TW200525851A - A system and a method of driving a parallel-plate variable micro-electromechanical capacitor - Google Patents

A system and a method of driving a parallel-plate variable micro-electromechanical capacitor Download PDF

Info

Publication number
TW200525851A
TW200525851A TW93121599A TW93121599A TW200525851A TW 200525851 A TW200525851 A TW 200525851A TW 93121599 A TW93121599 A TW 93121599A TW 93121599 A TW93121599 A TW 93121599A TW 200525851 A TW200525851 A TW 200525851A
Authority
TW
Taiwan
Prior art keywords
charge
variable
gap distance
voltage
variable capacitor
Prior art date
Application number
TW93121599A
Other languages
Chinese (zh)
Other versions
TWI281297B (en
Inventor
Andrew L Van Brocklin
Eric Martin
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/763,345 external-priority patent/US7400489B2/en
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW200525851A publication Critical patent/TW200525851A/en
Application granted granted Critical
Publication of TWI281297B publication Critical patent/TWI281297B/en

Links

Abstract

A method of driving a parallel-plate variable micro-electromechanical capacitor (110-2, 130, 130-1) includes establishing a first charge differential across first and second conductive plates (135, 135-1, 140) of a variable capacitor(110-2, 130, 130-1) in which the first and second conductive plates (135, 135-1, 140) are separated by a variable gap distance (145, 145-1), isolating the first and second plates for a first duration, decreasing the charge differential to a second charge differential which is less than the first charge differential and in which the second charge differential corresponds to a second value of the variable gap distance (145, 145-1).

Description

200525851 九、發明說明: L發明所屬之技術領域】 本申請案是2003年4月30日申請之第1〇/437, 522號美 國專利申請案「微機電裝置電荷控制技術」之部分繼續申 5 請案,該案之整個内容併供本案參考。 本發明是有關於用以驅動平行板可變微機電電容器之 糸統與方法。 發明背景 10 微機電系統(MEMS)是一種使用薄膜技術所發展之系 統’且其包括電氣與微機械元件。MEMS裝置使用於各種應 用中’例如:光學顯示系統、壓力感測器、流動感測器、 以及充電控制致動器。MEMS裝置使用靜電力或能量,以移 動微機械元件或監視其移動。在微機電裝置之一種形式 15中,為了達成所想要之結果,則藉由平衡靜電力與機械回 復力’以控制電極間之間隙距離。典型地,數位式MEMS裝 置使用兩種離散間隙距離,而類比式MEMS裝置使用可變之 間隙距離。 此種MEMS裝置是使用各種方法發展出。在一種方法 2〇中,將一種可變形撓曲膜片設置於一電極上,且被靜電吸 引至此電極。其他方法使用矽或鋁之片(flap)或橫樑以形 成頂部導電層。以光學之應用,此導電層為反射式,而此 撓曲膜片變形,使用靜電力以導引入射於導電層上之光線。 一種用於控制電極間間隙距離之方法是對電極施加持 200525851 續控制電壓,其中增加控制電壓以減少間隙距離,或減少 控制電壓以增加間隙距離。然而,此種方法會遭受到靜電 不穩定,其大幅減少可有效控制間隙距離之可使用操作範 圍。此外,間隙距離之改變之速率主要取決於抓批裝置之 5物理特徵。當電壓改變時,隨著MEMS裝置穩定在其最後位 置,此等電極間間隙距離之改變落後於電壓之改變。 【發明内容】 發明概要 此驅動平形板可變微機電電容器之方法包括:建立跨 10此可變電容器第-與第二導電板之第一充電差異,其中此 第一與第二導電板藉由可變間隙距離分開,將第一與第二 導電板隔離第一時間期間,然後減少充電差異至小於第一 充電差異之第二充電差異,以及其中第二充電差異對應於 可變間隙距離之第二值。 15圖式簡單說明 此等所附圖式說明本發明裝置與方法之各種實施例, 且為本s兄明書之一部份。此等所說明之實施例僅為本發明 裝置與方法之例而已’但並不限制本發明裝置與方法之範 圍。 20 第1圖為簡單方塊圖,其說明根據本發明之典型實施例 之微機電(MEMS)裝置; 第2圖為橫截面圖’其說明根據本發明典型實施例之微 機電裝置; 第3A圖為概要圖,其說明根據本發明典型實施例之當 200525851 將充電差異從可變電容器去除時微機電裝置; 第3B圖為概要圖,其說明根據本發明典型實施例之在 充電前操作期間之微機電裝置; 第3C圖為概要圖,其說明根據本發明典型實施例之在 5 充電脈衝操作期間之微機電裝置; 第3D圖為概要圖,其說明在穩住操作期間之典型微機 電裝置; 第3E圖為概要圖,其說明在電荷去除操作期間之典型 微機電裝置;以及 10 第4圖為說明典型MEMS裝置之方塊圖,此裝置具有在Μ X Ν陣列中之多個MEMS單元。 I:實施方式3 較佳實施例之詳細說明 此驅動平形板可變微機電電容器之方法包括:建立跨 15 此可變電容器第一與第二導電板之第一充電差異,其中此 第一與第二導電板藉由可變間隙距離分開,將第一與第二 導電板隔離第一時間期間,然後減少充電差異至小於第一 充電差異之第二充電差異,以及其中第一充電差異對應於 可變間隙距離之第二值。 20 如同在此處與所附申請專例範圍中使用,此“電晶 體”與“開關”之意義可以被廣義地瞭解為任何裝置或結 構,其可被選擇性地啟動以響應信號。 在以下之說明中,為了說明目的列舉各種細節,以提 供對於本發明方法與裝置之徹底瞭解。然而,對於熟習此 200525851 技術人士為明顯,可以無須此等細節以實施本發明之方法 與裝置。在說明書中所提及之“一個實施例”或“一實施 例,,之意義為:此所說明與此實施例有關之特殊特性、結 構、或特徵是包括於至少一實施例中。在本說明書中多處 5 所出現之“一個實施例”之片語’並無須均指相同之實施 例。 典迤結構 第1圖為方塊圖其說明微機電系統(MEMS)(100)之典型 實施例。此MEMS(IOO)包括:充電控制電路(105)與微機電 ίο 裝置(裝置)(11〇)。充電控制電路(105)更包括··可變電源 (115)、控制器(120)、以及切換電路(125)。此MEM裝置(11〇) 更包括一可變電容器(130),其包括由可變間隙距離(145) 所分開之第一導電板(135)與第二導電板(140)。設計此充 電控制電路(105),將所選擇之電壓提供給可變電容器 15 (130),此電壓之位準為:較將此可變電容器(丨30)充電至 第二或最後值所須更高位準。此過程可以稱為加速驅動此 電壓,其協助將第一與第二導電板(135、14〇)更快地移至 其最後機械位置,如同以下將更詳細討論者。 根據一典型實施例,此可變電源(115)為可變電壓源, 20其被設計經由通路(150)從控制器(120)接收電壓選擇信 號。此可k電源(115)根據電壓選擇信號,將所選擇電壓經 由通路(155)提供給切換電路(125)。 此分開之第一導電板(135)與第二導電板(14〇)之可變 間隙距離(145)、是在可變電容器⑽)上所儲存電荷數量 200525851 之函數。為了適應第一導電板(135)與第二導電板(14〇)間 之相對移動,可以將一導電板固定,而另一導電板可移動。 為了容易說明起見’根據此典型實施例可將第二導電板 (140)認為固定板。可以藉由將第一與第二導電板(135、14〇) 5置於相同之最初機電狀態,而將此可變間隙距離(145)最大 化。此最初狀態為最小值,或者此等板上之電荷可以藉由 將各第一與第二板(135、140)連接至各別電壓而建立,如 同以下將詳細討論者。 可以没什此充電控制電路(1〇5),藉由在第一與第二導 1〇電板(135、140)間由可變電源(115)所提供之選擇電壓施加 預先設定期間,因此造成在可變電容器(13〇)上累積所想要 數量之儲存電荷。如同先前討論,此儲存在可變電容器(13〇) 上之電荷對應於在第一與第二導電板(135、14〇)間之靜電 吸引力。因此,此在可變電容器(130)上所儲存之電荷量愈 15大,則此第一與第二導電板(135、140)間之靜電吸引力愈 大。 此外,設計切換電路(125)經由通路(160)接收預設期 間之致能信號。響應此致能信號,經由通路(165)在預設時 間期間將所選擇之電壓位準施加至MEMS裝置(11〇),因此造 20成在可變電容器(13〇)上累積所想要數量之儲存電荷。在一 典型實施例中,設計此切換電路(125)經由通路(170)接收 來自控制器(120)之清除信號,以及響應於此清除信號,將 儲存在此可變電容器(130)上之電位儲存電荷去除。去除此 儲存電荷,則在施加此具有所選擇電壓位準之參考電壓之 200525851 前,將可變電容器(130)致於已知之電荷位準。 此最初所選擇施加至可變電容器(130)之電壓,可以提 供給MEMS裝置(110)之電荷較與最後所想要間隙有關之電 荷更多。換句話說,此所選擇施加之電壓在可變電容器(130) 5上可能造成較大數量之最初累積電荷,此電荷數量大於所 想要之最後電荷值,以及因此大於相對應之最後可變間隙 距離(145)。此儲存在可變電容器(130)上之電荷是響應由 控制器(120)發出經由電荷控制通路(175)而至切換電路 (125)之充電信號。此可變電容器可以藉由以下方式更快地 10被移至其最後機械位置··增加對可變電容器(130)最初施加 之電壓位準,以及隨後將預先選擇數量電荷去除。 根據典型實施例,將選擇數量之電荷從第一與第二板 (135、140)去除,以響應:隨後經由相同通路(170)使用於 清理信號之電荷調整信號。如同先前討論,此施加至第一 15與第二板(135、140)之參考電壓對應於:在第一與第二板 (135、140)上最初儲存較大數量之電荷,而其對應於最後 間隙值。此電荷調整信號導致從第一與第二板(135、14〇) 去除預先選擇數量之電荷。當此可變電容器(130)具有儲存 於其上之較大數量電荷時,較其如果只以最後電荷值充電 20更快地移向彼此。當此可變間隙距離(145)接近所想要之最 後值時,將預先選擇之電荷數量去除。然後此第一與第二 板(135、140)被允許機械地穩定在可變最後間隙距離 (145)。 作為使用清理信號以去除所選擇數量電荷之替代方 10 200525851 式,此所選擇數量電荷可以藉由將Vref調整至加速驅動補償 電壓而去除,在此之後可以施加致能與充電致能信號。在 此等情形中,Vref使用於:以加速驅動電荷將可變電容器充 電,以及將所選擇數量電荷去除。 5 典型之執行輿摇作 第2圖為圖式其說明:MEMS裝置(11〇—丨)之典型實施 例。在典型實施例中,此MEMS裝置(110-1)至少部份顯示: 可顯示影像之像素,此MEMS裝置(110-1)包括:頂部反射器 (200)、底部反射器(210)、挽性件(220)、以及彈簀機構 10 (230)。共振光學空腔(240)由反射器(200、210)界定。此 兩個反射器(200、210)是由可變間隙距離(145-1)分開。此 頂部反射器(200)可以為半透明或半反射且可與底部反射 器(210) —起使用’其可以為南度反射或全反射,或反之亦 然。此彈黃機構(230)可以為任何適合之撓性材料例如聚合 15 物所製成,其具有線性與非線性彈簧功能。 可以使用光學干涉調整光學空腔(240),以選擇特定強 度之可見光波長。取決於MEMS裝置(110-1)之結構,此光學 空腔(240)可以所想要之強度反射或透射波長。這即是,此 光學空腔(240)之本質可以為反射或透射。根據此典型實施 2〇 例,光學空腔(240)並未產生光線。而是,此MEMS裝置(iio—i) 依靠周圍光線或外部光源(未圖示)。光學空腔(240)可以傳 輸透射可見波長,且其強度取決於此頂部與底部反射器 (200,210)間之間隙距離(145-1)。因此,可以藉由控制間 隙距離(145-1)將此光學空腔(240)調整至在所想要強度之 200525851 所想要波長。 當在反射器(2〇〇、21〇)上儲存適當數量電荷時,撓性 件(220)與彈簧機構(230)允許改變間隙距離0454)。以致 於可以選擇在所想要強度之所想要波長。此最後電荷與其 所對應之電壓是根據以下式丨而決定,其提供反射器(2〇〇、 210)間之吸引力。因此,此反射器(2〇〇、21〇)與可變間隙 距離(145-1)所構成之平行板電容器並未考慮邊緣電場。200525851 IX. Description of the invention: The technical field to which the invention belongs] This application is a part of US Patent Application No. 10 / 437,522, filed on April 30, 2003, "Micro-Electro-Mechanical Device Charge Control Technology". The case, the entire content of the case is for reference. The present invention relates to a system and method for driving variable microelectromechanical capacitors in parallel plates. BACKGROUND OF THE INVENTION 10 Micro-Electro-Mechanical Systems (MEMS) is a system 'developed using thin-film technology and includes electrical and micro-mechanical components. MEMS devices are used in various applications' such as: optical display systems, pressure sensors, flow sensors, and charge control actuators. MEMS devices use electrostatic forces or energy to move or monitor micromechanical components. In a form 15 of the micro-electromechanical device, in order to achieve the desired result, the gap distance between the electrodes is controlled by balancing the electrostatic force and the mechanical return force '. Typically, digital MEMS devices use two discrete gap distances, while analog MEMS devices use variable gap distances. Such MEMS devices have been developed using various methods. In one method 20, a deformable flexible diaphragm is placed on an electrode and electrostatically attracted to the electrode. Other methods use silicon or aluminum flaps or beams to form the top conductive layer. For optical applications, the conductive layer is reflective, and the flexible diaphragm is deformed, using electrostatic forces to guide light incident on the conductive layer. One method for controlling the gap distance between electrodes is to apply a continuous control voltage to the electrodes, in which the control voltage is increased to decrease the gap distance, or the control voltage is decreased to increase the gap distance. However, this method suffers from electrostatic instability, which greatly reduces the usable operating range that can effectively control the gap distance. In addition, the rate of change of the gap distance is mainly determined by the physical characteristics of the batch-capturing device. When the voltage changes, as the MEMS device stabilizes in its final position, the change in the gap distance between these electrodes lags behind the change in voltage. [Summary of the Invention] SUMMARY OF THE INVENTION The method for driving a flat plate variable microelectromechanical capacitor includes: establishing a first charging difference across the first and second conductive plates of the variable capacitor, wherein the first and second conductive plates are The variable gap distance is separated, isolating the first and second conductive plates for a first period of time, and then reducing the charging difference to a second charging difference that is less than the first charging difference, and wherein the second charging difference corresponds to the first of the variable gap distance. Binary. 15 Brief Description of the Drawings These drawings illustrate various embodiments of the device and method of the present invention and are part of the brother's book. The embodiments described above are merely examples of the apparatus and method of the present invention 'but do not limit the scope of the apparatus and method of the present invention. 20 FIG. 1 is a simple block diagram illustrating a micro-electromechanical (MEMS) device according to an exemplary embodiment of the present invention; FIG. 2 is a cross-sectional view illustrating a micro-electromechanical device according to an exemplary embodiment of the present invention; FIG. 3A FIG. 3B is a schematic diagram illustrating a micro-electromechanical device when a charging difference is removed from a variable capacitor according to an exemplary embodiment of the present invention; FIG. 3B is a schematic diagram illustrating an operation period before charging according to the exemplary embodiment of the present invention. MEMS device; FIG. 3C is a schematic diagram illustrating a MEMS device during a 5 charge pulse operation according to an exemplary embodiment of the present invention; FIG. 3D is a schematic diagram illustrating a typical MEMS device during a steady operation Figure 3E is a schematic diagram illustrating a typical micro-electromechanical device during a charge removal operation; and Figure 4 is a block diagram illustrating a typical MEMS device having a plurality of MEMS cells in an MXN array. I: Detailed description of the preferred embodiment 3 The method for driving a flat plate variable microelectromechanical capacitor includes: establishing a first charging difference across 15 first and second conductive plates of the variable capacitor, wherein the first and The second conductive plate is separated by a variable gap distance to isolate the first and second conductive plates for a first time period, and then reduces the charging difference to a second charging difference that is less than the first charging difference, and wherein the first charging difference corresponds to The second value of the variable gap distance. 20 As used herein and in the scope of the accompanying application, the meaning of this “electric crystal” and “switch” can be broadly understood as any device or structure that can be selectively activated in response to a signal. In the following description, various details are listed for the purpose of explanation to provide a thorough understanding of the method and apparatus of the present invention. However, it will be apparent to those skilled in the art 200525851 that such details may not be required to implement the method and apparatus of the present invention. The meaning of "one embodiment" or "an embodiment" in the specification means that the special features, structures, or characteristics described in this embodiment are included in at least one embodiment. In this embodiment, The phrase "an embodiment" appearing in 5 places in the description does not necessarily refer to the same embodiment. Code structure Figure 1 is a block diagram illustrating a typical embodiment of a micro-electromechanical system (MEMS) (100) The MEMS (IOO) includes: a charging control circuit (105) and a micro-electromechanical device (device) (11). The charging control circuit (105) further includes a variable power source (115), a controller (120), And a switching circuit (125). The MEM device (11) further includes a variable capacitor (130), which includes a first conductive plate (135) and a second conductive plate (130) separated by a variable gap distance (145). 140). The charge control circuit (105) is designed to supply the selected voltage to the variable capacitor 15 (130), and the voltage level is: compared to charging the variable capacitor (丨 30) to the second or last Value must be higher. This process can be referred to as accelerating this voltage It assists in moving the first and second conductive plates (135, 14) to their last mechanical position faster, as will be discussed in more detail below. According to a typical embodiment, this variable power source (115) is variable The voltage source 20 is designed to receive a voltage selection signal from the controller (120) via the path (150). This power source (115) provides the selected voltage to the switching circuit (125) via the path (155) according to the voltage selection signal. ). The variable gap distance (145) between the separated first conductive plate (135) and the second conductive plate (14) is a function of the amount of charge 200525851 stored on the variable capacitor ⑽. In order to adapt to the first The relative movement between the conductive plate (135) and the second conductive plate (14) allows one conductive plate to be fixed while the other conductive plate is movable. For ease of explanation, 'the second conductive plate can be made according to this exemplary embodiment. The plate (140) is considered to be a fixed plate. This variable gap distance (145) can be maximized by placing the first and second conductive plates (135, 14) 5 in the same initial electromechanical state. This initial state Is the minimum, or the charge on these boards It can be established by connecting each of the first and second boards (135, 140) to the respective voltages, as will be discussed in detail below. It is possible to charge the control circuit (105) by simply The selection voltage provided by the variable power source (115) between the second conducting board (135, 140) is applied for a preset period, so that a desired amount of stored charge is accumulated on the variable capacitor (13). As previously discussed, this charge stored on the variable capacitor (13) corresponds to the electrostatic attraction between the first and second conductive plates (135, 14). Therefore, this is on the variable capacitor (130) The greater the amount of stored charge, the greater the electrostatic attraction between the first and second conductive plates (135, 140). In addition, the design switching circuit (125) receives the enable signal for a preset period via the path (160). In response to this enable signal, the selected voltage level is applied to the MEMS device (11) via the path (165) during a preset time, so 20 is made to accumulate the desired amount on the variable capacitor (13). Store charge. In a typical embodiment, the switching circuit (125) is designed to receive a clear signal from the controller (120) via the path (170), and in response to the clear signal, the potential stored on the variable capacitor (130) Stored charge removed. After removing the stored charge, the variable capacitor (130) is brought to a known charge level before applying the reference voltage of 200525851 having the selected voltage level. This initially selected voltage applied to the variable capacitor (130) can provide more charge to the MEMS device (110) than the charge associated with the last desired gap. In other words, the selected applied voltage on the variable capacitor (130) 5 may cause a larger amount of initially accumulated charge, which is greater than the desired final charge value, and therefore greater than the corresponding final variable value. Clearance distance (145). The charge stored in the variable capacitor (130) is in response to a charging signal from the controller (120) to the switching circuit (125) via the charge control path (175). This variable capacitor can be moved to its last mechanical position more quickly by: 10 increasing the voltage level initially applied to the variable capacitor (130) and subsequently removing a preselected amount of charge. According to a typical embodiment, a selected amount of charge is removed from the first and second plates (135, 140) in response to a charge adjustment signal that is then used to clear the signal via the same path (170). As previously discussed, this reference voltage applied to the first 15 and second plates (135, 140) corresponds to: a relatively large amount of charge is initially stored on the first and second plates (135, 140), which corresponds to The last gap value. This charge adjustment signal causes removal of a preselected amount of charge from the first and second plates (135, 14). When this variable capacitor (130) has a relatively large amount of charge stored on it, it moves toward each other faster than if it were charged with only the last charge value. When this variable gap distance (145) approaches the desired final value, the pre-selected amount of charge is removed. The first and second plates (135, 140) are then allowed to mechanically stabilize at a variable final gap distance (145). As an alternative to using the clean-up signal to remove the selected amount of charge 10 200525851, the selected amount of charge can be removed by adjusting Vref to the acceleration drive compensation voltage, after which the enable and charge enable signals can be applied. In these cases, Vref is used to charge the variable capacitor with an accelerated drive charge and to remove the selected amount of charge. 5 Typical implementation of public works Figure 2 is a diagram illustrating the typical embodiment of a MEMS device (110- 丨). In a typical embodiment, the MEMS device (110-1) at least partially displays: pixels that can display an image. The MEMS device (110-1) includes: a top reflector (200), a bottom reflector (210), a Sex piece (220), and impeachment mechanism 10 (230). The resonant optical cavity (240) is defined by reflectors (200, 210). The two reflectors (200, 210) are separated by a variable gap distance (145-1). This top reflector (200) may be translucent or semi-reflective and may be used in conjunction with the bottom reflector (210) ' It may be south-reflective or total-reflective, or vice versa. The elastic yellow mechanism (230) can be made of any suitable flexible material such as polymer, which has linear and non-linear spring functions. The optical cavity (240) can be adjusted using optical interference to select a visible light wavelength of a particular intensity. Depending on the structure of the MEMS device (110-1), the optical cavity (240) reflects or transmits wavelengths at a desired intensity. This means that the nature of the optical cavity (240) can be reflective or transmissive. According to 20 examples of this typical implementation, the optical cavity (240) does not generate light. Instead, this MEMS device (iio-i) relies on ambient light or external light sources (not shown). The optical cavity (240) can transmit visible wavelengths, and its intensity depends on the gap distance (145-1) between the top and bottom reflectors (200, 210). Therefore, the optical cavity (240) can be adjusted to the desired wavelength of 200525851 by controlling the gap distance (145-1). When an appropriate amount of charge is stored on the reflectors (200, 21), the flexible member (220) and the spring mechanism (230) allow to change the gap distance 0454). So that the desired wavelength can be selected at the desired intensity. This final charge and its corresponding voltage are determined according to the following formula, which provides an attractive force between the reflectors (200, 210). Therefore, the parallel plate capacitor formed by the reflector (200, 21) and the variable gap distance (145-1) does not consider the fringe electric field.

式IFormula I

2d2 ε〇為自由空間之介電係數。,v為跨反射器(2〇〇、21〇) 之電壓,Α為各反射器(200、210)之面積,以及4為瞬間間 隙距離(145-1)。因此,以〇·25微米Q〇-6m)之間隙距離 (145-1),此跨70平方微米像素之一伏特電壓可產生7χ1〇-? 牛頓(Ν)之靜電力。2d2 ε〇 is the dielectric constant of free space. , V is the voltage across the reflectors (200, 21), A is the area of each reflector (200, 210), and 4 is the instantaneous gap distance (145-1). Therefore, with a gap distance (145-1) of 0.25 micron Q0-6m), this one volt voltage across 70 square micron pixels can generate an electrostatic force of 7x10-? Newton (N).

因此,相對應於反射器(200、210)間之小電壓之電荷 數量,提供足夠力量以移動頂部反射器(2〇〇),且將其保持 以抵抗重力與例如貫體振盈之其他之力。此儲存於反射器 (200、210)中之靜電電荷,足以將頂部反射器(2〇〇)保持定 位,而無須額外之電力。 此在式1中所界定之靜電力與由彈簧機構(23〇)所提供 之線性彈力平衡。此彈簧力之特徵由第二式所決定。 式II : F=k(d〇-d) 12 200525851 其中k為彈簧機構(230)之線性彈性常數,dO為間隙距 離(145-1)之最初值,以及d為瞬間間隙距離(145-1)。 如同先前所討論,此範圍在其中式1所產生之力與式2 所產生之力是在穩定平衡狀態,是在當(d〇-d)值是在〇與 5 c1d/3之間時使用電壓控制而產生。在當(d。-d)大於d〇/3時, 式1之靜電力超過式2之彈簣力,以致於反射器(200、210) 突然接合在一起。此發生是因為當可變間隙距離小於d〇/3 時,由於增加之電容使得過剩的電荷被被吸引至反射器 (200、210)上,其再造成根據式1反射器(200、210)之間吸 ίο 引力之增加,因此造成此兩個反射器被吸引在一起。 然而,此式1之反射器(200、210)之間吸引力可以替代 地被寫成根據式3之電荷之函數。Therefore, the amount of charge corresponding to the small voltage between the reflectors (200, 210) provides enough power to move the top reflector (200) and keep it against gravity and other things such as body vibration force. This electrostatic charge stored in the reflectors (200, 210) is sufficient to keep the top reflector (200) in place without the need for additional power. The electrostatic force defined in Equation 1 is balanced with the linear elastic force provided by the spring mechanism (23). The characteristic of this spring force is determined by the second formula. Formula II: F = k (d〇-d) 12 200525851 where k is the linear elastic constant of the spring mechanism (230), dO is the initial value of the gap distance (145-1), and d is the instantaneous gap distance (145-1 ). As previously discussed, this range is where the force produced by Equation 1 and the force produced by Equation 2 are in a stable equilibrium state, and is used when the value of (d0-d) is between 0 and 5 c1d / 3 Generated by voltage control. When (d.-d) is greater than do / 3, the electrostatic force of Formula 1 exceeds the spring force of Formula 2, so that the reflectors (200, 210) are suddenly joined together. This occurs because when the variable gap distance is less than do0 / 3, the excess charge is attracted to the reflector (200, 210) due to the increased capacitance, which in turn causes the reflector (200, 210) according to Equation 1 The increase in attraction between the two causes the two reflectors to be attracted together. However, the attraction between the reflectors (200, 210) of this formula 1 can instead be written as a function of the charge according to formula 3.

式III 2εΑ 15 其中Q為在電容器上之電荷。 而F為電荷Q而非d之函數,其可以看出可以在整個間隙 例如從幾乎從0至d〇之範圍,藉由控制在反射器(2〇〇、21〇) 上電荷數量而非電壓,而控制可變間隙距離(145-1)。 此外,MEM裝置(110-1)具有機械時間常數,其由於可 20 變電容器上電荷Q中之改變,而造成反射器(200)移動中之 延遲。此機械時間常數除了其他方式外可以藉由··在彈菩 機構(230)中所使用之材料、以及MEMS裝置(11〇-1)之操作 環境而控制。例如,MEM裝置(110-1)之機械時間常數在當 13 200525851 於空氣中操作時為一值,而當在氦之環境中操作時為另一 值。 此充電控制電路(105)使用各上述特徵,以控制在實質 上整個間隙範圍上之間隙距離(145-1)。藉由根據致能信號 5之時間期間將可選擇之控制電壓施加至MEM裝置, 而此期間小於MEM裝置(110-1)之機械時間常數,則此MEM裝 置(11(M)之可變電容,在施加參考電壓之時間期間顯得似 乎被“固定住”。因此,由第四公式可以決定:此由於施 加所選擇之參考電壓而在反射器(2〇〇、21〇)上產生之所想 1〇 要之累積電荷Q。 式IV :Formula III 2εΑ 15 where Q is the charge on the capacitor. F is a function of the charge Q instead of d. It can be seen that the entire gap, for example, from almost 0 to d0, can be controlled by controlling the amount of charge on the reflector (200, 21) instead of voltage. While controlling the variable gap distance (145-1). In addition, the MEM device (110-1) has a mechanical time constant, which causes a delay in the movement of the reflector (200) due to a change in the charge Q on the variable capacitor. This mechanical time constant can be controlled, among other things, by the materials used in the bomb mechanism (230) and the operating environment of the MEMS device (110-1). For example, the mechanical time constant of the MEM device (110-1) is one value when it is operated in air and the other value is when it is operated in a helium environment. This charging control circuit (105) uses each of the above features to control the gap distance (145-1) over substantially the entire gap range. By applying a selectable control voltage to the MEM device according to the time period of the enable signal 5 and the period is less than the mechanical time constant of the MEM device (110-1), the variable capacitance of the MEM device (11 (M) , It seems to be “fixed” during the time of applying the reference voltage. Therefore, it can be determined by the fourth formula: this is what is generated on the reflector (200, 21) due to the application of the selected reference voltage 1〇 the required accumulated charge Q. Formula IV:

Q=CintVrEF 其中,VREF為所選擇之參考電壓,以及Cint為mem裝置 (110-1)之最初電容。 15 因此,將比較高之參考電壓施加至頂部與底部反射器 (200、210)造成較大之最初充電差異。此在頂部與底部反 射Is (200、210)間最初所建立之較大充電差異,造成頂部 與底部反射器(200、210)間較大之吸弓丨力。此較大之吸引 力在當可變間隙距離(145-1)之值減少時,造成頂部與底部 20反射器(200、21〇)朝彼此移動之速率相對應增加。當此可 變間隙距離(145-1)接近其所想要或所欲之值時,在了^部與 底部反射器(200、210)之間建立預先選擇或最後電荷。一 旦在頂部與底部反射器(200、210)上建立最後充電值時, 貝1MEM裝置(1HM)為浮動或為三狀態,因此防止充電狀離 14 200525851 大幅波動’且進一步使得能夠有效控制間隙距離,豆相對 於MEM裝置⑴Ο-D之直接電壓控制為所增加之控制範圍。 由於在反射器(200、210)之間增加之充電差異,此等 反射器(200、210)可以移動至其最後位置,此移動之時間 5期間實質上小於:在施加對應於最後充電值之最初參考電 壓後,MEM裝置(110-1)機械地穩定所須之時間。 雖然上述等段落是在理想之平行板電容器與理想之線 性彈菁回復力之上下文中說明’但熟習此技術人士瞭解, 此所說明之原理可以適用於其他MEM裝置,包括但並不受限 ίο於:以干涉為主或以繞射為主之顯示裝置、平行板致動器、 非線性彈簧、以及其他形式之電容器。 第3A至3E圖為MEMS(lOO-l)之概要圖,其允許較快地移 動可變電容器(130-1)之第一與第二板、14〇_υ。此 荨板(135-1、140-1)藉由施加至可變電容器(13〇—1)之電 15壓、與因此第一與第二板(丨35—1、140-1)間充電差異加速 驅動,而更快地移至其最後位置。 第3Α圖為在最初狀態中之MEMS(lOO-l)之概要圖。此 MEMS包括··清除電晶體(300)、第一或致能電晶體(310)、 第一與第二清除結點(320-1、320-2)第二或充電致能電晶 20 體(330)、以及可變電容器(130-1)。可以使用開關型式裝 置以取代電晶體,如同先前討論,可以在將MEMS置入已知 充電狀態中後建立最初狀態。在最初狀態中,此頂部或第 一板(135-1)由清除電晶體(300)連接至第一清除節點 (320_1),而第二或底板(140-1)連接至第二清除節點 15 200525851 (320-2)。 更特定而言,在所說明之執行中,此第一板(丨奶—丨)連 接至第一清除節點(320-1 ),其藉由提供其間之通路而被設 定至第一清除電壓。在第3A圖中所說明之MEMS(lOO-l)中, 5清除電晶體(3〇〇)與致能電晶體(310)導通,而充電致能電 晶體(330)被切斷。因此,第一板(130-1)連接至第一清除 節點(320-1),其被設定至第一清除電壓。 如同先前說明,第二板或底板(14〇-1)連接至節點 320-2,其被設定至第二清除電壓。此第一與第二清除電壓 10是在實質上相同之電壓位準,以致於將其連接至第一與第 二板(135-1、14(M),會將第一與第二板(135-1、140-1) 置於實質上相同之充電狀態。在此情形中,其中,在第一 與第二板間(135-1、140-1)沒有充電差異,此可變間隙差 異(145-1)是在其最大值。 15 在某些情況中,可能想要將MEMS裝置清除至兩板之間 沒有充電差異狀態以外之已知充電狀態。在此等狀態中可 以獨立控制在第一與第二清除節點(320-1、320-2)上之電 壓位準,而將第一與第二板(135-1、140-1)置於:對應於 已知可變間隙距離(145-1)之已知充電狀態。 20 第3B圖為當輸入節點(340)被預先充電時MEMS(lOO-l) 之概要圖式。在可變電容器(130-1)被重新設定之後,將輸 入節點(340)預先充電。藉由將致能電晶體(310)與清除電 晶體(300)切斷、以及將充電致能電晶體(330)導通,而將 輪入節點(340)預先充電至所選擇之加速驅動參考電壓。此 16 200525851 預先充電之大小是大於此充電值,其對應於在第一與第二 板(135-1、140-1)間所想要之最後可變間隙距離(145—1)。 此輸入節點(340)被充電是因為:如同先前所提及清除電晶 體(300)與致能電晶體(310)被切斷。因此,此清除電晶體 5 (300)之汲極與致能電晶體(310)之源椏、被與電容器節點 (110-2)以及第一清除節點(320-1)隔離。此所累積電荷之 電流是由大箭頭(A)代表。 第3C圖為當電荷被脈衝至可變電容器(130-1)時 MEMS(lOO-l)之概要圖式。如同於第3C圖中所示,充電致能 1〇 電晶體(330)如同致能電晶體(310)被導通,而造成致能電 晶體(310)與充電致能電晶體(330)作為導體,因此,在 Vref(350)與第一導電板(135-1)之間建立通路。如同先前討 論,Vref(350)被加速驅動,以致於在第一板與第二板 (135-1、140-1)間之充電差異大於所想要之最後充電值。 15 此最後之充電值直接對應於所想要之可變間隙距離 (145-1)。因為此清除電晶體(3〇〇)被切斷,而防止此輸入 節點(340)之電位下降至存在於第一節點㈡加^上之第一 清除電壓。因此,累積於輸入節點(34〇)上之電荷可以流 動,或被脈衝至可變電容器(130-1)。此脈衝之電荷跨致能 20電晶體(310)而流至第一板(135-1)。此致能電晶體(310)導 通或保持在導電狀態之時間被稱為脈衝期間。 如同以上說明,此脈衝期間之時間期間是小於MEM裝置 (110-2)之機械時間常數。此外,此脈衝期間至少可以與: 可變電容器以及相對應ΜΕμ( 100-1)電路之電性時間常數或 17 200525851 RC時間常數一樣長。如同先前討論,此機械時間常數導致 第一板與第二板(135-1、14(H)移動中之延遲,而此移動 是由可變電容器(130-1)上電荷改變所造成。因此,藉 由根據致能信號之時間期間將來自VREF(350)之可選擇控 制電壓施加至麵裝置⑴Q—2Wb在參考電壓施加期間, 此MEM裝置(no—2)之可變電容顯得好像被“固定”。 10 15 20Q = CintVrEF where VREF is the selected reference voltage and Cint is the initial capacitance of the mem device (110-1). 15 Therefore, applying a relatively high reference voltage to the top and bottom reflectors (200, 210) causes a large initial charging difference. The large charging difference originally established between the top and bottom reflective Is (200, 210) results in a larger suction bow force between the top and bottom reflectors (200, 210). This larger attractive force causes the top and bottom 20 reflectors (200, 21) to move toward each other correspondingly as the value of the variable gap distance (145-1) decreases. When this variable gap distance (145-1) approaches its desired or desired value, a pre-selected or final charge is established between ^ and the bottom reflector (200, 210). Once the final charging value is established on the top and bottom reflectors (200, 210), the 1MEM device (1HM) is floating or three-state, so preventing the charging state from fluctuating greatly from 14 200525851, and further enabling effective control of the gap distance The direct voltage control of the bean relative to the MEM device ⑴Ο-D is an increased control range. Due to the increased charging difference between the reflectors (200, 210), these reflectors (200, 210) can be moved to their final positions, and the period of time for this movement 5 is substantially less than: Time required for the MEM device (110-1) to mechanically stabilize after the initial reference voltage. Although the above paragraphs are explained in the context of an ideal parallel plate capacitor and an ideal linear elastic recovery force, those skilled in the art understand that the principles described can be applied to other MEM devices, including but not limited. Yu: Display devices based on interference or diffraction, parallel plate actuators, non-linear springs, and other forms of capacitors. Figures 3A to 3E are schematic diagrams of the MEMS (100-1), which allows the first and second plates of the variable capacitor (130-1) to be moved faster, 14o_υ. This net plate (135-1, 140-1) is charged between the first and second plates (315-1, 140-1) by 15 voltages applied to the variable capacitor (130-1). The difference drives faster and moves to its final position faster. FIG. 3A is a schematic diagram of the MEMS (100-1) in the initial state. The MEMS includes a clearing transistor (300), a first or enabling transistor (310), a first and a second clearing node (320-1, 320-2), a second or a charging enabling transistor 20 (330), and a variable capacitor (130-1). Switch-type devices can be used instead of transistors, and as discussed earlier, the initial state can be established after placing the MEMS in a known state of charge. In the initial state, this top or first plate (135-1) is connected to the first clear node (320_1) by the clear transistor (300), and the second or bottom plate (140-1) is connected to the second clear node 15 200525851 (320-2). More specifically, in the illustrated implementation, this first board (丨 milk- 丨) is connected to a first clearing node (320-1), which is set to a first clearing voltage by providing a path therebetween. In the MEMS (100-1) illustrated in FIG. 3A, the 5 clear transistor (300) and the enable transistor (310) are turned on, and the charge enable transistor (330) is turned off. Therefore, the first board (130-1) is connected to the first clear node (320-1), which is set to the first clear voltage. As explained previously, the second board or backplane (140-1) is connected to node 320-2, which is set to the second clear voltage. The first and second clear voltages 10 are at substantially the same voltage level, so that connecting them to the first and second boards (135-1, 14 (M) will connect the first and second boards ( 135-1, 140-1) are placed in substantially the same state of charge. In this case, where there is no charging difference between the first and second plates (135-1, 140-1), this variable gap difference (145-1) is at its maximum value. 15 In some cases, it may be desirable to clear the MEMS device to a known charge state other than a state where there is no charge difference between the two boards. In these states, it can be independently controlled at The first and second clearing voltage levels on the nodes (320-1, 320-2), and the first and second plates (135-1, 140-1) are placed: corresponding to a known variable gap distance (145-1) is known. 20 Figure 3B is a schematic diagram of the MEMS (100-l) when the input node (340) is precharged. After the variable capacitor (130-1) is reset The input node (340) is precharged. By turning off the enable transistor (310) and the clear transistor (300), and turning on the charge enable transistor (330), the The input node (340) is pre-charged to the selected acceleration drive reference voltage. The size of this pre-charge is larger than this charging value, which corresponds to the value between the first and second boards (135-1, 140-1). The desired final variable gap distance (145-1). This input node (340) is charged because: as mentioned earlier, the clear transistor (300) and the enable transistor (310) are cut off. Therefore, The drain of the clear transistor 5 (300) and the source of the enable transistor (310) are isolated from the capacitor node (110-2) and the first clear node (320-1). The current of the accumulated charge It is represented by the big arrow (A). Figure 3C is a schematic diagram of the MEMS (100-1) when the charge is pulsed to the variable capacitor (130-1). As shown in Figure 3C, charging is enabled 10 The transistor (330) is turned on like the enabling transistor (310), which causes the enabling transistor (310) and the charging enabling transistor (330) to serve as conductors. Therefore, the Vref (350) and the first conductive device are conductive. A path is established between the plates (135-1). As previously discussed, Vref (350) is accelerated so that the first and second plates (135 The charging difference between -1, 140-1) is greater than the desired final charging value. 15 This final charging value directly corresponds to the desired variable gap distance (145-1). Because this clears the transistor (3 〇〇) is cut off to prevent the potential of this input node (340) from falling to the first clear voltage existing on the first node plus ^. Therefore, the charge accumulated on the input node (34〇) can flow, Or pulsed to the variable capacitor (130-1). The charge of this pulse flows across the enabling transistor (310) to the first plate (135-1). The time during which the enabling transistor (310) is turned on or held in a conductive state is called a pulse period. As explained above, the time period of this pulse period is smaller than the mechanical time constant of the MEM device (110-2). In addition, this pulse period can be at least as long as: the electrical time constant or 17 200525851 RC time constant of the variable capacitor and the corresponding MEE (100-1) circuit. As previously discussed, this mechanical time constant causes a delay in the movement of the first and second plates (135-1, 14 (H), which is caused by a change in charge on the variable capacitor (130-1). Therefore By applying a selectable control voltage from VREF (350) to the surface device according to the time period of the enable signal, Q-2Wb During the reference voltage application, the variable capacitance of this MEM device (no-2) appears to be " Fixed ". 10 15 20

此外,藉由將參考電壓(350)加速驅動此致能信號之時 間期間’此在第-板與第二板(135—i、14(M)間所造成之 充電差異大於將此可變間隙距離(145_υ移至最後值之所 須。此較大之充電造成兩板(丨沾〜丨、14〇_υ間較大之吸引 力。如同先前討論,此較大之吸$丨力導致兩板(135小14(Μ) 更快地向彼此移動。 第3D圖為在將加速驅動參考電壓(35〇)施加至可變電 合為(130 1)後MEMS(1G(M)之概要圖式。藉由將致能電晶 體(310)切斷而將可變電容器與節點⑽)解除連接。因In addition, by accelerating the reference voltage (350) to drive the enable signal for a period of time, 'the charging difference between the first plate and the second plate (135-i, 14 (M) is greater than the variable gap distance. (145_υ required to move to the final value. This larger charge causes two plates (丨 丨 ~ 丨, 14〇_υ has a larger attraction. As previously discussed, this larger suction force causes two plates (135 small 14 (M) move faster towards each other. Figure 3D is a schematic diagram of the MEMS (1G (M) after applying the acceleration drive reference voltage (35)) to the variable electric coupling (130 1) Disconnect the variable capacitor from node ⑽) by cutting off the enabling transistor (310).

、σ交電容器(13G-1)與其他電路包括充電控制電s (12士5-1)電性祕。#此可變電容器(⑽—丨)是在隔離狀/ 中%此兩板(135-卜140-1)朝向彼此移動,以響應第_ 板與第二板(135_卜14(M)間充電差異所造成之吸引力。 當此第—板與第二板(135'卜14(M)朝向彼此移j 時’其相對移動速率,是如同先前討論由可變電容器⑽_ 之彈菁力所平衡之靜電則力之大小有關。因此,此比^ P引力le成第一板與第二板(m、“㈠)朝向彼』 更决地㈣。因此,此等板叫對應其未被加速驅動之 18 200525851 形中更大速率朝彼此移動。 田此等第一板與第二板(135—i、14〇—D朝向彼移動 日' 此可變間隙距離⑽—丨)接近所想要之最後值。如果允 。午將在可㈣容器(13(M)上加速驅動充電之期間保持:長 5於此可又電谷為(130—丨)之機械時間常數,則此可變間隙距 離(145 1)可以小於所想要之最後值。將可變間隙距離移至 所想要之最後值,可以從可變電容器⑽_υ去除預先選擇 數量之電荷,而將第一板與第二板(1354、140-1)移至可 欠間隙距離(145-1)所想要之最後值,如同以下將更詳細討 10 論者。 —第3E圖為當將預先選擇數量電荷從可變電容器(丨刈一丄) 之第一導電板(135-1)去除時之ΜΕΜ(1〇〇_υ之概要圖式。為 了從第-導電板⑽-1)去除預先選擇數量電荷,在此第一 板(135-1)與第一清除節點(320443建立通路一段預先決 15定數量時間,此節點在此時設定為加速驅動補償電壓。此 通路是根據參考第3Α圖所說明相同過程建立,所不同的是 可變電容器(110-2)之第-板⑽」)並未被提升至與第二 板(140-1)相同電壓。而是將第一清除節點⑽—^設定至 加速驅動補償電壓。將此加速驅動補償電壓設定至一位 2〇準,其對應於被去除之預先選擇數量電荷。藉由將充電電 晶體(310)與清除電晶體(3〇〇)導通,而在可變電容养 (130-1)之第-板(135-1)與第—清除節點(32()—υ間形成 導電通路。然後,在對應於去除預先選擇數量電荷之期間 後’藉由將充電電晶體(31〇)切斷而將此導電通路切斷。將 19 200525851 預先選擇數量電荷從第一板⑽])去除,導致第一板與第 二板(135-卜14(M)間之充電差異,其對應於可變間隙距 離⑽-1)之最後值。—旦將此縣選擇數量電荷從第一板 (135 1)去除,則如同參考弟抑圖說明,將可變電容哭 5 (1加_1)再度與其他電路電性隔離。 總之,第3A至3E圖顯示電路之概要圖,其中Vref(35〇) 被加速驅動,以減少將此第一板與第二板(1351、ΐ4〇 ι) 移至由最後可變間隙距離(145-1)所分開距離所須時間。此 所須時間可以藉由:將VREF(350)加速驅動、以及因此加速 1〇在第一板上累積電荷而減少,以允許板(135-1、140-1)快 速朝彼此移動,以響應在第一與第二板間之充電差異。在 第一板(135-1)已完成其朝向所想要之最後機械狀態進行 之部份後’從可變電容器(130-1)去除預先設定數量剩餘電 荷,以致於充電差異對應於最後可變間隙距離(丨奶-丨),而 I5 允許第一板與第二板(135-1、140-1)間之可變間隙距離 (145-1)穩定在其最後值。 更特定而言’將VREF(350)連接至第一板(135-1)—段 預設時間,以加速驅動第一板與第二板(135-1、140-1)間 之充電差異。然後,將可變電容器(130-1)與其他電路電性 20 隔離。當此可變電容器(130-1)與其他電路電性隔離時,此 加速驅動充電差異造成:第一板與第二板(135-1、140-1) 更快地向彼此移動。當此第一板與第二板(135-1、14(M) 間之可變間隙距離(145-1)接近所想要之最後值時,藉由將 頂板(135-1)與第一清除節點(320-1)連接而將過剩之電荷 20 200525851 去除,此節點在此時被設定為加速驅動補償電壓。然後, 將可變電容器(130-1)與其他電路再度隔離,而此第一板與 第二板(135-1、140-1)間之可變間隙距離(145-1)穩定在其 最後值。 5 如同先前討論,將電壓加速驅動可以減少:將第一板 與第二板(135-1、140-1)間之可變間隙距離(145-1)移至可 變間隙距離(145-1)之最後值所須時間。例如,根據一典型 實施例,此將可變間隙距離從最初間隙距離4000A移至所想 要間隙距離959A±5〇A中所須典型之時間為大約3. 145//S。 10 此時間為具有800 // m2面積之繞射光線裝置(DLD)典型所須 時間。藉由電壓加速驅動方法移動第一與第二板可以將此 時間減少至1.045 //s或更少。在光學影像應用中,此等MEM 裝置被使用作為光線調變器,可以藉由減少此等第一板與 第二板(135-1、140-1)之移動時間,將不想要之影像人為 15 效果最小化。 第4圖為方塊圖其說明典型之微機電系統(MEMS、 400)。此MEMS(400)包括Μ列xN行陣列之MEM單元(410)。各 MEM單元(4Ί0)包括:MEM裝置(110-3)與開關電路(125-2)。 雖然為了間早起見並未顯示’各MEM裝置(110-3)更包括·· 2〇第一與第二導電板,其形成由可變間隙距離所分隔之可變 電容器,如同在第3A至3D圖中所示者。 設計各開關電路(125-2)以控制:在有關mem裝置 (110-3)之可變電容器上所儲存電荷之數量,因此控制有關 可變間隙距離。亦設計各開關電路(125-2)以提供電荷,其 21 200525851 數量大於對應於可變間隙距離最後值之電荷數量。亦設計 各開關電路⑽-2)從_裝置⑽—3)取出預先選擇數量 之電荷,以致於其所剩餘之電荷對應於:在導電板間之最 後可變間隙距離。 5 此陣列^列之各列接&各別之清除(㈣ 、致能 (430)、以及充電( 440 )仏號。此給定列之所有開關電路 (125-2)接收實質上相同之清除與致能信號。此陣列之断 之各行接收:用於總共N個參考電壓信號之各別之參考電壓 (Vref、450) 〇, Σ AC capacitor (13G-1) and other circuits include the charge control power s (12 ± 5-1). #This variable capacitor (⑽— 丨) is in an isolated / middle% two plates (135-Bu 140-1) move towards each other in response to the _th plate and the second plate (135_Bu 14 (M) The attractiveness caused by the difference in charging. When this first and second plate (135 ′ and 14 (M) are moved towards each other j, their relative movement rates are as previously discussed by the elastic force of the variable capacitor ⑽_ The balance of static electricity is related to the magnitude of the force. Therefore, this is more decisive than ^ P gravitational force that the first plate and the second plate (m, "㈠" are facing each other). Therefore, these plate calls correspond to their unaccelerated Driven by 18 200525851, the shapes move toward each other at a greater rate. Tian Tian's first and second plates (135—i, 14—D move towards each other on the day 'this variable gap distance ⑽— 丨) is close to the desired The final value. If allowed, it will be maintained during the acceleration drive charging on the container (13 (M) at noon: if the length is 5 and the electric valley is a mechanical time constant of (130- 丨), then this variable gap The distance (145 1) can be smaller than the desired final value. Moving the variable gap distance to the desired final value can be changed from the variable capacitor ⑽_υ Remove the pre-selected amount of charge and move the first and second plates (1354, 140-1) to the desired final value of the owable gap distance (145-1), as will be discussed in more detail in the following. —Figure 3E is a schematic diagram of MEM (100__υ) when a preselected amount of charge is removed from the first conductive plate (135-1) of the variable capacitor (丨 刈 一 丄). The conductive plate ⑽-1) removes a preselected amount of charge. Here, the first plate (135-1) and the first clearing node (320443) establish a path for a predetermined amount of time. This node is set to the acceleration drive compensation voltage at this time. This path is established according to the same process as described with reference to Figure 3A, except that the first plate of the variable capacitor (110-2) is not raised to the same voltage as the second plate (140-1) Instead, the first clearing node ⑽— ^ is set to the acceleration drive compensation voltage. This acceleration drive compensation voltage is set to a one-digit 20 level, which corresponds to the pre-selected amount of charge that is removed. By setting the charging transistor ( 310) is turned on with the clear transistor (300), and A conductive path is formed between the-plate (135-1) of the (130-1) and the -clear node (32 ()-υ). Then, after a period corresponding to the removal of a preselected amount of charge, the charging transistor is removed by (31〇) cut off this conductive path. 19 200525851 removes a preselected amount of charge from the first plate ⑽]), resulting in a difference in charge between the first plate and the second plate (135-Bu14 (M) , Which corresponds to the final value of the variable gap distance ⑽-1).-Once this county selects the number of charges from the first plate (135 1), as described with reference to the figure, the variable capacitor is crying 5 (1 Plus _1) is electrically isolated from other circuits again. In summary, Figures 3A to 3E show the outline of the circuit, in which Vref (35〇) is accelerated to reduce the movement of this first board and the second board (1351, ΐ4〇ι) to the final variable gap distance ( 145-1) Time required for separation distance. This required time can be reduced by accelerating the drive of VREF (350), and thus accelerating by 10 to accumulate charge on the first board, to allow the boards (135-1, 140-1) to move quickly towards each other in response to Charging difference between the first and second boards. After the first plate (135-1) has completed its part towards the desired final mechanical state, 'a predetermined amount of remaining charge is removed from the variable capacitor (130-1), so that the charging difference corresponds to the final available The variable gap distance (Milk- 丨), and I5 allows the variable gap distance (145-1) between the first plate and the second plate (135-1, 140-1) to stabilize at its final value. More specifically, the VREF (350) is connected to the first board (135-1) for a preset time to accelerate the charging difference between the first board and the second board (135-1, 140-1). The variable capacitor (130-1) is then electrically isolated from other circuits. When the variable capacitor (130-1) is electrically isolated from other circuits, this acceleration drive charging difference causes: the first board and the second board (135-1, 140-1) move toward each other faster. When the variable gap distance (145-1) between the first plate and the second plate (135-1, 14 (M) is close to the desired final value, the top plate (135-1) and the first plate Clear the node (320-1) connection and remove the excess charge 20 200525851. This node is now set to accelerate the drive compensation voltage. Then, the variable capacitor (130-1) is isolated from other circuits again, and this first The variable gap distance (145-1) between one plate and the second plate (135-1, 140-1) is stable at its final value. 5 As discussed earlier, accelerating the voltage drive can reduce: Time required for the variable gap distance (145-1) between the two plates (135-1, 140-1) to move to the final value of the variable gap distance (145-1). For example, according to a typical embodiment, this will The typical time required to move the variable gap distance from the initial gap distance of 4000A to the desired gap distance of 959A ± 50A is about 3.145 // S. 10 This time is a diffracted ray with an area of 800 // m2 Device (DLD) typical required time. Moving the first and second boards by the voltage acceleration driving method can reduce this time to 1.045 // s or less. In optical imaging applications, these MEM devices are used as light modulators. By reducing the moving time of these first and second plates (135-1, 140-1), the unwanted images are artificially 15 Minimize the effect. Figure 4 is a block diagram illustrating a typical micro-electromechanical system (MEMS, 400). This MEMS (400) includes MEM units (410) of M columns x N row arrays. Each MEM unit (4Ί0) includes: MEM Device (110-3) and switch circuit (125-2). Although it is not shown for a while, 'Each MEM device (110-3) further includes 20 first and second conductive plates. Variable capacitors separated by variable gap distance, as shown in Figures 3A to 3D. Design each switching circuit (125-2) to control: stored on the variable capacitor of the mem device (110-3) The amount of charge, so control the variable gap distance. Also design each switching circuit (125-2) to provide the charge, whose number 21 200525851 is greater than the number of charges corresponding to the final value of the variable gap distance. Also design each switching circuit ⑽- 2) Take the pre-selected amount of charge from _device ⑽-3) so that it The remaining charge corresponds to the final variable gap distance between the conductive plates. 5 Each row of this array ^ is connected with & each clear (㈣, enable (430), and charge (440) 仏. All switch circuits (125-2) of the given row receive substantially the same Clear and enable signals. Each row of the array is received: the individual reference voltages (Vref, 450) for a total of N reference voltage signals.

10 為了將所想要之電荷儲存或,,寫人,,所給定列之MEM 單元(410)之各MEM裝置(11〇〜3),將此具有所選擇值之加速 驅動參考電壓提供給各N行,而各财固參考電壓信號可能具 有不同之選擇值。此等清除信號(42〇)與致能信號(43〇)首 先被脈衝,以造成此給定列之各開關電路(125—2)將MEM裝 15置(110—3)置於已知之充電狀態中。如同先前討論,此等清 除#號(420)與致能信號(43〇)可以從其有關之mem裝置 (110-3)移除或清除任何可能之儲存電荷。將電荷移除信號 (460)设疋至在節點320-1(第3A圖)之第一清除電壓,而將 第一板與第二板間之充電差異置於已知之充電狀態。然後 20給予用於給定列之充電致能信號(440),而將各有關MEM裝 置(110-3)之輸入節點預先充電。 然後,將用於各給定列之致能信號(430)”脈衝,,,以 導致給定列之各開關電路(125-2)將其有關之參考電壓施 加至有關之MEM裝置(110-3)一段預先設定之時間期間。如 22 200525851 隔離。 同先前討論,此參考電壓將將累積在可變電容器上之電荷 加速驅動。因此,將此數量大於根據最後充電值之電= 存在有關可變電容器上,因而強迫此可變間隙距離朝向兑 最後值。然後,當此被加速_電荷驅動此科電板朝^ 其所想要之位置移動時’將倾陳置(UG_3)對其他電路10 In order to store the desired charge or, write, or each MEM device (11 ~ 3) of a given column of MEM cells (410), provide this acceleration drive reference voltage with the selected value to Each of the N lines, and each of the financial reference voltage signals may have different selection values. These clear signals (42 °) and enable signals (43 °) are first pulsed to cause each switching circuit (125-2) of this given column to place 15 sets of MEM (110-3) in a known charge Status. As previously discussed, these clear # numbers (420) and enable signals (43) can remove or clear any possible stored charge from their associated mem device (110-3). The charge removal signal (460) is set to the first clear voltage at node 320-1 (Figure 3A), and the charging difference between the first board and the second board is placed in a known charging state. Then 20 gives a charge enable signal (440) for a given column, and the input nodes of each relevant MEM device (110-3) are precharged. Then, the enabling signal (430) "for each given row is pulsed to cause each switching circuit (125-2) of the given row to apply its relevant reference voltage to the relevant MEM device (110- 3) A predetermined period of time. For example, 22 200525851 isolation. As discussed previously, this reference voltage will accelerate the charge accumulated on the variable capacitor. Therefore, this amount is greater than the electricity based on the last charge value = there is a relevant The variable capacitor is forced, so the variable gap distance is forced toward the final value. Then, when this is accelerated by the charge, the electric board is moved towards the desired position ^ will be set (UG_3) to other circuits

再度施加清除㈣⑽)與致能信號(),從導電板 移除所選擇數量之電荷。此清除脈衝導致與第一清除脈衝 相同之效果,但其脈衝較短時間期間,而只從可變電容器 U)移除所選擇數量之電荷。因此,在此第二清除脈衝期間了 將此電荷去除信號設定為加速驅動補償電壓。從可變電容 器移除所選擇數量之電荷,而留下存在於導電板上之充電 差異,其對應於在導電板間之可變最後間隙距離。在去除 此所選擇數量電荷後,允許此等導電板機械地穩定在其最 15後值。對此箭頭之各列重複此程序,將所想要之電荷,,寫” 至此陣列之各MEM單元(410)。 在參考第1至4圖所討論之實施例中,設計此等開關電 路(125、125-1、125-2)以控制電壓。在其他之實施例中, 可以設計此等開關電路(125、125-1、125-2)以控制電流。 20在此種實施例中,此開關電路可以為電晶體其作用為電流 源。例如,在三極管區域中,此致能電晶體可以作用為電 阻器以控制電流。此外,在飽和區域中此致能電晶體可以 直接作為電流源。因此,會在輸入節點(340)上累積電流脈 衝。然後將此脈衝電流脈衝至可變電容器上,如同先前所 23 200525851 討論將可變電容器充電。 以上之說明僅提供以描述與說明本發明之方法與裝 置。但其用意並非窮盡,或將此方法與裝置限制於所揭示 之任何確實形式。由於以上之揭示可以對其做許多修正與 5 變化。其用意為本發明之範圍是由以下之申請專利範圍所 界定。 t圖式簡單說明3 第1圖為簡單方塊圖,其說明根據本發明之典型實施例 之微機電(MEMS)裝置; 10 第2圖為橫截面圖,其說明根據本發明典型實施例之微 機電裝置; 第3A圖為概要圖,其說明根據本發明典型實施例之當 將充電差異從可變電容器去除時微機電裝置; 第3B圖為概要圖,其說明根據本發明典型實施例之在 15 充電前操作期間之微機電裝置; 第3C圖為概要圖,其說明根據本發明典型實施例之在 充電脈衝操作期間之微機電裝置; 第3D圖為概要圖,其說明在穩住操作期間之典型微機 電裝置; 20 第3E圖為概要圖,其說明在電荷去除操作期間之典型 微機電裝置;以及 第4圖為說明典型MEMS裝置之方塊圖,此裝置具有在Μ X Ν陣列中之多個MEMS單元。 【主要元件符號說明】 24 200525851 100…微機電系統 100-1…微機電系統 105…充電控制電路 110…微機電裝置 110-1…微機電裝置 110-2…微機電裝置 110-3…微機電裝置 115…可變電源 120…控制器 .125…切換電路 125-1…切換電路 125-2…切換電路 130…可變電容器 130-1…可變電容器 135…第一導電板 135-1…第一導電板 140…第二導電板 140-l···第二導電板 145…可變間隙距離 145-l···可變間隙距離 150…通路 155···通路 160…通路 165···通路 170…通路 175···充電控制電路 200···頂部反射器 210···底部反射器 220…撓性件 230···彈簧機構 240···光學空腔 300···清除電晶體 310··•致能電晶體 320-1···第一清除節點 320-2···第二清除節點 330···充電致能電晶體 340···輸入節點 350···參考電壓 400···微機電系統 410···微機電系統單元 420···清除信號 430···致能信號 440···充電信號 450···參考電壓 460···去除充電信號Reapply clearing ㈣⑽) and enable signal () again to remove the selected amount of charge from the conductive plate. This clear pulse results in the same effect as the first clear pulse, but with a shorter pulse duration, only a selected amount of charge is removed from the variable capacitor U). Therefore, the charge removal signal is set to the acceleration driving compensation voltage during the second clear pulse. The selected amount of charge is removed from the variable capacitor, leaving a difference in charge present on the conductive plates, which corresponds to a variable final gap distance between the conductive plates. After removing this selected amount of charge, these conductive plates are allowed to mechanically stabilize to their final value. Repeat this procedure for each column of this arrow, and write the desired charge to each MEM cell (410) of the array. In the embodiments discussed with reference to Figures 1 to 4, design these switching circuits ( 125, 125-1, 125-2) to control the voltage. In other embodiments, these switching circuits (125, 125-1, 125-2) can be designed to control the current. 20 In this embodiment, This switching circuit can be a transistor that functions as a current source. For example, in the triode region, the enabling transistor can function as a resistor to control the current. In addition, the enabling transistor can directly act as a current source in the saturation region. Will accumulate a current pulse on the input node (340). Then pulse this pulse current to the variable capacitor, as previously discussed in 23 200525851 to charge the variable capacitor. The above description is only provided to describe and illustrate the method of the invention And device. But its intention is not exhaustive, or to limit this method and device to any exact form disclosed. Because the above disclosure can make many modifications and 5 changes to it. Its intention is to The scope of the definition is defined by the scope of the following patent applications. T Brief description of the diagram 3 Figure 1 is a simple block diagram illustrating a micro-electromechanical (MEMS) device according to a typical embodiment of the present invention; 10 Figure 2 is a cross section FIG. 3A illustrates a microelectromechanical device according to an exemplary embodiment of the present invention; FIG. 3A is a schematic diagram illustrating a microelectromechanical device when a charging difference is removed from a variable capacitor according to an exemplary embodiment of the present invention; FIG. 3B is an overview Figure 3 illustrates a micro-electromechanical device during operation before charging according to a typical embodiment of the present invention; Figure 3C is a schematic diagram illustrating a micro-electromechanical device during charging pulse operation according to a typical embodiment of the present invention; The figure is a schematic diagram illustrating a typical micro-electro-mechanical device during stable operation; FIG. 3E is a schematic diagram illustrating a typical micro-electro-mechanical device during charge removal operation; and FIG. 4 is a block illustrating a typical MEMS device. In the figure, this device has multiple MEMS cells in the MXN array. [Description of Symbols of Main Components] 24 200525851 100 ... Micro-electro-mechanical system 100-1 ... Micro-electro-mechanical system System 105 ... Charge control circuit 110 ... Micro-electro-mechanical device 110-1 ... Micro-electro-mechanical device 110-2 ... Micro-electro-mechanical device 110-3 ... Micro-electro-mechanical device 115 ... Variable power source 120 ... Controller. 125 ... Switching circuit 125-1 ... Switching circuit 125-2 ... Switching circuit 130 ... Variable capacitor 130-1 ... Variable capacitor 135 ... First conductive plate 135-1 ... First conductive plate 140 ... Second conductive plate 140-1 ... Second conductive plate 145 ... Variable gap distance 145-1 ... Variable gap distance 150 ... Passage 155 ... passage 160 ... passage 165 ... passage 170 ... passage 175 ... charge control circuit 200 ... top reflector 210 ··· Bottom reflector 220 ... Flexible 230 ··· Spring mechanism 240 ·· Optical cavity 300 ··· Clear transistor 310 ··· Enable transistor 320-1 ··· First clear node 320 -2 ... Second clear node 330 ... Charging enable transistor 340 ... Input node 350 ... Reference voltage 400 ... Micro-electro-mechanical system 410 ... Micro-electro-mechanical system unit 420 ... Clear Signal 430 ... Enable signal 440 ... Charging signal 450 ... Reference voltage 460 ... Remove charging signal

2525

Claims (1)

200525851 、申請專利範圍: 之方法,其包括以下 —種驅動平行板可變微機電電容器 步‘ 5 10 15 20 跨該可變電容器之第一與第— 田4乐—冷甩板建立第一充 電差異,其中該第一與第二導雷 而分開; ¥^*板疋精由可變間隙距離 將該第-與第二板隔離第一時間期間, ·以及 將該充電差異減少至小於該第一充電差異之最後 =電差異,且其中該第二充電差異對應於該可變間隙距 離之第二值。 2·如申請專利職第1項之方法,更包括在減少該充電差 異後,將該第-與第二板隔離第二時間期間。 3.如申請專利範圍第㈣之方法,其中建立該第一充電差 異包括:將該第—導電板連接至參考電壓源,以及將該 第二導電板連接至清除電壓。 4·如申請專利範圍第!項之方法,其中該第一充電差異造 成在第一與第二導電板間之最初吸引力,其大於對應於 該可變間隙距離之該第二值之第二吸引力。 5·如申請專利範圍第!項之方法,其中該平行板可變ΜΕΜ電 各益包括:以繞射為主之光學調變裝置。 6·—種驅動繞射為主之光學調變裝置之方法,其包括以下 步驟: 建立關於可變電容器之第一與第二導電板之最初 已知充電狀態,其中該第一與第二導電板是藉由可變間 26 200525851 隙距離而分開; 跨該可變電容器之第一與第二導電板建立第-充 電差異,以強迫該第—與第二導電板朝向彼此移動; 將该第一與第二導電板隔離第-時間期間;以及 5 麟充電差異減少至小於該第-充電差異之第二 充電差異’且其中該第二充電差異對應於該可變間隙距 離之第二值;以及 將該可變電容器隔離第二時間期間,以允許該第一 1 與第二板穩定於該可變間隙距離之該第二值。 7·如申請專利範圍第6項之方法,其中建立該已知充電狀 態包括:將該第-導電板連接至第—清除電壓,以及將 該第二導電板連接至第二清除電壓。 8· 一種充電控制電路,包括: 可變電源;以及 15 開關電路,其被設計將加速驅動脈衝電荷從該電壓 源傳送至可變電容ϋ上,將該可變電容器隔離預設時間 期間,以及從該可變電容器去除該被加速驅動電荷之所 選擇數量’以致於在該可變電容器上所存留之電荷實質 上對應於第二充電狀態。 20 Q •如申請專利範圍第8項之充電控制電路,其中該開關電 路更包括第一清除節點,其中該第一清除節點在第一清 除電壓與補償電壓間選擇性地切換,以致於將該可變電 各杰連接至讜第一清除節點,當該第一清除節點是在該 第一清除電壓時,則將該可變電容器置於最初已知充電 27 200525851 狀態中,且將該可變電容器連接至該第一清除節點,當 該第一清除節點是在該補償電壓時,將該選擇數量之該 加速驅動電荷去除。 ίο. —種微機電系統,包括: 5 一Μ列X N行之微機電單元之陣列,其中各該單元 包括一微機電裝置(MEM裝置),其具有由可變間隙距離 所分開之第一導電板與第二導電板所形成之可變電容 為, 一開關電路具有輸入節點,其被設計以接收在所選 10 擇加速驅動電壓位準之參考電壓,且被設計以響應此充 電信號以加速驅動脈衝電荷將該輸入節點預先充電至 該所選擇之加速驅動電壓位準,以及其中設計該開關電 路響應致能信號,跨該MEM裝置之可變電容器之第一與 第二板施加該所選擇之加速驅動電壓位準經歷該段時 15 間期間,因此造成該加速驅動脈衝電荷在該可變電容器 上聚集,以及其中設計該開關電路響應電荷去除信號, 從第一導電板上去除所選擇數量之電荷。200525851 Scope of patent application: Method, which includes the following-a step of driving a parallel plate variable micro-electromechanical capacitor step '5 10 15 20 across the first and the first of the variable capacitor-Tian 4 Le-cold spin plate to establish the first charge Difference, wherein the first and second lightning guides are separated; ¥ ^ * 板 疋 精 isolates the first and second plates by a variable gap distance for a first time period, and reduces the charging difference to less than the first The last of a charging difference = electrical difference, and wherein the second charging difference corresponds to a second value of the variable gap distance. 2. The method according to item 1 of the patent application, further comprising isolating the first-second board from the second board for a second time period after reducing the charging difference. 3. The method according to the third aspect of the patent application, wherein establishing the first charging difference includes: connecting the first conductive plate to a reference voltage source, and connecting the second conductive plate to a clearing voltage. 4 · If the scope of patent application is the first! The method of claim, wherein the first charging difference causes an initial attractive force between the first and second conductive plates, which is greater than a second attractive force corresponding to the second value of the variable gap distance. 5 · If the scope of patent application is the first! The method of this item, wherein the parallel plate variable MEM electric benefits include: an optical modulation device mainly based on diffraction. 6 · —A method of driving a diffraction-based optical modulation device, including the following steps: Establishing an initial known state of charge of the first and second conductive plates of the variable capacitor, wherein the first and second conductive plates The plates are separated by a gap distance of 26 200525851; a first charge difference is established across the first and second conductive plates of the variable capacitor to force the first and second conductive plates to move toward each other; One from the second conductive plate for the first time period; and the 5th charge difference is reduced to less than the second charge difference from the first charge difference ', and wherein the second charge difference corresponds to a second value of the variable gap distance; And isolating the variable capacitor for a second time period to allow the first 1 and the second plate to stabilize at the second value of the variable gap distance. 7. The method of claim 6, wherein establishing the known state of charge includes: connecting the first conductive plate to a first clearing voltage, and connecting the second conductive plate to a second clearing voltage. 8. A charge control circuit comprising: a variable power supply; and a 15 switching circuit designed to transfer accelerated drive pulse charges from the voltage source to a variable capacitor ϋ, to isolate the variable capacitor for a preset time period, and The selected amount of the accelerated driving charge is removed from the variable capacitor so that the charge remaining on the variable capacitor substantially corresponds to the second state of charge. 20 Q • The charge control circuit according to item 8 of the patent application scope, wherein the switching circuit further includes a first clearing node, wherein the first clearing node selectively switches between the first clearing voltage and the compensation voltage, so that the The variable capacitors are connected to the first clearing node. When the first clearing node is at the first clearing voltage, the variable capacitor is placed in the state of charge 27 200525851 originally known, and the variable A capacitor is connected to the first clearing node, and when the first clearing node is at the compensation voltage, the selected amount of the accelerated driving charge is removed. ίο. —A micro-electromechanical system, comprising: 5 arrays of micro-electromechanical units of XN rows, each of which includes a micro-electromechanical device (MEM device) having a first conductivity separated by a variable gap distance The variable capacitance formed by the plate and the second conductive plate is that a switching circuit has an input node, which is designed to receive a reference voltage at a selected acceleration driving voltage level, and is designed to respond to this charging signal to accelerate The driving pulse charge pre-charges the input node to the selected accelerated driving voltage level, and the switching circuit is designed to respond to the enable signal and apply the selection across the first and second boards of the variable capacitor of the MEM device. The accelerating driving voltage level has undergone this period of 15 times, thus causing the accelerating driving pulse charge to accumulate on the variable capacitor, and wherein the switching circuit is designed to respond to the charge removal signal and remove the selected amount from the first conductive plate. Of its charge.
TW93121599A 2004-01-23 2004-07-20 Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system TWI281297B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/763,345 US7400489B2 (en) 2003-04-30 2004-01-23 System and a method of driving a parallel-plate variable micro-electromechanical capacitor

Publications (2)

Publication Number Publication Date
TW200525851A true TW200525851A (en) 2005-08-01
TWI281297B TWI281297B (en) 2007-05-11

Family

ID=38741694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121599A TWI281297B (en) 2004-01-23 2004-07-20 Method of driving a parallel-plate variable micro-electromechanical capacitor, method of driving a diffraction-based light modulation device, charge control circuit, and micro-electromechanical system

Country Status (1)

Country Link
TW (1) TWI281297B (en)

Also Published As

Publication number Publication date
TWI281297B (en) 2007-05-11

Similar Documents

Publication Publication Date Title
JP4740156B2 (en) Charge control circuit
US7400489B2 (en) System and a method of driving a parallel-plate variable micro-electromechanical capacitor
US6829132B2 (en) Charge control of micro-electromechanical device
US6853476B2 (en) Charge control circuit for a micro-electromechanical device
JP6125553B2 (en) Analog interference modulator
KR101299616B1 (en) A capacitor and an rf device
US7436389B2 (en) Method and system for controlling the output of a diffractive light device
TW200938930A (en) MEMS devices requiring no mechanical support
US20070258124A1 (en) Method and system for resonant operation of a reflective spatial light modulator
KR20060092893A (en) Method and device for a display having transparent components integrated therein
US7508569B2 (en) Low voltage micro mechanical device
US7619805B2 (en) Light modulator device
TW200525851A (en) A system and a method of driving a parallel-plate variable micro-electromechanical capacitor
TW200915529A (en) ESD protection for MEMS display panels
KR20130052730A (en) Mechanical layer and methods of shaping the same
Wu et al. Novel hierarchically dimensioned deformable mirrors with integrated ASIC driver electronics
JP4606466B2 (en) Charge control circuit for microelectromechanical devices
US7656573B2 (en) Method and apparatus for controlling a gap between conductors in an electro-mechanical device
KR100677204B1 (en) A deformable micromirror with two dimension
Kurczynski et al. Low-voltage 256-electrode membrane mirror system for adaptive optics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees