同先别討論,此較大之吸引力導致兩板(1奶—1、140一 1) 更快地向彼此移動。 第3D圖為在將加速驅動參考電壓(35〇)施加至可變電 1谷态(130—丨)後MEMSC100-1)之概要圖式。藉由將致能電晶 15體(31〇)切斷而將可變電容器與節點(340)解除連接。因 匕將可、交電谷裔(13〇-1)與其他電路包括充電控制電路 (125-1)電性隔離。當此可變電容器(13〇〇是在隔離狀態 中%此兩板(135-1、140-1)朝向彼此移動,以響應第一 2〇板與^二板(135—1、14(M)間充電差異所造成之吸引力。 2〇 +當此第-板與第二板(135—卜140-1)朝向彼此移動 Ί相對移動速率,是如同先前討論由可變電容以130—D 之彈簧力所平衡之靜電吸引力之大小有關。因此,此比較 大之吸引力造成第一板與第二板(135-1、140-1)朝向彼此 更决地移動。因此,此等板以較對應其未被加速驅動之情 18 1281297 形中更大速率朝彼此移動。 當此等第一板與第二板(135〜丨、140—丨)朝向彼移動 捋,此可變間隙距離(丨奶—丨)接近所想要之最後值。如果允 斗將在可變電容器(丨刈—丨)上加速驅動充電之期間保持:長 5於此可變電容器(130-1)之機械時間常數,則此可變間隙距 _(145 1)可以小於所想要之最後值。將可變間隙距離移至 所想要之最後值,可以從可變電容器^304)去除預先選擇 數®之電荷,而將第一板與第二板(135-1、140-1)移至可 又間隙距離(145-1)所想要之最後值,如同以下將更詳細討 10 論者。 弟3Ε圖為當將預先選擇數量電荷從可變電容哭(1训一 1) 之第一導電板(135-1)去除時之MEMU00-1)之概要圖式。為 了從第一導電板(135_丨)去除預先選擇數量電荷,在此第一 板(135-1)與第一清除節點(32〇—υ間建立通路一段預先決 15定數量時間,此節點在此時設定為加速驅動補償電壓。此 通路疋根據參考第3Α圖所說明相同過程建立,所不同的是 可變電容器⑽―2)之第-板(135—υ並未被提升至與第二 板(140-1)相同電壓。而是將第一清除節點(32〇_υ設定至 加速驅動補償電壓。將此加速驅動補償電壓設定至一位 20準,其對應於被去除之預先選擇數量電荷。藉由將充電電 晶體(310)與清除電晶體(300)導通,而在可變電容哭 (130-1)之第一板(135—丨)與第一清除節點(32〇—丨)間形成 導電通路。然後,在對應於去除預先選擇數量電荷之期間 後,藉由將充電電晶體(310)切斷而將此導電通路切斷。將 19 1281297 預先選擇數量電荷從第一板(135-1)去除,導致第一板與第 二板(135-1、140-1)間之充電差異,其對應於可變間隙距 離(145-1)之最後值。一旦將此預先選擇數量電荷從第一板 (135-1)去除’則如同參考第3D圖說明,將可變電容器 5 (130-1)再度與其他電路電性隔離。 總之,第3A至3E圖顯示電路之概要圖,其中vref(35〇) 被加速驅動,以減少將此第一板與第二板(135—丨、 移至由最後可變間隙距離(145-1)所分開距離所須時間。此 所須時間可以藉由··將VREF(350)加速驅動、以及因此加速 10在第一板上累積電荷而減少,以允許板(135-1、140-1)快 速朝彼此移動,以響應在第一與第二板間之充電差異。在 第一板(135-1)已完成其朝向所想要之最後機械狀態進行 之部份後,從可變電容器(130-1)去除預先設定數量剩餘電 荷,以致於充電差異對應於最後可變間隙距離(145-1),而 15 允許第一板與第二板(135-1、140-1)間之可變間隙距離 (145-1)穩定在其最後值。 更特定而言,將VREF(350)連接至第一板(135-1)—段 預設時間,以加速驅動第一板與第二板(135-1、140-1)間 之充電差異。然後’將可變電容器(130-1)與其他電路電性 2〇隔離。當此可變電容器(130-1)與其他電路電性隔離時,此 加速驅動充電差異造成:第一板與第二板(丨35-1、140、;^ 更快地向彼此移動。當此第一板與第二板(:1354、14(Kl) 間之可變間隙距離(145-1)接近所想要之最後值時,藉由轉 頂板(135-1)與第一清除節點(320-1)連接而將過剩之電荷 20 1281297 去除,此節點在此時被設定為加速軸補償電壓。然後, 將可變電容器(13G-1)與其他電路再度隔離,而此第_板與 第二板⑽小14(M)間之可變_轉⑽—丨)穩定在其 最後值。 ^ 如同先前討論’將電壓加速驅動可以❹:將第—板 與第二板(135小140-1)間之可變間隙距離移至可 變間隙距離(145-1)之最後值所須時間。例如,根據—血型 實施例,祕可變卩«_從最_隙輯侧錄至所想 要間隙距離舰舰巾所須典型之㈣為大約3145#^ 10 15 20 此時間S具有_#m2面積之繞射光線裝置(dld)典型所須 時間。藉由電壓加速驅動方法移動第—與第二板可以將^ 時間減少至U45P或更少。在光學影像應用中,此等_ 裝置被❹作為光線調㈣,可明由減少此等第—板邀 第二板⑽—卜140—1)之移動時間,將不想要之影像人: 效果最小化。 ' 第4圖為方塊圖其說明典型之微機電系統(MEMS、 _。此__0)包括_xN行陣列之腿單元⑷〇)。各 MEM單元⑽)包括:μ職置⑽_3)與開關電路(125_2)。 雖然為了簡單起見並未顯示,各贿裝置(11()_3)更包括: 第-與第二導電板,其形成由可變間隙距離所分隔之可變 電容器,如同在第3A至3D圖中所示者。 叹。十各開關電路(125-2)以控制:在有關刪裝置 (110-3)之可變電容器上所儲存電荷之數量,因此控制有關 可變間隙距離。亦設計各開關電路(125_2)以提供電荷,其 21 1281297 數量大於對應於可變間隙距離最後 各開關電路(125-2)從_裝 %何數置。亦設计 之電荷,以致於其所剩餘之 a3)W預先選擇數量 後可變間隙距離。 。心於·在導電板間之最 此陣列之Μ列之各列接收 (430)、以及充電(44〇)信號。 π除(420)、致能 (125-2)接收實質上相同之/、’、α 之所有開關電路 之各行勝用於總共N個參號。此陣列之睹 〜、45〇)。 考―竣之各別之參考電壓 10 為了將所想要之電荷儲存或 寫入’ 15 早兀(41:之各MEM㈣11M),將料 ] ::=Γ給各N行’而_參考電壓信號可能具 k值。此寺清除信號⑽)與致能信號(則首 先被脈衝,以造成此給定列之各„電路⑽_2)將腦裝 置(110-3)置於已知之充電狀態中。如同先前討論此等清 除信號(_與致能信號(榻)可以從其有關之_裝置 (110-3)移除或清除任何可能之儲存電荷。將電荷移除信號 (_設定至在節點32(M(第之第—清除電壓,而將 第-板與第二板間之充電差異置於已知之充電狀態。然後 20給予用於給定列之充電致能信號(44〇),而將各有關腦裝 置(110-3)之輸入節點預先充電。 然後,將用於各給定列之致能信號(43〇丫,脈衝,,,以 導致給定列之各開關電路(125-2)將其有關之參考電壓施 加至有關之MEM裝置(11〇〜3)一段預先設定之時間期間。如 22 1281297 同先前討論,此參考電壓將將累積在可變電容器上之電荷 加速驅動。因此,將此數量大於根據最後充電值之電荷儲 存在有關可變電容器上,因而強迫此可變間隙距離朝向其 最後值。然後,當此被加速驅動電荷驅動此等導電板朝向 5 其所想要之位置移動時,將各MEM裝置(110-3)對其他電路 隔離。 再度施加清除信號(420)與致能信號(430),從導電板 移除所選擇數量之電荷。此清除脈衝導致與第一清除脈衝 相同之效果,但其脈衝較短時間期間,而只從可變電容器 10 移除所選擇數量之電荷。因此,在此第二清除脈衝期間, 將此電荷去除信號設定為加速驅動補償電壓。從可變電容 器移除所選擇數量之電荷,而留下存在於導電板上之充電 差異,其對應於在導電板間之可變最後間隙距離。在去除 此所選擇數量電荷後,允許此等導電板機械地穩定在其最 15 後值。對此箭頭之各列重複此程序,將所想要之電荷”寫” 至此陣列之各MEM單元(410)。 在參考第1至4圖所討論之實施例中,設計此等開關電 路(125、125-1、125-2)以控制電壓。在其他之實施例中, 可以設計此等開關電路(125、125-1、125-2)以控制電流。 20 在此種實施例中,此開關電路可以為電晶體其作用為電流 源。例如,在三極管區域中,此致能電晶體可以作用為電 阻器以控制電流。此外,在飽和區域中此致能電晶體可以 直接作為電流源。因此,會在輸入節點(340)上累積電流脈 衝。然後將此脈衝電流脈衝至可變電容器上,如同先前所 23 1281297 纣論將可變電容器充電。 =之說明僅提供以描述與說明本發明之方法與裝,、用意並非窮#,$收lL 士 — 置 10 15 20 之任何確實二Γ ’或將此方法與裝置限制於所揭示 變化 W上之揭示可以對其做許多修正與 界定。本發明之範岐Μ下之巾請專利範圍所 【陶式簡單明】 弟1圖為間早方塊圖,豆今明 之微機電_s)„; 本發明之典型實施例 機電為棘關,魏明根據本翻典㈣施例之微 =_概,其制㈣本翻料實施例之當 :產異從可變電容器去除時微機電裝置; 充電:圖為概要圖,其制根據本發明典型實施例之在 則知作期間之微機電裝置; 弟3CBI為概要圖,其說明根據本發明典型實施例之在 兄电脈衝操作期間之微機電裝置; 第3D圖為概要圖,其說明在穩住操作期間之也型微機 電裝置; 第3Ε圖為概要圖,其說明在電荷去除操作期間之典型 微機電裝置;以及 第4圖為說明典型MEMS裝置之方塊圖,此裝置具有在从 X Ν陣列中之多個MEMS單元。 【主要元件符號說明】 24 1281297 100···微機電系統 100-1···微機電糸統 105···充電控制電路 110···微機電裝置 110-1···微機電裝置 110-2···微機電裝置 110-3···微機電裝置 115···可變電源 120…控制器 125…切換電路 125-1···切換電路 125-2···切換電路 130···可變電容器 130-1···可變電容器 135···第一導電板 135-1···第一導電板 140···第二導電板 140-1···第二導電板 145···可變間隙距離 145-l···可變間隙距離 150…通路 155…通路 160…通路 165…通路 170…通路 175···充電控制電路 200···頂部反射器 210···底部反射器 220···撓性件 230···彈簧機構 240···光學空腔 300···清除電晶體 310···致能電晶體 320-1···第一清除節點 320-2···第二清除節點 330···充電致能電晶體 340···輸入節點 350···參考電壓 400···微機電系統 410···微機電系統單元 420···清除信號 430···致能信號 440···充電信號 450···參考電壓 460···去除充電信號 25A path is established between Vref (350) and the first conductive plate (135-1). As previously discussed, VrEF (350) is driven so that the difference in charge between the first board and the second board (135-1, 140-1) is greater than the desired final charge value. This last charge value corresponds directly to the desired variable gap distance (145-1). Because the clearing transistor (3〇〇) is cut off, the potential of the input node (340) is prevented from falling to the clearing voltage present at the __ node (32(M). Therefore, accumulated at the input node The charge on (340) can flow 'or be pulsed to variable capacitor (10)-1). The charge of this pulse flows across the enabling transistor (31G) to the first plate (10)-1). The time during which the enabling transistor (10) is turned on or maintained in a conducting state is referred to as the pulse period. From the above, the period of time during this pulse is less than the mechanical time constant of the face device (1) 0-2). In addition, during this pulse period, at least: the variable capacitor and the corresponding _(10)-丨) circuit have the same electrical time constant or 17 1281297 叱 time constant. As previously discussed, this mechanical time constant causes a delay in the movement of the two plates (135-1, 140-1), which is caused by a change in the Q of the charge on the variable capacitor (130-1). Therefore, the selectable control voltage from VREF (350) is applied to the MEM device (110-2) during the time period during which the enable signal is asserted, during the reference voltage application, the mem device (no-2) The variable capacitor appears to be "fixed". In addition, during the time period during which the reference voltage (350) is accelerated to drive the enable signal, the difference in charging caused between the first board and the second board (135-i, 140-D is greater than the variable gap distance (丨 丨彡 丨彡 丨彡 丨彡 丨彡 丨彡 丨彡 顼 顼 顼 顼 顼 顼 顼 顼 顼 顼 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此 此The plates (1 milk-1, 140-1) move faster toward each other. Figure 3D shows the application of the accelerated drive reference voltage (35〇) to the variable electric 1 valley state (130-丨) after the MEMSC100-1) The schematic diagram is to disconnect the variable capacitor from the node (340) by cutting the enabling transistor 15 (31 〇). Because it will be able to exchange electricity, the valley (13 〇 -1) and others The circuit includes a charge control circuit (125-1) electrically isolated. When the variable capacitor (13〇〇 is in an isolated state, the two plates (135-1, 140-1) move toward each other in response to the first 2 The attraction caused by the difference in charging between the seesaw and the second plate (135-1, 14(M). 2〇+ When the first plate and the second plate (135-b 140-1) move toward each other, The rate of motion is related to the magnitude of the electrostatic attraction that is balanced by the spring force of the variable capacitor with 130-D as previously discussed. Therefore, this relatively large attraction causes the first and second plates (135-1, 140). -1) moving more reciprocally toward each other. Therefore, the plates move toward each other at a greater rate than the corresponding 18 1281297 shape that is not accelerated. When such first and second plates (135~丨) , 140—丨) moving toward the other side, the variable gap distance (丨 milk-丨) is close to the desired final value. If the bucket will be accelerated during the acceleration of the variable capacitor (丨刈-丨) : Length 5 of the mechanical time constant of the variable capacitor (130-1), then the variable gap distance _ (145 1) can be less than the desired final value. Move the variable gap distance to the desired end Value, the charge of the preselected number ® can be removed from the variable capacitor ^304), and the first plate and the second plate (135-1, 140-1) can be moved to the gap distance (145-1). The final value, as will be discussed in more detail below, is the 10th. A schematic diagram of the MEMU00-1 when the first conductive plate (135-1) is removed by the variable capacitor crying (1 training-1). In order to remove the preselected amount of charge from the first conductive plate (135_丨), The first board (135-1) and the first clearing node (32〇-υ establish a path for a predetermined period of time for a predetermined amount of time, this node is set to accelerate the driving compensation voltage at this time. This path is based on the reference figure 3 The same process is illustrated, except that the first plate of the variable capacitor (10) - 2) (135 - υ is not boosted to the same voltage as the second plate (140-1). Instead, the first clearing node (32〇_υ is set to the acceleration driving compensation voltage. This acceleration driving compensation voltage is set to a bit 20, which corresponds to the preselected amount of charge removed. By charging the transistor ( 310) is electrically connected to the clearing transistor (300), and forms a conductive path between the first board (135-丨) of the variable capacitor crying (130-1) and the first clearing node (32〇-丨). Then, Corresponding to the period of removing the preselected number of charges, the conductive path is cut by cutting the charging transistor (310). The 19 1281297 preselected amount of charge is removed from the first plate (135-1), resulting in the The difference in charge between a plate and the second plate (135-1, 140-1), which corresponds to the final value of the variable gap distance (145-1). Once this pre-selected amount of charge is taken from the first plate (135- 1) Removal 'The variable capacitor 5 (130-1) is electrically isolated from other circuits again as described with reference to Figure 3D. In summary, Figures 3A to 3E show schematic diagrams of the circuit, where vref(35〇) is Accelerate the drive to reduce the first plate and the second plate (135-丨, move to the most The time required to separate the distance after the variable gap distance (145-1). This required time can be reduced by accelerating the driving of VREF (350), and thus accelerating the accumulation of charge on the first board. The plates (135-1, 140-1) move rapidly toward each other in response to a difference in charging between the first and second plates. The first plate (135-1) has completed its orientation towards the desired final mechanical state. After that, a predetermined amount of residual charge is removed from the variable capacitor (130-1) such that the charging difference corresponds to the last variable gap distance (145-1), and 15 allows the first board and the second board (135) The variable gap distance (145-1) between -1, 140-1) is stabilized at its final value. More specifically, VREF (350) is connected to the first board (135-1) - the preset time, To accelerate the difference in charging between the first board and the second board (135-1, 140-1). Then 'isolated the variable capacitor (130-1) from other circuits. 130-1) When electrically isolated from other circuits, this acceleration drive charging difference is caused by: the first board and the second board (丨35-1, 140, ;^ faster) This movement. When the variable gap distance (145-1) between the first plate and the second plate (: 1354, 14 (Kl) is close to the desired final value, by rotating the top plate (135-1) The first clear node (320-1) is connected to remove the excess charge 20 1281297, which is set to the acceleration axis compensation voltage at this time. Then, the variable capacitor (13G-1) is again isolated from other circuits. The variable_turn (10)-丨 between the first plate and the second plate (10) 14 (M) is stabilized at its final value. ^ As previously discussed, 'accelerating the voltage can drive: the time required to move the variable gap distance between the first plate and the second plate (135 small 140-1) to the last value of the variable gap distance (145-1) . For example, according to the blood type embodiment, the secret variable 卩 «_ from the most _ gap side to the desired clearance distance from the ship's scarf is typical (four) is about 3145 #^ 10 15 20 This time S has _#m2 The area of the diffracted light device (dld) typically takes time. Moving the first and second boards by the voltage acceleration driving method can reduce the time to U45P or less. In optical imaging applications, these devices are used as light adjustments (4), which can be seen by reducing the movement time of the second board (10) - Bu 140-1), and the unwanted images are: Chemical. Figure 4 is a block diagram illustrating a typical MEMS (MEMS, _. This __0) including the leg unit (4) of the _xN row array). Each MEM unit (10) includes: a μ position (10)_3) and a switch circuit (125_2). Although not shown for the sake of simplicity, each bribe device (11()_3) further includes: first and second conductive plates that form variable capacitors separated by variable gap distances, as in Figures 3A through 3D Shown in it. sigh. Each of the ten switching circuits (125-2) controls the amount of charge stored on the variable capacitor of the associated device (110-3), thus controlling the variable gap distance. Each switching circuit (125_2) is also designed to provide a charge, the number of which is greater than the variable gap distance and the last switching circuit (125-2). The charge is also designed such that the remaining a3)W is preselected by the number of variable gap distances. . The heart receives and (430) and charges (44〇) signals in the columns of the most array of conductive plates. π divides (420), enables (125-2) each row of all switching circuits that receive substantially the same /, ', a is used for a total of N parameters. The array is ~, 45〇). Test each of the reference voltages 10 in order to store or write the desired charge '15 early 兀 (41: each MEM (four) 11M), the material :: :: Γ to each N line 'and _ reference voltage signal May have a k value. This temple clears the signal (10)) and the enable signal (which is first pulsed to cause each of the given columns of circuits (10)_2) to place the brain device (110-3) in a known state of charge. As previously discussed, such a clearing The signal (_ and enable signal (bed) can remove or clear any possible stored charge from its associated device (110-3). Set the charge removal signal (_ to node 32 (M (first) - clearing the voltage while placing the difference in charge between the first plate and the second plate in a known state of charge. Then 20 is given a charge enable signal (44 〇) for a given column, and each associated brain device (110) -3) The input node is pre-charged. Then, the enable signals for each given column (43 〇丫, pulse, , to cause each of the switching circuits (125-2) of a given column to have their associated reference The voltage is applied to the associated MEM device (11〇~3) for a predetermined period of time. As discussed previously in 22 1281297, this reference voltage will accelerate the charge accumulated on the variable capacitor. Therefore, this amount is greater than The charge of the last charge value is stored in the variable capacitor Up, thus forcing the variable gap distance toward its final value. Then, when this accelerated driving charge drives the conductive plates to move toward their desired positions, the respective MEM devices (110-3) are paired with other circuits. Isolation. The clear signal (420) and the enable signal (430) are applied again to remove the selected amount of charge from the conductive plate. This clear pulse results in the same effect as the first clear pulse, but the pulse is pulsed for a short period of time. Only the selected amount of charge is removed from the variable capacitor 10. Therefore, during this second clear pulse, this charge removal signal is set to accelerate the drive compensation voltage. The selected amount of charge is removed from the variable capacitor, leaving The difference in charge present on the conductive plate, which corresponds to the variable final gap distance between the conductive plates. After removing the selected amount of charge, the conductive plates are allowed to mechanically stabilize at their maximum value of 15. This sequence is repeated for each column of arrows, and the desired charge is "written" to each MEM cell of the array (410). In the embodiment discussed with reference to Figures 1 through 4, such switches are designed The circuits (125, 125-1, 125-2) control the voltage. In other embodiments, the switching circuits (125, 125-1, 125-2) can be designed to control the current. 20 In this embodiment In the transistor, the switching circuit can function as a current source. For example, in the triode region, the enabling transistor can act as a resistor to control the current. In addition, the enabling transistor can be directly used as a current source in the saturation region. Therefore, a current pulse is accumulated on the input node (340). This pulse current is then pulsed onto the variable capacitor, as in the previous 23 1281297 paradox charging the variable capacitor. = Description is provided only for description and description. The method and the installation of the invention, the intention is not poor #, $收 lL - set any true two of 10 15 20 ' or the method and device to limit the disclosure of the change W can be modified and defined . The patent scope of the invention is as follows: [Tao style simple and clear] The brother 1 is an early block diagram, and the MEMS of the present invention is _s) „; According to this transcript (4), the micro- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The microelectromechanical device of the embodiment is known as the microelectromechanical device; the 3CBI is a schematic diagram illustrating the microelectromechanical device during the operation of the electroacoustic pulse according to an exemplary embodiment of the present invention; FIG. 3D is a schematic diagram illustrating the stability The MEMS device during operation; FIG. 3 is a schematic diagram illustrating a typical MEMS device during a charge removal operation; and FIG. 4 is a block diagram illustrating a typical MEMS device having a 从 from X Ν Multiple MEMS cells in the array. [Main component symbol description] 24 1281297 100···Microelectromechanical system 100-1···Microelectromechanical system 105···Charge control circuit 110···Microelectromechanical device 110-1 ···Micro-electromechanical device 110-2···Microcomputer Device 110-3···Microelectromechanical device 115···Variable power supply 120...Controller 125...Switching circuit 125-1···Switching circuit 125-2···Switching circuit 130···variable capacitor 130- 1···variable capacitor 135···first conductive plate 135-1···first conductive plate 140···second conductive plate 140-1···second conductive plate 145···variable gap Distance 145-l···variable gap distance 150...path 155...path 160...path 165...passage 170...passage 175···charge control circuit 200···top reflector 210···bottom reflector 220·· ·Flexible member 230···Spring mechanism 240···Optical cavity 300···Clearing transistor 310···Enable transistor 320-1···First clearing node 320-2···Second Clearing node 330···Charging enabled transistor 340···Input node 350···Reference voltage 400···Microelectromechanical system 410···Microelectromechanical system unit 420···Clearing signal 430···Enable Signal 440···Charging signal 450···Reference voltage 460···Removing charging signal 25

Claims (1)

1281297 十、申請專利範圍: L —種驅動平行板可變微機電電容器之方法,其包括以下 步驟: •跨柯艾電容器之第—與第二導電板建立第一充 '、’、巾謂-與第二導電板是藉由可變間隙距離 而分開; 將該第一與第二板隔離第一時間期間;以及 +將該充電差異減少至小於該第—充電差異之最後 电差"且其中違第二充電差異對應於該可變間隙距 離之第二值。 2·如申請專利範圍第_之方法,更包括在減少該充電差 /、後’將a亥第一與第二板隔離第二時間期間。 3·如申請專利範圍第㈣之方法,其中建立該第一充電差 異包括:將該第-導電板連接至參考電壓源,以及將該 第二導電板連接至清除電壓。 4·如申請專利範圍第㈣之方法,其中該第一充電差異造 成在弟-與第二導電板間之最初吸引力,其大於對應於 該可變間隙距離之該第二值之第二吸引力。 5· 2請專利範圍第1項之方法,其中該平行板可變_電 谷為包括:以繞射為主之光學調變裝置。 6· -種驅動繞射為主之光學調變裝置之方法,其包括以下 步驟: 建立關於可變電容器之第—與第二導電板之最初 已知充電狀態’其中該第—與第二導電板是藉由可變間 26 1281297 隙距離而分開; 跨該可變電容器之第一與第二導電板建立第一充 電差異,以強迫該第一與第二導電板朝向彼此移動; 將該第一與第二導電板隔離第一時間期間;以及 5 將該充電差異減少至小於該第一充電差異之第二 充電差異,且其中該第二充電差異對應於該可變間隙距 離之第二值;以及 將該可變電容器隔離第二時間期間,以允許該第一 與第二板穩定於該可變間隙距離之該第二值。 10 7.如申請專利範圍第6項之方法,其中建立該已知充電狀 態包括:將該第一導電板連接至第一清除電壓,以及將 該第二導電板連接至第二清除電壓。 8. —種充電控制電路,包括: 可變電源;以及 15 開關電路,其被設計將加速驅動脈衝電荷從該電壓 源傳送至可變電容器上,將該可變電容器隔離預設時間 期間,以及從該可變電容器去除該被加速驅動電荷之所 選擇數量,以致於在該可變電容器上所存留之電荷實質 上對應於第二充電狀態。 20 9.如申請專利範圍第8項之充電控制電路,其中該開關電 路更包括第一清除節點,其中該第一清除節點在第一清 除電壓與補償電壓間選擇性地切換,以致於將該可變電 容器連接至該第一清除節點,當該第一清除節點是在該 第一清除電壓時,則將該可變電容器置於最初已知充電 27 1281297 狀態中,且將該可變電容器連接至該第一清除節點,當 該第一清除節點是在該補償電壓時,將該選擇數量之該 加速驅動電荷去除。 ίο. —種微機電系統,包括: 5 — Μ列X N行之微機電單元之陣列,其中各該單元 包括一微機電裝置(MEM裝置),其具有由可變間隙距離 所分開之第一導電板與第二導電板所形成之可變電容 裔, 一開關電路具有輸入節點,其被設計以接收在所選 10 擇加速驅動電壓位準之參考電壓,且被設計以響應此充 電信號以加速驅動脈衝電荷將該輸入節點預先充電至 該所選擇之加速驅動電壓位準,以及其中設計該開關電 路響應致能信號,跨該MEM裝置之可變電容器之第一與 第二板施加該所選擇之加速驅動電壓位準經歷該段時 15 間期間,因此造成該加速驅動脈衝電荷在該可變電容器 上聚集,以及其中設計該開關電路響應電荷去除信號, 從第一導電板上去除所選擇數量之電荷。 28 1281297 七、指定代表圖: (一) 本案指定代表圖為:第(3A )圖。 (二) 本代表圖之元件符號簡單說明: 100_1···微機電糸統 110-2···微機電裝置 125-1···切換電路 130 -1···可變電容器 135-1···第一導電板 140-1···第二導電板 145-1···可變間隙距離 300···清除電晶體 310···致能電晶體 320-1···第一清除節點 320-2···第二清除節點 330···充電致能電晶體 340···輸入節點 350···參考電壓 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1281297 X. Patent Application Range: L—A method for driving a parallel plate variable MEMS capacitor, which comprises the following steps: • The first of the cross-Keai capacitors - the first charge to the second conductive plate, ', ', towel- Separating from the second conductive plate by a variable gap distance; isolating the first and second plates for a first time period; and + reducing the charging difference to be less than a final electrical difference of the first charging difference " Wherein the second charging difference corresponds to the second value of the variable gap distance. 2. The method of claim _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3. The method of claim 4, wherein the establishing the first charging difference comprises: connecting the first conductive plate to a reference voltage source, and connecting the second conductive plate to a clear voltage. 4. The method of claim 4, wherein the first charging difference causes an initial attraction between the younger and the second conductive plate, which is greater than a second attraction corresponding to the second value of the variable gap distance force. The method of claim 1, wherein the parallel plate variable_electric valley includes: an optical modulation device mainly based on diffraction. 6. A method of driving a diffraction-based optical modulation device, comprising the steps of: establishing an initial known state of charge with respect to a first and a second conductive plate of a variable capacitor - wherein the first and second conductive The plates are separated by a variable gap of 26 1281297; a first charging difference is established across the first and second conductive plates of the variable capacitor to force the first and second conductive plates to move toward each other; Separating from the second conductive plate for a first time period; and 5 reducing the charging difference to a second charging difference less than the first charging difference, and wherein the second charging difference corresponds to the second value of the variable gap distance And isolating the variable capacitor for a second time period to allow the first and second plates to stabilize at the second value of the variable gap distance. The method of claim 6, wherein establishing the known state of charge comprises: connecting the first conductive plate to a first clearing voltage, and connecting the second conductive plate to a second clearing voltage. 8. A charge control circuit comprising: a variable power supply; and a 15 switch circuit designed to transfer accelerated drive pulse charge from the voltage source to the variable capacitor, to isolate the variable capacitor for a predetermined period of time, and The selected number of accelerated drive charges is removed from the variable capacitor such that the charge remaining on the variable capacitor substantially corresponds to the second state of charge. The charging control circuit of claim 8, wherein the switching circuit further comprises a first clearing node, wherein the first clearing node selectively switches between the first clearing voltage and the compensation voltage, so that the a variable capacitor is coupled to the first clearing node, and when the first clearing node is at the first clearing voltage, placing the variable capacitor in an initial known state of charge 27 1281297, and connecting the variable capacitor Up to the first clearing node, when the first clearing node is at the compensation voltage, the selected amount of the accelerated driving charge is removed. Ίο. A MEMS system comprising: 5 - an array of arrays of MEMS devices, wherein each unit comprises a microelectromechanical device (MEM device) having a first conductivity separated by a variable gap distance a variable capacitance formed by the board and the second conductive plate, a switching circuit having an input node designed to receive a reference voltage at a selected selected driving voltage level and designed to accelerate in response to the charging signal Driving the pulse charge to precharge the input node to the selected accelerated drive voltage level, and wherein the switch circuit is configured to respond to the enable signal, applying the selection across the first and second plates of the variable capacitor of the MEM device The accelerated driving voltage level experiences 15 periods during the period, thus causing the accelerated driving pulse charge to accumulate on the variable capacitor, and wherein the switching circuit is designed to remove the selected number from the first conductive plate in response to the charge removal signal The charge. 28 1281297 VII. Designated representative map: (1) The representative representative of the case is: (3A). (2) A brief description of the component symbols of this representative diagram: 100_1···Microelectromechanical system 110-2···Microelectromechanical device 125-1···Switching circuit 130-1···variable capacitor 135-1· ··First conductive plate 140-1···Second conductive plate 145-1···Variable gap distance 300···Clearing transistor 310···Enable transistor 320-1···First clear Node 320-2···Second clearing node 330···Charging enabled transistor 340···Input node 350···Reference voltage 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW93121599A 2004-01-23 2004-07-20 Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system TWI281297B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/763,345 US7400489B2 (en) 2003-04-30 2004-01-23 System and a method of driving a parallel-plate variable micro-electromechanical capacitor

Publications (2)

Publication Number Publication Date
TW200525851A TW200525851A (en) 2005-08-01
TWI281297B true TWI281297B (en) 2007-05-11

Family

ID=38741694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121599A TWI281297B (en) 2004-01-23 2004-07-20 Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system

Country Status (1)

Country Link
TW (1) TWI281297B (en)

Also Published As

Publication number Publication date
TW200525851A (en) 2005-08-01

Similar Documents

Publication Publication Date Title
JP4740156B2 (en) Charge control circuit
US6829132B2 (en) Charge control of micro-electromechanical device
US7400489B2 (en) System and a method of driving a parallel-plate variable micro-electromechanical capacitor
US6853476B2 (en) Charge control circuit for a micro-electromechanical device
US7443568B2 (en) Method and system for resonant operation of a reflective spatial light modulator
US7505195B2 (en) Reflective spatial light modulator with high stiffness torsion spring hinge
US9510103B2 (en) Microelectromechanical apparatus for generating a physical effect
JP2004280106A (en) Micro mirror element including dielectrophoretic liquid
WO2007040756A1 (en) Control circuit for overcoming stiction
JP2002236265A (en) Driver and method of operating micro-electromechanical system(mems) device
JP2009201317A (en) Method of controlling semiconductor device and electrostatic actuator
JP2008122961A (en) Low-voltage micromechanical device
WO2006096593A2 (en) Fine control of rotation and translation of discretely controlled micromirror
WO2006110293A1 (en) Light modulator device
JP4528815B2 (en) Semiconductor device and method for controlling electrostatic actuator
TWI281297B (en) Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system
EP1706774A1 (en) Micro-mirrors with flexure springs
WO2002042825A1 (en) Light modulation device and system
JP2005253187A (en) Drive unit of electrostatic actuator and drive method
CN113640983B (en) Anti-suction flat plate type MEMS galvanometer
JP2007074826A (en) Minute electromechanical element and minute electromechanical element array
CA2422384A1 (en) Electrostatically operated device
KR100677204B1 (en) A deformable micromirror with two dimension
JP4606466B2 (en) Charge control circuit for microelectromechanical devices
CN106646857B (en) Piezoelectric micro-mirror and control method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees