JP4086235B2 - New microorganism - Google Patents

New microorganism Download PDF

Info

Publication number
JP4086235B2
JP4086235B2 JP2003181282A JP2003181282A JP4086235B2 JP 4086235 B2 JP4086235 B2 JP 4086235B2 JP 2003181282 A JP2003181282 A JP 2003181282A JP 2003181282 A JP2003181282 A JP 2003181282A JP 4086235 B2 JP4086235 B2 JP 4086235B2
Authority
JP
Japan
Prior art keywords
bacteria
bacterium
fermentation
temperature
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003181282A
Other languages
Japanese (ja)
Other versions
JP2005013063A (en
Inventor
泰郎 大島
Original Assignee
株式会社 山有
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 山有 filed Critical 株式会社 山有
Priority to JP2003181282A priority Critical patent/JP4086235B2/en
Priority to TW93118451A priority patent/TWI280977B/en
Publication of JP2005013063A publication Critical patent/JP2005013063A/en
Application granted granted Critical
Publication of JP4086235B2 publication Critical patent/JP4086235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たい肥を起源とし、80℃以上で増殖することができ、至適塩濃度の低い新規超好熱菌に関する。
【0002】
【従来の技術】
従来、家畜糞、し尿、汚泥、都市ごみなどの有機廃棄物に、好熱性微生物を作用させてこれらを好気的に発酵させ、無臭化乾燥させてたい肥を製造することが行われている。そして、このような好熱性微生物としてサーモアクチノミセス属またはサーモモノスポラ属に属する好熱性放射菌 (特許文献1) 、バチルス菌、ゲオバチルス属、乳酸生成菌等の好熱好気性芽胞形成菌混合物 (特許文献2) 、好気性枯草菌 (特許文献3) 、リグニン可溶化能を有するサーマスアクティクス属細菌 (特許文献4) 、好気性繊維分解菌クロストリジュウム サーモセルム サーマスアクティクス (特許文献5) 等が知られている。しかし、これらの微生物を利用しても、発酵時には発酵熱によって発酵温度は70℃以上に上昇するものの、その温度はせいぜい80℃にとどまり、雑菌、特に芽胞形成性雑菌を死滅させることができなかった。また、得られる肥料中の有用な菌体もせいぜい1g当り (肥料乾物)1億前後であって、肥料として使用したときに肥効作用を充分発揮させることができなかった。
【0003】
本発明者らは、汚泥処理におけるこのような問題を解決するために、汚泥を85℃以上、好ましくは95℃以上の高温で発酵処理して雑菌、草種子等を死滅させ、汚泥を清浄化し、しかも有用な菌体を多数含む発酵物を得るべく検討を行った。その結果、生汚泥に、霧島火山地帯の土壌から得られた85℃以上の温度で生育する細菌培養物を加えて混合し、通気発酵させて85℃以上の発酵温度で汚泥中に含有される雑菌、種子を死滅させ、汚泥を清浄化し、有用な菌体のみを多数含有する汚泥発酵物を得る方法を見出し、特許を取得した (特許文献6) 。そして、この汚泥発酵物は、たい肥として利用され、このなかにはBacillus 属、 Geobacillus 属に属する中温性好気性芽胞菌、高温性好気性芽胞菌、好熱菌等が多数見出された。
すなわち、この汚泥発酵物1gには、表1に示すとおり好気性細菌はじめ、高温性細菌、耐熱性芽胞を中心として汚泥発酵物グラム当り約10億の細菌を含んでいた。
【0004】
【表1】

Figure 0004086235
【0005】
また、この培養において培養平板上に優勢に生育した集落を鈎菌して分離菌とし、その分離菌について形態観察などを行って、発酵に関与するような微生物を検索したところ表2に示すような微生物が介在していることが判明した。
【0006】
【表2】
Figure 0004086235
【0007】
このように多形性、無芽胞グラム陽性桿菌、好気性芽胞菌 (中温性及び高温性) が主に介在していることが判明した。
また、一方、 R&D プランニング発行 山里一英他3名編「微生物の分離法」の記載を参考にして好熱菌の測定を行った。好熱菌の優勢菌は好気性芽胞菌 (高温性) であった。
さらに、上記微生物の検索において優勢に分離された中温性好気性芽胞菌 (分離菌a)、高温性好気性芽胞菌 (分離菌b)及び好熱菌 (分離菌c)について形態観察、生理学的性状試験及び菌体内の DNAのGC含量の測定を行った。その結果を表3に示した。
【0008】
【表3】
Figure 0004086235
Figure 0004086235
【0009】
分離菌a は、いずれの種とも性状が一致せず、種の確定には至らなかった。分離菌b は、ややアルカリ性(pH8.0〜8.5)の培地で良好な生育を示し、pH7.0 では生育しないが、その他の性状試験結果から Bacillus badius B.brevis に近い種と思われた。しかし、どちらとも非典型となる性状があり種の確定には至らなかった。また、分離菌c は、バチルス ステロサーモフィルス (Bacillus stearothermophilus) と菌学的性状が一致し同種であると同定されるものの、GC含量が大きく異なるので、近縁の種と思われる。
これらの分離菌は、工業技術院生命工業技術研究所 (現 独立行政法人 産業技術総合研究所微生物寄託センター)に寄託されており、分離菌a は、YM-01 受託番号 FERM P-15085 、分離菌b は、YM-02 受託番号 FERM P-15086 、分離菌cは、YM-03 受託番号 FERM P-15087 とそれぞれ受託番号が付されている。
【0010】
本発明者らは、これらのたい肥中の高温で生育する微生物の存在について、さらに検討したところ、驚くべきことに75℃以上の高温で活発に増殖し、85℃においても増殖が認められるが50℃以下では増殖が認められない新規な属に属する超好熱菌カルドトリックス・サツマエ(Caldothrix satumae)YM081(FERM P-18598)(FERM BP-8233)を見出して特許出願した(特願2001-391561;PCT/JP02/13424)。ところが、その後このたい肥中の超好熱菌についてさらに検討したところ、16srDNA塩基配列においてカルドトリックス・サツマエ(Caldotrix satsumae)YM081株と98%以上の相同性を有するが、栄養要求性や至適塩濃度などの菌学的性質においてCaldotrix satsumae YM081株と相違する数種の微生物の菌株を得た。
【0011】
【特許文献1】
特開昭55-121992号公報
【特許文献2】
特開昭51-129759号公報
【特許文献3】
特開平6-5197号公報
【特許文献4】
特開平6-105679号公報
【特許文献5】
特開平6-191977号公報
【特許文献6】
特許第3064221号公報
【0012】
【発明が解決しようとする課題】
本発明の課題は、汚泥を85℃以上で発酵させて得られたたい肥中から超好熱菌のカルドトリックス・サツマエ(Caldotrix satumae)の新菌株を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、上記課題を解決するために、前記汚泥を85℃以上で発酵させて得られるたい肥 (商品名 サツマソイル)中に存在する好熱性微生物の検索を試みたところ、通常の細菌の培養温度 (30〜40℃) では増殖せず、70〜85℃、特に80℃以上で活発に生育する絶対好気性菌を見出した。そして、この菌について16SrDNA の塩基配列に基づく系統分類解析を行った。その結果、この絶対好気性菌は、グラム陰性で胞子形成能がないにもかかわらず、図1に示されるような胞子形成能を持つグラム陽性土壌細菌 Bacillus, Geobacillus 属と近縁であるがこれらとは少なくとも属レベルにおいて独立の細菌であることを見出した。本発明者らは、これをカルドトリックス サツマエ Caldothrix satsumae, YM081 菌と命名し、この菌株を独立行政法人産業技術総合研究所特許生物寄託センターに寄託し、受託番号 FERM P-18598 (FERM BP-8233)が付与された。
また、この菌の16Sr DNAの全塩基配列は配列表配列番号1のとおりの塩基配列を示す。
【0014】
この超好熱菌は、前記した鹿児島市のし尿等の有機廃棄物を特許第3064221 号公報に記載される方法に従って高温で発酵させて得られる堆肥 (商品名サツマソイル )から分離された。この分離方法としては、次の方法が用いられた。 表4に記載の組成の培地 5mlに、前記たい肥約0.1gを加えて、80℃に保温し、継代をくりかえして濃縮した後、同一の培地にゲランガムを加えたプレート上に単離、精製を反復した。
【0015】
【表4】
Figure 0004086235
【0016】
このようにして得られた菌体の微生物学的性質及び分類学的位置は次のとおりであった。
1) 形態 巾 0.5μm 、長さ 3μm の長桿菌である。グラム染色の結果は陰性を示し、菌体の超薄切片の電子顕微鏡観察も細胞表層構造がグラム陰性型であること、すなわち、細胞膜(形質膜)、細胞壁に加えて、外膜の存在を示した。胞子形成能はない。
2) 70〜85℃で活発に生育し、50℃以下では増殖の認められない。75℃以上の高温で活発に増殖し、85℃においても増殖が認められる。絶対好気性である。
3) 増殖の至適pHは中性である。増殖可能なpH範囲は 6〜9 である。
また、弱好塩性を示す。
4) アルブミン、カゼインなど各種たんぱく質、およびでん粉の資化性がある。
5) ウレアーゼ生産性がある。硝酸還元能はない。硫化水素生産性、インドール生産性はない。
6) DNAの G+C 含量は70.0%である。
7) 16SrDNA の塩基配列に基づく系統分類解析を行った。その結果を図1及び表6に示す。また16SrDNA の全塩基配列は配列表配列番号1に記載のとおりの塩基配列となった。
このように、この菌体は、グラム陰性で胞子形成能がないにも拘わらず、
胞子形成能を持つグラム陽性土壌細菌 Bacillus, Geobacillus 属と近縁であるが、これらとは少なくとも属レベルにおいて独立の細菌である。
【0017】
これらのことより、本発明の微生物は、眞正細菌に属し、超好熱菌であることが判明した。また16SrDNA の塩基配列からは Geobacillus stearothermophilusに近縁であるが、これとは独立の属を形成していることが判明した。
【0018】
そして、本発明者らは、さらに表6に示す培地を基本成分とする培地を用いて、新菌種の探索を行ったところ、数種の高度好熱菌を分離することができた。そして、これらの分離した菌を、YMO 803、YMO 806、YMO 811、YMO 812、YMO 813と命名した。これらの菌株は、YM081株と同じ種と同定できることが判明した。しかしこれらの菌体は、いずれも至適塩分濃度が1%以下であって、カルドトリックス・サツマエ(Caldotrix satsumae)YM081株の至適塩分濃度が3%であるのに対し、至適塩分濃度が低い点に特徴を有する。
これらすべての菌株は、長桿菌で、胞子形成能がなく、グラム陰性の高度高熱性真正細菌で少なくとも80℃で増殖が可能である。これらすべての菌株は、炭素源、窒素源としてカゼイン、可溶性でんぷんを利用し、pH7.5〜8.5の範囲の至適pHを有している。しかし、栄養要求性や至適塩濃度など増殖に関する性質はそれぞれ異なっている。また、16SrDNAの塩基配列はそれぞれ株毎に異なるが、YM081株を含め相互に配列相同性が98%以上あり、すべて同一種と同定できる。
【0019】
【発明の効果】
し尿等の有機廃棄物を原料として発酵培養物を接種し、発酵を行うと、多数の Bacillus 属、Geobacillus 属に属する中等度好熱菌等によって発酵温度が上昇する。その後、発酵温度が上昇するに従い、本発明の数種の超好熱菌カルドトリックスが高温型コンポストにおける有機廃棄物の分解と発酵に関与するようになる。従って、本発明の超好熱菌は有機廃棄物(し尿、家畜糞、都市ごみ、汚泥等)をその塩分濃度が低い部分であっても高温で分解し、発酵させたい肥を製造する種菌、培地等として有用に利用される。
さらに、この超好熱菌の産生するプロテアーゼおよびアミラーゼは高温で活性を有するので、この性質を利用して耐熱性酵素を製造することが期待される。
【0020】
【実施例】
次に本発明の参考例及び実施例について説明する。しかし、本発明はこれらの参考例及び実施例に限定して解釈されるべきではない。
【参考例1】
1.菌体培養物の調製
鹿児島県姶良郡牧園町の霧島火山帯の硫黄地帯の37〜40℃の土壌とその付近の水田の青苔の生育している土壌とを混合し、これに蔗糖を 500〜1000倍量の水に溶解した蔗糖水溶液を土壌混合物 1m3当り 3〜4L加え、40〜50℃で30〜50日間放置して培養する。この培養物をいくつかのロットに公共下水道の生汚泥と混合し、空気を吹き込みながら好気的条件下で発酵させ、85℃以上の発酵温度が得られるロットを菌体培養物とした。
【0021】
2. 生汚泥の処理
動物糞、下水の汚泥、澱粉カス及び生ゴミの混合物に消石灰を加えて消臭処理し、その80重量部に前記(1) で得られた菌体培養物20重量部を混合し、発酵槽内で通気条件下で発酵を行う。このようにすると発酵物が約1日のうちに常温から85〜95℃に上昇する。この温度で発酵を3日間維持し、発酵開始後5日目に切り返し(撹拌)を行う。切り返しにより発酵物の温度は60℃前後に低下するが約1日のうちに温度85〜95℃に上昇する。この温度に5日間維持して発酵を行う。この発酵及び切り返しの操作を数回繰り返すと切り返しのさいの温度及び発酵温度が次第に低下する。4回この操作を繰り返し、切り返しのさいの発酵物の温度が35℃程度に低下したときを最終発酵日とする。得られた発酵物を菌体培養物として使用する。この菌体培養物は乾燥されて際茶色の顆粒状になっている。
【0022】
3.原料たい肥の調製
鹿児島市の公共下水道汚泥を圧縮脱水し、水分68%となった生汚泥80重量部に対し、前記2で得られた菌体培養物20重量部を混合し、発酵ヤードに入れ、下から空気を吹き込みながら発酵を行った。発酵開始後7日で温度98℃に達した。10日間発酵を行って、発酵温度が98℃から低下しはじめた時点で、切り返しを行って再度発酵させた。最初99℃の温度に達した後、すなわち切り返し後10日目に温度が急速に60〜70℃に低下した。この時点で、発酵ヤードに発酵生成物を拡げ急速に温度を常温まで低下させ、茶色の汚泥発酵粉末を得た。この汚泥発酵粉末はたい肥として、または前記発酵を行うための菌体培養物あるいは培地として用いられる。
【0023】
【参考例2】
超好熱菌の単離
参考例1で得られた、たい肥を試料として約0.1gを、表4の培地 5mlに接種し、80℃に保温し、継代を繰り返して濃縮したのち、同一組成の培地にゲランガムを加えたプレート上で単離精製を繰り返して超好熱菌を得た。
なお、たい肥試料を、ヘプトン・イーストエキス培地 (各0.5, 0.3%, pH7.2)に加えて70℃で培養し、増殖した細菌を寒天プレート(pH7.2、70℃) 上で単離したことろ、温度70℃以上で従来から堆肥の発酵をになうとされているGeobacillus stearothermophilusほか、その他の多数の新規な好熱性細菌が見出された。
【0024】
【参考例3】
超好熱菌の微生物学的性質
参考例2で得られた、超好熱菌を、カゼイン0.3 %、酵母エキス0.2 %、でん粉0.1 %、NaCl 3%よりなる、pH7〜8の寒天培地に接種し、80℃で24時間培養し、その微生物学的性質を検討した。その結果を表5に示した。
この超好熱菌の顕微鏡写真を図2〜5に示す。
【0025】
【表5】
Figure 0004086235
Figure 0004086235
16Sr DNAの塩基配列に基づいて全塩基配列を決定し、それに基づ いて分子系統樹を作成した。この結果を図1及び表6に示す。
【0026】
【表6】
Figure 0004086235
【0027】
この結果、この超好熱菌は、眞正細菌に属し、グラム陰性で胞子形成能がないにもかかわらず、胞子形成能をもつグラム陰性土壌細菌Bacillus, Geobacillus 属とは近縁であるので、新属に属することは明らかとなった。また、DNAのGC含量については、表6にみられるように90%に達する相同性を示す菌はなく、また2つの属、Bacillus属とGeobacillus 属のそれぞれから等距離(各85%) 離れているので新属と判定される(表6及び図1参照)。そしてこの属をカルドトリックスと命名した。至適増殖温度が80℃であるので、この菌は超好熱菌であることも明らかとなった。
なお、本発明のカルドトリックス・サツマエ (Caldothrix satsumae) YM081株 と枯草菌 (Bacillus subtilus) との生化学的性質を比較すると表7のとおりである。
【0028】
【表7】
Figure 0004086235
【0029】
【実施例1】
参考例1で得られた、たい肥を試料としてその約0.1gを、表8の組成の培地5mlに接種し、80℃に保温し、継代を繰り返して濃縮したのち、同一組成の培地にゲランガムを加えたプレート上で単離精製を繰り返して本発明の超好熱菌を得た。これらの分離した菌株を、YMO 803、YMO 806、YMO 811、YMO 812、YMO 813と命名した。これらの菌株は、前述のようにすべて長桿菌で、胞子形成能がなく、グラム陰性の高度好熱性真正細菌で少なくとも80℃で増殖が可能である。そして、これらのすべての菌株は、炭素源、窒素源としてカゼイン、可溶性でんぷんを利用し、pH7.5〜8.5の範囲の至適pHを有している。しかし、次に記載するように栄養要求性や至適塩濃度などの増殖に関する性質は、それぞれ異なっている。特に至適温度が1%以下、特に0.3〜0.8%である点で特徴を有している。
【0030】
【表8】
Figure 0004086235
【0031】
また、16SrDNAの塩基配列は、それぞれ株毎に異なるが、表12に示されるようにYM081株を含め相互に配列相同性が98%以上あり、すべて同一種と同定できる。これれの菌株がYM081株と異なる性質を有している点のみ、表9に示す。この表から分かるとおり、一部の菌性は、微量金属元素の添加を必要としている。この微量金属元素の組成を表10に示した。また一部の菌株は増殖にたい肥の抽出液を必要とする。このたい肥抽出液の作成法を表11に示した。
【0032】
【表9】
Figure 0004086235
【0033】
【表10】
Figure 0004086235
【0034】
【表11】
Figure 0004086235
【0035】
本発明者らは、これらの菌株を独立行政法人産業技術総合研究所特許生物寄託センターに寄託し、次の寄託番号を得ている。
Figure 0004086235
これらの菌株の16SrDNAの塩基配列を配列表配列番号2〜6に示す。表12に示されるとおり、16SrDNAの塩基配列は、それぞれの菌株毎に異なるが、YM081株を含め相互に配列相同性が98%以上であり、全て同一種であると同定される。これらは、高熱型コンポストにおける有機破棄物の分解は、これらの菌株の共同作業に関与していると考えられる。また、これらの菌株の高熱性の高温的熱性を利用して、耐熱酵素の分離などに用いられる。
【0036】
【表12】
Figure 0004086235
【0037】
【配列表】
Figure 0004086235
Figure 0004086235
Figure 0004086235
【0038】
Figure 0004086235
Figure 0004086235
Figure 0004086235
【0039】
Figure 0004086235
Figure 0004086235
Figure 0004086235
【0040】
<210> 4
<211> 1511
<212> DNA
<213> Caldothrix satgumae YM0 811

<313> 4

<400> 4
aacgctggcg gcgcgcctaa tacatgcaag tcgagcgggg cttttcgcgt gaagccttcg 60
ggcggatcgc ggggagccta gcggcgaacg ggtgcgtaac acgtgggcaa cctaccccga 120
ggaccgggat aactccggga aaccggggct aataccggat aggacggcgg accgcatggt 180
ccgccgtgga aaggcggcgc aagctgccac ctcgggatgg gcccgcggcc cattagcttg 240
ttggtggggt aacggcccac caaggcgacg atgggtagcc ggcctgagag ggtgaccggc 300
cacactggga ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg 360
caatgggcga aagcctgacg gagcgacgcc gcgtgaggga ggaaggcctt cgggtcgtaa 420
acctctgttg tcagggacga acccgtgcgg ttcgaagagg gccgcgcgct gacggtacct 480
gacgaggaag ccccggctaa ctacgtgcca gcagccgcgg taaaacgtag ggggcgagcg 540
ttgtccggaa ttactgggcg taaagcgcgc gtaggcggcc tcttaagtcc ggtgtgaaag 600
cccgcggctc aaccgcggga ggccactgga aactgggagg cttgagggca ggagagggga 660
gtggaattcc cggtgtagcg gtgaaatgcg tagagatcgg gaggaacacc agtggcgaag 720
gcggctccct ggcctgtacc tgacgctgag gcgcgaaagc gtggggagca aacaggatta 780
gataccctgg tagtccacgc cgtaaacgat gggtgctagg tgtgaggggc gtttggccct 840
tcgtgccgaa gctaacgcga taagcacccc gcctggggag tacggccgca aggctgaaac 900
tcaaaggaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac 960
gcgaagaacc ttaccagggc ttgacatccc gctgaccgcc ccagagatgg ggtttccctc 1020
ctttcggagg gcagcggtga caggtggtgc atggttgtcg tcagctcgtg tcgtgagatg 1080
ttgggttaag tcccgcaacg agcgcaaccc ctgcccctag ttgccagcgg gtgaggccgg 1140
gcactctagg gggactgccg gcgacaagcc ggaggaaggt ggggatgacg tcaaatcatc 1200
atgcccctta tgccctgggc tacacacgtg ctacaatggc cggtacaaag ggttgcgaac 1260
ccgcgagggg gagccaatcc caaaaagccg gtctcagttc ggattgcagg ctgcaactcg 1320
cctgcatgaa ggcggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1380
cgggccttgt acacaccgcc cgtcacacca cgagagtctg caacacccga agtcggtgcg 1440
ccaacccctt acggggaggc agccgccgaa ggtggggcag atgattgggg tgaagtcgta 1500
acaaggtaac c 1511
【0041】
Figure 0004086235
Figure 0004086235
Figure 0004086235
【0042】
Figure 0004086235
Figure 0004086235

【図面の簡単な説明】
【図1】本発明のカルドトリックス(Caldothrix)属の16SrDNA に基づく分子系統樹を示す。なお、図中YM081 が本発明の超好熱菌である。
【図2】本発明のカルドトリックス・サツマエ (Caldothrix satsumae)YM081株の光学電子顕微鏡写真を示す。
【図3】本発明のカルドトリックス・サツマエ (Caldothrix satsumae)YM081株の走査型電子顕微鏡写真を示す。
【図4】本発明のカルドトリックス・サツマエ (Caldothrix satsumae)YM081株の透過型電子顕微鏡写真を示す。
【図5】本発明のカルドトリックス・サツマエ (Caldothrix satsumae) YM081 株の菌体の超薄切片の電子顕微鏡写真を示す(倍率5,000 倍) 。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel hyperthermophilic bacterium that originates from compost and can grow at 80 ° C. or higher and has a low optimum salt concentration.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it has been practiced to produce fertilizer that is fermented aerobically by causing thermophilic microorganisms to act on organic waste such as livestock excrement, human waste, sludge, municipal waste, etc., and then drying without bromide. And, as such a thermophilic microorganism, a thermophilic aerobic spore-forming microbial mixture such as thermophilic radiobacterium belonging to the genus Thermoactinomyces or Thermomonospora (Patent Document 1), Bacillus bacterium, Geobacillus genus, lactic acid-producing bacterium, etc. Patent Document 2), aerobic Bacillus subtilis (Patent Document 3), a bacterium belonging to the genus Thermosactics (Patent Document 4) having an ability to solubilize lignin, an aerobic fiber-degrading bacterium, Clostridium thermocellum thermusactics (Patent Document 5) Are known. However, even when these microorganisms are used, the fermentation temperature rises to 70 ° C or higher due to the heat of fermentation during fermentation, but the temperature remains at most 80 ° C, and it is not possible to kill germs, especially spore-forming germs. It was. In addition, useful cells in the obtained fertilizer were at most 100 million per gram (fertilizer dry matter), and when used as a fertilizer, the fertilizer effect could not be fully exhibited.
[0003]
In order to solve such problems in sludge treatment, the present inventors fertilize sludge at a high temperature of 85 ° C or higher, preferably 95 ° C or higher to kill germs, grass seeds, etc., and purify sludge. In addition, studies were made to obtain a fermented product containing many useful cells. As a result, bacterial culture grown at a temperature of 85 ° C or higher obtained from soil in the Kirishima volcanic area is added to raw sludge, mixed, aerated and fermented, and contained in the sludge at a fermentation temperature of 85 ° C or higher. We found a method for killing various germs and seeds, purifying sludge, and obtaining a fermented sludge containing many useful cells only, and obtained a patent (Patent Document 6). This sludge fermented product was used as compost, and among them, many mesophilic aerobic spore bacteria, thermophilic aerobic spore bacteria, thermophilic bacteria, etc. belonging to the genus Bacillus and Geobacillus were found.
That is, 1 g of this sludge fermented product contained about 1 billion bacteria per gram of the sludge fermented product, mainly aerobic bacteria, thermophilic bacteria and heat-resistant spores as shown in Table 1.
[0004]
[Table 1]
Figure 0004086235
[0005]
Also, in this culture, the colony that grew predominantly on the culture plate was transformed into gonococcus and used as isolates, and the microorganisms involved in fermentation were searched by morphological observation of the isolates, as shown in Table 2. It was found that various microorganisms were present.
[0006]
[Table 2]
Figure 0004086235
[0007]
In this way, it was found that polymorphism, spore-free Gram-positive bacilli and aerobic spore bacteria (mesophilic and hyperthermic) are mainly intervening.
On the other hand, thermophilic bacteria were measured by referring to the description of “Microbial Separation Method” by Kazuhide Yamazato et al. The dominant thermophile was aerobic spore bacteria (thermophilic).
Furthermore, morphological observation and physiological observations were made on mesophilic aerobic spore bacteria (isolated bacteria a), thermophilic aerobic spore bacteria (isolated bacteria b), and thermophilic bacteria (isolated bacteria c), which were predominantly isolated in the above microorganism search. The property test and the GC content of DNA in the cells were measured. The results are shown in Table 3.
[0008]
[Table 3]
Figure 0004086235
Figure 0004086235
[0009]
The isolate a did not match the properties of any species, and the species was not confirmed. The isolate b showed good growth in a slightly alkaline medium (pH 8.0 to 8.5) and did not grow at pH 7.0, but other characterization tests suggested that it was close to Bacillus badius and B. brevis . . However, both have atypical properties and the species was not finalized. The isolated bacterium c is identified as a similar species with the same bacteriological properties as Bacillus stearothermophilus , but it appears to be closely related because its GC content is significantly different.
These isolates are deposited at the National Institute of Advanced Industrial Science and Technology (currently the National Institute of Advanced Industrial Science and Technology (AIST)), and the isolate B is YM-01 accession number FERM P-15085. Bacterium b is assigned the YM-02 accession number FERM P-15086, and the isolated bacterium c is assigned the accession number YM-03 accession number FERM P-15087.
[0010]
The present inventors further examined the presence of microorganisms that grow at high temperatures in these composts. Surprisingly, they proliferated actively at a high temperature of 75 ° C. or higher, and proliferation was observed even at 85 ° C. We found and applied for a patent for the hyperthermophilic bacterium Caldothrix satumae YM081 (FERM P-18598) (FERM BP-8233), which belongs to a novel genus that does not grow below ℃ (Japanese Patent Application 2001-391561). PCT / JP02 / 13424). However, after further examination of the hyperthermophilic bacteria in this compost, it has a homology of 98% or more with the Caldotrix satsumae YM081 strain in the 16srDNA base sequence, but the auxotrophy and the optimum salt concentration Several strains of microorganisms were obtained that differed from Caldotrix satsumae strain YM081 in mycological properties.
[0011]
[Patent Document 1]
JP 55-121992 [Patent Document 2]
Japanese Patent Laid-Open No. 51-129759 [Patent Document 3]
Japanese Patent Laid-Open No. 6-5197 [Patent Document 4]
JP-A-6-105679 [Patent Document 5]
Japanese Patent Laid-Open No. 6-191977 [Patent Document 6]
Japanese Patent No. 3064221 [0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a new strain of a thermophilic bacterium, Caldotrix satumae, from compost obtained by fermenting sludge at 85 ° C. or higher.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention tried to search for thermophilic microorganisms present in compost (trade name Satsuma Soyle) obtained by fermenting the sludge at 85 ° C. or higher. We found an absolute aerobic bacterium that did not multiply at (30-40 ° C) and grew vigorously at 70-85 ° C, especially 80 ° C or higher. A phylogenetic analysis based on the 16S rDNA base sequence was performed on this bacterium. As a result, this aerobic bacterium is closely related to the gram-positive soil bacteria Bacillus and Geobacillus genus having spore-forming ability as shown in FIG. Was found to be an independent bacterium at least at the genus level. The inventors of the present invention named it Caldtrix Satsumae Caldothrix satsumae , YM081, and deposited this strain at the National Institute of Advanced Industrial Science and Technology Patent Organism Depositary, under the accession number FERM P-18598 (FERM BP-8233 ) Was granted.
Further, the entire base sequence of 16Sr DNA of this bacterium shows the base sequence as shown in SEQ ID NO: 1 in the sequence listing.
[0014]
This hyperthermophilic bacterium was isolated from compost (trade name Satsuma Soyle) obtained by fermenting organic waste such as human waste in Kagoshima City at a high temperature according to the method described in Japanese Patent No. 3064221. As the separation method, the following method was used. About 0.1 g of the above-mentioned compost was added to 5 ml of the medium having the composition shown in Table 4, kept at 80 ° C., concentrated after repeated passages, and then isolated and purified on a plate obtained by adding gellan gum to the same medium. Was repeated.
[0015]
[Table 4]
Figure 0004086235
[0016]
The microbiological properties and taxonomic position of the bacterial cells thus obtained were as follows.
1) Morphology A long bacillus with a width of 0.5μm and length of 3μm Gram staining results are negative, and electron microscopic observations of ultrathin sections of cells also show that the cell surface structure is gram-negative, that is, the presence of the outer membrane in addition to the cell membrane (plasma membrane) and cell wall It was. There is no sporulation ability.
2) It grows vigorously at 70-85 ° C, and no growth is observed below 50 ° C. It grows actively at a high temperature of 75 ° C or higher, and is also observed at 85 ° C. Absolute aerobic.
3) The optimum pH for growth is neutral. The proliferative pH range is 6-9.
Moreover, it shows weak halophilicity.
4) Various proteins such as albumin, casein, and starch are assimilated.
5) Urease productivity. There is no nitrate reduction ability. There is no hydrogen sulfide productivity or indole productivity.
6) The G + C content of DNA is 70.0%.
7) A phylogenetic analysis based on the 16S rDNA base sequence was performed. The results are shown in FIG. Further, the entire base sequence of 16S rDNA was the base sequence described in SEQ ID NO: 1 in the Sequence Listing.
In this way, this microbial cell is gram-negative and has no sporulation ability,
It is closely related to the gram-positive soil bacteria Bacillus and Geobacillus with spore-forming ability, but these are independent bacteria at least at the genus level.
[0017]
From these facts, it was found that the microorganism of the present invention belongs to the eumorphic bacterium and is a hyperthermophilic bacterium. The 16S rDNA base sequence was closely related to Geobacillus stearothermophilus , but it was found to form an independent genus.
[0018]
And when the present inventors further searched for a new microbial species using the culture medium which uses the culture medium shown in Table 6 as a basic component, several kinds of highly thermophilic bacteria could be isolated. These isolated bacteria were named YMO803, YMO806, YMO811, YMO812, and YMO813. It was found that these strains can be identified as the same species as the YM081 strain. However, these cells all have an optimum salinity of 1% or less, and the optimum salinity of Caldotrix satsumae YM081 is 3%, whereas the optimum salinity is 3%. Characterized by low points.
All these strains are long bacillus, have no spore-forming ability, and are gram-negative highly hyperthermophilic eubacteria that can grow at least at 80 ° C. All these strains use casein and soluble starch as carbon and nitrogen sources and have an optimum pH in the range of 7.5 to 8.5. However, growth-related properties such as auxotrophy and optimum salt concentration are different. The 16S rDNA base sequence varies from strain to strain, but the sequence homology with each other, including the YM081 strain, is 98% or more, and all can be identified as the same species.
[0019]
【The invention's effect】
When inoculating a fermented culture using organic waste such as human waste as a raw material and performing fermentation, the fermentation temperature rises due to a number of moderately thermophilic bacteria belonging to the genus Bacillus and Geobacillus . Thereafter, as the fermentation temperature rises, several hyperthermophilic bacteria of the present invention become involved in the decomposition and fermentation of organic waste in high-temperature compost. Therefore, the hyperthermophilic bacterium of the present invention is an inoculum and medium for producing fertilizer to be fermented by decomposing organic waste (human waste, livestock dung, municipal waste, sludge, etc.) at a high temperature even in a portion having a low salinity. It is useful as such.
Furthermore, since the protease and amylase produced by this hyperthermophilic bacterium have activity at high temperatures, it is expected to produce a thermostable enzyme using this property.
[0020]
【Example】
Next, reference examples and examples of the present invention will be described. However, the present invention should not be construed as being limited to these reference examples and examples.
[Reference Example 1]
1. Preparation of bacterial cell culture <br/> Mix the soil at 37 ~ 40 ℃ in the sulfur area of Kirishima volcanic zone in Makino-cho, Aira-gun, Kagoshima and the soil where green moss of paddy field in the vicinity grows. sucrose 500-1000 sucrose aqueous solution prepared by dissolving in 2 volumes of water was added 3~4L per soil mix 1 m 3, and cultured by standing at 40 to 50 ° C. 30 to 50 days. This culture was mixed with raw sludge from public sewers in several lots, and fermented under aerobic conditions while blowing air, and a lot capable of obtaining a fermentation temperature of 85 ° C. or higher was defined as a cell culture.
[0021]
2. Treatment of raw sludge Deodorized by adding slaked lime to a mixture of animal dung, sewage sludge, starch residue and raw garbage, and 80 parts by weight of the cell culture obtained in (1) above 20 parts by weight of the product is mixed and fermented in a fermenter under aerated conditions. If it does in this way, fermented material will rise to 85-95 degreeC from normal temperature in about one day. Fermentation is maintained at this temperature for 3 days, and turning back (stirring) is performed on the 5th day after the start of fermentation. Although the temperature of the fermented product decreases to around 60 ° C. due to reversion, the temperature rises to 85-95 ° C. within about one day. Fermentation is carried out at this temperature for 5 days. If this fermentation and turnover operation is repeated several times, the temperature at the turnover and the fermentation temperature gradually decrease. This operation is repeated 4 times, and the time when the temperature of the fermented product at the time of turnover falls to about 35 ° C. is defined as the final fermentation date. The obtained fermented product is used as a cell culture. The cell culture is dried to give brown granules.
[0022]
3. Preparation of raw compost <br/> Compressed and dehydrated public sewer sludge from Kagoshima City, mixed with 20 parts by weight of the cell culture obtained in 2 above with 80 parts by weight of raw sludge having a moisture content of 68%, It put into the fermentation yard and fermented, blowing air from the bottom. The temperature reached 98 ° C. 7 days after the start of fermentation. Fermentation was carried out for 10 days, and when the fermentation temperature began to decrease from 98 ° C., it was turned back and fermented again. The temperature dropped rapidly to 60-70 ° C. after first reaching a temperature of 99 ° C., ie 10 days after switching. At this point, the fermentation product was spread in the fermentation yard and the temperature was rapidly lowered to room temperature to obtain a brown sludge fermentation powder. This sludge fermented powder is used as compost or as a cell culture or medium for performing the fermentation.
[0023]
[Reference Example 2]
Isolation of hyperthermophilic bacteria About 0.1 g of the compost obtained in Reference Example 1 was inoculated into 5 ml of the medium shown in Table 4, kept at 80 ° C, and concentrated by repeated passages. Thereafter, isolation and purification were repeated on a plate obtained by adding gellan gum to a medium having the same composition to obtain a hyperthermophilic bacterium.
In addition, compost samples were added to hepton yeast extract medium (0.5, 0.3%, pH 7.2) and cultured at 70 ° C, and the grown bacteria were isolated on agar plates (pH 7.2, 70 ° C) In fact, many other thermophilic bacteria have been discovered, including Geobacillus s stearothermophilus, which has traditionally been fermenting compost at temperatures above 70 ° C.
[0024]
[Reference Example 3]
Microbiological properties of hyperthermophilic bacteria The hyperthermophilic bacteria obtained in Reference Example 2 consisted of 0.3% casein, 0.2% yeast extract, 0.1% starch, 3% NaCl, pH 7-8. The agar medium was inoculated and cultured at 80 ° C. for 24 hours, and its microbiological properties were examined. The results are shown in Table 5.
Photomicrographs of this hyperthermophilic bacterium are shown in FIGS.
[0025]
[Table 5]
Figure 0004086235
Figure 0004086235
Based on the base sequence of 16Sr DNA, the entire base sequence was determined, and based on this, a molecular phylogenetic tree was created. The results are shown in FIG.
[0026]
[Table 6]
Figure 0004086235
[0027]
As a result, this hyperthermophilic bacterium belongs to orthomorphic bacteria and is closely related to the gram-negative soil bacteria Bacillus and Geobacillus sp. It became clear that it belonged to a new genus. In addition, regarding the GC content of DNA, as shown in Table 6, there are no bacteria showing homology reaching 90%, and the two genera, Bacillus genus and Geobacillus genus, are equidistant from each other (85% each). Therefore, it is determined as a new genus (see Table 6 and FIG. 1). And this genus was named Caldtrix. Since the optimal growth temperature was 80 ° C., it was also revealed that this bacterium is a hyperthermophilic bacterium.
Table 7 shows a comparison of biochemical properties between the Caldothrix satsumae YM081 strain and Bacillus subtilus of the present invention.
[0028]
[Table 7]
Figure 0004086235
[0029]
[Example 1]
About 0.1 g of the compost obtained in Reference Example 1 as a sample is inoculated into 5 ml of the medium having the composition shown in Table 8, kept at 80 ° C., repeatedly subcultured, and concentrated in the medium having the same composition. The hyperthermophilic bacterium of the present invention was obtained by repeating the isolation and purification on the plate to which was added. These isolated strains were named YMO803, YMO806, YMO811, YMO812, YMO813. As described above, these strains are all long bacillus, have no spore-forming ability, and are gram-negative highly thermophilic eubacteria that can grow at least at 80 ° C. All these strains utilize casein and soluble starch as a carbon source and nitrogen source, and have an optimum pH in the range of pH 7.5 to 8.5. However, as described below, properties related to growth such as auxotrophy and optimum salt concentration are different. In particular, the optimum temperature is 1% or less, particularly 0.3 to 0.8%.
[0030]
[Table 8]
Figure 0004086235
[0031]
The 16S rDNA base sequence varies from strain to strain, but as shown in Table 12, there is a sequence homology of 98% or more including the YM081 strain, and all can be identified as the same species. Table 9 shows only that these strains have different properties from the YM081 strain. As can be seen from this table, some fungi require the addition of trace metal elements. Table 10 shows the composition of this trace metal element. Some strains also require a fertilizer extract for growth. Table 11 shows how to make this compost extract.
[0032]
[Table 9]
Figure 0004086235
[0033]
[Table 10]
Figure 0004086235
[0034]
[Table 11]
Figure 0004086235
[0035]
The present inventors have deposited these strains at the National Institute of Advanced Industrial Science and Technology Patent Organism Depositary and obtained the following deposit numbers.
Figure 0004086235
The base sequences of 16S rDNA of these strains are shown in SEQ ID NOs: 2 to 6 in Sequence Listing. As shown in Table 12, the base sequence of 16SrDNA differs for each strain, but the sequence homology with each other including the YM081 strain is 98% or more, and all are identified as the same species. These are considered to be related to the collaborative work of these strains in the decomposition of organic waste in high heat compost. Moreover, it uses for the isolation | separation of a thermostable enzyme, etc. using the high heat | fever high temperature heat property of these strains.
[0036]
[Table 12]
Figure 0004086235
[0037]
[Sequence Listing]
Figure 0004086235
Figure 0004086235
Figure 0004086235
[0038]
Figure 0004086235
Figure 0004086235
Figure 0004086235
[0039]
Figure 0004086235
Figure 0004086235
Figure 0004086235
[0040]
<210> 4
<211> 151 1
<212> DNA
<213> Caldothrix satgumae YM0 811

<313> 4

<400> 4
aacgctggcg gcgcgcctaa tacatgcaag tcgagcgggg cttttcgcgt gaagccttcg 60
ggcggatcgc ggggagccta gcggcgaacg ggtgcgtaac acgtgggcaa cctaccccga 120
ggaccgggat aactccggga aaccggggct aataccggat aggacggcgg accgcatggt 180
ccgccgtgga aaggcggcgc aagctgccac ctcgggatgg gcccgcggcc cattagcttg 240
ttggtggggt aacggcccac caaggcgacg atgggtagcc ggcctgagag ggtgaccggc 300
cacactggga ctgagacacg gcccagactc ctacgggagg cagcagtagg gaatcttccg 360
caatgggcga aagcctgacg gagcgacgcc gcgtgaggga ggaaggcctt cgggtcgtaa 420
acctctgttg tcagggacga acccgtgcgg ttcgaagagg gccgcgcgct gacggtacct 480
gacgaggaag ccccggctaa ctacgtgcca gcagccgcgg taaaacgtag ggggcgagcg 540
ttgtccggaa ttactgggcg taaagcgcgc gtaggcggcc tcttaagtcc ggtgtgaaag 600
cccgcggctc aaccgcggga ggccactgga aactgggagg cttgagggca ggagagggga 660
gtggaattcc cggtgtagcg gtgaaatgcg tagagatcgg gaggaacacc agtggcgaag 720
gcggctccct ggcctgtacc tgacgctgag gcgcgaaagc gtggggagca aacaggatta 780
gataccctgg tagtccacgc cgtaaacgat gggtgctagg tgtgaggggc gtttggccct 840
tcgtgccgaa gctaacgcga taagcacccc gcctggggag tacggccgca aggctgaaac 900
tcaaaggaat tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgaagcaac 960
gcgaagaacc ttaccagggc ttgacatccc gctgaccgcc ccagagatgg ggtttccctc 1020
ctttcggagg gcagcggtga caggtggtgc atggttgtcg tcagctcgtg tcgtgagatg 1080
ttgggttaag tcccgcaacg agcgcaaccc ctgcccctag ttgccagcgg gtgaggccgg 1140
gcactctagg gggactgccg gcgacaagcc ggaggaaggt ggggatgacg tcaaatcatc 1200
atgcccctta tgccctgggc tacacacgtg ctacaatggc cggtacaaag ggttgcgaac 1260
ccgcgagggg gagccaatcc caaaaagccg gtctcagttc ggattgcagg ctgcaactcg 1320
cctgcatgaa ggcggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1380
cgggccttgt acacaccgcc cgtcacacca cgagagtctg caacacccga agtcggtgcg 1440
ccaacccctt acggggaggc agccgccgaa ggtggggcag atgattgggg tgaagtcgta 1500
acaaggtaac c 1511
[0041]
Figure 0004086235
Figure 0004086235
Figure 0004086235
[0042]
Figure 0004086235
Figure 0004086235

[Brief description of the drawings]
FIG. 1 shows a molecular phylogenetic tree based on 16S rDNA of the genus Caldothrix of the present invention. In the figure, YM081 is the hyperthermophilic bacterium of the present invention.
FIG. 2 shows an optical electron micrograph of the Caldothrix satsumae YM081 strain of the present invention.
FIG. 3 shows a scanning electron micrograph of the present invention, Caldothrix satsumae YM081 strain.
Figure 4 shows a transmission electron micrograph of cardo trix-Satsumae (Caldothrix satsumae) YM081 strain of the present invention.
FIG. 5 shows an electron micrograph of an ultrathin section of the cells of the present invention, Caldothrix satsumae YM081 strain (magnification: 5,000 times).

Claims (1)

80℃以上で増殖することができ、至適塩分濃度が1%以下である、次のいずれかの受託番号を有する、超好熱菌 カルドトリックス サツマエ(caldothrix satsumae)
YMO803 (FERM P‐19412)
YMO806 (FERM P‐19413)
YMO811 (FERM P‐19414)
YMO813 (FERM P‐19415)
A hyperthermophile caldothrix satsumae that can grow above 80 ° C and has an optimal salinity of 1% or less, with one of the following accession numbers:
YMO803 (FERM P‐19412)
YMO806 (FERM P‐19413)
YMO811 (FERM P‐19414)
YMO813 (FERM P‐19415)
JP2003181282A 2003-06-25 2003-06-25 New microorganism Expired - Lifetime JP4086235B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003181282A JP4086235B2 (en) 2003-06-25 2003-06-25 New microorganism
TW93118451A TWI280977B (en) 2003-06-25 2004-06-25 Novel microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181282A JP4086235B2 (en) 2003-06-25 2003-06-25 New microorganism

Publications (2)

Publication Number Publication Date
JP2005013063A JP2005013063A (en) 2005-01-20
JP4086235B2 true JP4086235B2 (en) 2008-05-14

Family

ID=34182033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181282A Expired - Lifetime JP4086235B2 (en) 2003-06-25 2003-06-25 New microorganism

Country Status (2)

Country Link
JP (1) JP4086235B2 (en)
TW (1) TWI280977B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200301303A (en) 2001-12-25 2003-07-01 Sanyu Co Ltd Novel microorganism
JP2015116158A (en) * 2013-12-18 2015-06-25 株式会社 山有 Novel microorganism
JP5689560B1 (en) * 2014-10-31 2015-03-25 株式会社 山有 New microorganism
JP7220026B2 (en) * 2018-06-12 2023-02-09 株式会社 山有 Organic waste treatment method and system

Also Published As

Publication number Publication date
TW200506050A (en) 2005-02-16
TWI280977B (en) 2007-05-11
JP2005013063A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
Beffa et al. Obligately and facultatively autotrophic, sulfur-and hydrogen-oxidizing thermophilic bacteria isolated from hot composts
KR101161670B1 (en) Mixed strain for treating food waste and method for treating food waste using the same
AU2021103470A4 (en) Bacillus subtilis bs40-4 strain and method for composting organic wastes by using the same
CN111647536B (en) High-temperature-resistant capsaicin degrading bacteria, application and kitchen waste treatment method
CN108977399A (en) One plant of Bacillus foecalis alkaligenes and its application
CN111676150B (en) Efficient deodorant bacterium and application thereof
CN108977398B (en) Bacillus megaterium and application thereof
CN107345213B (en) Lysine bacillus for degrading dairy cow excrement acid odor and application thereof
CN114574383B (en) Efficient kitchen waste degradation composite microbial agent and preparation method and application thereof
JP4086783B2 (en) New microorganism
JP3064221B2 (en) Aerobic bacteria and sludge treatment using the same
JP4086235B2 (en) New microorganism
KR102055544B1 (en) A novel Geobacillus sp. strain and use thereof
JPH10229874A (en) Microorganism and sludge disposal using the microorganism
CN111647537B (en) Salt-tolerant capsaicin degrading bacteria, application and kitchen waste treatment method
CN112479391A (en) Preparation method of degradation product of well site environment-friendly toilet and method for treating water-based solid waste
CN110791446B (en) Ecological toilet treatment strain and application thereof
CN118308250A (en) Bacillus thioflavidus and application thereof in waste recycling
CN114644998A (en) Kitchen waste biological drying strain and application thereof
CN118389324A (en) Siamese bacillus, microbial inoculum and application thereof in recycling agricultural wastes
CN113717882A (en) Geobacillus galactose BWTGW1.1 and application thereof
KR20190074439A (en) Brevibacillus sp. ATB1111 with ammonia oxidizing activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4086235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170228

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term