TWI279930B - Optical-polarized light emitting diode - Google Patents

Optical-polarized light emitting diode Download PDF

Info

Publication number
TWI279930B
TWI279930B TW94133035A TW94133035A TWI279930B TW I279930 B TWI279930 B TW I279930B TW 94133035 A TW94133035 A TW 94133035A TW 94133035 A TW94133035 A TW 94133035A TW I279930 B TWI279930 B TW I279930B
Authority
TW
Taiwan
Prior art keywords
layer
light
semiconductor layer
emitting diode
doped semiconductor
Prior art date
Application number
TW94133035A
Other languages
Chinese (zh)
Other versions
TW200713633A (en
Inventor
Ching-Cherng Sun
Kai-Yuan Cheng
Tun-Chien Teng
Tsung-Xian Lee
Chao-Ying Lin
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW94133035A priority Critical patent/TWI279930B/en
Publication of TW200713633A publication Critical patent/TW200713633A/en
Application granted granted Critical
Publication of TWI279930B publication Critical patent/TWI279930B/en

Links

Abstract

A light emitting diode including a semiconductor layer, a first electrode, a second electrode and a polarization layer is provided. The semiconductor layer includes a first type doped semiconductor layer, a second type doped semiconductor layer and a light emitting layer, wherein the light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The first electrode is electrically connected with the first type doped semiconductor layer, and the second electrode is electrically connected with the second type doped semiconductor layer. The polarization layer disposed on the semiconductor layer is suitable for reflecting a light with a fist polarization direction and letting a light with a second polarization direction perpendicular to the first polarization direction pass through, such that the light emitting diode can be used as a light source with single polarization direction.

Description

I279%Q twf.doc/g 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光二極體(Light emitting diode, LED),且特別是有關於一種可提供單一偏振方向光源的發 光二極體。 【先前技術】 隨著現代半導體科技的進步,發光二極體已被大量使 用,以提供交通號誌、大型看板、掃描器、液晶顯示器等 •電子裝置所需的光源。由於發光二極體具有反應速度快(約 ' 為1〇9秒)、體積小、用電省、污染低(不含水銀)、可靠度 - 高、適合量產等優點,因此有以發光二極體取代傳統之曰 光燈與白熾燈泡的趨勢。此外,上述部分的電子裝置(例如 液晶顯示器),其所需要的光源為單一偏振方向的光源,因 •此,如何以發光二極體提供單一偏振方向的光源乃成為一 個重要的課題。 圖1係為習知-種可提供單一偏振方向光源之光源裝 • 置的架構不意圖。請參考圖卜此光源裝置100主要包括 一發光二極體110、一偏振分光器(p〇larizati〇n Beam Splitter,PBS’ 及-%波板(祕wave piate卿 體110產生的光線112會先經由一透鏡14〇將其匯聚為平 ㈣光線112a後進入偏振分光器12〇。其中,光線u2a 同時具有垂直及水平偏振方向。偏振分光器 120適於使具 有水平偏振方向的光線112b穿透,並反射具有垂直偏振方 向的光線112c。接著,利用_反射鏡改變光線ii2c 6 127993£Lf.d〇c/g 的行進方向,並使光線112C入射%波板i3〇。%波板130 適於改變光線112c的偏振狀態,使光線ii2c通過%波板 130後會變成具有水平偏振方向的光線112d。如此,本光 源裝置1〇〇即可提供由具有水平偏振方向的光線i12b、 112d所組成的單一偏振方向光源。 承上述,由於習知可提供單一偏振方向光源的光源裝 置100需要使用偏振分光器12〇及%波板13〇等眾多構件, 因此光源裝置100的整體體積無法滿足微型化的趨勢,且 成1 本也不易降低。此外,發光二極體110、偏振分光器12() 及/2波板13G等構件間相對位置及肖度的定位需要非常精 確’否則會造成具有水平偏振方向的光線U2b、同時 具有部分的垂直偏振方向,使得光源裝置1〇〇提供之單一 偏振方向光源的偏振純度降低。 【發明内容】 有巧此,本發明的目的是在提供一種發光二極體, 用以提供單一偏振方向光源。 基於上述及其他目的,本發明提出一種發 包括-半導體層、一第一電極、一第二:, 半導體層包括-第-型摻雜半導體層、 =層 二型摻雜半導體層’其中發光層位於第 與第二型摻雜半導體層之間。第―電極電性=== 摻雜半導體層n電㈣性連接於第二雜雜^= 層。偏振層配置於半導體層上,用以反射具 一 方向的光線,並供具有—第二偏振方向的姐穿透 f.doc/g 向光源训解一偏振方 器或%波板)即可單獨提供單—偏振方向^例光 外言 的成本 為嘁柄明之上述和其他目的^ 易懂,下文特舉較佳會妳你丨、,Λ 芽k”、,占月匕更明顯 明如下。1佳A例,亚配合所關式,作詳細說 【實施方式】 第一實施例 圖从係為依照本發明之第一實施例之一種 ==意圖。請參考圖2A,本實_之發^二;體 主要包括-半導縣21〇、一第一電極挪、一第二· 極230及-偏振層24G。半導體層21()包括一第一型= 半導體層212、一第二型摻雜半導體層214及-發光層 216。其中,第一型摻雜半導體層212電性連接於第一電二 220’而第二型雜半導體層214電性連接於第二電極 230,且發光層216位於第一型摻雜半導體層212與第二型 摻雜半導體層214之間。當由第一電極22〇及第二電極23〇 對半導體層210通以電流時,電子及電洞會分別經由第— 型摻雜半導體層212及第二型摻雜半導體層214傳遞至發 光層216中結合,而以光線250的型態釋放能量。偏振層 240配置於半導體層21〇上,用以反射光線25〇中具有第 一偏振方向的光線250a’並供光線250中具有第二偏振方 向的光線250b穿透,其中第一偏振方向係垂直第二偏振方 twf.doc/g 向。如此’發光二極體2〇〇本身即可提供單一偏振方向光 源。 圖2B係為圖2A之偏振層的局部立體示意圖。請同時 參考圖2A及圖2B,偏振層240例如包括一透明材料層 242,其中透明材料層242表面例如具有一方波光柵242二 由於方波光栅242a結構係為周期性之一維柵欄圖案排 列,因此可供具有第二偏振方向的光線250b穿透,其中第 二偏振方向對應方波光柵242a結構之排列方向。並/且,方 • $光柵242a會反射具有第一偏振方向的光線250a,其中 - 第一偏振方向係垂直第二偏振方向。此外,偏振層240可 更包括一金屬層244,其配置於方波光栅242a的頂面,以 使偏振層240能具有更佳的偏振效果。 承上述,透明材料層242之材質可為藍寶石或其他透 •明材質,而金屬層244之材質可為銀或其他金屬材質。此 外,偏振層240之製作方式例如是先沉積藍寶石及銀於半 導體層210上,接著再利用微影及蝕刻製程形成方波光柵 • 242&及反射層244的圖案,以完成偏振層240之製作。在 本實施例中,發光層216提供的光線250例如為藍紫光, 其波長介於420nm至520nm。因此,對應此光線250之方 波光柵242a的較佳幾何結構參數為高,寬 wfOJpm,週期Ρι=ΐμιη,且反射層244的較佳幾何結構 參數為咼1ΐ2=1μηι,寬\ν2=0·5μιη,週期ρ2=1μηι。然而,前 述之參數並非用以限定本發明之方波光柵242a及反射層 244 ’並且方波光栅242a及反射層244的幾何結構參數亦 71功始 wf.doc/g 需視光線250之波長範圍而調整。 由於偏振層240係形成於發光二極體2〇〇中,而 光二極體200本身即能提供單—偏振方向的光源,因此^ 痛去設置其他光學構件的空間與成本,並達成微型化的目 標。值得注意的是’由於偏振層240可採半導體製程形成, 因此可以降低其相對於發光二極體之其他構件間的對 位誤W如此不但可以避免f知技藝中光學構件組裝時相 7位置ΐ差不易控制的問題,更可以增加發光二極體200 ^供之單一偏振方向光源的偏振純度。 請再參考圖2Α,為使具有第一偏振方向的光線25如 反射回半導體層210後仍可再被利用,可將半導體層2⑺ 未配置偏振層240之表面粗化以形成一粗化表面s。當具 有第一偏振方向的光線250a行進至粗化表面s時,其偏振 狀,會被改變,例如可能改變成為同時具有第一偏振方向 及第二偏振方向的光線250d。當光線250d行進至偏振層 240時,其具有第二偏振方向的部分會穿透偏振層24〇,且 其具有第一偏振方向的部分會被偏振層240反射,之後再 次經由粗化表面S改變偏振狀態。如此反覆進行,即可將 所有光線轉換為具有第二偏振方向的狀態而穿透偏振層 240 ’進而達到提高光利用率的目的。 承上述,為使具有第一偏振方向的光線250a不致直 接由粗化表面S穿透,發光二極體200更例如配置一反射 層260於粗化表面S,用以將改變偏振狀態後的光線25(^ 反射回半導體層210,如此可以降低側邊漏光的情形。值 11 丄么 / 77l®Mtwf.doc/g 得注意的是,偏振層240之透明材料層242的側表面亦可 進行粗化,並配置反射層260以增進光利用率及降低側邊 漏光的情形。 以下,將配合圖示詳述第一實施例之發光二極體2〇〇 中各個構件間的相對位置關係。請再參考圖2A,發光二極 • 體200還可包括一基板270,基板270可為一藍寶X石基板。 半導體層210之第一型摻雜半導體層212位於基板27〇 上,而半導體層210之發光層216位於第一型摻雜半導體 修層212的部分區域上,且半導體層21〇之第二型摻雜半導 ' 體層214位於發光層216上。在本實施例中,第一型摻雜 ^ 半導體層212例如為η型半導體層,而相對之第二型摻雜 半導體層214即為ρ型半導體層,然而,第一型摻雜半導 體層212與第二型摻雜半導體層214之摻雜型態也可互 換。此外,η型或是ρ型半導體層都可由氮化鎵系材質或 其他適當材質構成,並可藉由摻雜離子雜質種類 同而調整其特性。舉例而言,發光層216-可由 φ (InaGai_aN)所構成,並藉由不同比例的銦鎵元素,可使其 發出不同波長的光線。 如圖2A所示,第一電極22〇位於第一型摻雜半導體 層212未配置發光層216之區域上,且第二電極23〇與偏 振層240位於第二型摻雜半導體層214上。為使第一電極 220及第二電極23G能與第—型摻雜半導體層212及第二 型摻雜半導體層2M電性連接時能有較佳之導電性’發^ 二極體200例如更包括一第一導電層28〇及一第二導電層 12 1279碰 twf.doc/g 290。第-導電層280配置於基板27〇與第一型摻雜半導體 層212之間,並與第一型摻雜半導體層212電性連接。 電極22G貫穿第-歸雜半導體層m而電性連接至 第一導電層280,則可使第一電極22〇電性連接至第一 摻雜半導體| 212時能有較佳之導電性。類似地,第 電層290配置於第二型摻雜半導體層214上,並與第二 摻雜半導體層214電性連接。將第二電極謂配置於第二 導電層290上而電性連接至第二導電層290,則可使第二 # 電極230電性連接至第二型換雜半導體層214時能有較: - 之導電性。 1 土 然而,第一實施例之發光二極體2〇〇中各個構件間的 彳目對位置並非用以限定本發明。以下,將再舉—實施例說 明本發明之發光二極體的其他組成方式。 、σ ' 第二實施例 圖3係為依照本發明之第二實施例之一種發光二極體 之剖面示意圖。請參考圖2八與圖3,在本發明之發光二極 ⑩體:,第二實施例與第一實施例相似,其不同之處在於第 二實施例之發光二極體300其構件間的相對位置關係為·· 半導體層210配置於第一電極2施上,而第二電極23〇 與偏振層24〇配置於半導體層21〇上。當然,發光二極體 300之偏振層240的結構、粗化表面s及反射層26〇的設 置均與第一實施例之發光二極體相同,於此便不再贅 述。 綜上所述’本發明之發光二極體主要是藉由偏振層使 c/g I27993flwf.d〇< 具有第二偏振方向的树通過,並將第-偏振方向的光線 ”回Γί二極體内部’以此提供單一偏振方向光源,因 此至少具有下列特徵與優點: U (-)發光二_不需搭配其他構件(例 或Μ板)即可單獨提供單—偏振方向光源 設置其他構件的”與縣,且可達祕魏的^稱 (-)偏振層是以半導體製程形成於發光二極體中 於發光二極體的其他構件間心 ^以&_先二極體提供之單—偏振方向光源的偏振純 以 ft:本發明已則交佳實施例揭露如上,然其並非用 明二=熟習此技藝者,在不脫離本發明之精神 和耗圍内’當可作些許之更動與潤飾,因此本:申 範圍當視後附之申請專纖圍所界定者為準。 …复 【圖式簡單說明】 架構:^習知之一種可提供單-偏振方向光源裳置的 圖2A係為依照本發明之第一實施例之 體之剖面示意圖。 —極 圖2B係為圖2A之偏振層的局部立體示意圖。 圖3係為依照本發明之第二實施例之一種 之剖面示意圖。 低知尤一極體 【主要元件符號說明】 100:可提供單一偏振方向光源之光源裝置 12799&0twf.d〇c/g no :發光二極體 112、112a、112b、112c、112d :光線 120 :偏振分光器 130 : %波板 140 :透鏡 150 :反射鏡 200、300 ··發光二極體 210 :半導體層 212 :第一型摻雜半導體層 214 :第二型摻雜半導體層 216 :發光層 220、220a :第一電極 230 :第二電極 240 :偏振層 242 :透明材料層 242a :方波光柵 244 ··金屬層 250、250a、250b、250c、250d :光線 260 :反射層 270 :基板 280 :第一導電層 290 :第二導電層 S:粗化表面 15I279%Q twf.doc/g IX. Description of the Invention: [Technical Field] The present invention relates to a light emitting diode (LED), and more particularly to a light source capable of providing a single polarization direction Light-emitting diode. [Prior Art] With the advancement of modern semiconductor technology, light-emitting diodes have been widely used to provide light sources for electronic devices such as traffic signs, large billboards, scanners, liquid crystal displays, and the like. Because the light-emitting diode has the advantages of fast reaction speed (about '1'9 seconds), small volume, low power consumption, low pollution (no mercury), high reliability, high volume production, etc. Polar bodies replace the trend of traditional neon and incandescent bulbs. Further, in the above-mentioned electronic device (e.g., liquid crystal display), the light source required is a light source of a single polarization direction, and therefore, how to provide a light source of a single polarization direction by the light-emitting diode becomes an important issue. Figure 1 is a schematic illustration of a conventional light source device that provides a single polarization direction source. Please refer to FIG. 2, the light source device 100 mainly includes a light emitting diode 110, a polarizing beam splitter (p〇larizati〇n Beam Splitter, PBS' and a -% wave plate (the light ray 112 generated by the secret wave piate body 110 will first After being concentrated into a flat (four) light 112a via a lens 14, it enters the polarization beam splitter 12A. The light beam u2a has both vertical and horizontal polarization directions. The polarization beam splitter 120 is adapted to penetrate the light 112b having a horizontal polarization direction. And reflecting the light ray 112c having a vertical polarization direction. Then, the traveling direction of the light ii2c 6 127993 £ Lf.d 〇 c / g is changed by the _ mirror, and the light ray 112C is incident on the % wave plate i3 〇. The % wave plate 130 is suitable for The polarization state of the light ray 112c is changed so that the light ray ii2c passes through the % wave plate 130 and becomes the light ray 112d having the horizontal polarization direction. Thus, the light source device 1 〇〇 can provide the light ray i12b, 112d having the horizontal polarization direction. A single polarization direction light source. As described above, since the light source device 100 which can provide a single polarization direction light source requires a plurality of members such as a polarization beam splitter 12 % and a % wave plate 13 ,, The overall volume of the light source device 100 cannot satisfy the trend of miniaturization, and it is not easy to reduce it in one. Further, the relative position and the degree of the light between the components such as the light-emitting diode 110, the polarization beam splitter 12 (), and the/2-wave plate 13G The positioning needs to be very precise 'otherwise, it will cause the light U2b having the horizontal polarization direction, and at the same time have a partial vertical polarization direction, so that the polarization purity of the single polarization direction light source provided by the light source device 1 降低 is reduced. [Inventive content] SUMMARY OF THE INVENTION It is an object of the present invention to provide a light emitting diode for providing a single polarization direction light source. Based on the above and other objects, the present invention provides a light emitting semiconductor layer, a first electrode, a second electrode, and a semiconductor layer including - a first-type doped semiconductor layer, a =-layer di-type doped semiconductor layer 'where the light-emitting layer is located between the first and second-type doped semiconductor layers. The first electrode electrical property === doped semiconductor layer n electrical (four) connection In the second impurity layer, the polarizing layer is disposed on the semiconductor layer for reflecting light having a direction, and for transmitting the light having the second polarization direction f.doc/g to the light Training a polarizing square or a % wave plate) can provide a single-polarization direction. The cost of the external light is the above and other purposes of the handle. The following is a better example. The bud k", the yue yue is more clearly as follows. 1 good A case, sub-matching, detailed description [Embodiment] The first embodiment is a system according to the first embodiment of the present invention = = Intention. Please refer to FIG. 2A, the actual body of the second body; the body mainly includes - semi-conductive county 21 〇, a first electrode, a second electrode 230 and a polarization layer 24G. The semiconductor layer 21 () includes A first type = a semiconductor layer 212, a second type doped semiconductor layer 214, and a light emitting layer 216. The first type doped semiconductor layer 212 is electrically connected to the first electric diode 220 ′ and the second type hetero semiconductor layer 214 is electrically connected to the second electrode 230 , and the luminescent layer 216 is located in the first type doped semiconductor layer 212 . Between the second type doped semiconductor layer 214. When a current is applied to the semiconductor layer 210 by the first electrode 22 and the second electrode 23, electrons and holes are transmitted to the light-emitting layer via the first-type doped semiconductor layer 212 and the second-type doped semiconductor layer 214, respectively. The combination of 216 releases energy in the form of light 250. The polarizing layer 240 is disposed on the semiconductor layer 21 to reflect the light ray 250a' having the first polarization direction and the light ray 250b having the second polarization direction in the light ray 250, wherein the first polarization direction is vertical The second polarization side twf.doc/g direction. Thus, the light-emitting diode 2 itself can provide a single polarization direction light source. 2B is a partial perspective view of the polarizing layer of FIG. 2A. 2A and 2B, the polarizing layer 240 includes, for example, a transparent material layer 242, wherein the surface of the transparent material layer 242 has, for example, a square wave grating 242, and the square wave grating 242a has a periodic one-dimensional barrier pattern. Therefore, the light ray 250b having the second polarization direction can be penetrated, wherein the second polarization direction corresponds to the arrangement direction of the square wave grating 242a structure. And/or, the grating 242a reflects the light ray 250a having the first polarization direction, wherein - the first polarization direction is perpendicular to the second polarization direction. In addition, the polarizing layer 240 may further include a metal layer 244 disposed on the top surface of the square wave grating 242a to enable the polarizing layer 240 to have a better polarization effect. In the above, the material of the transparent material layer 242 may be sapphire or other transparent material, and the metal layer 244 may be made of silver or other metal materials. In addition, the polarizing layer 240 is formed by, for example, depositing sapphire and silver on the semiconductor layer 210, and then forming a pattern of the square wave grating 242 & and the reflective layer 244 by using a lithography and etching process to complete the fabrication of the polarizing layer 240. . In the present embodiment, the light ray 250 provided by the luminescent layer 216 is, for example, blue-violet light having a wavelength between 420 nm and 520 nm. Therefore, the preferred geometrical parameters of the square wave grating 242a corresponding to the ray 250 are high, width wfOJpm, period ΐι=ΐμιη, and the preferred geometric parameters of the reflective layer 244 are 咼1ΐ2=1μηι, width\ν2=0· 5μιη, period ρ2=1μηι. However, the foregoing parameters are not intended to define the square wave grating 242a and the reflective layer 244' of the present invention, and the geometrical parameters of the square wave grating 242a and the reflective layer 244 are also the beginning of the wavelength range of the light 250. And adjust. Since the polarizing layer 240 is formed in the light emitting diode 2, and the photodiode 200 itself can provide a light source of a single polarization direction, the space and cost of other optical components are set to be painful, and miniaturization is achieved. aims. It is worth noting that since the polarizing layer 240 can be formed by a semiconductor process, the alignment error between the polarizing layer 240 and the other components of the light emitting diode can be reduced, so that the phase 7 position of the optical component assembly can be avoided. The problem that the difference is not easy to control can increase the polarization purity of the light source of the single polarization direction of the light-emitting diode 200 ^. Referring to FIG. 2 again, in order to re-use the light 25 having the first polarization direction back to the semiconductor layer 210, the surface of the semiconductor layer 2 (7) without the polarizing layer 240 may be roughened to form a roughened surface. . When the light ray 250a having the first polarization direction travels to the roughened surface s, its polarization is changed, for example, it may be changed to light ray 250d having both the first polarization direction and the second polarization direction. When the light ray 250d travels to the polarizing layer 240, a portion having the second polarization direction penetrates the polarizing layer 24A, and a portion having the first polarization direction is reflected by the polarizing layer 240, and then changes again via the roughening surface S. Polarization state. By repeating this, all the light is converted into a state having the second polarization direction and penetrates the polarizing layer 240' to further improve the light utilization efficiency. In order to prevent the light ray 250a having the first polarization direction from being directly penetrated by the roughened surface S, the light-emitting diode 200 is further disposed, for example, with a reflective layer 260 on the roughened surface S for changing the light after the polarization state. 25 (^ is reflected back to the semiconductor layer 210, so that the side leakage can be reduced. Value 11 / / 77l® Mtwf.doc / g It should be noted that the side surface of the transparent material layer 242 of the polarizing layer 240 can also be thick The reflective layer 260 is disposed to enhance the light utilization efficiency and reduce the light leakage at the side. Hereinafter, the relative positional relationship between the respective members of the light-emitting diode 2 of the first embodiment will be described in detail with reference to the drawings. Referring again to FIG. 2A, the LED body 200 can further include a substrate 270, which can be a sapphire X-stone substrate. The first type doped semiconductor layer 212 of the semiconductor layer 210 is located on the substrate 27, and the semiconductor layer The light emitting layer 216 of 210 is located on a partial region of the first type doped semiconductor repair layer 212, and the second type doped semiconductor body layer 214 of the semiconductor layer 21 is located on the light emitting layer 216. In this embodiment, the first Type doping ^ semiconductor layer 212 is, for example, η The semiconductor layer is formed, and the second type doped semiconductor layer 214 is a p-type semiconductor layer. However, the doping patterns of the first type doped semiconductor layer 212 and the second type doped semiconductor layer 214 are also interchangeable. In addition, the n-type or p-type semiconductor layer may be made of a gallium nitride-based material or other suitable material, and its characteristics may be adjusted by the same type of doped ion impurities. For example, the light-emitting layer 216 may be made of φ (InaGai_aN). And consisting of different proportions of indium gallium elements, which can emit light of different wavelengths. As shown in FIG. 2A, the first electrode 22 is located in a region where the first type doped semiconductor layer 212 is not provided with the light emitting layer 216. The second electrode 23 and the polarizing layer 240 are disposed on the second type doped semiconductor layer 214. The first electrode 220 and the second electrode 23G can be doped with the first-type doped semiconductor layer 212 and the second type. The semiconductor layer 2M can be electrically connected to have a better conductivity. The diode 200 further includes a first conductive layer 28 and a second conductive layer 12 1279. The first conductive layer is touched by twf.doc/g 290. 280 is disposed on the substrate 27 〇 and the first type doped semiconductor layer 212 And electrically connected to the first type doped semiconductor layer 212. The electrode 22G is electrically connected to the first conductive layer 280 through the first-doped semiconductor layer m, and the first electrode 22 can be electrically connected to the first electrode The conductive layer 290 is disposed on the second type doped semiconductor layer 214 and is electrically connected to the second doped semiconductor layer 214. The second electrode is electrically connected to the second doped semiconductor layer 214. If it is disposed on the second conductive layer 290 and electrically connected to the second conductive layer 290, the second # electrode 230 can be electrically connected to the second type semiconductor layer 214 to have a conductivity of -. 1 Soil However, the position of the eye-catching position between the respective members of the light-emitting diode 2 of the first embodiment is not intended to limit the present invention. Hereinafter, other embodiments of the light-emitting diode of the present invention will be described by way of further embodiments. σ 'Second Embodiment FIG. 3 is a schematic cross-sectional view showing a light-emitting diode according to a second embodiment of the present invention. Referring to FIG. 2 and FIG. 3, in the light-emitting diode 10 of the present invention, the second embodiment is similar to the first embodiment, and the difference is that the light-emitting diode 300 of the second embodiment is between the components thereof. The relative positional relationship is that the semiconductor layer 210 is disposed on the first electrode 2, and the second electrode 23A and the polarizing layer 24 are disposed on the semiconductor layer 21A. Of course, the structure of the polarizing layer 240 of the light-emitting diode 300, the roughened surface s, and the reflective layer 26 are all disposed in the same manner as the light-emitting diode of the first embodiment, and will not be described again. In summary, the light-emitting diode of the present invention mainly passes the tree having the second polarization direction through the polarizing layer, and passes the light in the first polarization direction back to the second pole. The inside of the body 'provides a single polarization direction light source, so at least has the following features and advantages: U (-) illuminating two _ without separate components (such as the slab) can provide a single - polarization direction light source to set other components "With the county, and reach the secret Wei's ^ (-) polarizing layer is formed by the semiconductor process in the light-emitting diode between the other components of the light-emitting diode ^ with the &_ first diode provided by the single - Polarization direction The polarization of the light source is purely ft: the present invention has been disclosed in the above preferred embodiment, but it is not intended to be used by those skilled in the art, without departing from the spirit and scope of the present invention. Change and refinement, therefore: the scope of application is subject to the definition of the application for the special fiber enclosure. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2A is a schematic cross-sectional view of a body according to a first embodiment of the present invention. FIG. 2A is a view showing a single-polarization direction light source. Figure 2B is a partial perspective view of the polarizing layer of Figure 2A. Fig. 3 is a schematic cross-sectional view showing a second embodiment of the present invention. Low-sensitivity one-dimensional body [main component symbol description] 100: light source device 12799&0twf.d〇c/g no which can provide single polarization direction light source: light-emitting diode 112, 112a, 112b, 112c, 112d: light 120 Polarization beam splitter 130: % wave plate 140: lens 150: mirror 200, 300 · LED diode 210: semiconductor layer 212: first type doped semiconductor layer 214: second type doped semiconductor layer 216: light Layers 220, 220a: first electrode 230: second electrode 240: polarizing layer 242: transparent material layer 242a: square wave grating 244 · metal layer 250, 250a, 250b, 250c, 250d: light 260: reflective layer 270: substrate 280: first conductive layer 290: second conductive layer S: roughened surface 15

Claims (1)

^ /^30 17295twfl.doc/006^ /^30 17295twfl.doc/006 ,修(楚)1:¾ 、申謗專利範脣 L一種發光二極體,包括: 半導體層,包括一裳—I, 以及-第二型摻雜半導體M #摻雜半導體層、-發光層 推雜半^第二型“i導=位於該第-型 及 、“弟一型摻雜半導體層;以 弟一偏振方向的光線穿 偏振方向; 該透明材料層的 ^ W /、百~弟二低挺I沾土括也 /、中该弟一偏振方向垂直該第一 其中,该偏振層包括一透明材料声 表面具有一方波光柵; 曰 之丁貝^且’該偏振層更包括—金屬層,配置於該方波光拇 、2·如申請專利範圍第1項所述之發光 遷明材料層之材質包括藍寶石(sapphire)。 二極體,其中該 3.如中請專利範圍第!項所述之發光二極體,其中該 复屬層之材質包括銀。 4·如申請專利範圍第1項所述之發光二極體,其中該 “導體層未配置該偏振層之表面為一粗化表面。 5·如申請專利範圍第4項所述之發光二極體,更包括 〜反射層,配置於該粗化表面。 6·如申請專利範圍第1項所述之發光二極體,更包括 1279930 、17295twfl.doc/006 95-11-10 -基板,其中該第-型摻雜半導體層位於該基板上,該發 光層位於該第-型摻雜半導體層的部分區域上, 摻雜半導體層位於該發光層上,該第—電極位於該第一型 摻雜半導體層未配置該發觸之區域上,而該第二 該偏振層位於該第二型摻雜半導體層上。 包β /、 7.如申請專鄉圍第6項所述之發光二極體 口第二=層,配置麟基板與該第—型摻雜 極貫穿該第—型摻雜半導體層而電 至該第一導電層。 兒性連接 一第8-t2專利範圍第6項所述之發光二極體,更包括 -弟-—電層’配置於該第二型摻雜半導體 更。括 二電極與該偏振層配置於該第二導電層上。 而该第 9.如申請專·圍帛6項所述之發光 基板包括藍寶石基板。 體’其中該 丰導專利顧第1項所述之發光二極體,复h +V體層配置於該第一電極上, :中該 配置於該半導體層上。 电找蚪咳偏振層, repair (Chu) 1:3⁄4, Shenyi patent lip L, a light-emitting diode, comprising: a semiconductor layer, including a skirt - I, and - a second type doped semiconductor M # doped semiconductor layer, - light-emitting layer Pushing half of the second type "i-conductor = located in the first-type and "di-type doped semiconductor layer; light polarization direction of the polarization direction of the younger; the transparent material layer ^ W /, hundred ~ brother The second low-level I is inferior to the first one, and the polarizing layer includes a transparent material having a surface wave grating; The layer is disposed on the square wave light, and the material of the light-emitting material layer according to item 1 of the patent application scope includes sapphire. Diode, of which 3. As requested in the patent range! The light-emitting diode of the item, wherein the material of the complex layer comprises silver. 4. The light-emitting diode according to claim 1, wherein the surface of the conductor layer not having the polarizing layer is a roughened surface. 5. The light-emitting diode according to claim 4 The body further includes a reflective layer disposed on the roughened surface. 6. The light-emitting diode according to claim 1, further comprising 1279930, 17295twfl.doc/006 95-11-10 - substrate, wherein The first-type doped semiconductor layer is located on the substrate, the light-emitting layer is located on a portion of the first-type doped semiconductor layer, the doped semiconductor layer is located on the light-emitting layer, and the first electrode is located in the first type of doped The impurity semiconductor layer is not disposed on the region of the touch, and the second polarization layer is located on the second type doped semiconductor layer. The package β /, 7. The light-emitting diode according to the sixth item of the application a second body layer of the body port, the lining substrate and the first type doping electrode are electrically connected to the first conductive layer through the first type doped semiconductor layer. The child is connected to the sixth item of the 8-t2 patent scope. The light emitting diode, further including a -electro-electrode layer, is disposed in the second type doping The illuminating substrate of the ninth electrode and the polarizing layer is disposed on the second conductive layer. The illuminating substrate of the ninth aspect of the invention includes the sapphire substrate. The light-emitting diode according to item 1, wherein the complex h + V body layer is disposed on the first electrode, and the light-emitting diode is disposed on the semiconductor layer.
TW94133035A 2005-09-23 2005-09-23 Optical-polarized light emitting diode TWI279930B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94133035A TWI279930B (en) 2005-09-23 2005-09-23 Optical-polarized light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94133035A TWI279930B (en) 2005-09-23 2005-09-23 Optical-polarized light emitting diode

Publications (2)

Publication Number Publication Date
TW200713633A TW200713633A (en) 2007-04-01
TWI279930B true TWI279930B (en) 2007-04-21

Family

ID=38645542

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94133035A TWI279930B (en) 2005-09-23 2005-09-23 Optical-polarized light emitting diode

Country Status (1)

Country Link
TW (1) TWI279930B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416755B (en) * 2008-05-30 2013-11-21 Epistar Corp Light source module, related light bar and related liquid crystal display
TWI398025B (en) 2009-10-07 2013-06-01 Ind Tech Res Inst Polarized light emitting diode devices and method for manufacturing the same

Also Published As

Publication number Publication date
TW200713633A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
TWI356505B (en) Optical display systems and methods
US20120112218A1 (en) Light Emitting Diode with Polarized Light Emission
Ma et al. Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers
CN110416245A (en) A kind of production method of display panel, display device and display panel
TWI424251B (en) Light-emitting unit array, mothod for fabricating the same and imaging apparatus
CN102386200A (en) Light emitting unit array and projection system
TW201143173A (en) Light emitting device and light emitting device package
CN105425469B (en) A kind of backlight module and preparation method thereof, display device
TW201340434A (en) Organic electroluminescent element, lighting apparatus, and method for manufacturing organic electroluminescent element
TW201145586A (en) Light emitting device and light emitting device package
JP2006310737A (en) Light emitting element, manufacturing method thereof and image display device
Wang et al. In situ fabrication of bendable microscale hexagonal pyramids array vertical light emitting diodes with graphene as stretchable electrical interconnects
WO2023207692A9 (en) Display substrate, packaging substrate, and display device
TWI412160B (en) Light emitting diode, back light module, and liquid crystal display
JP6285573B2 (en) Light emitting element
TWI279930B (en) Optical-polarized light emitting diode
Schubert et al. Linearly polarized emission from GaInN light-emitting diodes with polarization-enhancing reflector
Wang et al. High linearly polarized light emission from InGaN light-emitting diode with multilayer dielectric/metal wire-grid structure
Zhang et al. Investigation of enhanced ambient contrast ratio in novel micro/mini-LED displays
CN102751416A (en) Light-emitting diode for directly emitting linearly polarized light and manufacturing method of light-emitting diode
Yin et al. Enhanced light extraction in n-GaN-based light-emitting diodes with three-dimensional semi-spherical structure
TW201242102A (en) Light-emitting diode package
Palakurthy et al. Design and comparative study of lateral and vertical LEDs with graphene as current spreading layer
Ye et al. Simultaneous light emission and detection of an AlGaInP quantum well diode
CN202695524U (en) Light emitting diode (LED) emitting linearly polarized lights directly

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees