TWI280977B - Novel microorganisms - Google Patents

Novel microorganisms Download PDF

Info

Publication number
TWI280977B
TWI280977B TW93118451A TW93118451A TWI280977B TW I280977 B TWI280977 B TW I280977B TW 93118451 A TW93118451 A TW 93118451A TW 93118451 A TW93118451 A TW 93118451A TW I280977 B TWI280977 B TW I280977B
Authority
TW
Taiwan
Prior art keywords
bacteria
compost
thermophilic
ymo
temperature
Prior art date
Application number
TW93118451A
Other languages
Chinese (zh)
Other versions
TW200506050A (en
Inventor
Tairo Oshima
Original Assignee
Sanyu Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyu Kabushiki Kaisha filed Critical Sanyu Kabushiki Kaisha
Publication of TW200506050A publication Critical patent/TW200506050A/en
Application granted granted Critical
Publication of TWI280977B publication Critical patent/TWI280977B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

This invention provides novel ultra-thermophilic microorganisms. Ultra-thermophilic microorganisms (Caldothrix satsumae), originally from the compost fermented from organic waste above 85 DEG C, are belonged to new species and are able to growth above 80 DEG C. The microorganisms of this invention do not grow below 50 DEG C, actively grow at 70 to 85 DEG C, without spore formation and being Gram-negative absolute aerobic microorganisms. The microorganism of this invention can be used as the fermenting microorganisms in the production of organic waste compost by high temperature fermentation. Also, the microorganisms of this invention can be used in the production of enzymes with thermal stability.

Description

1280977 九、發明說明: [發明所屬之技術領域] 本發明之徵生物源自堆肥(compost),且可於。〇以上 生長。本發明關於新穎超嗜熱菌,特別是適當鹽濃度低的 新穎超嗜熱菌及其利用。 [先前技術] 歷來,以好熱性微生物於家畜糞便、屎尿、污泥、都 會垃圾等有機廢棄物中作用,進行好氧性醱酵,以製造無 臭味乾燥堆肥。因此,已知之嗜熱性微生物可例舉如:屬 於高溫放線菌屬(Thermoactinomyces)或高溫單孢菌屬 (Thermomonospora)之嗜熱性放射菌(專利文獻1);芽抱桿 菌(Bacillus)、地芽孢桿菌屬(Geobacillus)、乳酸菌等之口去 熱好氧性芽孢生成菌混合物(專利文獻2);好氧性枯草菌 (專利文獻3)、聚溶化木質素能力之嗜熱分解屬細菌 Thermusacticus(專利文獻4)、好氧性纖維分解菌 5)等。1280977 IX. Description of the invention: [Technical field to which the invention pertains] The enrollment of the present invention is derived from compost and is available. Growing above. The present invention relates to novel hyperthermophilic bacteria, particularly novel hyperthermophilic bacteria having a low salt concentration and their use. [Prior Art] Aerobic fermentation has been carried out by using hot microorganisms in organic waste such as livestock manure, urine, sludge, and garbage, to produce a odorless dry compost. Therefore, the thermophilic microorganism can be exemplified by a thermophilic radiobacteria belonging to the genus Thermoactinomyces or Thermomonospora (Patent Document 1); Bacillus, Bacillus licheniformis Genophyte spore-forming bacteria mixture of genus (Geobacillus), lactic acid bacteria, etc. (Patent Document 2); aerobic Bacillus subtilis (Patent Document 3), thermophilic decomposition of the lyophilized lignin ability, Thermusacticus (Patent Literature) 4), aerobic fiber decomposing bacteria 5) and the like.

Clostridium thermocellum thermusacticus)(專利文獻 然而,儘管使用該等微生物,利用醱酵時所產生之酸酵熱 可使醱酵溫度上升到70°C以上,但最高也僅達 再者 上升’無法將雜菌,尤其是芽抱形成性雜菌 再所得堆肥中之有用菌體最多僅有平均每公克(肥^斗# $ 物)1億個上下,作為肥料使用時無法充分發揮肥效作$ 本發明人為解決於污泥處理時的類似問題,而探q _ 污泥以85°C以上,較佳為95 °C以上之高溫進行酸酵产王里; 將雜菌、草種子等消滅,不僅將污泥淨化,且可得到人/ 315988 5 1280977 力二二囷體:醱酵物之研究。其結果發現,於污泥中,添 、、^二由日本霧島火山地帶的土壌中所得之饥以上的 m養之細菌培養物,通氣潑酵使撥酵溫度達85〇C以 到僅人::中3有之雜囷、種子消滅,使污泥淨化,而得 2多數有用菌體之污泥_物之方法,並取得專利(專 = 6)。將該污泥酸酵物利用於製造堆肥,而發現多種 =牙孢桿菌屬(BaciUus)、地芽孢桿菌屬(Ge〇baciiius)之 W生好氧性芽孢菌、咼溫性好氧芽孢菌、嗜熱菌等。 亦即,該污泥醱酵物丨公克中,如表丨所示平均每公 ^之污泥酸酵物含有以好氧性細菌、高溫性細菌、耐熱性 芽孢為主之約10億個細菌。 表1 好氧性細菌 南溫性細菌 耐熱性芽孢 腸内細菌 革蘭氏陰性 革蘭氏陽性 乳酸菌 厭氧性細菌 中溫性放線 高溫性放線 絲狀菌 酵母菌 菌 菌 菌 菌 9·9χ 1〇Γ 8·4χ 107 2.8χ ΙΟ7 100以下 100以下 2.8χ ΙΟ5 100以下 100以下 l.lx ΙΟ3 6.Οχ ΙΟ2 100以下 100以下 又,在該培養上選出培養jiii中以優勢繁殖之菌落菌作 為分離菌’進行有關此分離菌之形態觀察等,於有關醱酵 315988 6 1280977 微生物檢索時清楚的辨明存在如r之微生物。 表2 每公克之大概數— 7x 102 3x 108 8x 107 菌ΐχ 107 lx 103 6x 102 分離菌群 高溫性 I性 中溫菌 放線菌 高溫菌 “可清楚辨明以多形性、無芽孢革蘭氏陽性桿菌、好氧 性芽孢菌(中溫性及高溫性)為主而存在其間。 再者,另一方面參考R&D Planning出版之山里一英等 二位所編之「微生物分離法所揭+ j 刀離成」所揭不者而進行嗜熱菌測定。 嗜熱菌之優勢菌為好氧性芽孢菌(高溫性)。 此外,於上述之微生物檢索中,將具優勢而經分離4 中溫性好氧性芽孢菌(分離菌a)、高溫性好氧性芽抱 離菌b)、以及嗜熱菌(分離菌c)進杆形能说日# 匕园(刀 心心硯察、生理學的 性狀試驗及測定菌體内之DNA的人旦 L 3 1,其結果如 所示。 315988 7 1280977 表3 試驗項目 試驗結果 分離菌a 分離菌b 分離菌c 形態 桿菌 桿菌 桿菌 革蘭氏染色 + + + 孢子 + + + 形狀 圓形至橢圓形 橢圓形 橢圓形 位置 中央 近末端 末端至末端 孢子囊 不突出 突出 不突出至稍微突出 運動性 - - + 對氧氣之需求 好氧性 好氧性 好氧性 過氧化氫酶 + + + 厭氧下之繁殖 - - - V-P反應 - - - V-P液體培養基 6.5 8.0*2 5.6 之pH值 酸之產生 葡萄糖 _*2 阿拉伯糖 NT _*2 NT 木糖 NT _*2 NT 甘露糖醇 NT _*2 NT 由葡萄糖之氣體 - _*2 - 的產生 酪蛋白之分解 + 筆 NT*3 明膠之氣化 + - + 澱粉之分解 瞧 - - 檸檬酸鹽之利用 - _氺2 - 丙酸鹽之利用 - _*2 - 酪胺酸之分解 - NT 苯丙胺酸脫胺基 - NT NT 反應 蛋黃反應 麵 硝酸鹽之還原 + - - 於ρΗ6·8之繁殖 + - + 8 315988 1280977 (營養液體培養 基) 於ρΗ5·7之繁殖 於5%NaCl存在 + + 一 下之繁殖 於7%NaCl存在 + + 麵 下之繁殖 於10°C之繁殖 _ . NT 於30°c之繁殖 + 慢 - 於40°C之繁殖 + + + 於50°C之繁殖 麵 + NT 於55°C之繁殖 NT + + 於65°C之繁殖 NT - + 於70°C之繁殖 NT NT + 於71°C之繁殖 NT NT + 於72°C之繁殖 NT NT - 菌體内DNA之 521i 521i 401 GC含量(莫耳%) 9 315988 1 1依據HPLC法。12使用調整為ρΗ8·0之培養基。13 NT : 不進行試驗。 分離菌a由於與任何菌種之特性皆不一致,所以至今 無法確定其菌種。分離菌b顯示於弱鹼性(pH8.0至pH8.5) 之培養基中有良好的繁殖,但在pH7.0時則無法繁殖,而 由其他性狀試驗結果來看,認為與栗褐芽孢桿菌⑽ 办βίΖ/w)或短芽孢桿菌(5. AreWs)相近。然而兩者皆為有非典 型特殊性狀之菌種,而無法完全確認。又分離菌c,其菌 學上之特性與芽孢桿菌屬之嗜熱脂肪芽孢桿菌 雖一致而鑑定為其同種,然而GC含量 差異大,因而認定為近緣之種。 1280977 該等分離菌寄存於日本工業技術院生命工業技術研究 所(現今為獨立行政法人產業技術總合研究所專利微生物 寄存中心),其寄存編號分別為:分離菌a為YM-01寄存 編號FERM P-15085、分離菌b為YM-02寄存編號FERM P-15086、分離菌 c 為 YM-03 寄存編號 FERM P-15087。 [發明内容] 本發明人對存在於如此高溫之堆肥中所繁殖之微生物 進行進一步探討,令人驚異的發現在75它以上之高溫可活 躍地生長,即使於8 5 °C亦可生長,而在5 0 °C以下無法生長 之屬於新穎菌屬之超嗜熱菌YM 081(FERMP-18598)(FERM BP-8233)。而後,對於該堆肥 中之超嗜熱菌進行探討,得到於i6S rDNA之鹼基序列中 與超嗜熱菌(Co/doi/zr/x YM 081具有98%以上之 同源性(homology),而營養需求性或最適鹽濃度等菌學性 質與YM 081不同之數種微生物菌株。 專利文獻1特開昭55-121992號公報 專利文獻2特開昭51-129759號公報 專利文獻3特開平6-5197號公報 專利文獻4特開平6-105679號公報 專利文獻5特開平6-191977號公報 專利文獻6特許第3064221號公報 本發明之目的係提供將污泥於80°C以上,較佳於85 °C以上醋酵之堆肥中所得之屬於超嗜熱菌之 菌屬之新菌株。再者,本發明之目的係提供能於 10 315988 1280977 8(TC以上生長,最適鹽分濃度為1%以下之屬於超嗜熱菌 (Ca/t/oi/zrz.x sahi/wfle)之新囷株。又’本發明之目的係使用 該等超嗜熱菌,特別是最適鹽分濃度低的超嗜熱菌Clostridium thermocellum thermusacticus) (Patent literature However, despite the use of these microorganisms, the acid fermentation heat generated by fermentation can increase the fermentation temperature to above 70 °C, but the highest is only up again. In particular, the useful bacteria in the compost of the bud-forming bacteria are only about 100 million per gram per gram (fertilizer), and can not be fully utilized as a fertilizer. Similar problems in sludge treatment, and the sludge _ sludge is subjected to acid fermentation at a temperature higher than 85 ° C, preferably above 95 ° C; the bacteria, grass seeds, etc. are eliminated, not only the sludge Purification, and can be obtained by people / 315988 5 1280977 Forced dioxin: study of mash. The results showed that in the sludge, Tim, and ^ two were raised from the soil of the volcanic area of Kirishima, Japan. The bacterial culture, aeration and fermentation to make the fermentation temperature of 85 〇C to the only person:: 3 of the mixed cockroach, the seeds are eliminated, the sludge is purified, and the sludge of most useful bacteria is obtained. Method and obtain a patent (specialized = 6). Sludge acid yeast is used in the manufacture of compost, and many kinds of aerobic spores, thermophilic aerobic spores, thermophilic bacteria of the genus BaciUus, Ge〇baciiius are found. In other words, the sludge fermentation product is about gram grams, and as shown in the table, the average sludge acid yield per liter contains about 1 billion bacteria mainly composed of aerobic bacteria, high temperature bacteria, and heat-resistant spores. Table 1 Aerobic bacteria Southern temperature bacteria Heat-resistant spores Intestinal bacteria Gram-negative Gram-positive lactic acid bacteria Anaerobic bacteria Medium temperature release High-temperature actinomy filamentous fungus Yeast bacteria 9·9χ 1 〇Γ 8·4χ 107 2.8 χ ΙΟ 7 100 or less 100 or less 2.8 χ ΙΟ 5 100 or less 100 or less l.lx ΙΟ 3 6. Οχ ΙΟ 2 100 or less 100 or less, and in this culture, colonies which are superior in breeding jiii are selected as separation The bacteria's observation of the morphology of the isolates, etc., clearly identified the presence of microorganisms such as r in the microbial search for the fermentation of 315988 6 1280977. Table 2 Approximate number of grams - 7x 102 3x 108 8x 107 Bacteria 107 lx 103 6x 1 02 Separation of high-temperature I-type thermophilic actinomycetes from high-temperature bacteria can clearly distinguish between pleomorphism, spore-free Gram-positive bacilli, and aerobic spores (medium temperature and high temperature). On the other hand, on the other hand, the thermophilic bacteria were measured by referring to the "Microbial Separation Method and the J-Knife Separation" edited by R.A. The dominant bacteria of thermophiles are aerobic spores (high temperature). In addition, in the above-mentioned microbial search, there will be an advantage to isolate 4 mesenchymal aerobic spores (isobacteria a), high temperature aerobic buds b), and thermophiles (isolated bacteria c Into the shape of the rod can be said ##园 (knife heart, physiology test and determination of the DNA of the bacteria in the human body L 3 1, the results are shown. 315988 7 1280977 Table 3 test project test results Isolated bacteria a isolated bacteria b isolated bacteria c. bacillus gram Gram stain + + + spore + + + shape circular to elliptical elliptical elliptical position central near end end to end sporangia not protruding prominently to slightly Prominent mobility - - + Demand for oxygen Aerobic aerobic aerobic catalase + + + Propagation under anaerobic - - - VP reaction - - - VP liquid medium 6.5 8.0*2 5.6 pH Acid production of glucose _*2 arabinose NT _*2 NT xylose NT _*2 NT mannitol NT _*2 NT by the gas of glucose - _*2 - the production of casein decomposition + pen NT*3 gelatin Gasification + - + Decomposition of starch 瞧 - - Utilization of citrate - _氺2 - utilization of propionate - _*2 - decomposition of tyrosine - NT phenylalanine deamination - NT NT reaction yolk reaction surface nitrate reduction + - - ρΗ6·8 Reproduction + - + 8 315988 1280977 (nutrition liquid medium) Propagation in ρΗ5·7 in 5% NaCl + + Subsequent reproduction in 7% NaCl presence + + subsurface reproduction at 10 ° C reproduction _ . NT 30 °c reproduction + slow - reproduction at 40 ° C + + + breeding surface at 50 ° C + NT propagation at 55 ° C NT + + reproduction at 65 ° C NT - + reproduction at 70 ° C NT NT + propagation at 71 ° C NT NT + reproduction at 72 ° C NT NT - 521i 521i 401 GC content of DNA in vivo (mole %) 9 315988 1 1 according to HPLC method. 12 use adjustment to ρ Η 8 · Medium of 0. 13 NT : No test. The isolate a is inconsistent with the characteristics of any strain, so the strain cannot be determined so far. The isolate b is shown to be weakly alkaline (pH 8.0 to pH 8.5). Good reproduction in the medium, but not at pH 7.0, but by other trait test results, it is considered to be with the brown pepper spore ⑽ do βίΖ / w) or Bacillus brevis (5. AreWs) similar. However, both are strains with atypical atypical traits that cannot be fully confirmed. Further, the isolated strain c was identified as the same species as the Bacillus thermophilus Bacillus stearothermophilus, but the GC content was large, and thus it was identified as a closely related species. 1280977 These isolates are deposited at the Institute of Biotechnology of the Industrial Technology Institute of Japan (now the Patent Microbiology Depository Center of the Institute of Industrial Technology, Independent Legal Corporation). The registration numbers are: Separation bacteria a is YM-01 registration number FERM P-15085, isolate B is YM-02 accession number FERM P-15086, and isolate c is YM-03 registration number FERM P-15087. DISCLOSURE OF THE INVENTION The present inventors further explored microorganisms that have been propagated in such high-temperature compost, and surprisingly found that they can grow actively at a temperature higher than 75, and can grow even at 85 ° C. Hyperthermophilic strain YM 081 (FERMP-18598) (FERM-18-8) belonging to the genus Hymena which cannot grow below 50 °C. Then, the hyperthermophilic bacteria in the compost were investigated, and the homologous bacteria (Co/doi/zr/x YM 081 had a homology of more than 98% in the base sequence of i6S rDNA, In addition, there are several types of microbial strains, such as a nutrient requirement or an optimum salt concentration, which are different from the YM 081. Patent Document 1 JP-A-55-121992 Patent Document 2 JP-A-51-129759 (Patent Document 3) Japanese Patent Application Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. A new strain belonging to the genus Hyperthermophilus obtained from the compost of 85 ° C or higher. Further, the object of the present invention is to provide growth at 10 315 988 1280977 8 (above TC, the optimum salt concentration is 1% or less) It belongs to the new strain of hyperthermophilic bacteria (Ca/t/oi/zrz.x sahi/wfle). The purpose of the present invention is to use such hyperthermophilic bacteria, especially the super-thermophilic with low optimum salt concentration. bacteria

本發明為了研究超嗜熱菌之新菌’將前述污泥於80°C · 以上,特別是85°C以上醱酵所得之堆肥(c〇mPost)(商品名 \ 薩摩土),嘗試檢索存在其中之嗜熱性微生物,而發現於一 \ 般細菌之培養溫度(30至40°C)無法生長,於70至85°C, ^ FERM P-18598(FERM BP-8233) 〇 民國食品 910212 〇 特別是於80°C以上活躍繁殖的絕對好氧性菌。因此,對於· 該菌以16 S rDNA之驗基序列為基準’進行糸統分類分 析。其結果發現,該絕對好氧性菌為革蘭氏陰性且無孢子 形成能力,如第1圖所示,與具孢子形成能力之革蘭氏陽 性土壤細菌芽孢桿菌(Bacillus)屬、地芽孢桿菌(Geobacillus) 屬等為近緣,而至少於屬層級為獨立之細菌。本發明人將 其命名為sabwwfle YM0 81,寄存於獨立行政 法人產業技術總合研究所專利生物寄存中心,寄存編號為⑩ 。又,該菌株與寄存於中華In order to study the new bacteria of the hyperthermophilic bacteria, the compost (c〇mPost) (trade name\samovar) obtained by fermenting the above sludge at 80 ° C. or higher, especially above 85 ° C, attempts to search for the existence. Among them, thermophilic microorganisms are found in a culture temperature (30 to 40 ° C) that cannot grow, at 70 to 85 ° C, ^ FERM P-18598 (FERM BP-8233) 〇 国 食品 food 910212 〇 special It is an aerobic bacteria that actively breeds above 80 °C. Therefore, the bacterium was classified and analyzed based on the sequence of the 16 S rDNA. As a result, it was found that the absolute aerobic bacteria were Gram-negative and spore-forming, as shown in Fig. 1, and the gram-positive soil of the gram-positive soil Bacillus genus, Bacillus licheniformis (Geobacillus) Genus is a close relative, and at least the genus is an independent bacterium. The inventor named it sabwwfle YM0 81, and deposited it in the Patent Biological Depository Center of the Institute of Industrial Technology and Technology, Independent Legal Person, with a registration number of 10. Also, the strain is deposited with China

示於序列表編號Shown in the sequence listing number

又’該菌之16S rDNA''16S rDNA of the bacteria

之堆肥(商品名薩摩土)分離而得。 有.機廢棄物, 之方法,於高溫醱酵戶水得 °該分離法可使用下列之 315988 11 1280977 方法。於表4中所記述組成之培養基5毫升中,添加前述 堆肥約〇.1克,保溫於8〇r,反覆繼代濃縮後,在相同培 養基中加入結蘭膠(gallan gum)作成之平面培養基加) 上,反覆進行分離、純化。 表4 培養基組成 可溶性澱粉 〇·1克 酪蛋白 〇·3克 NaCl 3克 酵母萃取物 〇·2克 水 100毫升 ρΗ7·2 一如此所得菌體之微生物學性質及分類學的位置如下所 不 〇 (1) 形悲為寬0.5/zm、長3#m之長桿菌。革蘭氏染色 結果呈現陰性’菌體之超薄切片在電子顯微鏡下觀察,細 胞表層構造亦為革蘭氏陰性型。亦即,顯示除了細胞膜 質膜)及細胞壁外’另有外膜存在。無孢子形成能力。… (2) 於70至85 C可活躍地繁殖,於5〇°c以下則不生 長。於75。(:以上之高温可活躍地生長,力饥以上亦可生 長。為絕對好氧性菌。 (3) 生長之最適pH為中性。可生長之pH範圍為6至、 而且呈現弱好鹽性。 (4) 具白蛋白、酪蛋白及各種蛋白質及澱粉之利用性。 (5) 具脲酶之生產性。無硝酸還原能力。無硫化氫、吲 315988 12 1280977 口朵之生產性。 (6) DNA 之 G+C 含量為 70.0%。 (7) 以16SrDNA之鹼基序列為基準,進行系統分類分 析。其結果如第1圖及表6所示。而16S rDNA之全鹼基 序列如序列表編號1所記述之鹼基序列。 如此,儘管本發明之菌體為革蘭氏陰性,不具孢子形 成能力,雖與具孢子形成能力之革蘭氏陽性土壤細菌芽孢 桿菌(Bacillus)屬、地芽孢桿菌(Geobacillus)屬等為近緣, 但至少為屬層級為獨立之細菌。 由上述可知,本發明之微生物屬於真細菌,為超嗜熱 菌。再者,由16S rDNA之驗基序列可知,與嗜熱脂肪地 芽孢桿菌雖為近緣,但形 成獨立之屬。 然後,本發明人再使用表4所示之培養基為基本成分 之培養基,進行新菌種研究,而分離數種超高度嗜熱菌。 將該等經分離菌命名為YMO 803、YMO 806、YMO 811、 YMO 812、YMO 813。該等菌株經鑑定係與YMO 81菌株 同種。然而該等菌株之任一者之最適鹽分濃度皆為1%以 下,相對於超嗜熱菌(Cfl/i/oi/zr/x sahwmfle) YMO 8 1之最適 鹽分濃度為3%,具有最適鹽分濃度低之特徵。 該全部菌株皆為長桿菌,無孢子形成能力,革蘭氏陰 性之高度嗜熱性真細菌且於至少80°C能生長者。該全部菌 株利用酪蛋白、可溶性澱粉作為碳源、氮源,具有pH7.5 至8.5的最適pH範圍。然而,其對生長之營養性要求及最 13 315988 1280977 適鹽濃度則各不相同。再者,16S rDNA之驗基序列雖然 各株有差異,但與YMO 81所含相互間具有98%以上之序 列同源性,而能鑑定全為同種。 [實施方式] (貫施例) 其次祝明本發明之參考例及貫施例。但本發明並不侷 限於該等參考例及實施例所闡示者。 參考例1 1A體培養物之調’ 將曰本鹿兒島烚良郡教園町之霧島火山帶之硫磺地帶 之37至40 C 土壤及附近水田長青苔之土壌混合,平均每 立方公尺之土壤混合物中加入溶解之蔗糖水3至4公升(蔗 糖:水=1 : 500至1000),於40至5(rc放置培養儿至% 天。戎培養物混以若干批次(lot)之生污泥,加以吹氣使其 於好氧之條件下醱酵,以85<t以上醱酵溫度所得之批次作 為囷體培養物。 於動物糞便、下水道之污 仰/旦久樹贫长之混合 入熟石灰施赠減理,將該物80重量份與上过 :得之菌體培養物2〇量份混合’在醱酵槽内通氣下進行 :依此酵物於…時間即由常溫上升達Μ 3 此溫度下維持3天醱酵’從醱酵開始後第5天進 門、”糟由翻土使醱酵溫度降低16吖左右,而約!天 間〉皿度回升到85至饥。將此溫度維持5天進行酸酵 315988 14 1280977 =醱酵及翻土流程反覆操作數次後,翻土時的溫度與醱酵 溫度逐漸降低。在反覆操作上述流程4次後,翻土時醱酵 $之溫度降低至35°C時定為最後醱酵日。所得醱酵物作為 囷體培養物使用。該菌體培養物加以乾燥而成褐色顆粒 狀’可直接用來作為有機肥料。 推肥之調,The compost (trade name Samo) is separated. There is a machine waste method, which is obtained by high temperature fermentation of the household water. The separation method can use the following 315988 11 1280977 method. Add 5 ml of the above-mentioned compost to the medium of the composition described in Table 4, and add the above-mentioned compost to about 1 gram, and heat it to 8 〇r. After successively concentrating, add the gallan gum to the same medium to prepare the planar medium. On the addition, the separation and purification are repeated. Table 4 Medium composition soluble starch 〇·1 g casein 〇·3 g NaCl 3 g yeast extract 〇·2 g water 100 ml ρΗ7·2 The microbiological properties and taxonomic position of the obtained cells are as follows (1) The shape of sorrow is 0.5/zm wide and 3#m long. The results of Gram staining were negative. The ultrathin sections of the cells were observed under an electron microscope, and the cell surface structure was also Gram-negative. That is, it shows that there is an outer membrane other than the cell membrane and the cell wall. No spore formation ability. (2) It can be actively propagated from 70 to 85 C, and does not grow below 5 °C. At 75. (: The above high temperature can grow actively, and it can grow even if it is hungry. It is an aerobic bacteria. (3) The optimum pH for growth is neutral. The pH range of growth can be 6 to, and it shows weak salt. (4) It has the utilization of albumin, casein and various proteins and starches. (5) It has the productivity of urease. It has no reducing ability of nitric acid. It has no hydrogen sulfide, 吲315988 12 1280977 The productivity of mouth. (6) The G+C content of DNA was 70.0%. (7) Systematic classification analysis was performed based on the base sequence of 16SrDNA. The results are shown in Fig. 1 and Table 6. The complete base sequence of 16S rDNA is shown in the sequence table. The base sequence described in No. 1. Thus, although the bacterial cell of the present invention is Gram-negative, it has no sporulation ability, and is a spore-forming gram-positive soil bacterium Bacillus genus, ground spore The genus Geobacillus is similar, but at least it is a bacterium belonging to the genus. The microorganism of the present invention belongs to the eubacteria and is a hyperthermophilic bacterium. Furthermore, the sequence of the 16S rDNA is known. Although with the thermophilic bacillus The inventors formed a separate genus. Then, the inventors used the medium shown in Table 4 as a basic component to carry out research on new strains, and isolated several super-highly thermophilic bacteria. Named YMO 803, YMO 806, YMO 811, YMO 812, YMO 813. These strains were identified as the same strain as YMO 81. However, the optimum salt concentration of any of these strains is less than 1%, compared to super Thermophilic bacteria (Cfl/i/oi/zr/x sahwmfle) The optimum salt concentration of YMO 8 1 is 3%, which is characterized by a low optimum salt concentration. All of the strains are long bacilli, non-spore forming ability, Gram Negative highly thermophilic eubacteria and capable of growing at least 80 ° C. All strains use casein, soluble starch as a carbon source, nitrogen source, and have an optimum pH range of pH 7.5 to 8.5. However, for growth The nutritional requirements and the maximum salt concentration of 13 315988 1280977 are different. In addition, although the sequence of 16S rDNA is different from each strain, it has 98% or more sequence homology with YMO 81. Can be identified all the same species. [Brief Example] Next, the reference examples and the examples of the present invention will be described. However, the present invention is not limited to the ones of the reference examples and the examples. Reference Example 1 37 to 40 C of the sulphur zone of the Kirishima volcanic belt in the Kagawa-gun, Kagawa-gun, Kagoshima, Kagoshima, and the soil of the nearby paddy field, and the soil mixture of 3 to 4 liters of dissolved sucrose water per cubic meter of soil mixture. (sucrose: water = 1: 500 to 1000), placed at 40 to 5 (rc placed in culture for up to % days). The sputum culture was mixed with several batches of raw sludge, which was blown to ferment under aerobic conditions, and the batch obtained at a fermentation temperature of 85 < t or higher was used as the corpus callosum culture. Adding slaked lime to the animal's manure, the sewer's dirt, and the long-term planting of the slaked lime, and adding 80 parts by weight of the mixture to the above-mentioned cell culture, 2 parts of the mixture, 'ventilation in the fermentation tank' The following is carried out: according to the fermentation, the temperature rises from room temperature to Μ3 at this temperature for 3 days. The fermentation is carried out on the 5th day after the start of the fermentation, and the temperature is lowered by about 16 , by the soil. About! Days> The degree of the dish rises to 85 to hunger. Maintain this temperature for 5 days for acid fermentation 315988 14 1280977 = After the fermentation and tumbling process is repeated several times, the temperature and fermentation temperature of the soil are gradually reduced. After repeating the above procedure four times, the temperature of the fermentation time was lowered to 35 ° C when the soil was turned to the final fermentation date. The obtained fermentation product was used as a carcass culture. The bacterial culture was dried to brown. Granular 'can be used directly as an organic fertilizer.

^將日本鹿兒島縣鹿兒島市之公共下水道污泥加以壓 鈿丄=水,將含水量68%之生污泥以8〇重量份混入上述 所侍囷體培養物20重量份,放置於醱酵堆置場,由下方y ^空氣進行醱酵。醱酵開始7天後溫度達到卯它。繼續岛 行醱酵至1〇天,醱酵溫度從98t開始下降時,進行攪拌 =其醱酵。最初達到机之後,亦即麟後第1〇天溫 速地降至6〇至7(rc。此時,將醱酵堆置場之酸酵生 '勿展開’使溫度急速縣降至長溫而得到褐色污泥酸酵粉 三該污泥輯粉末可絲作為堆肥,或進行上述酸酵用 之囷體培養物或培養基。^The public sewage sludge of Kagoshima City, Kagoshima City, Japan was crushed = water, and the sludge with a water content of 68% was mixed with 20 parts by weight of the above-mentioned corpus callosum culture and placed in 酦. The yeast is placed in the field and fermented by the air below y ^. The temperature reached 7 after 7 days of fermentation. Continue to the island to ferment for 1 day, when the fermentation temperature begins to drop from 98t, stir it = its fermentation. After the machine was first reached, that is, the first day after Lin, the temperature dropped to 6〇 to 7 (rc.) At this time, the acid yeast of the yeast plant was set up to 'not expand', so that the temperature quickly fell to a long temperature. The brown sludge acid yeast powder is obtained, and the sludge powder can be used as a compost, or a carcass culture or a medium for the above acid fermentation.

實施例 之培之堆肥作成試料約〇.…接種於表4 ^ 毛升’保溫於80V,反覆繼代濃縮後,在相 二離、:養基:加入結蘭膠作成之平板培養基上反覆進 刀、、化而得到本發明之超嗜熱菌。 ”、、· ° 〇·3/。,ρΗ7·2),於 70°C 培養,將生 315988 15 1280977 長之細菌在瓊脂平面培養基(pH7.2,70%)上進行分離時, 發現在溫度7(TC以上,除了歷來之嗜熱地芽孢桿菌 ⑽)以夕卜,亦有其他多種新穎 嗜熱性細菌。 2.超嗜熱菌之微生物學之性質 將實施例1所得之本發明之超嗜熱菌接種在由酪蛋白 0.3%、酵母萃取物0.2%、澱粉0.1%、NaCl 3%所組成,ρΗ7 至8之瓊脂培養基上,於80°C培養24小時,探討其微生 物學性質。其結果示於表5。 此超嗜熱菌之顯微鏡照相圖示於第2圖至第5圖。 表5 試驗項目 試驗結果 形態 長桿菌(寬〇·5 // m、長3 // m) 革蘭氏染色 陰性 孢子生成能力 無 運動性 無 對氧氣之需求 絕對好氧性 厭氧下之繁殖 不生長 依溫度之繁殖 70至85°C活躍地繁殖,50°C以下不生長 生長之pH 中性(pH6至9可生長) 生長之鹽分 弱好鹽性(最適食鹽濃度3%) 白蛋白分解 + 酿蛋白分解 糖之分解 + L-阿拉伯糖 + D-木糖 - D-葡萄糖 + D-甘露糖 土 D-果糖 + 16 315988 1280977 D-半乳糖 - 麥芽糖 + 嚴糖 · 乳糖 - 海藻糖(trehalose) + D-山梨醇 - D-甘露醇 土 肌醇 - 甘油 + 殿粉 + 硝酸鹽之還原 - 乙酿甲基甲醇(acetoin) -之產生 硫化氫之生成 - 吲哚之生成 - 菌體中DNA之GC含70.0 量(莫耳%) 其他 以16SrDNA之鹼基序列為基準來決定全鹼基序列, 以此而完成分子系統樹。其結果示於第1圖及表6。 17 315988 1280977The compost of the example was prepared into a sample about 〇.... inoculated in Table 4 ^ Maosheng' was kept at 80V, and after repeated submerged concentration, it was reversed on the plate medium prepared by adding the blue gum. The hyperthermophilic bacteria of the present invention are obtained by knife and chemical. ",, · ° 〇 · 3 /., ρ Η 7 · 2), cultured at 70 ° C, the 315988 15 1280977 long bacteria were separated on agar medium (pH 7.2, 70%), found at temperature 7 (above TC, in addition to the traditional Bacillus thermophilus (10)), there are many other novel thermophilic bacteria. 2. Microbiological properties of hyperthermophilic bacteria The super-therapeutic of the invention obtained in Example 1 The hot bacteria were inoculated on an agar medium consisting of casein 0.3%, yeast extract 0.2%, starch 0.1%, NaCl 3%, and ρΗ7 to 8, and cultured at 80 ° C for 24 hours to investigate the microbiological properties. It is shown in Table 5. The micrograph of this hyperthermophilic micrograph is shown in Fig. 2 to Fig. 5. Table 5 Test results Test results Stereobacteria (Blendon ·5 // m, length 3 // m) Gram Negative spore formation ability of S. sinensis has no motility, no need for oxygen. Absolute aerobic anaerobic reproduction does not grow. It is actively propagated at 70 to 85 °C, and pH is not grown below 50 °C. pH 6 to 9 can grow) The salt of growth is weak and salty (optimal salt concentration 3%) white Proteolysis + Decomposition of brewing protein decomposition sugar + L-arabinose + D-xylose - D-glucose + D-mannose soil D-fructose + 16 315988 1280977 D-galactose - maltose + Yan sugar · Lactose - trehalose (trehalose) + D-sorbitol-D-mannitol soil inositol - glycerol + temple powder + nitrate reduction - acetoin - the production of hydrogen sulfide - the formation of sputum - bacteria The DNA of the medium DNA contains 70.0 (mol%). The other base sequence is determined based on the base sequence of 16SrDNA, and the molecular phylogenetic tree is completed. The results are shown in Fig. 1 and Table 6. 17 315988 1280977

1 T. thermo philus L _ 〇〇 CD ο i i ( T. mariti j ma I g £2 / / / / a (D a w CO a: 茗 s i / / G. stearoth ermophilus QO ο 00 / / / / .— E· coli OQ / / /, / B. subtilis i i / L turice nsis 〇0 i ! / / 4 C. satsu | mae | /: Ψ / / / / / ..1 <D 目》 • f-l W 0 ϋ 暴1-t Vh 〇S §杉 〇铝 Racillus subtil is (枯草芽孢桿菌) Escherichra coli (大腸桿菌) l §« 1每 IS •i—1 0 a CO cd g® §酴 贫费 Dm'w/ •^-4 •i-4 Θ 03® 〇饞 名妒 § r-H ·— a o IS 18 315988 1280977 其結果可知,該超嗜熱菌屬於真細菌,為革蘭氏陰性 且無抱子形成能力,雖與具孢子形成能力之革蘭氏陰性土 壤細菌芽孢桿菌屬(Bacillus)、地芽孢桿菌屬(Geobacillus) 為近緣,但屬於新屬者。再者,有關DNA之GC含量,如 表6所示,並非達到90%具同源性之菌,又分別與芽孢桿 菌屬、地芽孢桿菌屬為等距離背離(分別各為85%),而判 斷為新屬者(參照表6及第1圖)。因此將該屬命名為 Caldothrix。由於最適生長溫度為80°C,而可確認該菌為 超嗜熱菌。 再者,本發明之超嗜熱菌sflhwmae) YMO 81與枯草桿菌之生化學性質之比較示 於表7。1 T. thermo philus L _ 〇〇CD ο ii ( T. mariti j ma I g £2 / / / / a (D aw CO a: 茗si / / G. stearoth ermophilus QO ο 00 / / / / . E· coli OQ / / /, / B. subtilis ii / L turice nsis 〇0 i ! / / 4 C. satsu | mae | /: Ψ / / / / / / ..1 <D 目》 • fl W 0 ϋ 暴 1-t Vh 〇S § 杉〇铝 Racillus subtil is (Bacillus subtilis) Escherichra coli (E. coli) l §« 1 per IS • i—1 0 a CO cd g® § 酴 酴 Dm'w/ •^-4 •i-4 Θ 03® 〇馋名妒§ rH ·— ao IS 18 315988 1280977 The results show that the hyperthermophilic bacteria belong to eubacteria and are Gram-negative and have no stalk formation ability. It is closely related to the gram-negative soil of the gram-negative soil, Bacillus and Geobacillus, but belongs to the new genus. Furthermore, the GC content of the DNA is shown in Table 6. , not reaching 90% of the homologous bacteria, but also deviated from the genus Bacillus and the genus Bacillus, respectively (85% each), and judged It is a new genus (refer to Table 6 and Figure 1). Therefore, the genus is named Caldothrix. Since the optimum growth temperature is 80 ° C, it can be confirmed that the bacterium is a hyperthermophilic bacterium. Thermophilic sflhwmae) The comparison of the biochemical properties of YMO 81 with Bacillus subtilis is shown in Table 7.

表7 YMO 81 B. substilus 氧化酶活性 - - 硫化氫產生能力 - - 半乳糖苷酶活性 + + 白胺酸醱酵能力 - - 乙醯曱基曱醇產生能力 - + 吲哚產生能力 檸檬酸產生能力 + + 離胺酸產生能力 - - 鳥胺酸產生能力 - - 精胺酸產生能力 - - 尿素分解能力 + - 丙二酸利用能力 - - 硝酸還原能力 + 19 315988 1280977 實施例2 參考例卜3所得之堆肥作成試料約〇ι克,接種於表 :二ΓΓ,1中,於80°c下保溫,反覆繼代濃縮後, ^二::雜之坨養基中加入結蘭膠作成之平面培養基上反 後:"^ 純化而得到本發明之超嘻熱菌。該等經分離 之囷株为別命名為YM〇8〇3、ΥΜ⑽6、γΜ〇川、 ΥΜ0812、ΥΜ0813。該全部玆址比达Ρ & 士 ^.. 王冲囷株皆為長桿菌,無孢子形成 月匕,冑氏陰性之高度嗜熱性真細菌且於至少帆能生 =者1全部菌株利用赂蛋白、可溶性殿份作為碳源、氮 仏’具有ΡΗ7.5^ 8.5的最適ρΗ範圍。然而,如下述其對 ^長之營養要求性及最適鹽濃度則各不相同。特別是具有 最適鹽份濃度為1%以下,特別是G 3至G W。之特徵點。 其中’特別是YM〇8G6|M示最適鹽份濃度低且 生長活性。Table 7 YMO 81 B. substilus oxidase activity - - hydrogen sulfide production capacity - - galactosidase activity + + leucine acid fermentation capacity - - ethoxylated sterol production capacity - + 吲哚 production capacity citric acid production Ability + + ability to produce lysine - - ability to produce ornithine - arginine production capacity - - urea decomposition ability + - malonate utilization capacity - - nitrate reduction ability + 19 315988 1280977 Example 2 Reference example The obtained compost is prepared into a sample of about 〇g, and is inoculated into the table: ΓΓ, 1 , and kept at 80 ° C, and after successively concentrating, ^ 2:: mixed with the glutinous rice to form a plane The medium was reversed: "^ purified to obtain the super-heat bacterium of the present invention. The isolated strains were named as YM〇8〇3, ΥΜ(10)6, γΜ〇chuan, ΥΜ0812, ΥΜ0813. The whole site is more than Daban & 士^.. Wang Chongxi is a long-growing bacterium, no spores form a sputum, a sputum-negative highly thermophilic eubacteria and at least a sail can be used. The soluble temple as a carbon source, nitrogen 仏 'has the optimum range of ΡΗ 7.5 ^ 8.5. However, as described below, the nutritional requirements and the optimum salt concentration are different. In particular, it has an optimum salt concentration of 1% or less, particularly G 3 to G W . The feature point. Among them, 'YM〇8G6|M especially shows that the optimum salt concentration is low and growth activity.

再者’ 16SrDNA之鹼基序列雖然每株各有差里,但j YM⑽株所含相互間具有98%以上之序列同源性,、而^ 315988 20 1280977 定全為同種。該等菌株所具有與YM081株不同性質之處, 示於表9。由該表可知,部分之菌性以微量金屬元素之添 加為必要者。該微量金屬元素之組成示於表10。而部分之 菌株生長時需要堆肥萃取液。該堆肥萃取液之製法示於表 11。 表9有關各菌株生長性質之差異 菌株名 最適食鹽濃度 生長時間 營養要求性 YMO 803 0.4% 73〇C 38分 需要微量金屬元素 YMO 806 0.2% 80°C 35分 需要微量金屬元素 YMO 811 0.3% — 需要堆肥萃取液 需要微量金屬元素 YMO 812 0.5% 70°C 29分 需要堆肥萃取液 YMO 813 0.3% - 需要堆肥萃取液 表10 微量金屬元素組成表 成分 濃度(毫克/公升) NaMo03· 2H20 1.2 V0S04· χΗ20 0.2 MnCl2 · 4H20 0.5 ZnS04 · 7H20 0.06 CuS04· 5H2〇 0.015 CoC12 · 6H20 0.08 NiCl2 · 6H20 0.02 FeS04 · 7H20 10 MgCl2 · 6H20 125 CaCl2 · 2H20 25 21 315988 1280977 表11堆肥萃取液之製法 操作1 將堆肥5克懸浮於H20 50毫升,離心上 萃取 清液通過滅菌過濾器後冷藏保存 操作2 於每10毫升培養基,添加上述保存液 添加至培養基 0.4毫升 本發明人,將該等菌株寄存於獨立行政法人產業總和 研究所專利生物寄存中心,獲得如下之寄存編號。 菌株名 寄存編號 YMO 803 PERM P-19412 YMO 806 FERM P-19413 YMO 811 FERM P-19414 YMO 813 FERM P-19415 該等菌株之16S rDNA之驗基序列示於序列表序列編 號2至6。表12中所示,16S rDNA之鹼基序列雖然各菌 株各有差異,但與YMO 81所含相互間具有98%以上之序 列同源性,而能鑑定全為同種。 由此,其中,YMO806依布達佩斯條約變更為國際寄 存,而取得寄存編號FERH ABP-10037。該超嗜熱菌 (Cfl/i/oMr/x⑽YMO806菌株具有特別低之最適鹽 份濃度(0.2%),營養要求性少,而具有容易培養之超高熱 菌之特徵點。因此,該菌株容易生長,能由其取得耐熱性 酵素,而且將該菌株添加於有機廢棄物(屎尿、家畜糞便、 都市垃圾、污泥等),能使有機廢棄物於高溫80°C以上, 較佳為85°C以上,更佳為l〇〇°C以上之超高溫醱酵而醱酵 分解,而能製造堆肥。 22 315988 1280977 表12 16S rDNA鹼基序列同源性之比較(%) YMO 81 YMO 803 YMO 806 YMO 811 YMO 812 YMO 813 YMO 81 m~ 99 99 99 99 99 YMO 803 99"~' 100 99 99 99 99 YMO 806 99 99 100 99 99 99 YMO 811 99^~~ 99 99 100 99 99 YMO 812 99 99 99 99 100 99 YMO 813 99^~ ~~~ 99 99 99 99 100 產業上之Hjj用性 以屎尿等有機廢棄物作為原料,接種醱酵培養物,進 行醋酵’由於多數屬於芽孢桿菌屬(Bacillus)、地芽孢桿菌 屬(Geobacillus)之中度嗜熱菌等而使醱酵溫度上升。其 後’因酸酵溫度上升,本發a月之數種超嗜熱菌Caldothrix satsumae於南溫型堆肥(compost)中參與有機廢棄物之分解 及醱酵。因此,本發明之超嗜熱菌於高溫分解有機廢棄物 (屎尿、家畜糞便、都市垃圾、污泥等),使其醱酵,有用 於利用作為製造堆肥之菌種、培養基等。 再者’該超嗜熱菌所產生之蛋白酶及澱粉酶於高溫具 有活性,可期望利用該性質製造耐熱性酵素。 [圖式簡單說明] 第1圖為本發明之Caldothrix屬超嗜熱菌 似hwmae)之以16S rDNA為基準之分子系統樹。 第2圖為本發明之超嗜熱菌 YMO 81株之光學電子顯微鏡照相圖。 第3圖為本發明之超嗜熱菌 23 315988 1280977 YMO 81株之掃描式電子顯微鏡照相圖。 第4圖為本發明之超嗜熱菌(C^/(ic)//2Wx sahww⑽) YMO 81株之穿透式電子顯微鏡照相圖。 第5圖為本發明之超嗜熱菌(Cfl/doMrz'x saiwm心)YMO 81株之超薄切片菌體之電子顯微鏡照相圖 (倍率為5000倍)。 24 315988 1280977 序列表 <110〉 山有股份有限公司 <120〉 新穎微生物 <130〉 SANYU3 <150〉 日本國特願 2003 — 181282 <151〉 2003 年6 月 25 日 <160〉 6 <210〉 1 <211〉 1541Furthermore, the base sequence of '16SrDNA is different from each other, but the j YM (10) strain contains 98% or more of sequence homology with each other, and ^ 315988 20 1280977 is the same species. These strains have different properties from the YM081 strain and are shown in Table 9. It can be seen from the table that some of the bacteriality is necessary for the addition of trace amounts of metal elements. The composition of the trace metal element is shown in Table 10. Some of the strains require composting extracts for growth. The preparation method of the compost extract is shown in Table 11. Table 9 Differences in growth properties of each strain Strain name optimum salt concentration Growth time Nutritional requirements YMO 803 0.4% 73〇C 38 points Minor metal element YMO 806 0.2% 80°C 35 points Minor metal element YMO 811 0.3% — Requires compost extract requires trace metal element YMO 812 0.5% 70°C 29 points Composting extract YMO 813 0.3% - Composting extract required Table 10 Trace metal composition Table concentration (mg/L) NaMo03· 2H20 1.2 V0S04· χΗ20 0.2 MnCl2 · 4H20 0.5 ZnS04 · 7H20 0.06 CuS04· 5H2〇0.015 CoC12 · 6H20 0.08 NiCl2 · 6H20 0.02 FeS04 · 7H20 10 MgCl2 · 6H20 125 CaCl2 · 2H20 25 21 315988 1280977 Table 11 Preparation of composting solution 1 Composting 5克 suspended in H20 50 ml, centrifuged to extract the supernatant through a sterilizing filter, and then stored in a refrigerated operation. 2 per 10 ml of the medium, added the above-mentioned preservation solution to the medium 0.4 ml of the inventors, and deposited the strains in an independent administrative entity industry. The Patent Biological Depository Center of the Institute of General Research has obtained the following registration number. Strain name Registration number YMO 803 PERM P-19412 YMO 806 FERM P-19413 YMO 811 FERM P-19414 YMO 813 FERM P-19415 The sequence of the 16S rDNA of these strains is shown in Sequence Listing Nos. 2 to 6. As shown in Table 12, although the nucleotide sequence of 16S rDNA differs from each strain, it has 98% or more sequence homology with YMO 81, and all of them can be identified as the same species. Thus, YMO806 was changed to an international deposit under the Budapest Treaty, and the registration number FERH ABP-10037 was obtained. The hyperthermophilic bacteria (Cfl/i/oMr/x(10)YMO806 strain has a particularly low optimum salt concentration (0.2%), has less nutrient requirements, and has the characteristic point of super-high heat bacteria which are easy to culture. Therefore, the strain is easy to grow. The heat-resistant enzyme can be obtained therefrom, and the strain can be added to organic waste (such as urine, livestock waste, municipal waste, sludge, etc.), and the organic waste can be at a high temperature of 80 ° C or higher, preferably 85 ° C. Above, it is better to decompose and ferment by ultra-high temperature fermentation of l〇〇°C or more, and to make compost. 22 315988 1280977 Table 12 Comparison of 16S rDNA base sequence homology (%) YMO 81 YMO 803 YMO 806 YMO 811 YMO 812 YMO 813 YMO 81 m~ 99 99 99 99 99 YMO 803 99"~' 100 99 99 99 99 YMO 806 99 99 100 99 99 99 YMO 811 99^~~ 99 99 100 99 99 YMO 812 99 99 99 99 100 99 YMO 813 99^~ ~~~ 99 99 99 99 100 Hjj in the industry uses organic waste such as urinary urinary as raw material, inoculates the fermented culture, and carries out vinegar's genus because it belongs to the genus Bacillus. , Geobacillus (Geobacillus), moderate thermophilic bacteria, etc. The temperature rises. After that, due to the increase in acid fermentation temperature, several super-thermophilic bacteria Caldothrix satsumae of the present month participate in the decomposition and fermentation of organic waste in the southeast compost. Therefore, the present invention is super Thermophilic bacteria decompose organic waste (purine, livestock, municipal waste, sludge, etc.) at high temperature to ferment it, and it is used as a strain, medium, etc. for composting. The produced protease and amylase are active at high temperatures, and it is desirable to use this property to produce a heat-resistant enzyme. [Simplified description of the drawing] Fig. 1 is a reference to 16S rDNA of the Caldothrix superthermophilic fungus like hwmae) of the present invention. Sub-system tree. Fig. 2 is an optical electron micrograph of the hyperthermophilic strain YMO 81 of the present invention. Fig. 3 is a scanning electron microscope photograph of the super-thermophilic strain 23 315988 1280977 YMO 81 of the present invention. Fig. 4 is a transmission electron micrograph of the hyperthermophilic bacteria (C^/(ic)//2Wx sahww(10)) YMO 81 strain of the present invention. Fig. 5 is an electron micrograph of the ultrathin section of the hyperthermophilic bacteria (Cfl/doMrz'x saiwm heart) YMO 81 of the present invention (magnification: 5000 times). 24 315988 1280977 Sequence Listing <110> Shanyou Co., Ltd. <120> Novel Microorganisms <130> SANYU3 <150> Japan's Special Purpose 2003 - 181282 <151> June 25, 2003 <160〉 6 <210〉 1 <211> 1541

<212> DNA <213〉 Caldothrix satgumae YM081 <400〉 1 agagtttgat gfgfcttttc cgtaacacgt ccggatagga ggatgggccc gtagccggcc g£gaggcagc cctggctcag gcgtgaagcc gggcaaccta cggcggaccg gcggcccatt tgagagggtg agtagggaat gacgaacgct ttcgggcgga ccccgaggac i.. catggtccgc agcttgttgg accggccaca cttccgcaat ggcggcgcgc tcgcggggag cgggataact cgtggaaagg tggggtaacg ctgggactga gggcgaaagc ctaatacatg agcctagcgg ccgggaaacc cggcgcaagc gcccaccaag gacacggccc ctgacggagc caagtcgagc 60 cgaacgggtg 120 ggggctaata 180 tgccacctcg 240 gcgacgatgg 300 agactcctac 360 gacgccgcgt 420 1 315988 1280977 gagggaggaa aagagggccg ccgcggtaaa gcggcctctt ggg^ggcttg gatcgggagg S gaaagcgtgg gctaggtgtg ggggagtacg v gagcatgtgg ggccttcggg tcgtaaacct ctgttgtcag ggacgaaccc gtgcggttcg 480 cgcgctgacg gtacctgacg aggaagcccc ggctaactac gtgccagcag 540 acgtaggggg cgagcgttgt ccggaattac tgggcgtaaa gcgcgcgtag 600 aagtccggtg tgaaagcccg cggctcaacc gcgggaggcc actggaaact 660 agggcaggag aggggagtgg aattcccggt gtagcggtga aatgcgtaga 720 aacaccagtg gygaaggcgg ctccctggcc tgtacctgac gctgaggcgc 780 ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgggt 840 aggggcgttt ggcccttcgt gccgaagcta acgcgataag caccccgcct 900 gccgcaaggc tgaaactcaa aggaattgac gggggcccgc acaagcggtg 960 tttaattcga agcaacgcga agaaccttac cagggcttga catcccgctg 1020≪ 212 > DNA < 213> Caldothrix satgumae YM081 < 400> 1 agagtttgat gfgfcttttc cgtaacacgt ccggatagga ggatgggccc gtagccggcc g £ gaggcagc cctggctcag gcgtgaagcc gggcaaccta cggcggaccg gcggcccatt tgagagggtg agtagggaat gacgaacgct ttcgggcgga ccccgaggac i .. catggtccgc agcttgttgg accggccaca cttccgcaat ggcggcgcgc tcgcggggag cgggataact cgtggaaagg tggggtaacg ctgggactga gggcgaaagc ctaatacatg agcctagcgg ccgggaaacc cggcgcaagc gcccaccaag gacacggccc ctgacggagc caagtcgagc 60 cgaacgggtg 120 ggggctaata 180 tgccacctcg 240 gcgacgatgg 300 agactcctac 360 gacgccgcgt 420 1 315988 1280977 gagggaggaa aagagggccg ccgcggtaaa gcggcctctt ggg ^ ggcttg gatcgggagg S gaaagcgtgg gctaggtgtg ggggagtacg v gagcatgtgg ggccttcggg tcgtaaacct ctgttgtcag ggacgaaccc gtgcggttcg 480 cgcgctgacg gtacctgacg aggaagcccc ggctaactac gtgccagcag 540 Acgtaggggg cgagcgttgt ccggaattac tgggcgtaaa gcgcgcgtag 600 aagtccggtg tgaaagcccg cggctcaacc gcgggaggcc actggaaact 660 agggcaggag aggggagtgg aattcccggt gtagcggtga aatgcgtaga 720 aacaccagtg gyg aaggcgg ctccctggcc tgtacctgac gctgaggcgc 780 ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgggt 840 aggggcgttt ggcccttcgt gccgaagcta acgcgataag caccccgcct 900 gccgcaaggc tgaaactcaa aggaattgac gggggcccgc acaagcggtg 960 tttaattcga agcaacgcga agaaccttac cagggcttga catcccgctg 1020

accgccccag agatggggtt tccctccttt cggagggcag cggtgacagg tggtgcatgg 1080 ttgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caacccctgc 1140 caagccggag 1200 cacgtgctac 1260 aagccggtct 1320 gtaaatccgc 1380 cgtcacacca 1440 agccgccgaa 1500 1541 ccctagttgc gaaggtgggg aatggccggt cagttcggat gggatcagca cgagagtctg ggtggggcag cagcgggtga atgacgtcaa acaaagggtt tgcaggcttg tgccgcggtg caacacccga atgattgggg ggccgggcac atcatcatgc gcgaacccgc caactcgcct aatacgttcc agtcggtgcg tgaagtcgta tctaggggga cccttatgcc gagggggagc gcatgaaggc cgggccttgt ccaacccctt acaaggtaac ctgccggcga ctgggctaca caatcccaaa ggaatcgcta acacaccgcc acggggaggc c <210> 2 <211> 1523accgccccag agatggggtt tccctccttt cggagggcag cggtgacagg tggtgcatgg 1080 ttgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caacccctgc 1140 caagccggag 1200 cacgtgctac 1260 aagccggtct 1320 gtaaatccgc 1380 cgtcacacca 1440 agccgccgaa 1500 1541 ccctagttgc gaaggtgggg aatggccggt cagttcggat gggatcagca cgagagtctg ggtggggcag cagcgggtga atgacgtcaa acaaagggtt tgcaggcttg tgccgcggtg caacacccga atgattgggg ggccgggcac atcatcatgc gcgaacccgc caactcgcct aatacgttcc agtcggtgcg tgaagtcgta tctaggggga cccttatgcc Gagggggaggc gcatgaaggc cgggccttgt ccaacccctt acaaggtaac ctgccggcga ctgggctaca caatcccaaa ggaatcgcta acacaccgcc acggggaggc c <210> 2 <211> 1523

&lt;212〉 DNA &lt;213〉 Caldothrix satgumae YM0803 〈400〉 agagtttgat cctggctcag gacgaacgct ggcggcgcgc ctaatacatg caagtcgagc 60 ggggcttttc gcgtgaagcc ttcgggcgga tcgcggggag cctagcggcg aacgggtgcg 120 taacacgtgg gcaacctacc ccgaggaccg ggataactcc gggaaaccgg ggctaatacc 180 2&lt;212> DNA &lt;213&gt; Caldothrix satgumae YM0803 <400> agagtttgat cctggctcag gacgaacgct ggcggcgcgc ctaatacatg caagtcgagc 60 ggggcttttc gcgtgaagcc ttcgggcgga tcgcggggag cctagcggcg aacgggtgcg 120 taacacgtgg gcaacctacc ccgaggaccg ggataactcc gggaaaccgg ggctaatacc 180 2

315988 1280977 ggataggacg gcggaccgca tggtccgccg tggaaaggcg gcgcaagctg ccacctcggg 240 atgggcccgc ggcccattag cttgttggtg gggtaacggc ccaccaaggc gacgatgggt 300 agccggcctg agagggtgac cggccacact gggactgaga cacggcccag actcctacgg 360 gaggcagcag tagggaatct tccgcaatgg gcgaaagcct gacggagcga cgccgcgtga 420 flgaggaagg ccttcgggtc gtaaacctct gttgtcaggg acgaacccgt gcggttcgaa 480 gagggccgcg cgctgacggt acctgacgag gaagccccgg ctaactacgt gccagcagcc 540 gcggtaaaac gtagggggcg agcgttgtcc ggaattactg ggcgtaaagc gcgcgtaggc 600 ggcctcttaa gtccggtgtg aaagcccgcg gctcaaccgc gggaggccac tggaaactgg 660 gaggcttgag ggcaggagag gggagtggaa ttcccggtgt agcggtgaaa tgcgtagaga 720 tcgggaggaa caccagtggc gaaggcggct ccctggcctg tacctgacgc tgaggcgcga 780 aagcgtgggg agcaaacagg attagatacc ctggtagtcc acgccgtaaa cgatgggtgc 840 taggtgtgag gggcgtttgg cccttcgtgc cgaagctaac gcgataagca ccccgcctgg 900 ggagtacggc cgcaaggctg aaactcaaag gaattgacgg gggcccgcac aagcggtgga 960 gcatgtggtt taattcgaag caacgcgaag aaccttacca gggcttgaca tcccgctgac 1020 cgccccagag atggggtttc cctcctttcg gagggcagcg gtgacaggtg gtgcatggtt 1080 gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca acccctgccc 1140 ctagttgcca gcgggtgagg ccgggcactc tagggggact gccggcgaca agccggagga 1200 aggtggggat gacgtcaaat catcatgccc cttatgccct gggctacaca cgtgctacaa 1260 tggccggtac aaagggttgc gaacccgcga gggggagcca atcccaaaaa gccggtctca 1320 gttcggattg caggctgcaa ctcgcctgca tgaaggcgga atcgctagta atcgcggatc 1380 agcatgccgc ggtgaatacg ttcccgggcc ttgtacacac cgcccgtcac accacgagag 1440 tctgcaacac ccgaagtcgg tgcgccaacc ccttacgggg aggcagccgc cgaaggtggg 1500 gcagatgatt ggggtgaagt cgt 1523 &lt;210〉 3 〈211〉 1537 ’315988 1280977 ggataggacg gcggaccgca tggtccgccg tggaaaggcg gcgcaagctg ccacctcggg 240 atgggcccgc ggcccattag cttgttggtg gggtaacggc ccaccaaggc gacgatgggt 300 agccggcctg agagggtgac cggccacact gggactgaga cacggcccag actcctacgg 360 gaggcagcag tagggaatct tccgcaatgg gcgaaagcct gacggagcga cgccgcgtga 420 flgaggaagg ccttcgggtc gtaaacctct gttgtcaggg acgaacccgt gcggttcgaa 480 gagggccgcg cgctgacggt acctgacgag gaagccccgg ctaactacgt gccagcagcc 540 gcggtaaaac gtagggggcg agcgttgtcc ggaattactg ggcgtaaagc gcgcgtaggc 600 ggcctcttaa gtccggtgtg aaagcccgcg gctcaaccgc gggaggccac tggaaactgg 660 gaggcttgag ggcaggagag gggagtggaa ttcccggtgt agcggtgaaa tgcgtagaga 720 tcgggaggaa caccagtggc gaaggcggct ccctggcctg tacctgacgc tgaggcgcga 780 aagcgtgggg agcaaacagg attagatacc ctggtagtcc acgccgtaaa cgatgggtgc 840 taggtgtgag gggcgtttgg cccttcgtgc cgaagctaac gcgataagca ccccgcctgg 900 ggagtacggc cgcaaggctg aaactcaaag gaattgacgg gggcccgcac aagcggtgga 960 gcatgtggtt taattcgaag caacgcgaag aaccttacca gggcttgaca tcccgctgac 1020 Cgcc ccagag atggggtttc cctcctttcg gagggcagcg gtgacaggtg gtgcatggtt 1080 gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca acccctgccc 1140 ctagttgcca gcgggtgagg ccgggcactc tagggggact gccggcgaca agccggagga 1200 aggtggggat gacgtcaaat catcatgccc cttatgccct gggctacaca cgtgctacaa 1260 tggccggtac aaagggttgc gaacccgcga gggggagcca atcccaaaaa gccggtctca 1320 gttcggattg caggctgcaa ctcgcctgca tgaaggcgga atcgctagta atcgcggatc 1380 agcatgccgc ggtgaatacg ttcccgggcc ttgtacacac cgcccgtcac accacgagag 1440 tctgcaacac Ccgaagtcgg tgcgccaacc ccttacgggg aggcagccgc cgaaggtggg 1500 gcagatgatt ggggtgaagt cgt 1523 &lt;210> 3 <211> 1537 '

〈212〉 DNA &lt;213&gt; Caldothrix satgumae YM0806 3 315988 1280977 &lt;400〉 agagtttgat gcggggcttt cgtaacacgt ccggatagga ggatgggccc gtagccggcc gggaggcagc gagggaggaa aagagggccg ccgcggtaaa gcggcctctt gggaggcttg gatcgggagg gaaagcgtgg gctaggtgtg ggggagtacg gagcatgtgg accgccccag ttgtcgtcag ccctagttgc gaaggtgggg aatggccggt cagttcggat tcagcatgcc agtctgcaac gggcagatga cctggctcag tcgcgtgaag gggcaacctg cggcggaccg gcggcccatt tgagagggtg agtagggaat ggccttcggg cgcgctgacg acgtaggggg aagtccggtg agggcaggag aacaccagtg ggagcaaaca aggggcgttt gccgcaaggc tttaattcga agatggggtt ctcgtgtcgt cagcgggtga atgacgtcaa acaaagggtt tgcaggctgc gcggtgaata acccgaagtc ttggggtgaa gacgaacgct ccttcgggcg ccccgaggac catggtccgc agcttgttgg accggccaca cttccgcaat tcgtaaacct gtacctgacg cgagcgttgt tgaaagcccg aggggagtgg gcgaaggcgg ggattagata ggcccttcgt tgaaactcaa agcaacgcga tccctccttt gagatgttgg ggccgggcac atcatcatgc gcgaacccgc aactcgcctg cgttcccggg 二 ggtgcgccaa gtcgtaacaa ggcggcgcgc gatcgcgggg cgggataact cgtggaaagg tggggtaacg ctgggactga gggcgaaagc ctgttgtcag aggaagcccc ccggaattac cggctcaacc aattcccggt ctccctggcc ccctggtagt gccgaagcta aggaattgac agaaccttac cggagggcag gttaagtccc tctaggggga cccttatgcc gagggggagc catgaaggcg ccttgtacac ccccttacgg ggtaacc ctaatacatg agcctagcgg ccgggaaacc cggcgcaagc gcccaccaag gacacggccc ctgacggagc ggacgaaccc ggctaactac tgggcgtaaa gcgggaggcc gtagcggtga tgtacctgac ccacgccgta acgcgataag gggggcccgc cagggcttga cggtgacagg gcaacgagcg ctgccggcga ctgggctaca caatcccaaa gaatcgctag accgcccgtc ggaggcagcc tctaagtcga 60 cgaacgggtg 120 ggggctaata 180 tgccacctcg 240 gcgacgatgg 300 agactcctac 360 gacgccgcgt 420 gtgcggttcg 480 gtgccagcag 540 gcgcgcgtag 600 actggaaact 660 aatgcgtaga 720 gctgaggcgc 780 aacgatgggt 840 caccccgcct 900 acaagcggtg 960 catcccgctg 1020 tggtgcatgg 1080 caacccctgc 1140 caagccggag 1200 cacgtgctac 1260 aagccggtct 1320 taatcgcgga 1380 acaccacgag 1440 gccgaaggtg 1500 1537 〈210〉 4 4 315988 1280977 &lt;211〉 1511<212> DNA &lt; 213 &gt; Caldothrix satgumae YM0806 3 315988 1280977 &lt; 400> agagtttgat gcggggcttt cgtaacacgt ccggatagga ggatgggccc gtagccggcc gggaggcagc gagggaggaa aagagggccg ccgcggtaaa gcggcctctt gggaggcttg gatcgggagg gaaagcgtgg gctaggtgtg ggggagtacg gagcatgtgg accgccccag ttgtcgtcag ccctagttgc gaaggtgggg aatggccggt cagttcggat tcagcatgcc agtctgcaac gggcagatga cctggctcag tcgcgtgaag gggcaacctg cggcggaccg gcggcccatt tgagagggtg agtagggaat ggccttcggg cgcgctgacg acgtaggggg aagtccggtg agggcaggag aacaccagtg ggagcaaaca aggggcgttt gccgcaaggc tttaattcga agatggggtt ctcgtgtcgt cagcgggtga atgacgtcaa acaaagggtt tgcaggctgc gcggtgaata acccgaagtc ttggggtgaa gacgaacgct ccttcgggcg ccccgaggac catggtccgc agcttgttgg accggccaca cttccgcaat tcgtaaacct gtacctgacg cgagcgttgt tgaaagcccg aggggagtgg gcgaaggcgg ggattagata ggcccttcgt tgaaactcaa agcaacgcga tccctccttt gagatgttgg ggccgggcac atcatcatgc gcgaacccgc aactcgcctg cgttcccggg two ggtgcgccaa gtcgtaacaa ggcggcgcgc gatcgcgggg cgggataact Cgtggaaagg tggggtaacg ct gggactga gggcgaaagc ctgttgtcag aggaagcccc ccggaattac cggctcaacc aattcccggt ctccctggcc ccctggtagt gccgaagcta aggaattgac agaaccttac cggagggcag gttaagtccc tctaggggga cccttatgcc gagggggagc catgaaggcg ccttgtacac ccccttacgg ggtaacc ctaatacatg agcctagcgg ccgggaaacc cggcgcaagc gcccaccaag gacacggccc ctgacggagc ggacgaaccc ggctaactac tgggcgtaaa gcgggaggcc gtagcggtga tgtacctgac ccacgccgta acgcgataag gggggcccgc cagggcttga cggtgacagg gcaacgagcg ctgccggcga ctgggctaca caatcccaaa gaatcgctag accgcccgtc ggaggcagcc tctaagtcga 60 cgaacgggtg 120 ggggctaata 180 tgccacctcg 240 gcgacgatgg 300 agactcctac 360 gacgccgcgt 420 gtgcggttcg 480 gtgccagcag 540 gcgcgcgtag 600 actggaaact 660 aatgcgtaga 720 gctgaggcgc 780 aacgatgggt 840 caccccgcct 900 acaagcggtg 960 catcccgctg 1020 tggtgcatgg 1080 caacccctgc 1140 caagccggag 1200 cacgtgctac 1260 aagccggtct 1320 taatcgcgga 1380 acaccacgag 1440 gccgaaggtg 1500 1537 <210> 4 4 315988 1280977 &lt;211> 1511

&lt;212&gt; DNA &lt;213&gt; Caldothrix satgumae YM0811 &lt;400&gt; aacgctggcg ggcggatcgc ggaccgggat ccgccgtgga ttggtggggt cacactggga caatgggcga gcgcgcctaa ggggagccta aactccggga aaggcggcgc aacggcccac ctgagacacg aagcctgacg tacatgcaag gcggcgaacg aaccggggct aagctgccac caaggcgacg gcccagactc gagcgacgcc tcgagcgggg ggtgcgtaac aataccggat ctcgggatgg atgggtagcc ctacgggagg gcgtgaggga cttttcgcgt acgtgggcaa aggacggcgg gcccgcggcc ggcctgagag cagcagtagg ggaaggcctt gaagccttcg 60 cctaccccga 120 accgcatggt 180 cattagcttg 240 ggtgaccggc 300 gaatcttccg 360 cgggtcgtaa 420 acctctgttg gacgaggaag ttgtccggaa cccgcggctc gtggaattcc gcggctccct gataccctgg tcgtgccgaa tcaaaggaat gcgaagaacc tcagggacga ccccggctaa ttactgggcg aaccgcggga cggtgtagcg ggcctgtacc tagtccacgc gctaacgcga tgacgggggc ttaccagggc acccgtgcgg ctacgtgcca taaagcgcgc ggccactgga gtgaaatgcg tgacgctgag cgtaaacgat taagcacccc ccgcacaagc ttgacatccc ttcgaagagg gcagccgcgg gtaggcggcc aactgggagg tagagatcgg gcgcgaaagc gggtgctagg gcctggggag ggtggagcat gctgaccgcc gccgcgcgct taaaacgtag tcttaagtcc cttgagggca gaggaacacc gtggggagca tgtgaggggc tacggccgca gtggtttaat ccagagatgg gacggtacct 480 ggggcgagcg 540 ggtgtgaaag 600 ggagagggga 660 agtggcgaag 720 aacaggatta 780 gtttggccct 840 aggctgaaac 900 tcgaagcaac 960 ggtttccctc 1020 ctttcggagg gcagcggtga caggtggtgc atggttgtcg tcagctcgtg tcgtgagatg 1080 ttgggttaag tcccgcaacg agcgcaaccc ctgcccctag ttgccagcgg gtgaggccgg 1140 gcactctagg gggactgccg gcgacaagcc ggaggaaggt ggggatgacg tcaaatcatc 1200 atgcccctta tgccctgggc tacacacgtg ctacaatggc cggtacaaag ggttgcgaac 1260 ccgcgagggg gagccaatcc caaaaagccg gtctcagttc ggattgcagg ctgcaactcg 1320 cctgcatgaa ggcggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1380 cgggccttgt acacaccgcc cgtcacacca cgagagtctg caacacccga agtcggtgcg 1440 5 315988 1280977 ccaacccctt acggggaggc agccgccgaa ggtggggcag atgattgggg tgaagtcgta 1500 acaaggtaac c 1511 &lt;210〉 5 &lt;211&gt; 1535&Lt; 212 &gt; DNA &lt; 213 &gt; Caldothrix satgumae YM0811 &lt; 400 &gt; aacgctggcg ggcggatcgc ggaccgggat ccgccgtgga ttggtggggt cacactggga caatgggcga gcgcgcctaa ggggagccta aactccggga aaggcggcgc aacggcccac ctgagacacg aagcctgacg tacatgcaag gcggcgaacg aaccggggct aagctgccac caaggcgacg gcccagactc gagcgacgcc tcgagcgggg ggtgcgtaac aataccggat ctcgggatgg atgggtagcc ctacgggagg gcgtgaggga cttttcgcgt acgtgggcaa aggacggcgg gcccgcggcc ggcctgagag cagcagtagg ggaaggcctt gaagccttcg 60 cctaccccga 120 accgcatggt 180 cattagcttg 240 ggtgaccggc 300 gaatcttccg 360 cgggtcgtaa 420 acctctgttg gacgaggaag ttgtccggaa cccgcggctc gtggaattcc gcggctccct gataccctgg tcgtgccgaa tcaaaggaat gcgaagaacc tcagggacga ccccggctaa ttactgggcg aaccgcggga cggtgtagcg ggcctgtacc tagtccacgc gctaacgcga tgacgggggc ttaccagggc acccgtgcgg ctacgtgcca taaagcgcgc ggccactgga gtgaaatgcg tgacgctgag cgtaaacgat taagcacccc ccgcacaagc ttgacatccc ttcgaagagg gcagccgcgg gtaggcggcc aactgggagg tagagatcgg Gcgcgaaagc gggtgctagg gcctggggag ggtggagcat gctgaccgcc gccg cgcgct taaaacgtag tcttaagtcc cttgagggca gaggaacacc gtggggagca tgtgaggggc tacggccgca gtggtttaat ccagagatgg gacggtacct 480 ggggcgagcg 540 ggtgtgaaag 600 ggagagggga 660 agtggcgaag 720 aacaggatta 780 gtttggccct 840 aggctgaaac 900 tcgaagcaac 960 ggtttccctc 1020 ctttcggagg gcagcggtga caggtggtgc atggttgtcg tcagctcgtg tcgtgagatg 1080 ttgggttaag tcccgcaacg agcgcaaccc ctgcccctag ttgccagcgg gtgaggccgg 1140 gcactctagg gggactgccg gcgacaagcc ggaggaaggt ggggatgacg tcaaatcatc 1200 atgcccctta tgccctgggc tacacacgtg ctacaatggc cggtacaaag ggttgcgaac 1260 ccgcgagggg gagccaatcc caaaaagccg gtctcagttc ggattgcagg ctgcaactcg 1320 cctgcatgaa ggcggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1380 cgggccttgt acacaccgcc cgtcacacca cgagagtctg caacacccga agtcggtgcg 1440 5 315988 1280977 ccaacccctt acggggaggc agccgccgaa ggtggggcag atgattgggg tgaagtcgta 1500 acaaggtaac c 1511 &lt; 210> 5 &lt; 211 &gt; 1535

&lt;212〉 DNA &lt;213&gt; Caldothrix satgumae YM0812 &lt;400&gt; agagtttgat cctggctcag gacgaacgct ggcggcgcgc ctaatacatg caagtcgagc 60 ggggcttttc gcgtgaagcc ttcgggcgga tcgcggggag cctagcggcg aacgggtgcg 120 taacacgtgg gcaacctacc ccgaggaccg ggataactcc gggaaaccgg ggctaatacc 180 ggataggacg gcggaccgca tggtccgccg tggaaaggcg gcgcaagctg ccacctcggg 240 atgggcccgc ggcccattag ctagttggtg gggtaacggc ccaccaaggc gacgatgggt 300 agccggcctg agagggtgac cggccacact gggactgaga cacggcccag actcctacgg 360 gaggcagcag tagggaatct tccgcaatgg gcgaaagcct gacggagcga cgccgcgtga 420 gggaggaagg ccttcgggtc gtaaacctct gttgtcaggg acgaacccgt gcggttcgaa 480 gagggccgcg cgctgacggt acctgacgag gaagccccgg ctaactacgt gccagcagcc 540 gcggtaaaac gtagggggcg agcgttgtcc ggaattactg ggcgtaaagc gcgcgtaggc 600 ggcctcttaa gtccggtgtg aaagcccgcg gctcaaccgc gggaggccac tggaaactgg 660 gaggcttgag ggcaggagag gggagtggaa ttcccggtgt agcggtgaaa tgcgtagaga 720 tcgggaggaa caccagtggc gaaggcggct ccctggcctg tacctgacgc tgaggcgcga 780 aagcgtgggg agcaaacagg attagatacc ctggtagtcc acgccgtaaa cgatgggtgc 840 taggtgtgag gggcgtttgg cccttcgtgc cgaagctaac gcgataagca ccccgcctgg 900 ggagtacggc cgcaaggctg aaactcaaag gaattgacgg gggcccgcac aagcggtgga 960 gcatgtggtt taattcgaag caacgcgaag aaccttacca gggcttgaca tcccgctgac 1020 cgccccagag atggggtttc cctcctttcg gagggcagcg gtgacaggtg gtgcatggtt 1080 gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca acccctgccc 1140 ctagttgcca gcgggtgagg ccgggcactc tagggggact gccggcgaca agccggagga 1200 aggtggggat gacgtcaaat catcatgccc cttatgccct gggctacaca cgtgctacaa 1260 6 315988 1280977 tggccggtac gttcggattg agcatgccgc tctgcaacac gcagatgatt aaagggttgc caggctgcaa ggtgaatacg ccgaagtcgg ggggtgaagt gaacccgcga ctcgcctgca ttcccgggcc tgcgccaacc cgtaacaagg gggggagcca atcccaaaaa gccggtctca 1320 tgaaggcgga atcgctagta atcgcggatc 1380 ttgtacacac cgcccgtcac accacgagag 1440 ccttacgggg aggcagccgc cgaaggtggg 1500 taacc 1535 &lt;210〉 6 &lt;211〉 1502&Lt; 212> DNA &lt; 213 &gt; Caldothrix satgumae YM0812 &lt; 400 &gt; agagtttgat cctggctcag gacgaacgct ggcggcgcgc ctaatacatg caagtcgagc 60 ggggcttttc gcgtgaagcc ttcgggcgga tcgcggggag cctagcggcg aacgggtgcg 120 taacacgtgg gcaacctacc ccgaggaccg ggataactcc gggaaaccgg ggctaatacc 180 ggataggacg gcggaccgca tggtccgccg tggaaaggcg gcgcaagctg ccacctcggg 240 atgggcccgc ggcccattag ctagttggtg gggtaacggc ccaccaaggc gacgatgggt 300 agccggcctg agagggtgac cggccacact gggactgaga cacggcccag actcctacgg 360 gaggcagcag tagggaatct tccgcaatgg gcgaaagcct gacggagcga cgccgcgtga 420 gggaggaagg ccttcgggtc gtaaacctct gttgtcaggg acgaacccgt gcggttcgaa 480 gagggccgcg cgctgacggt acctgacgag gaagccccgg ctaactacgt gccagcagcc 540 gcggtaaaac gtagggggcg agcgttgtcc ggaattactg ggcgtaaagc gcgcgtaggc 600 ggcctcttaa gtccggtgtg aaagcccgcg gctcaaccgc gggaggccac tggaaactgg 660 gaggcttgag ggcaggagag gggagtggaa ttcccggtgt agcggtgaaa tgcgtagaga 720 Tcgggaggaa caccagtggc gaaggcggct ccctggcctg tacctgacgc tgaggcgcga 780 aagcgtgggg agcaaacagg att agatacc ctggtagtcc acgccgtaaa cgatgggtgc 840 taggtgtgag gggcgtttgg cccttcgtgc cgaagctaac gcgataagca ccccgcctgg 900 ggagtacggc cgcaaggctg aaactcaaag gaattgacgg gggcccgcac aagcggtgga 960 gcatgtggtt taattcgaag caacgcgaag aaccttacca gggcttgaca tcccgctgac 1020 cgccccagag atggggtttc cctcctttcg gagggcagcg gtgacaggtg gtgcatggtt 1080 gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca acccctgccc 1140 ctagttgcca gcgggtgagg ccgggcactc tagggggact gccggcgaca agccggagga 1200 aggtggggat gacgtcaaat catcatgccc cttatgccct gggctacaca cgtgctacaa 1260 6 315988 1280977 tggccggtac gttcggattg agcatgccgc tctgcaacac gcagatgatt aaagggttgc caggctgcaa ggtgaatacg ccgaagtcgg ggggtgaagt gaacccgcga ctcgcctgca ttcccgggcc tgcgccaacc cgtaacaagg gggggagcca atcccaaaaa gccggtctca 1320 tgaaggcgga atcgctagta atcgcggatc 1380 ttgtacacac cgcccgtcac accacgagag 1440 ccttacgggg aggcagccgc cgaaggtggg 1500 taacc 1535 &lt; 210> 6 &lt; 211> 1502

&lt;212&gt; DNA &lt;213&gt; Caldothrix satgumae YM0813&lt;212&gt; DNA &lt;213&gt; Caldothrix satgumae YM0813

〈400〉 aacgctggcg gcgcgcctaa tacatgcaag tcgagcgggg cttttcgcgt gaagccttcg 60 ggcggatcgc ggggagccta gcggcgaacg ggtgcgtaac acgtgggcaa cctaccccga 120 ggaccgggat aactccggga aaccggagct aataccggat aggacggcgg accgcatggt 180 ccgccgtgga aaggcggcgc aagctgccac ctcgggatgg gcccgcggcc cattagctag 240 ttggtggggt aacggcccac caaggcgacg atgggtagcc ggcctgagag ggtgaccggc 300 cacactggga ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg 360 caatgggcga aagcctgacg gagcgacgcc gcgtgaggga ggaaggcctt cgggtcgtaa 420 acctctgttg tcagggacga acccgtgcgg ttcgaagagg gccgcgcgct gacggtacct 480 gacgaggaag ccccggctaa ctacgtgcca gcagccgcgg taaaacgtag ggggcgagcg 540 ttgtccggaa ttactgggcg taaagcgcgc gtaggcggcc tcttaagtcc ggtgtgaaag 600 cccgcggctc aaccgcggga ggccactgga aactgggagg cttgagggca ggagagggga 660 gtggaattcc cggtgtagcg gtgaaatgcg tagagatcgg gaggaacacc agtggcgaag 720 gcggctccct ggcctgtacc tgacgctgag gcgcgaaagc gtggggagca aacaggatta 780 gataccctgg tagtccacgc cgtaaacgat gggtgctagg tgtgaggggc gtttggccct 840 tcgtgccgaa gctaacgcga taagcacccc gcctggggag tacggccgca aggctgaaac 900 tcaaaggaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac 960 gcgaagaacc ttaccagggc ttgacatccc gctgaccgcc ccagagatgg ggtttccctc 1020 7<400> aacgctggcg gcgcgcctaa tacatgcaag tcgagcgggg cttttcgcgt gaagccttcg 60 ggcggatcgc ggggagccta gcggcgaacg ggtgcgtaac acgtgggcaa cctaccccga 120 ggaccgggat aactccggga aaccggagct aataccggat aggacggcgg accgcatggt 180 ccgccgtgga aaggcggcgc aagctgccac ctcgggatgg gcccgcggcc cattagctag 240 ttggtggggt aacggcccac caaggcgacg atgggtagcc ggcctgagag ggtgaccggc 300 cacactggga ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg 360 caatgggcga aagcctgacg gagcgacgcc gcgtgaggga ggaaggcctt cgggtcgtaa 420 acctctgttg tcagggacga acccgtgcgg ttcgaagagg gccgcgcgct gacggtacct 480 gacgaggaag ccccggctaa ctacgtgcca gcagccgcgg taaaacgtag ggggcgagcg 540 ttgtccggaa ttactgggcg taaagcgcgc gtaggcggcc tcttaagtcc ggtgtgaaag 600 cccgcggctc aaccgcggga ggccactgga aactgggagg cttgagggca ggagagggga 660 gtggaattcc cggtgtagcg gtgaaatgcg tagagatcgg gaggaacacc agtggcgaag 720 gcggctccct ggcctgtacc tgacgctgag gcgcgaaagc gtggggagca aacaggatta 780 gataccctgg tagtccacgc cgtaaacgat gggtgctagg tgtgaggggc gtttggccct 840 tcgtgccgaa Gctaacgcga taagcacccc gcctggggag tacggccgca aggctgaaac 900 tcaaaggaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac 960 gcgaagaacc ttaccagggc ttgacatccc gctgaccgcc ccagagatgg ggtttccctc 1020 7

315988 1080 1280977 ctttcggagg gcagcggtga ttgggttaag tcccgcaacg gcactctagg gggactgccg atgcccctta tgccctgggc ccgcgagggg gagccaatcc cctgcatgaa ggcggaatcg cgggccttgt acacaccgcc ccaacccctt acggggaggc ac caggtggtgc atggttgtcg agcgcaaccc ctgcccctag gcgacaagcc ggaggaaggt tacacacgtg ctacaatggc caaaaagccg gtctcagttc ctagtaatcg cggatcagca cgtcacacca cgagagtctg agccgccgaa ggtggggcag tcagctcgtg tcgtgagatg ttgccagcgg gtgaggccgg ggggatgacg tcaaatcatc cggtacaaag ggttgcgaac ggattgcagg ctgcaactcg tgccgcggtg aatacgttcc caacacccga agtcggtgcg atgattgggg tgaagtcgta 1140 1200 1260 1320 1380 1440 1500 1502 8 315988315988 1080 1280977 ctttcggagg gcagcggtga ttgggttaag tcccgcaacg gcactctagg gggactgccg atgcccctta tgccctgggc ccgcgagggg gagccaatcc cctgcatgaa ggcggaatcg cgggccttgt acacaccgcc ccaacccctt acggggaggc ac caggtggtgc atggttgtcg agcgcaaccc ctgcccctag gcgacaagcc ggaggaaggt tacacacgtg ctacaatggc caaaaagccg gtctcagttc ctagtaatcg cggatcagca cgtcacacca cgagagtctg agccgccgaa ggtggggcag tcagctcgtg tcgtgagatg ttgccagcgg gtgaggccgg ggggatgacg tcaaatcatc cggtacaaag ggttgcgaac ggattgcagg ctgcaactcg tgccgcggtg aatacgttcc caacacccga agtcggtgcg Atgattgggg tgaagtcgta 1140 1200 1260 1320 1380 1440 1500 1502 8 315988

Claims (1)

1280977 第93118451號專利申請案 申請專利範圍修正本 (96年3月2曰) 1· 一種超嗜熱菌(Cladothrix satsumae,寄存編號BCRC 910278),其具有下述序列之16S rDNA,可於80°C以上 增殖,且最適鹽分濃度為1%以下 agagtttgat cctggctcag gacgaacgct ggcggcgcgc ctaatacatg tctaagtcga 60 gcggggcttt tcgcgtgaag ccttcgggcg gatcgcgggg agcctagcgg cgaacgggtg 120 cgtaacacgt gggceacctg ccccgaggac cgggataact ccgggaaacc ggggctaata 1801280977 Patent Application No. 93118451 Patent Revision (March 2, 1996) 1. A hyperthermophilic bacterium (Cladothrix satsumae, accession number BCRC 910278) having the following sequence of 16S rDNA at 80° Proliferation above C, and the optimum salt concentration is 1% or less agagtttgat cctggctcag gacgaacgct ggcggcgcgc ctaatacatg tctaagtcga 60 gcggggcttt tcgcgtgaag ccttcgggcg gatcgcgggg agcctagcgg cgaacgggtg 120 cgtaacacgt gggceacctg ccccgaggac cgggataact ccgggaaacc ggggctaata 180 ccggatagga cggcggaccg catggtccgc cgtggsaagg cggcgceagc tgccacctcg 240 ggatgggccc gcggcccatt agcttgttgg tgggftaacg goccaccaag gcgacgatgg 300 rtagcccgcc tgaeagggtg accegccaca ctgggactga gacacggccc a^actcctac 360 SESaggcagc agtagggaat cttccgcaat gggcgaaagc ctgacggagc gacgccgcgt 420 gagggaggaa ggocttcggg tcgtaaacct ctettgtcag ggacgaaccc gtgcggttcg 480 aagagggccg cgcgctgacg gtacctgacg aggaagcccc £gctaactac gtgccagcae 540 ccgcggtaaa acetaggggg cgagcgtt^t ccggaattac tgggcgtaaa gcgogcgtag 600 gcggcctott azgtocggtg tgaaagoccg cggctceecc gcgggaggcc actggeaact 660 gggaggcttg agggcaegag aggegaetgg a&amp;ttcccegt gtagcggtga aatgcgtega 720 eatcgggagg aacaccagtg ecgaaggcgg ctccctggcc tgtacctgac gctgaggcgc 780 gaaagcgtgg ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgggt 840ccggatagga cggcggaccg catggtccgc cgtggsaagg cggcgceagc tgccacctcg 240 ggatgggccc gcggcccatt agcttgttgg tgggftaacg goccaccaag gcgacgatgg 300 rtagcccgcc tgaeagggtg accegccaca ctgggactga gacacggccc a ^ actcctac 360 SESaggcagc agtagggaat cttccgcaat gggcgaaagc ctgacggagc gacgccgcgt 420 gagggaggaa ggocttcggg tcgtaaacct ctettgtcag ggacgaaccc gtgcggttcg 480 aagagggccg cgcgctgacg gtacctgacg aggaagcccc £ gctaactac gtgccagcae 540 ccgcggtaaa acetaggggg cgagcgtt ^ t ccggaattac tgggcgtaaa gcgogcgtag 600 gcggcctott azgtocggtg tgaaagoccg cggctceecc gcgggaggcc actggeaact 660 gggaggcttg agggcaegag aggegaetgg a &amp; ttcccegt gtagcggtga aatgcgtega 720 eatcgggagg aacaccagtg ecgaaggcgg ctccctggcc tgtacctgac gctgaggcgc 780 gaaagcgtgg ggagcaaaca ggattagata ccctggtagt ccacgccgta aacgatgggt 840 gctagctgtg aggggcgttt ggcccttcgt gccgaagcta acgcgataag caccccgcct 900 ggggagtacg gccgcaaggc tgaaactcaa aggaattgac gggggcccgc acaagcggtg 960 gagcetgtgg tttaattcga agcaacgcga agaaccttac c&amp;gggcttga catcccgctg 1020 accgccccag agatggggtt tccctccttt cggagggcag cggtgacagg tggtgcatgg 1080 ttgtcgtcag ctcgtgtcgt gagatgttgg gtta&amp;gtccc gcaacgagcg caacccctgc 1140 ccctagttgc csgcfggtga ggccgggcac tctaggggge ctfccggcga caagccggag 1200 gaaggtgggg atgacgtcaa atcatcatgc cccttatgcc ctgggctaca cacgtgctac 1260 aatggocggt acaaagggtt gcgaacccgc gagggggagc caatcccaaa aagccggtct 1320 cagttcggat tgcaggctgc aactcgcctg catgaaggcg gaatcgctag taatcgcgga 1380 tcagcatgcc gcggtgaata cgttcccggg ccttgtacac accgcccgtc acaccacga^ 1440 agtctgcaac acccgaagtc ggtgcgccaa ccccttacgg ggaggcagcc gccgaaggtg 1500 gggcagatga ttggggtg&amp;a gtcgtaacaa ggtaacc 1537 2· —種堆肥(compost)之製造方法,其係於有機廢棄物(屎 315988修正本 1280977 尿、家畜糞便、污泥等)中,添加含有中溫性好氧性芽 孢菌、高溫性好氧芽孢菌、嗜熱菌之物質使溫度上升進 行高溫醱酵而製造堆肥混合物時,該溫度上升階段係由 申請專利範圍第1項之超嗜熱菌(Ca/t/oi/zr/x 作用,而發生85°C以上的超高溫者。gctagctgtg aggggcgttt ggcccttcgt gccgaagcta acgcgataag caccccgcct 900 ggggagtacg gccgcaaggc tgaaactcaa aggaattgac gggggcccgc acaagcggtg 960 gagcetgtgg tttaattcga agcaacgcga agaaccttac c &amp; gggcttga catcccgctg 1020 accgccccag agatggggtt tccctccttt cggagggcag cggtgacagg tggtgcatgg 1080 ttgtcgtcag ctcgtgtcgt gagatgttgg gtta &amp; gtccc gcaacgagcg caacccctgc 1140 ccctagttgc csgcfggtga ggccgggcac tctaggggge ctfccggcga caagccggag 1200 gaaggtgggg atgacgtcaa atcatcatgc cccttatgcc ctgggctaca cacgtgctac 1260 aatggocggt acaaagggtt gcgaacccgc gagggggagc caatcccaaa aagccggtct 1320 cagttcggat tgcaggctgc aactcgcctg catgaaggcg gaatcgctag taatcgcgga 1380 tcagcatgcc gcggtgaata cgttcccggg ccttgtacac accgcccgtc acaccacga ^ 1440 agtctgcaac acccgaagtc ggtgcgccaa ccccttacgg ggaggcagcc gccgaaggtg 1500 gggcagatga ttggggtg &amp; a gtcgtaacaa ggtaacc 1537 2 · - types of compost (compost) the method for producing It is added to organic waste (屎315988 revised this 1280977 urine, livestock manure, sludge, etc.) When a composting mixture is produced by a medium-temperature aerobic spore, a thermophilic aerobic spore, or a thermophilic substance, the temperature rise phase is the super-hobby of the first item of the patent application scope. Thermobacteria (Ca/t/oi/zr/x action, and ultra-high temperatures above 85 °C occur. 315988修正本315988 amendment
TW93118451A 2003-06-25 2004-06-25 Novel microorganisms TWI280977B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181282A JP4086235B2 (en) 2003-06-25 2003-06-25 New microorganism

Publications (2)

Publication Number Publication Date
TW200506050A TW200506050A (en) 2005-02-16
TWI280977B true TWI280977B (en) 2007-05-11

Family

ID=34182033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93118451A TWI280977B (en) 2003-06-25 2004-06-25 Novel microorganisms

Country Status (2)

Country Link
JP (1) JP4086235B2 (en)
TW (1) TWI280977B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200301303A (en) 2001-12-25 2003-07-01 Sanyu Co Ltd Novel microorganism
JP2015116158A (en) * 2013-12-18 2015-06-25 株式会社 山有 Novel microorganism
JP5689560B1 (en) * 2014-10-31 2015-03-25 株式会社 山有 New microorganism
JP7220026B2 (en) * 2018-06-12 2023-02-09 株式会社 山有 Organic waste treatment method and system

Also Published As

Publication number Publication date
JP4086235B2 (en) 2008-05-14
JP2005013063A (en) 2005-01-20
TW200506050A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
KR20190043989A (en) Mixed strain for decomposing food waste and Decomposition method for food waste using same
US20220009852A1 (en) Bacillus subtilis bs40-4 strain and method for composting organic wastes by using the same
KR102176078B1 (en) Solid culture method to culture with new microbial bacillus subtilis BS300 strains with resolution to carbohydrates and proteins and fibres among organic matter
CN111647536B (en) High-temperature-resistant capsaicin degrading bacteria, application and kitchen waste treatment method
CN110591987B (en) Lactobacillus salivarius358 and application thereof, silage additive and silage
Chin et al. Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil
CN110217895A (en) A kind of complex micro organism fungicide and its application for water environment treatment
JP2019037192A (en) Isolation method of genus raoultella microbe, production method of vegetable waste treatment agent and vegetable waste treatment method
TWI280977B (en) Novel microorganisms
JP2000051891A (en) Water cleaning agent and water cleaning method
JP4086783B2 (en) New microorganism
JPH0959081A (en) Treatment of sludge
CN104560815B (en) Bacillus licheniformis with azo compound degradation activity and application thereof
JP3436859B2 (en) Microorganism and sludge treatment method using the same
JP2539735B2 (en) Thermophilic actinomycete
JPH07246381A (en) Treatment of organic waste
JP3547105B2 (en) New microorganism
JPH05336951A (en) Cellulose decomposing thermophilic bacterium
JPH08140668A (en) Agent for fermentation treatment of raw garbage
CN112662602B (en) Organic solid waste high-temperature aerobic biological decrement strain and application thereof
CN116555091B (en) Salt-tolerant myxobacteria and application thereof
JP2002125660A (en) New microorganism belonging to bacillus thuringiensis
NZ221455A (en) Microbial production of cellulose
JP2007110913A (en) New indigo-reducing microorganism and method for reducing indigo by using the same
CN114032194A (en) Complex microbial inoculant and application thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees