TWI278877B - Controlled inductance device and method - Google Patents

Controlled inductance device and method Download PDF

Info

Publication number
TWI278877B
TWI278877B TW93128332A TW93128332A TWI278877B TW I278877 B TWI278877 B TW I278877B TW 93128332 A TW93128332 A TW 93128332A TW 93128332 A TW93128332 A TW 93128332A TW I278877 B TWI278877 B TW I278877B
Authority
TW
Taiwan
Prior art keywords
core
component
gap
inductive
inductance
Prior art date
Application number
TW93128332A
Other languages
Chinese (zh)
Other versions
TW200519984A (en
Inventor
Charles Watts
Lucian E Scripca
Original Assignee
Pulse Eng Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/666,580 external-priority patent/US7109837B2/en
Priority claimed from US10/882,864 external-priority patent/US20050088267A1/en
Application filed by Pulse Eng Inc filed Critical Pulse Eng Inc
Publication of TW200519984A publication Critical patent/TW200519984A/en
Application granted granted Critical
Publication of TWI278877B publication Critical patent/TWI278877B/en

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

Improved inductive apparatus having controlled core saturation which provides a desired inductance characteristic with low cost of manufacturing. In one embodiment, a pot core having a variable geometry gap is provided. The variable geometry gap allows for a ""stepped"" inductance profile with high inductance at low dc currents, and a lower inductance at higher dc currents, corresponding for example to the on-hook and off-hook states of a Caller ID function in a typical telecommunications line. In other embodiments, single- and multi-spool drum core devices are disclosed which use a controlled saturation element to allow for selectively controlled saturation of the core. Exemplary signal conditioning circuits (e.g., dynamically controlled low-capacitance DSL filters) using the aforementioned inductive are disclosed, as well as cost-efficient methods of manufacturing the inductive devices. Various embodiments of improved gapped toroid devices and an associated methods of manufacturing are also disclosed.

Description

1278877 玖、發明說明: 【發明所屬之技術領域】 本發明通常涉及電子應用中使用的構件,尤其是 一種在數位用戶專線(DSL)或類似電信系統的濾波器禾 離器,及其它設備中使用的改良電感元件。 【先前技術】 現今,數位用戶專線(DSL)的安裝通常已熟知夺 我安裝」的,或特別是在用戶在每個電話上安裝一微 器或内嵌電話濾波器來將電話(包括傳真,電話應答 等等)從線路和 DSL信號路徑中隔離出。第1圖展示 種内嵌濾波器的典型安裝。 可自安裝的微濾波器是一種很有挑戰性的設計, 因為它在D S L頻帶中必須要有足夠的阻斷帶以保護和 DSL的性能,但是同時還應該對語音頻帶性能產生可 略的影響才可以。 第la圖展示了用在DSL應用中一典型習知内嵌 器架構。然而,這種習知濾波器設計經常不能滿足一 信用戶對回波損耗和DSL阻斷帶的要求。一重要問題 了滿足DSL阻斷帶的要求所需要的整體電容也在電話 頻帶中產生了額外的側音(side tone),這是吾人非常 見的結果。此外,當為每一個用戶電話增加多個微濾 時回波損耗問題變得更嚴重。 涉及 分 i Γ自 滤波 機, 了這 主要 維護 以忽 遽波 些電 是為 的上 不樂 波器 1278877 在某些國家,濾波電路要求是迫切的◦例如,主要的 挑戰是在提供“尺心的阻斷帶的同時必須還能夠提供很高 的語音頻帶回波損耗。 習知技術的電感元件大部分基於它們的電感特性而 通常不適合用在前述的應用中。如文中所述,術語“電感特 性’’通常指的是電感曲線,或是作為透過電感的dc電流的函 數在電感中的變化。第2a和2b圖分別展示了與具有固定電 感或可變電感的典型習知技術電感相關的電感特性。值得 注意是’在典型“固定’’電感器中,電感特性1 〇2是相當平坦 或作為電流函數的常數,直到達到相當高的電流為止。比 較起來,可變電感器的電感曲線和電流函數一樣變化,或 是處於基本線性模式1 〇 6中,或是處於稍微“缓和梯狀,,模式 108中,如第2b圖中所示。第2b圖通常代表了由美 國,Coilcraft Corporation of Cary,Illinois,及其它公司製造 的習知裝置型號,例如DT1608系列SMT功率電感器。 第3圖展示了前面提到的Coilcraft裝置的架構。正如 第3圖中所示,裝置300包括具有基座304的兩件套線芯 302,該基座帶有一偏離中心的柱306。上中心塊308有一比 柱3 0 6的直徑超出很多的孔徑3 1 0。這樣安排創造了實際上 是在柱3 06的外表面和孔徑3 1 0的内表面連續可變間隙,該 間隙從靠近兩表面最近點的最小間隙變化到在最靠近點的 反向直徑的最大值。這個連續變化的間隙有至少兩個缺 點,包括:(i ) 一連續變化或“緩和梯狀,,的電感特性,在 4 1278877 某些應用中是不期望或不是最佳地,和(ii)製造成本高, 這是由於必須提供具有準確相對容差的兩個中心塊(包括 上中心塊308和基座304的準確調整)。此外,無論偏離中 心(off-center)柱306與另一中心塊自己的容差如何,仍有 與製造該偏離中心柱相關的附加成本。這種偏離中心的安 排通常也不益於使用眾所周知的校正輔助設備,例如這裡 隨後描述的開口銷裝置。 某些應用中’包括例如一些需要較高阻斷帶損失的 DSL滤波電路(例如用於來電顯示功能),便要求具有不 同於第2a圖或2b電感特性的電感元件。在前面所述的來電 顯示功此情況中,在待機(on-h〇〇k)狀態需要較高阻斷帶損 耗以保護來電顯示裝置避免透過DSl信號的過載電流。考 _描述於現正申請中之pCT申請號pCT/Tjs 〇1/45568(其係 於2001年11月14日申請,標題為“High Perf〇rmance MicwFilter and Splitter Apparatus”,其已受讓於本案申 請人)中所描述的例示性濾波電路,其全文係合併於此以供 參考。在這個電路中’在待機狀態期間大多數電容的移除 減少了濾、波阻斷帶損耗,因而正如先前所描述那樣,迫使 一附加或替換裝置用於提升該阻斷帶損耗。 類似地’對於在2 00 1年4月3日所頒發(其亦已受讓予 本案受讓人)’標題為 “Impedance Blocking Filter Circuit” 之美國專利案第6,2 12,259號所描述之例示濾波電路,其係 揭示一種需要用於多個濾波器的一種改良的電感元件,其 5 1278877 具有足夠的電感以允許電路通過待機阻斷帶損耗,並同時 還允許較大使用電容。 此外,為了控制電感性能,已經使用了間隙式環類線 圈。於2000年9月13日申請(申請號為〇9/661628)並於2〇〇3 年11月4日領證’標題為“Advance(j Electronic Microminiature Coil And Meth〇d 〇f Manufacturing,,之美 國專利第6,642,847號中係揭示一結合一環面芯和多個線 圈的微電子線圈裝置,其中該線圈被一層或多層的絕緣材 料分離開。絕緣材料係真空沉積在第一組線圈頂部上並且 在下一組線圈纏上線芯之前固化。環面線芯也可選擇性地 提供給一受控的厚度間隙來控制線芯的飽和度。 於1980年4月22日頒予Aldridge等人之美國專利第 6,642,847藏,標題為 “Magnetic core with magnetic ribbon in gap thereof”中揭示一具有兩個放射狀延伸間隙的鐵氧 體環面部分’其十該間隙透過環面部分地擴展來減少 EMI。在每一間隙之内,插入一具有疊在薄墊片之上的磁 性金屬帶的絕緣薄墊片。當電流施加於線芯上的線圈時, 所得磁通量會被引入該磁性帶並且圍繞該等間隙。對該磁 性帶中咼頻激發渦電流的損耗相當高,且線圈具有低Q值 但是具有高的電感。在高線圈電流時,磁帶是飽和的,電 感被減小並且線圈的Q值提升。在開關電壓調整器中,此 電感器傾向產生僅僅少量的聲響和電磁輻射噪聲。 除了期望的電感性能特性,對於電感元件的製造低成 6 1278877 本也疋很渴望獲得的。電感元件市場(以及dsl濾波電路 市暴)疋特有的十分具有價格競爭力的·,因而,即使在成 本效率或在這些元件的價格上的減少的小改良也能對製造 者的產品的生存能力產生巨大的影響。由於與產生期望的 電感特性相關所增加的勞動和/或元件,習知技術的控制裝 置電感的方法通常是複雜和要求相對高製造成本。 板和内部空間損耗也是與許多電子裝置的一問題(包 括DSU慮波電路);因此除了期望的性能特性和低成本外, 最小的物理尺寸和佔用面積也是非常需要的。一電子執行 很好並且製造便宜的裝置,卻佔用相當的板子或内部空 間’通常在商業上是不可行的。 ETSI技術標準 952,第 1部,第 5冊(ETSITS 952-1-5) 標題為 “Access network xDSL transmission filters” ;第 1 部:ADSL filters for European deployment ;第 5 冊: Specification of ADSL/POTS distributed filters”規定了用 於D S L分佈濾波器的和安裝在本地迴路的本地交換端和接 近網路終端點(NTP )的用戶端上的分佈濾波器的需求和 測試方法。該標準規定了用於在本地迴路的用戶端分發正 確的ADSL/POTS分佈式遽波器的需求和測試方法。每一條 標準,待機語音頻帶電器要求包含兩個條件:(i ) 一 5 0 V 的DC回饋電壓,和使用阻抗模式ZON(10kQ ),或(ii )流 過分佈式濾波器的DC迴路電流在〇.4mA到2.5mA範圍之 間;和使用6 0 0 Ω之阻抗模式以按語音頻率終止分佈式濾波 1278877 器的LINE和POTS端口。標準的待機ADSL頻帶電器要求可 以用50 V的DC回饋電壓滿足,和使用阻抗模式z0N(i 〇k Ω )。使用電.器要求可以用13mA到80mA的DC電流滿足。這 些要求比較迫切,特別是簡單的低成本電感元件。 > 基於先前所述,需要一改良的具有低製造成本和期望 、 的電感特性的電感元件用在數位用戶專線(DSL)信號及 其它信號中。這樣改良的裝置可理想地(i )在待機和使用 狀態中具有所欲之電感特性,以便支持例如來電顯示功能 φ 要求較高的待機阻斷帶損耗(ii )以高經濟成本效率進行 製造,(iii)具可靠性,以及(iv)對體積和佔用面積有 實質影響。 【發明内容】 本發明透過提供了一適合用在例如DSL濾波電路應 用中的改良電感元件及其製造方法中來滿足前述需要。 在本發明的第一態樣中,係揭示一用於在電丰電略中 _ 吏用的改良電感元件。該裝置通常包括具有受控飽和度元 牛的磁滲透線芯,該線芯和元件協同產生所欲的電感特性 (例如,一基本上與dc電流曲線相對的“階梯式,,或不連續 電感)。在一典型實施例中,該裝置包含一大致圓柱形電 位器(罐形)線芯,其具有第一線芯元件和第二線芯元件, 二具有形成在至少該線芯元件一部分之間的可變體狀的間、 隙該可變體狀的間隙包括,例如,具有第一間隙寬度的 8 1278877 第一部分和具有第二間隙寬度的第二鄰接部分^可變體狀 的間隙有助於控制在不同電流值裝置的飽和度,從而在感 興趣的頻帶上提供大致階梯式的電感特性。另提供一整體 或分離的終端矩陣,其用於電連接該裝置到諸如印刷電路 板(PCB )的外部元件。 在第二示例實施例中,本發明的改良裝置包含具有第 一和第二終端元件的單一或多部分纏繞的‘‘雙,,磁鼓芯,其 中受控的磁芯飽和度元件被置於所有或者部分鼓狀終端元 件的外圍° ^:控飽和度元件包括’在一示例架構中,鎳鐵 (Ni-Fe)帶細條。憑藉其含鐵的部分,這個材料包含與磁透 鼓纪相互作用的磁嘴以提供前述的階梯式電感特性。 在第三個示例性實施例中,改良的電感元件包含具有 第一和第二終端元件的“三元組”鼓芯,以及置於這些終端 來橋接在兩個終端元件 之間的一中心元件。Ni-Fe型通常用 外圍的至少一部分與中心元件之間。 在本發明的第二態樣中,係想— ^ 係揭不一改良的DSL濾波器 裝置。濾波器裝置通常包括合併了 十交, 货了一或多個前述電感元件 的D S L濾波電路’因而適合於增強 9強阻斷帶性能。在一示例 性實施例中,濾波電路包含適合 σ於減少並聯電容的動態開 關濾波電路,並且因而允許多 信電路中而不會產生不期望的 和/或雙鼓芯裝置被用來提供 分佈式濾波器用在給定的電 低回波損耗。前述的罐形芯 在待機狀態期間增加的輸入 1278877 在本發明的第三態樣中,電路板組合裝置包含具有多 個傳導軌跡和安裝在其上的一或多個前述電感元件的的基 板(例如PCB )。在一示例性實施例中,前述的DSL濾波 電路分發在基板上,因而提供了與邊緣插頭組合在一起的 DSL濾波器“卡”。 在本發明的第四態樣中,係揭示透過使用電感元件提 供受控電感的一種改良的方法。該方法通常包含:提供一 具有線芯和受控飽和度元件的電感器;選擇受控飽和度元 件的參數以提供(i )在無電流狀態期間比較高的電感;(ii ) 在非零且在給定的電流閾值之上電流狀態期間比較低的電 感;並且在能夠產生透過該裝置的無電流和非零電流狀態 的電路之内操作該裝置。在一示例性實施例中,選擇參數 的行為包含選擇材料、厚度,和為了控制其磁飽和度的受 控飽和度元件的形狀。 在本發明的第五熊樣中,係揭示製造電感元件的方 法。在一示例性實施例中,該方法通常包含:提供適合於 匹配的第一芯元件和第二怒元件;將形成在第一和第二元 件之間的縫隙的第一部分配置為第一寬度;將缝隙的第二 部分配置為第二寬度;用導線纏繞該線芯;並且裝配第一 和第二元件。在第二示例性實施例中,該方法通常包含·· 提供具有第一和第二終端元件和線圈區域的鼓芯;在線圈 區域上纏繞至少一條導線;旅且使用受控飽和度元件橋接 第一和第二終端元件。在第三個示例性實施例中,該方法 10 1278877 包含:提供具有第一和第二終端元件的鼓芯, 和至少一線圈區域;在至少一線圈區域上纏繞 線;並且使用至少一受控飽和度元件橋接第一 件和中心元件。 在本發明的第六態樣中,係揭示一改良的 件(與製造方法相關的)。該裝置通常包含: 元件;置於上述芯元件上的至少一線圈;基本 述至少一線圈大部分周遭的帽元件;和置於靠 一電感控制元件,芯元件,和上述至少一線圈 性實施例中,該裝置包含垂直方向之鼓芯,在 一雙股線圈。該鼓包含一基本部分,該基本部 裝於一母設備上的多個傳導終端(例如PCB), 雙股線圈的各自一電連接。受控的電感元件包 合金條,該條基本上置於帽卷之中並且在帽和 間捕獲,從而在該裝置之内提供了一附加的電 過示例裝置提供的電感特性(也就是多個消檢 frequencies))可滿足或超過了相關的性能標準 TS 1 01 95 2-1-5分佈濾波器規範。 在本發明的第七態樣中,係揭示一改良 (與製造方法相關)。該裝置通常包含:磁滲 芯元件;置於芯元件上的至少一線圈;和橋接 配置的非環面磁滲透元件。在一示例性實施例 透元件包含透磁合金和被部分地用絕緣元件 一中心元件 至少一條導 第二終端元 受控電感元 一磁滲透芯 上置於在上 近上述帽的 。在一示例 其上有至少 分接收用於 該母設備與 含一鎳(Ni) 基本部分之 感路徑。透 r 頻率(notch ,例如ETSI 的縫隙環面 透缝隙環面 芯元件縫隙 中,該磁滲 置於縫隙之 11 1278877 内。在操作期間,該縫隙以電流“旋轉,,環面電感;透磁合 金元件飽和,從而有效移除該裝置的電感。在另一實施例 中’該芯縫隙由透磁合金帶橫越,其中該芯和條基本上圍 在外覆蓋物(例如熱縮管道)之内。 在另一實施例中,環面縫隙裝置與基本上包含環面金 屬板或“墊圈”的飽和度控制元件匹配。為了提供磁耦合透 過芯縫隙的的期望度,墊圈與裝置的頂面和/或底面匹配。 可以控制墊圈的厚度和接近線芯程度以提供裝置的期望的 電器和電感特性,並且提供非常低成本的解決方案。 【實施方式】 現下參考附圖,其中所有相同的數字指代相同的部 分。 正如在這裡所使用的,術語‘‘信號處理,,或‘‘處理,,應理 解為包括而非限定於,信號電壓變換,濾波和噪聲消除, 信號分離,阻抗控制和修正,電流限制,電容控制,和時 間延遲。 正如在這裡所使用,術語“數位用戶專線(或“DSL”) 應理解為DSL架構或服務的任一形式,無論對稱的或是其 它的,這些形式包括無限制的所謂“G.lite,,ADSL (例如符 合 ITUG.992.2) J RADSL :(速率調適 DSL) ,VDSL (甚 高位元速率DSL) ,SDSL (對稱DSL) ,SHDSL或超高位 元速率DSL,也稱為G.shdsl(例如符合ιτυ建議G.991.2,由 12 1278877 ITU-T在2001年2月所認證)’HDSL:(高數據速率DSL), HDSL2 :(第二代HDSL ) ’和1DSL (综合服務數位網路 DSL),還有in_preinises電話線網路(例如hpn)。 將進一步認識到雖然術語“家庭,,和“用戶,,在這裡可 以用在與本發明的示例性實施例的一或多個態樣相關,但 是本發明決不限定這些應用。本發明同樣可以成功地應用 在’小或大商業、工業’和如果需要’甚至應用在軍事中, 等等。 # 應該注意的是雖然根據在電信領域眾所周知的R J _型 連接器和型號的相關的標準插塞來安排的下述描述的部 分’但是本發明可以與任一數量的不同型號連接器結合使 用。因此,下面的討論僅僅是較廣義概念的示例。 此外,在這裡使用的術語“網站,,和‘‘用戶站點,,應當包 括具有提供到那裡的電信線業務的任何位置(或位置組), 並不局限於居住房屋,公寓,辦公室,和商行。 最後,正如在這裡所使用,術語“擴展裝置,,意味著包 β 括與習知的電信線兼容的任何型號的電信裝置,而並不局 限於傳統電話,電話答錄機,傳真機,無線或衛星接收器, 和多線電話。 概述 本發明有效的以低成本方式解決修正電感元件的電 感特性以提供作為dc電流函數的兩個或多個大致上不連續 13 1278877 的電感值的問題,在家庭或用戶DSL遽波電路的示例性環 境中’這個大致上不連續的特性准許較高輸入阻抗用於在 待機狀態時的渡波器。當與動態開關據波電路麵合時,低 並聯電容和期望的高阻斷帶損耗有利地提供在單個電路 · 中。本發明的改良電感元件製造成本效率高而且空間上纟 、 緊湊。 應可理解的疋’本案之改良電感元件雖是以用於DU 電路中進行描述,但是這樣的電感元件的應用可以超出 # DSL電路包括字面意義上的任何需要具有在這裡描述的特 性電感兀件的電路。因此,本發明的範圍應該由申請專利 範園確定,並不是透過在這裡所闡述的示例性實施例。 改良的電感元件 現下參考第4-4f圖,詳細描述本發明改良的電感元件 的各種示例性實施例°熟習該項技術人士將會認識到在這 裡描述的實施例僅僅是提供受控飽和度電感元件較寬概念 的米例,該裝置對製造而言是低成本的,並能產生期望的 電感特性。許多不同的物理架構的變化(在這裡描述了一 邡以與本發明一致進行應用。 疋如第4和4a圖所示,圖示了電感元件400的第一實施 六遠個實施例中,裝置400通常包含電位器或具有設計 Λ扣苞匹配的兩個元件402a,402b的“罐形(P〇t)’,模芯 用來和 A接合時,這兩個元件402a,402b在本實施例中形狀 402 ° ^ ^ 14 12788771278877 发明, DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates generally to components used in electronic applications, and more particularly to use in a filter sinker for digital subscriber line (DSL) or similar telecommunications systems, and other devices. Improved inductive components. [Prior Art] Nowadays, the installation of digital subscriber line (DSL) is usually familiar with the installation, or especially when the user installs a micro device or embedded telephone filter on each phone to carry the phone (including fax, Telephone replies, etc.) are isolated from the line and DSL signal paths. Figure 1 shows a typical installation of a built-in filter. The self-installable microfilter is a challenging design because it must have enough blocking bands in the DSL band to protect and DSL performance, but it should also have a slight impact on voice band performance. Only then. Figure la shows a typical conventional inline architecture for use in DSL applications. However, this conventional filter design often fails to meet the requirements of a subscriber for return loss and DSL blocking. An important issue The overall capacitance required to meet the requirements of the DSL blocking band also creates additional side tones in the telephone band, which is a very common result. In addition, the return loss problem becomes more severe when multiple microfilters are added for each user's phone. Involved in the sub-i filter, this is mainly to maintain the power of the wave. 1278877 In some countries, the filter circuit requirements are urgent. For example, the main challenge is to provide "foot" The blocking band must also provide high speech band return loss. Conventional inductive components are mostly based on their inductive properties and are generally not suitable for use in the aforementioned applications. As described herein, the term "inductance" The characteristic '' usually refers to the inductance curve or the change in inductance as a function of the dc current through the inductor. Figures 2a and 2b show the inductive characteristics associated with typical prior art inductors with fixed inductance or variable inductance, respectively. It is worth noting that in a typical "fixed" inductor, the inductance characteristic 1 〇 2 is a fairly flat or constant as a function of current until a fairly high current is reached. In comparison, the inductance curve and current of the variable inductor The function changes as it is, either in the basic linear mode 1 〇6, or in a slightly "slow ladder", in mode 108, as shown in Figure 2b. Figure 2b generally represents conventional device models manufactured by the United States, Coilcraft Corporation of Cary, Illinois, and others, such as the DT1608 series of SMT power inductors. Figure 3 shows the architecture of the aforementioned Coilcraft device. As shown in FIG. 3, apparatus 300 includes a two-piece core 302 having a base 304 with an off-center post 306. The upper center block 308 has an aperture 3 1 0 that is much larger than the diameter of the column 306. This arrangement creates a continuously variable gap that is actually on the outer surface of the post 306 and the inner surface of the aperture 310, which varies from a minimum gap near the closest point to the opposite point to a maximum diameter at the closest point. value. This continuously varying gap has at least two disadvantages, including: (i) a continuously varying or "mitigating ladder", inductive characteristics, which are undesirable or not optimal in some applications in 4 1278877, and (ii) The manufacturing cost is high because two center blocks with accurate relative tolerances (including accurate adjustment of the upper center block 308 and the pedestal 304) must be provided. Furthermore, regardless of the off-center column 306 and another center The block's own tolerances still have the additional cost associated with manufacturing the off-center column. Such off-center arrangements are generally not beneficial to the use of well-known calibration aids, such as the split pin devices described later herein. 'Including, for example, some DSL filter circuits that require higher blocking band loss (for example, for caller ID function), it is required to have an inductance element different from the inductance of Figure 2a or 2b. The caller ID described above In the case, a higher blocking band loss is required in the standby (on-h〇〇k) state to protect the caller ID device from overload current through the DS1 signal. The pCT application number pCT/Tjs 〇1/45568 in the application (which was filed on November 14, 2001, entitled "High Perf〇rmance MicwFilter and Splitter Apparatus", which has been accepted by the applicant) The exemplary filter circuit is described in its entirety for reference. In this circuit, the removal of most of the capacitance during the standby state reduces the filter and wave blocking band losses and thus forces it as previously described. An additional or replacement device is used to increase the loss of the blocking band. Similarly 'for the issue issued on April 3, 2001 (which has also been assigned to the assignee of the case), the title is "Impedance Blocking Filter Circuit" An exemplary filter circuit as described in U.S. Patent No. 6,2,229, 259 discloses an improved inductive component that is required for a plurality of filters, the 5 1278877 having sufficient inductance to allow the circuit to pass through the standby resistor. Broken band loss, while also allowing for larger capacitors. In addition, in order to control the inductance performance, gap type ring coils have been used. Application on September 13, 2000 (application number is 〇9/ 661628) and issued on November 4, 2003, entitled "Advance (j Electronic Microminiature Coil And Meth〇d 〇f Manufacturing, US Patent No. 6,642,847, discloses a combination of a toroidal core and a plurality of A microelectronic coil device of a coil, wherein the coil is separated by one or more layers of insulating material. The insulating material is vacuum deposited on top of the first set of coils and cured before the next set of coils are wrapped around the core. The toroidal core can also be selectively provided to a controlled thickness gap to control the saturation of the core. U.S. Patent No. 6,642,847, issued to A.S. Pat. Ten this gap is partially expanded through the annulus to reduce EMI. Within each gap, an insulating shim having a magnetic metal strip superposed over the shim is inserted. When a current is applied to the coil on the core, the resulting magnetic flux is introduced into the magnetic strip and surrounds the gaps. The loss of the sigma-frequency excitation eddy current in the magnetic band is quite high, and the coil has a low Q value but has a high inductance. At high coil currents, the tape is saturated, the inductance is reduced and the Q of the coil is increased. In a switching voltage regulator, this inductor tends to produce only a small amount of acoustic and electromagnetic radiation noise. In addition to the desired inductive performance characteristics, the manufacture of inductive components is as low as 6 1278877. The inductive component market (and the dsl filter circuit market) is uniquely price-competitive, and thus, even in the case of cost efficiency or a reduction in the price of these components, the viability of the manufacturer's products can be achieved. It has a huge impact. The method of controlling the inductance of a prior art is often complicated and requires relatively high manufacturing costs due to the increased labor and/or components associated with producing the desired inductive characteristics. Board and internal space losses are also a problem with many electronic devices (including DSU wave circuits); therefore, in addition to the desired performance characteristics and low cost, the minimum physical size and footprint is highly desirable. An electronically executed device that is inexpensive and inexpensive to manufacture, but occupies a considerable board or interior space' is generally not commercially viable. ETSI Technical Standard 952, Part 1, Volume 5 (ETSITS 952-1-5) entitled "Access network xDSL transmission filters"; Part 1: ADSL filters for European deployment; Volume 5: Specification of ADSL/POTS distributed Filters" specifies the requirements and test methods for distributed filters for DSL distribution filters and local exchanges installed at the local loop and near the network termination point (NTP). This standard specifies The local loop's client distributes the requirements and test methods for the correct ADSL/POTS distributed chopper. For each standard, the standby voice band electrical requirements contain two conditions: (i) a 50 V DC feedback voltage, and use Impedance mode ZON (10kQ), or (ii) DC loop current flowing through the distributed filter between 〇.4mA to 2.5mA; and using the impedance mode of 600 Ω to terminate distributed filtering by speech frequency 1278877 LINE and POTS ports. The standard standby ADSL band electrical requirements can be met with a DC feedback voltage of 50 V, and the impedance mode z0N (i 〇k Ω ) is used. It is satisfied with a DC current of 13 mA to 80 mA. These requirements are urgent, especially simple low-cost inductor components. > Based on the foregoing, an improved inductor component with low manufacturing cost and desired inductance characteristics is required. Digital subscriber line (DSL) signals and other signals. Such an improved device ideally (i) has the desired inductive characteristics in standby and use states to support, for example, the caller ID function φ. Loss (ii) is manufactured with high economic cost efficiency, (iii) has reliability, and (iv) has a substantial impact on volume and footprint. SUMMARY OF THE INVENTION The present invention provides a suitable application for, for example, DSL filter circuits. In the improved inductor element and its method of manufacture, the foregoing needs are met. In a first aspect of the invention, an improved inductor element for use in a power amplifier is disclosed. A magnetically permeable core that controls the saturation of the bull, the core and the component cooperate to produce the desired inductance characteristics (eg, substantially opposite the dc current curve) ",, stepped or discontinuous inductor). In an exemplary embodiment, the apparatus includes a substantially cylindrical potentiometer (can-shaped) core having a first core element and a second core element, the second having a portion formed between at least a portion of the core element The gap of the variable body includes, for example, a first portion having a first gap width of 8 1278877 and a second abutting portion having a second gap width. The saturation of the devices at different current values is controlled to provide substantially stepped inductance characteristics over the frequency band of interest. A bulk or separate terminal matrix is also provided for electrically connecting the device to an external component such as a printed circuit board (PCB). In a second exemplary embodiment, the improved apparatus of the present invention comprises a single or multi-part wound ''double," magnetic drum core having first and second terminal elements, wherein the controlled core saturation element is placed The periphery of all or part of the drum-like terminal element ^ ^: Control-saturation element includes 'in an exemplary architecture, a nickel-iron (Ni-Fe) strip. With its iron-containing portion, this material contains a magnetic nozzle that interacts with the magnetic drum to provide the aforementioned stepped inductance characteristics. In a third exemplary embodiment, the improved inductive component comprises a "triple" drum core having first and second terminal elements, and a central component disposed between the terminals to bridge between the two terminal elements . The Ni-Fe type is usually between at least a portion of the periphery and the center member. In the second aspect of the present invention, it is intended to provide a modified DSL filter device. The filter arrangement typically includes a D S L filter circuit incorporating a cross-over, one or more of the aforementioned inductive elements' and is thus adapted to enhance the 9-strong blocking band performance. In an exemplary embodiment, the filter circuit includes a dynamic switching filter circuit adapted to reduce sigma capacitance, and thus allows for multi-signal circuits without generating undesirable and/or dual drum devices being used to provide distributed The filter is used for a given electrical low return loss. The aforementioned input of the can core increased during the standby state 1278877. In a third aspect of the invention, the circuit board assembly includes a substrate having a plurality of conductive tracks and one or more of the aforementioned inductive elements mounted thereon ( For example PCB). In an exemplary embodiment, the aforementioned DSL filter circuit is distributed on the substrate, thus providing a DSL filter "card" that is combined with the edge plug. In a fourth aspect of the invention, an improved method of providing controlled inductance through the use of inductive components is disclosed. The method generally includes: providing an inductor having a core and a controlled saturation component; selecting a parameter of the controlled saturation component to provide (i) a relatively high inductance during a no current state; (ii) being non-zero and The inductor is relatively low during the current state above a given current threshold; and the device is operated within a circuit capable of generating a current free and non-zero current state through the device. In an exemplary embodiment, the behavior of selecting a parameter includes selecting a material, a thickness, and a shape of the controlled saturation element for controlling its magnetic saturation. In the fifth bear of the present invention, a method of manufacturing an inductance element is disclosed. In an exemplary embodiment, the method generally includes providing a first core element and a second anger element adapted to match; configuring a first portion of the gap formed between the first and second elements to a first width; The second portion of the slit is configured to a second width; the core is wrapped with a wire; and the first and second members are assembled. In a second exemplary embodiment, the method generally includes providing a drum core having first and second terminal elements and a coil region; winding at least one wire over the coil region; bridging the bridge using a controlled saturation component One and second terminal elements. In a third exemplary embodiment, the method 10 1278877 includes: providing a drum core having first and second terminal elements, and at least one coil region; winding a wire over the at least one coil region; and using at least one controlled The saturation element bridges the first piece and the center element. In a sixth aspect of the invention, an improved article (related to the method of manufacture) is disclosed. The apparatus generally includes: an element; at least one coil disposed on the core element; a cap element substantially surrounding at least one of the coils; and an inductive control element, a core element, and the at least one coil embodiment In the device, the device comprises a drum core in a vertical direction, in a double-stranded coil. The drum includes a basic portion that is mounted on a plurality of conductive terminals (e.g., PCB) on a parent device, each of which is electrically connected. The controlled inductive component encloses an alloy strip that is placed substantially within the cap and captured between the caps to provide an additional electrical inductance provided by the example device within the device (ie, multiple The elimination criteria (frequencies) can meet or exceed the relevant performance criteria TS 1 01 95 2-1-5 distributed filter specifications. In the seventh aspect of the invention, an improvement (related to the manufacturing method) is revealed. The device typically includes: a magnetically permeable core member; at least one coil disposed on the core member; and a bridged configuration non-a toroidal magnetically permeable member. In an exemplary embodiment, the transmissive element comprises a permalloy and is partially insulated with a central element. At least one of the second element is controlled by a second inductive element. A magnetically permeable core is placed on top of the cap. In one example, there is at least a sensing path for the parent device and a nickel-containing (Ni) base portion. Through the r frequency (notch, such as ETSI's slit toroidal slotted toroidal core element gap, the magnetic permeability is placed in the gap 11 1278877. During operation, the gap is current "rotation," toroidal inductance; The alloy element is saturated to effectively remove the inductance of the device. In another embodiment, the core gap is traversed by a permalloy strip, wherein the core and strip are substantially enclosed within an outer cover (eg, a heat shrinkable tube) In another embodiment, the toroidal slot device is mated with a saturation control element that substantially comprises a toroidal metal plate or "washer." To provide the desired degree of magnetic coupling through the core slot, the gasket and the top surface of the device / or the bottom surface is matched. The thickness of the gasket and the extent of the core can be controlled to provide the desired electrical and inductive characteristics of the device, and to provide a very low cost solution. [Embodiment] Referring now to the drawings, all the same numerals The same parts are used. As used herein, the term 'signal processing,' or ''processing', shall be understood to include, but is not limited to, signals Pressure transformation, filtering and noise cancellation, signal separation, impedance control and correction, current limiting, capacitance control, and time delay. As used herein, the term "digital subscriber line (or "DSL") should be understood as a DSL architecture or service. Any form, whether symmetrical or otherwise, includes unrestricted so-called "G.lite, ADSL (eg conforming to ITUG.992.2) J RADSL: (rate-adaptive DSL), VDSL (very high bit rate DSL) ), SDSL (Symmetric DSL), SHDSL or Super High Bit Rate DSL, also known as G.shdsl (eg compliant with ιτυ recommendation G.991.2, certified by 12 1278877 ITU-T in February 2001) 'HDSL: (High) Data rate DSL), HDSL2: (second generation HDSL) 'and 1DSL (integrated service digital network DSL), and in_preinises telephone line network (eg hpn). It will be further recognized although the terms "family," and "user Here, it may be used in connection with one or more aspects of the exemplary embodiments of the present invention, but the present invention in no way limits these applications. The present invention can also be successfully applied to 'small or large commercial, industrial' and If needed, 'even in the military, etc.. # It should be noted that although the following description is arranged according to the relevant standard plugs of the RJ_type connectors and models well known in the telecommunications field, the present invention can Used in conjunction with any number of different model connectors. Therefore, the following discussion is merely an example of a broader concept. In addition, the terms "website," and "user site," as used herein, shall include having to provide there. Any location (or location group) of the telecommunications line business is not limited to residential buildings, apartments, offices, and businesses. Finally, as used herein, the term "expansion device" means that the package β includes any type of telecommunication device compatible with conventional telecommunication lines, and is not limited to conventional telephones, answering machines, facsimile machines, and wireless devices. Or a satellite receiver, and a multi-line telephone. SUMMARY The present invention effectively solves the problem of correcting the inductive component's inductive characteristics in a low cost manner to provide inductance values for two or more substantially discontinuous 13 1278877 as a function of dc current, In an exemplary environment of a home or user DSL chopper circuit, 'this substantially discontinuous characteristic allows a higher input impedance for the ferrator in the standby state. When combined with a dynamic switching data circuit, the low shunt capacitance And the desired high blocking band loss is advantageously provided in a single circuit. The improved inductive component of the present invention is cost effective to manufacture and is spatially compact and compact. It should be understood that the improved inductive component of the present invention is used for Described in the DU circuit, but the application of such an inductive component can go beyond the # DSL circuit, including any need in the literal sense. The circuit of the characteristic inductive component described herein. Therefore, the scope of the present invention should be determined by the patent application, and is not through the exemplary embodiments set forth herein. The improved inductive component will now be described with reference to Figure 4-4f, in detail. Various exemplary embodiments of the improved inductive component of the present invention are described. Those skilled in the art will recognize that the embodiments described herein are merely examples of the broad concept of providing a controlled saturation inductive component that is It is low-cost and produces the desired inductive characteristics. Many different physical architecture variations (described here to apply in accordance with the present invention. For example, shown in Figures 4 and 4a, the inductor is shown In a remote embodiment of the first embodiment of the component 400, the device 400 typically includes a potentiometer or a "pot" having a design of two elements 402a, 402b that are designed to match the A. When engaged, the two elements 402a, 402b have the shape 402 ° ^ ^ 14 1278877 in this embodiment

基本上是圓柱型的,且每一者包括在其周遭形成通道或槽 408 a, 408b的放置於中心的柱406a,40 6b。然而應可理解的 是,其它的芯型(包括例如周知的“E”芯型,其在鏡像部署 中是有效的雙“E”塑,或者“U”芯設計)也可以與本發明— 致地使用。槽408具有一内體積,其中設有裝置410的線圈。 每一元件402由磁透材料形成,例如在電子領域所周知的 Mn-Zn。孔徑409在芯元件的側面中形成(在兩個元件 402a,402b的交接點處)以允許導線的進/出。明顯地,可 以使用其它的用於導線進/出的機製,包括穿過芯表面頂部 或底部等等。此外,某些芯型(例如前述的“E”模芯)係藉 由設計開啟,以内含地提供導線的出口。They are substantially cylindrical and each include a centrally placed post 406a, 406b that forms a channel or slot 408a, 408b therearound. It should be understood, however, that other core types (including, for example, the well-known "E" core type, which are effective double "E" plastic in a mirrored deployment, or "U" core design) can also be used with the present invention. Use. The slot 408 has an inner volume in which the coil of the device 410 is located. Each element 402 is formed from a magnetically permeable material, such as Mn-Zn, which is well known in the electronics arts. An aperture 409 is formed in the side of the core member (at the junction of the two elements 402a, 402b) to allow entry/exit of the wires. Obviously, other mechanisms for wire entry/exit can be used, including through the top or bottom of the core surface, and the like. In addition, certain core types (e.g., the aforementioned "E" cores) are designed to be opened to provide an outlet for the wires.

電感元件400還包括透過在芯402的中心柱406纏繞所 需形狀的導線來形成一或多個導電線圈41 3。在該示例性實 施例中’使用了在電子領域周知的型號所謂的“磁線,,,因 為它既有相對低的成本也具有良好的電子和機械性能。磁 線通常纏繞變壓器和電感元件,並且包括銅或其它電感材 料組成的線,該等線並以薄聚合物絕緣層或聚合物層化合 物例如,聚氨酯,聚酯,聚亞醯氨(aka “Kapt〇nTM”)等 等所覆蓋。覆蓋層的厚度和化合物決定了線的介電強度能 力。範圍在31到42 AWG的磁線大多數用在微電子變壓器或 電感器應用中,然而其它尺寸可能用在某些應用中。 第4圖的電感元件400也可選擇性地包括終端矩陣 425 ’其用於連接前述線圈到外部裝置例如,pcB墊或痕 15 1278877Inductive component 400 also includes one or more conductive coils 41 3 formed by winding a desired shape of wire through a central post 406 of core 402. In the exemplary embodiment, 'the so-called "magnetic wire", which is well known in the field of electronics, is used because it has both relatively low cost and good electrical and mechanical properties. Magnetic wires are usually wound around transformers and inductive components. Also included are wires of copper or other inductive material that are covered with a thin polymeric insulating layer or polymer layer compound such as polyurethane, polyester, polyamidamine (aka "Kapt") or the like. The thickness of the overlay and the compound determine the dielectric strength of the wire. Magnetic wires ranging from 31 to 42 AWG are mostly used in microelectronic transformer or inductor applications, although other sizes may be used in certain applications. The inductive component 400 of the figure may also optionally include a termination matrix 425 'which is used to connect the aforementioned coil to an external device such as a pcB pad or trace 15 1278877

跡。在這裡公開的型號的電感元件通常置於在諸如pCB基 板上並置於其表面上,方便地提供低外形和低安裝成本。 終端矩陣425包括非電感矩陣架構427和多個大至平坦的截 面終端429,其彼此係藉矩陣架構427隔絕。對於每一或各 自終端來說,終止於電感元件線圈413的自由端,例如透過 軟焊和/或線纏繞在終端429 (沒有示出)的末端上形成的 槽上。每一終端429的底端部分431適合於表面安裝(例如 軟焊)到相應的PCB觸點墊(沒有示出)或其它類似的電 感類似物。電感元件400的芯402位於架構427的頂上,並且 可以透過使用在第二芯元件402b的底部表面上的膠黏劑或 其它數量的各種習知裝置安裝在其上。trace. The inductive components of the type disclosed herein are typically placed on a surface such as a pCB substrate and placed on the surface to conveniently provide low profile and low installation cost. The termination matrix 425 includes a non-inductive matrix architecture 427 and a plurality of large to flat section terminals 429 that are isolated from each other by a matrix architecture 427. For each or each terminal, the free end of the inductive element coil 413 terminates, for example, by soldering and/or wire winding on a slot formed in the end of terminal 429 (not shown). The bottom end portion 431 of each terminal 429 is adapted for surface mounting (e.g., soldering) to a corresponding PCB contact pad (not shown) or other similar inductive analog. The core 402 of the inductive component 400 is located atop the frame 427 and can be mounted thereon by the use of an adhesive or other number of conventional devices on the bottom surface of the second core member 402b.

正如另一可替換的,終端429可以直接安裝芯4〇2(沒 有示出)之内或之上,這樣透過摩擦地和/或膠黏地把它們 嵌入進芯元件402a,402b内的孔徑中,並且然後在那裡終 止線圈413的自由端。用於終端及將其安裝(或直接或間接) 到4 4 0 2上的眾多其它架構存在於,例如在業界所熟知的球 閉陣列(ball grid array)方法中,或多引腳(例如用在引腳 閑極陣列中),前述替代架構均可以很容易地被熟習該項 技術人士所了解。 在各個芯元件柱406a,406b,的相對表面之間的區域 414包括“可變的’’形狀,後者的設計是為了提供所需的電感 特性(下面關於第4c圖所描述的)。特別地,在第“圖中 报好展示了的圖示實施例中,該可變體狀包括兩個置於柱 16 1278877 406之間的區域416、418,每一區域具有不同縫隙寬度(雙 層°而第一區域416大約有0.010英寸(〇·254亳米)的 第一縫隙寬度W1,而第二區域418有大約0·〇〇1英寸(〇 〇254 毫米)的縫隙寬度W2, W2小於W1。當按平面圖觀看時(第 4b圖)’該兩個區域416, 418包含大體上形成於整個柱4〇6 剖面區域的兩個鄰接元件。在本實施例中,第一區域4 i 6 包含柱406戴面的整個表面面積的大約9 〇%,這個區域透過 弦邊41 9從第二區域中分離出來。第二區域418大約包含截 面面積剩餘的1 〇%。在該示例性實施例中,該縫隙(多個 縫隙)内充滿空氣,然而,應暸解也可以使用具有所需特 性的一種或多種其它材料。例如,該缝隙可以填滿高磁性 的磁阻化合物以便進一步控制芯的電感曲線。 通常’在D S L濾波器應用中,為了阻止芯被在電話線 中的使用dc迴路電流飽和,串聯電感器芯(多個芯)必須 具有一空隙。然而,在待機狀態中沒有“迴路電流。透過 實現上述的多區域空隙形狀,第4圖的電感元件提供期望的 “階梯式’’電感特性。更明確而言,電感器的待機電感值較 使用值大2-1〇倍(依所選擇的參數,正如下面所討論的)。 當個別電話或其它與濾波電路相關的擴展裝置使用時,上 述的第二區域41 8的寬度W2是足夠小以便能夠允許具有主 要使用dc迴路電流的芯的飽和度。這就導致了該裝置的電 感落入所期望的使用值。正如將會理解到的,w 1和W2的 值’以及第一和第二區域416,418截面面積的相對分發有 17 1278877 助於決定特定的使用電感值,以及“階梯式,,電感特性的形 狀。於本案中,係提供兩階段特性以產生兩個所欲的電感 值(亦即待機和使用狀態)。 第4c圖圖示了與第4圖示例裳置相關的電感特性 450。正如在第“圖中所示,該特性有—具有相對較高且大 致固定的電感值(在低dc電流透過裴置時)的第一部分 452’ 一具有隨著dc電流升高降低電感之大致垂直第二部分 454 ’ 一具有在較高dc電流(也大致固定)時相對低的電感 的第三部分456,和一第四部分458,其中裝置怒完全飽和。 第部分452代表了產生很小或沒有磁芯飽和的dc電流 值,和在示例性DSL濾波電路中相應於待機狀態時的較高 電感。在曲線450的第二部分454期間,芯開始飽和,並且 隨著dc電流的增高電感有一急劇(陡峭的)下降。這個急 劇下降尤其與通過小縫隙增加(隨著飽和這部分的電流的 增高而增加)的磁通量密度相關,這部分有效的從電路中把 匕進行電移除。甚至隨著dc電流的進一步增高,磁芯飽和 度’以及裝置進步進入到曲線450的第三部分456。此處, 隨著電流的增高,電感基本上維持固定,直達到飽和區域 458。與在第一 ’第二,和第三區域452,454,456達到的 電感比較’ 一旦芯達到完全飽和,電感將再次快速跌落到 很小的值。 應該注意的是,雖然第4圖的實施例使用了中心柱的 兩區域式排列’但是為了產生所欲的電子性能也可以使用 18 1278877 其它的排列。例如,在一可替換實施例中(第4d圖),加 入第三區域4 7 0到芯柱4 〇 6的嚙合面,從而在電感特性中增 加了第三階(“三層”)。在另一替換實施例中(第4 e圖), 縫隙面積的兩層或區域416,418彼此同心構成,這樣具有 較小缝隙W 2的第二區域4 1 8圍繞具有較大縫隙W 1的第一 區域416周遭。控制與第二區域418相關的牆或環面474的厚 度D1以提供所欲的電感特性。此外,該牆或環面474作為 垂直高度的函數可以逐漸減少,如此例如較接近於縫隙W2 的其寬度D 1小於在較高於縫隙之上的點的寬度。另外能 (或者可替換的)製造非連續環面474,例如,用沿著它的 圓周的一或多個區域不時打斷,在它的圓周上縫隙是增高 的,例如第4f圖中所示的在這些區域中透過材料的移除來 實現。 前述的同中心排列也便於了中心調整裝置的使用,例 如於1999年9月14日領證並受讓予Pulse Engineering有限 公司,標題為 “Blind hole pot core transformer device” 之 美國專利第5,952,907號中所詳細描述的開口銷通孔 (split-pin through-hole)排列,其全文係合併於此以作為參 考。該排列使用了形成在第一和第二芯元件的每一個的中 心柱中的一套中心孔徑,和在轉配芯之前在孔徑之一中接 收的開口摩擦銷。當組合芯元件時,在其它芯元件中的不 被封鎖的孔徑之内接收開口銷的自由端,從而準碟的調整 兩個芯元件。 19 1278877 對於中心柱406來說許多其它不同架構是可能的,許 多產生了不同的電感性能特性《此外,正如先前說討論的, 圖示實施例的不同形狀的縫隙排列可以很容易地應用到其 它芯架構中,包括例如“E”型和“U,,型芯。As a further alternative, the terminal 429 can be mounted directly into or on the core 4〇2 (not shown) such that they are frictionally and/or adhesively embedded in the apertures in the core elements 402a, 402b. And then terminate the free end of the coil 413 there. Numerous other architectures for the terminal and mounting it (either directly or indirectly) to the 4 4 2 2 exist, for example, in the ball grid array method well known in the industry, or multi-pin (eg, In the pin idle array, the aforementioned alternative architecture can be readily understood by those skilled in the art. The region 414 between the opposing surfaces of the respective core element posts 406a, 406b includes a "variable" shape designed to provide the desired inductance characteristics (described below with respect to Figure 4c). In the illustrated embodiment illustrated in the figure, the variable body includes two regions 416, 418 disposed between the posts 16 1278877 406, each having a different slit width (double layer). The first region 416 has a first slit width W1 of about 0.010 inches (〇·254 mm), and the second region 418 has a slit width W2 of about 0·〇〇1 inch (〇〇254 mm), and W2 is smaller than W1. When viewed in plan view (Fig. 4b), the two regions 416, 418 comprise two adjacent elements that are generally formed in the cross-sectional area of the entire column 4〇6. In this embodiment, the first region 4 i 6 includes The entire surface area of the post 406 is about 9%, which is separated from the second region by the chord 41.9. The second region 418 contains approximately 1% of the remaining cross-sectional area. In this exemplary embodiment The gap (multiple gaps) is filled with air However, it should be understood that one or more other materials having the desired characteristics can also be used. For example, the gap can be filled with a highly magnetic magnetoresistive compound to further control the inductance curve of the core. Typically in DSL filter applications, The core is prevented from being saturated by the dc loop current in the telephone line, and the series inductor core (multiple cores) must have a gap. However, there is no "loop current in the standby state. By implementing the multi-region gap shape described above, the fourth The inductive component of the figure provides the desired "stepped" inductance characteristics. More specifically, the inductor's standby inductance value is 2-1 times larger than the value used (depending on the selected parameters, as discussed below). When an individual telephone or other expansion device associated with the filter circuit is used, the width W2 of the second region 41 8 described above is sufficiently small to allow saturation of the core having the primary use of the dc loop current. This results in the inductance of the device. Falling into the desired usage value. As will be understood, the values of w 1 and W 2 'and the cross-sectional areas of the first and second regions 416, 418 The relative distribution of 17 1278877 helps determine the specific inductor value used, as well as the "stepped," shape of the inductor. In this case, a two-stage characteristic is provided to produce two desired inductor values (ie, standby and use states). Figure 4c illustrates the inductive characteristic 450 associated with the example skirting of Figure 4. As shown in the "Figure, this characteristic has - a relatively high and substantially fixed inductance value (at low dc current) The first portion 452' through the device) has a substantially vertical second portion 454' that reduces inductance as the dc current increases, and a third portion 456 that has a relatively low inductance at higher dc currents (also substantially fixed). , and a fourth part 458, in which the device is completely saturated. The first portion 452 represents a dc current value that produces little or no core saturation, and a higher inductance in the exemplary DSL filter circuit corresponding to the standby state. During the second portion 454 of the curve 450, the core begins to saturate and there is a sharp (steep) drop in inductance as the dc current increases. This sharp drop is particularly related to the magnetic flux density that increases through small gaps (which increase with increasing current in saturation), which effectively removes the turns from the circuit. Even as the dc current is further increased, the core saturation' and the device progress into the third portion 456 of the curve 450. Here, as the current increases, the inductance remains substantially constant, reaching the saturation region 458. Comparing with the inductance achieved in the first 'second, second and third areas 452, 454, 456' Once the core is fully saturated, the inductance will quickly fall again to a small value. It should be noted that although the embodiment of Fig. 4 uses a two-region arrangement of center pillars, other arrangements of 18 1278877 may be used in order to produce the desired electronic properties. For example, in an alternative embodiment (Fig. 4d), the mating faces of the third region 470 to the stem 4 〇 6 are added, thereby adding a third order ("three layers") in the inductance characteristics. In a further alternative embodiment (Fig. 4e), the two layers or regions 416, 418 of the slot area are concentric with each other such that the second region 4 1 8 having a smaller gap W 2 surrounds the portion having a larger gap W 1 The first area 416 is surrounded. The thickness D1 of the wall or torus 474 associated with the second region 418 is controlled to provide the desired inductance characteristics. Moreover, the wall or annulus 474 can be gradually reduced as a function of vertical height such that, for example, its width D 1 closer to the slit W2 is smaller than the width of the point above the slit. Alternatively (or alternatively) the discontinuous annulus 474 can be made, for example, interrupted from time to time by one or more regions along its circumference, the gap being increased on its circumference, such as in Figure 4f. This is achieved by the removal of material in these areas. The aforementioned concentric arrangement also facilitates the use of a central adjustment device, such as U.S. Patent No. 5,952, entitled "Blind hole pot core transformer device", issued on September 14, 1999, to Pulse Engineering Co., Ltd. A split-pin through-hole arrangement as described in detail in No. 907 is incorporated herein by reference in its entirety. The arrangement uses a set of central apertures formed in the center post of each of the first and second core members, and an open friction pin received in one of the apertures prior to the transfer of the core. When the core elements are combined, the free ends of the split pins are received within the unblocked apertures of the other core members, thereby adjusting the two core members of the quasi-disc. 19 1278877 Many other different architectures are possible for the center post 406, many of which produce different inductive performance characteristics. Furthermore, as discussed previously, the differently shaped slot arrangements of the illustrated embodiment can be readily applied to other In the core structure, for example, "E" type and "U", core.

應可理解的是,第4a-4f圖的實施例可以低成本進行 製造,這是由於(正如在下面更詳細描述的)它們很容易 地能使用現成或,,現貨,,之低成本罐狀鐵芯,該芯正如在這 裡所述能簡單的修改以提供所欲的電感特性。由於不同形 狀的縫隙完全包含在裝置内體積之内,因此,這些裝置有 利的是不再要求比傳統罐狀鐵芯更多的空間。It will be appreciated that the embodiments of Figures 4a-4f can be manufactured at low cost because (as described in more detail below) they can easily be used off-the-shelf or, off-the-shelf, low cost cans. The core, which can be simply modified as described herein to provide the desired inductance characteristics. Since the slits of different shapes are completely contained within the volume of the device, it is advantageous for these devices to eliminate the need for more space than conventional can cores.

現下參考第5圖,描述了本發明的改良電感元件的第 二示例性實施例,在這個實施例中,結合受控飽和度元件 508使用了典型的在本領域中公知的鼓(或線軸)芯5〇2。 鼓怒502包括中心線軸區域504和分發在線軸區域504末端 上的兩個終端元件(例如凸緣)5〇6a,5〇6b。線軸區域504 包含線圈5 1 0,該線圈同中心地纏繞在線轴周遭。如同在第 4圖實施例中那樣,芯502由磁透材料構成。然而可以理解 可能被替換為多件芯,但是為了減少成本(或其它原因), 圖示實施例的芯502在構造上是單件的。圖示裝置的受控飽 和度元件508包含鎳-鐵(Ni_Fe)合金的薄(大約〇〇〇1英 寸’或0.0254毫米,厚)細長帶,該合金沿著芯5〇2縱向排 列,以便它能橋接兩個終端元件5〇6a,5〇6b。在本實施例 中,元件508是透過膠黏劑膠合或黏結到兩個終端元件5〇6 20 1278877 上的。由於(i)因為鐵含量它是磁性滲透(並且導電的), 並且(11)鎳含量而實質堅固並足夠硬,所以選擇Ni-Fe用 作受控飽和度元件5 〇8。雖然基於期望的特性可以替代為其 它合金’但是圖不元件5〇8具有有8〇%的鎳和2〇c/❶的鐵。例 如,可以使用不同百分比的鎳和鐵。或者,不同類型的合 金例如Ni-Fe-Cr (通常認為是英高鎳(Inc〇nel))或所謂的 “不鏽鋼”(主要是Fe-C_Cr,或者是麻田散鐵(Martensitic) 的或其它的)可能被單獨或結合使用。含有鉻的一優點是 兀件508的鈍化,從而極大的消除了包括鐵氧化物形態(“鐵 鏽”)和腐蝕狀態的鐵降解機製的影響。 受控飽和度元件508可能有利地構造成在較大薄片中 的帶,包括正如在下面更詳細描述中的膠結到那裡的先前 應用,因為它們現有的有用性從而便於容易並成本有效地 製造。 將會認識到受控飽和度元件508的橫斷面圖和厚度能 影響裝置發生飽和的點,也能影響對於不同電流的相對電 感值。因此,雖然在圖示實施例中使用大約〇 〇〇1英寸 (0.0254毫米)厚的平帶,但是也可以使用其它的厚度和/ 或橫斷面圖。例如’可以期望去利用一或多個基本上圓截 面合金線(沒有示出)作為受控飽和度元件。 還應可理解的是,在給定裝置上使用的一或多個受控 飽和度元件5 08中可以使用材料的組合物。例如,裝置 可以用置於裝置周遭的兩個或多個較小直徑帶5〇8來裝 21 1278877 備’從而在多個位置橋接兩個終端元件506(見第5a圖)。 正如另一可替換的,可以用合金“帶”561的一或多個 連續片替換在第5圖中所示的帶508,該合金“帶,,部分延伸 或完全圍繞在每一終端元件506的周遭(第5b圖)。本領域 中的公知型號(例如由 the Raychem Corporation of MenloReferring now to Figure 5, a second exemplary embodiment of the improved inductive component of the present invention is described. In this embodiment, a typical drum (or spool) known in the art is used in conjunction with the controlled saturation component 508. Core 5〇2. The blowout 502 includes a center spool region 504 and two terminal members (e.g., flanges) 5〇6a, 5〇6b at the end of the distribution spool region 504. The spool region 504 includes a coil 5 1 0 that is wound concentrically around the spool. As in the embodiment of Fig. 4, the core 502 is constructed of a magnetically permeable material. However, it will be appreciated that it may be replaced with multiple pieces of core, but to reduce cost (or other reasons), the core 502 of the illustrated embodiment is structurally single piece. The controlled saturation element 508 of the illustrated device comprises a thin (approximately 〇〇〇1 inch' or 0.0254 mm, thick) elongated strip of nickel-iron (Ni_Fe) alloy that is longitudinally aligned along the core 5〇2 so that it It is possible to bridge two terminal elements 5〇6a, 5〇6b. In this embodiment, element 508 is glued or bonded to the two terminal elements 5〇6 20 1278877 via an adhesive. Since (i) is magnetically permeable (and electrically conductive) because of the iron content, and (11) the nickel content is substantially strong and hard enough, Ni-Fe is selected as the controlled saturation element 5 〇8. Although it is possible to replace other alloys based on the desired characteristics, the figure 5〇8 has iron of 8〇% and 2〇c/❶. For example, different percentages of nickel and iron can be used. Alternatively, different types of alloys such as Ni-Fe-Cr (generally considered to be Inconel) or so-called "stainless steel" (mainly Fe-C_Cr, or Martensitic or others) ) may be used alone or in combination. One advantage of containing chromium is the passivation of the element 508, which greatly eliminates the effects of iron degradation mechanisms including iron oxide morphology ("rust") and corrosion conditions. The controlled saturation element 508 may advantageously be configured as a belt in a larger sheet, including previous applications where cementing is as described in more detail below, as their existing usefulness facilitates easy and cost effective manufacture. It will be appreciated that the cross-sectional view and thickness of the controlled saturation element 508 can affect the point at which the device is saturated, as well as the relative inductance values for different currents. Thus, while a flat belt of about 〇 1 inch (0.0254 mm) thick is used in the illustrated embodiment, other thicknesses and/or cross-sectional views may be used. For example, it may be desirable to utilize one or more substantially circular cross-section alloy wires (not shown) as controlled saturation elements. It will also be appreciated that a combination of materials may be used in one or more controlled saturation elements 508 used on a given device. For example, the device can be mounted with two or more smaller diameter strips 5〇8 placed around the device to bridge the two terminal elements 506 at multiple locations (see Figure 5a). As another alternative, the strip 508 shown in Fig. 5 can be replaced with one or more continuous sheets of alloy "tape" 561 that "extend, partially extend or completely surround each terminal element 506. Peripheral (Fig. 5b). A well-known model in the art (eg by the Raychem Corporation of Menlo)

Park,CA製造)的熱收縮管563可以可選地使用代替或加 上前述的黏結劑來節省成本並持久壓焊飽和元件508到鼓 芯末端506。其它聯結方案是可以的,包括銅坪/定位焊接, 錫焊,夾钳等等。 正如另一可替換的,可以使用合成的飽和度元件 5 08,其中兩個或多個不同的合金可以互相結合使用,例如 組成了大致上不連續的、並行或上下摺疊的帶。 沒有適當的受控飽和度元件5 0 8,芯5 02(和整個裝置) 的電感主要由在終端元件506之間的空隙決定。然而透過使 用適當的飽和度元件508,在終端506之間的空隙被橋接, 從而在低或無電流狀態(例如待機)時基本上提升裝置5 〇〇 的電感。然而,當連接電感元件500的擴展裝置使用時,dc 電流升高,從而增高了在較薄元件50 8的通量密度。這導致 了元件5 0 8快速飽和,從而基本上減少了裝置的電感(‘‘階 梯式”)。 第5圖的電感元件500也可以可選地包括例如用於上 述的關於第4圖描述的前述線圈連接到諸如pcB塾或痕跡 的外部裝置的終端陣列、亦可選擇地,終端5 2 9可以直接安 22 1278877 裝到芯的内部或外部(正如所示),這樣透過摩擦和/或膠 結地把它們嵌入進芯元件502的孔徑535中,並且在那裡終 止線圈413的自由端。再參見第5c圖的可代替實施例,其中 妓〜匕a適合於接收L -型終端586的凹口 588。終端線圈513 的自由端580被置於凹口 588之内以准許電終止於終端 5 86。用於終端和它們安裝(或直接或間接)到芯5〇2的許 多其匕架構是存在的,例如公知的球閘陣列方法,或引腳 (例如用在引腳格閘極陣列中)。熟習此項技術人士應可 容易理解可替換的架構β 正如第4圖的實施例,由於大部分使用來控制裝置電 感曲線的裝置的簡單化,製造第5-5c圖的電感元件的成本 是很有效率的。這個區別於用來提供定製電感特性的較複 雜(且高成本)習知裝置。 現下參考第6圖,描述了本發明的改良電感元件的另 一實施例。在這個實施例中,裝置600包含具有第一和第二 元件602a,602b的雙鼓芯602和置於兩個終端元件602之間 的中心元件(例如凸緣)6 〇 5 ^兩個線軸區域6 0 4的每一個 提供給包含一或多套同中心的纏繞線圈6 1 0。沿著裝置的轴 611的縱向放置一單一受控飽和度元件608並且與三個元件 602a,602b,605的每一個連接,從而橋接形成在那裡之間 的兩個空隙。 然而應可理解的是,兩個不連續的飽和度元件6 0 8(沒 有示出)可以被用來橋接雙線軸怒602的兩個空隙。此外, 23 1278877 上面描述的關於第5圖的單線軸鼓芯可以有各種的可替代 架構,例如使用不同合金,連續帶,多飽和度元件等等, 可以相同地應用到第6圖的雙線軸芯。 濾波電路插逑 現參考第7 - 9圖,係揭示利用上述電感元件的改良濾 波電路。正如先前所討論的,本發明的電感元件解決了能 夠低成本修正電感元件的電感特性以提供作為dc電流函數 的兩個或多個大致上不連續的電感值的問題。在家庭或用 戶D S L濾波電路的示例性環境中,該大致上不連續的特性 係考量用於待機狀態時的濾波器的明顯較高輸入電感。當 與動態開關濾波電路耦合時(例如第7圖所描述的那樣),低 並聯電容和所欲的高阻斷帶損耗有利地提供在單個電路 中。換句話說,本發明的改良電感器,當與第7圖的動態濾 ;皮電路結合時,提供了 一在使用狀態提供低阻抗濾波器和 在待機狀態提供高阻抗濾波器的單個濾波電路,也有利地 維持了相同(或類似)的頻率截止性能。因此,透過這兩 70件(也就是說,“階梯式”電感元件和動態開關濾波電 路、 )的結合創造了協同作用。當本發明的電感元件與第8 及第9圖之濾波電路結合時,透過在其它第6圖的結合或雙 線輪電感器的使用,以極低的成本提供了極好的阻斷帶性 現下參考第7圖,描述了具有改良電感元件的動態微 24 ί278877 據波 例包 如英 和配 他何 來說 在這 子元 等) (例 元件 輪入 的輪 每一 器。 電路 L4) 輸入 插口 電話 信應 器架構的第一實施例。應該理解到,雖然第7圖的實施 含適合於滿足在多個具有某些性能要求的國家裡(例 國)使用要求的示例性設計,但是透過正確的構件選擇 董’本發明的動態濾波器同樣可以適合於精確地用在 應用中。基於習知的公開内容對於熟習該項技術人士 ’报容易決定出這樣的可替代的應用和配合,因此, 孝里沒有進一步描述。 還應當意識到,雖然根據用來組成電路的多個離散電 件(也就是說,電阻器,電感器,電容器,開關,等 $丨出下面的討論時,但是電路的部分可以以集成元件 如積體電路)或者具有所欲功能和電特性的其它型號 的形式來實施。 正如在第7圖中所示,濾波電路700通常包含具有多個 終端(線路側插口)704和兩個輸入電感器706,708 入部分702。在本實施例中這兩個輸入電感器706,708 個在這裡都包含一先前描述型號的受控飽和度電感 這就提供了具有先前討論的具有期望輸入電感特性的 。一輸出部分720包含兩個附加電感器724,726 ( L3, 三個電容727,228,730(C4,C9,C6)。濾波器的 “階梯式”電感器(LI,L2 ) 706,708被連接到線路側 7 04,而濾波器的電容輸入部分720被連接到濾波器的 侧插口 740。線路和電話侧插口 704、740,雖然是在電 用中使用的普通類型的模組化插口,但是還應該認識The heat shrink tubing 563 of Park, CA can optionally be used in place of or in addition to the aforementioned adhesives to save cost and to permanently weld the saturating element 508 to the drum end 506. Other coupling options are available, including copper/position welding, soldering, clamping, and more. As another alternative, a synthetic saturation element 508 can be used in which two or more different alloys can be used in combination with each other, for example, to form a substantially discontinuous, parallel or up and down folded strip. Without the proper controlled saturation element 508, the inductance of the core 052 (and the entire device) is primarily determined by the gap between the terminal elements 506. However, by using a suitable saturation element 508, the gap between terminals 506 is bridged to substantially boost the inductance of device 5 在 in a low or no current state (e.g., standby). However, when the expansion device connected to the inductive component 500 is used, the dc current rises, thereby increasing the flux density at the thinner component 50 8 . This results in a rapid saturation of the component 508, thereby substantially reducing the inductance of the device (''stepped'). The inductive component 500 of Figure 5 can also optionally include, for example, the above described with respect to Figure 4 The aforementioned coil is connected to an array of terminals of an external device such as a pcB塾 or trace, and optionally, the terminal 529 can be mounted directly to the inside or outside of the core (as shown) so as to pass through friction and/or cementation. They are embedded in the aperture 535 of the core element 502 and terminate the free end of the coil 413 there. Referring again to the alternative embodiment of Figure 5c, wherein 妓~匕a is adapted to receive the notch of the L-type terminal 586 588. The free end 580 of the terminal coil 513 is placed within the recess 588 to permit electrical termination at the terminal 586. Many of the other architectures for the terminal and their mounting (or directly or indirectly) to the core 5〇2 are present. For example, known ball grid array methods, or pins (for example, used in a pin grid array). Those skilled in the art should readily appreciate the alternative architecture β as in the embodiment of Figure 4, due to the large section The simplification of the means for controlling the inductance curve of the device is very efficient in manufacturing the inductance components of Figures 5-5c. This is distinguished from the more complex (and costly) conventional devices used to provide custom inductance characteristics. Another embodiment of the improved inductive component of the present invention is now described with reference to Figure 6. In this embodiment, apparatus 600 includes a dual drum core 602 having first and second members 602a, 602b and placed in two A central element (e.g., a flange) 6 〇 5 ^ between the terminal elements 602 is provided to each of the two spool regions 6 0 4 including one or more sets of concentric winding coils 61. 0 along the axis 611 of the device. A single controlled saturation element 608 is placed longitudinally and connected to each of the three elements 602a, 602b, 605, thereby bridging the two gaps formed therebetween. However, it should be understood that two discontinuous saturations A degree element 608 (not shown) can be used to bridge the two gaps of the double bobbin anger 602. In addition, 23 1278877 the single spool drum core described above with respect to Fig. 5 can have various alternative architectures, such as Use not Alloys, continuous belts, multi-saturation elements, etc., can be equally applied to the two-wire core of Figure 6. Filter Circuit Insertion Referring now to Figures 7-9, an improved filter circuit utilizing the above-described inductive components is disclosed. As previously discussed, the inductive component of the present invention solves the problem of being able to modify the inductive characteristics of the inductive component at low cost to provide two or more substantially discontinuous inductance values as a function of dc current. In a home or user DSL filter circuit In an exemplary environment, the substantially discontinuous characteristic takes into account the significantly higher input inductance of the filter for use in the standby state. When coupled with the dynamic switching filter circuit (eg, as depicted in Figure 7), low The shunt capacitance and the desired high blocking band loss are advantageously provided in a single circuit. In other words, the improved inductor of the present invention, when combined with the dynamic filter of FIG. 7, provides a single filter circuit that provides a low impedance filter in use and a high impedance filter in standby. It is also advantageous to maintain the same (or similar) frequency cutoff performance. Therefore, the combination of these two 70 pieces (that is, the "stepped" inductance element and the dynamic switching filter circuit) creates synergy. When the inductive component of the present invention is combined with the filter circuits of FIGS. 8 and 9, the excellent blocking bandability is provided at a very low cost by the use of the combination of the other FIG. 6 or the use of the two-wire inductor. Referring now to Figure 7, a dynamic micro 24 ί 278 877 with a modified inductive component is described. According to the wave example package, such as the English and the heel in this sub-element, etc.) (Example of the wheel of the component wheeled each. Circuit L4) Input socket A first embodiment of a telephone messenger architecture. It should be understood that although the implementation of Figure 7 contains an exemplary design suitable for meeting the requirements of use in multiple countries with certain performance requirements, the dynamic filter of the present invention is selected by the correct components. It can also be adapted to be used accurately in applications. Based on the well-known disclosure, it is easy for the person familiar with the technology to determine such an alternative application and cooperation. Therefore, Xiao Li does not further describe. It should also be appreciated that while depending on the plurality of discrete electrical components used to form the circuit (that is, resistors, inductors, capacitors, switches, etc.), the following discussion may be made, but portions of the circuit may be integrated components such as The integrated circuit) or other form of the form having the desired function and electrical characteristics is implemented. As shown in Figure 7, filter circuit 700 typically includes a plurality of terminals (line side jacks) 704 and two input inductors 706, 708 in portions 702. In the present embodiment, the two input inductors 706, 708 each include a previously described model of controlled saturation inductance which provides the desired input inductance characteristics previously discussed. An output portion 720 includes two additional inductors 724, 726 (L3, three capacitors 727, 228, 730 (C4, C9, C6). The filter's "stepped" inductors (LI, L2) 706, 708 are Connected to line side 74, and the capacitive input portion 720 of the filter is connected to the side jack 740 of the filter. Line and telephone side jacks 704, 740, although common type modular jacks used in electrical applications, But you should also know

25 1278877 到可以替代為其它類型的模組化插塞和連接器。濾波器700 進一步包括DSL插口 750,在圖示實施例中,該插口包括一 RJ-1 1型DSL插口,然而其他的也可以被替代。DSL插口 750 直接由電子通路752通到線路側插口 704 (插塞)以提供便 利DSL或家用電話網路(HPN)插口。 第7圖電路所示之基本濾波器是由兩個輸入電感器 7〇6,708(Ll,L2)、兩個輸出部分電感器724,726( L3, L4 )、和三個橋接電容727,728,730 (分別為C4,C9, C6 )組成的四階段橢圓低通濾波器。輸入電感器706,708 提供了期望的輸入電感特性並防止了在DSL電路上的負 載,雖然在輸入部分720中的兩個電容734,736(C1,C7) 被添加到輸出電感器724,726 ( L3,L4 )以產生在30KHz •級別上的諳振,但是還應該理解到,為了獲得其它諧振頻 率可以選擇其它電抗和電容值。相應地,第7圖的實施例是 一產生明顯30 KHz中斷的四階段橢圓濾波器。該橢圓阻斷 帶特性准許這樣的設計以最小化整體電容到通常的<4〇nF 使用和5nF待機(也就是說<4〇]E-〇9 Farad使用中,和5E-09 Farad待機狀態),這最小化了在電話語音頻帶性能上的電 容影響。 為了使濾波器7 0 0動態化並慮及由用戶對於每一電話 的多滤波器進行自安裝,所以增加兩個簧片開關762,764 (ΚΙ ’ K2 )以移除對於待機(空閒)電話的大部分濾波器 電容。在第7圖的實施例中,簧月開關762,764都磁性地耦 26 1278877 合到雙電感器770 (L5A),正如在分別於2001年1月30曰 和2 001年4月3曰領證並受讓予本案受讓人之美國專利案第 6,181,777 以及第 6,212,259號標題為 “Impedance Blocking Filter Circuit”中所述者。更明確而言,簧片開關762,764 憑藉它們物理接近於電感器的線圈耦合到電感器770,並因 此而產生了磁場。 本實施例中的電感器/簧片開關766由圓柱的框架組 成並且包含雙電感器和兩個簧片開關7 6 2,7 6 4。對本領域 的技術人員來說,很顯然,雙電感器/簧片開關裝置766可 以用兩個單個電感器/開關單元(沒有示出)來代替以便實 施相同的功能。在圖示實施例中,簧片開關762 , 764沿著 匕們實質上與裝置的線轴縱轴平行的縱麵水準配置。這個 架構提供了在電感器770的線圈和開關之間的前述的磁耦 合以操作後者。裝置7 6 6被選擇在預定迴路電流臨界值上 (例如大約6-16mA)啟動。如果迴路電流臨界值太低,簧 片開關可以在電路操作期間振動,並且可以因此而縮短開 關的使用#命。另一方面,如果迴路電流閾值太高,迴路 電流量在最壞的狀況條件下將不足以啟動開關。 當沒有迴路電流流過(因為電話處於待機狀態)時, 就沒有來自雙電感770的磁場並且簧片開關762, 764是打開 的,該開關從電路中斷開了電容727,73〇 (以和C6)。在 這個實施例中,對於每一待機濾波器來說,此將總電容從 大約37.7nF降至4.7nF。這個4.7nF的值乃為驅使任一待機 27 127887725 1278877 can be replaced by other types of modular plugs and connectors. Filter 700 further includes a DSL jack 750, which in the illustrated embodiment includes an RJ-1 Type 1 DSL jack, although other alternatives are also possible. The DSL jack 750 is routed directly from the electronic path 752 to the line side jack 704 (plug) to provide a convenient DSL or Home Phone Network (HPN) jack. The basic filter shown in the circuit of Figure 7 is composed of two input inductors 7〇6, 708 (L1, L2), two output partial inductors 724, 726 (L3, L4), and three bridge capacitors 727, 728. A four-stage elliptical low-pass filter consisting of 730 (C4, C9, C6, respectively). Input inductors 706, 708 provide the desired input inductance characteristics and prevent loading on the DSL circuit, although two capacitors 734, 736 (C1, C7) in input portion 720 are added to output inductors 724, 726. (L3, L4) to produce a sway at 30 kHz • level, but it should also be understood that other reactance and capacitance values can be selected for other resonant frequencies. Accordingly, the embodiment of Figure 7 is a four-stage elliptical filter that produces a significant 30 KHz interrupt. This elliptical blocker feature allows for such a design to minimize overall capacitance to the usual <4〇nF usage and 5nF standby (that is, <4〇]E-〇9 Farad in use, and 5E-09 Farad standby State), which minimizes the capacitive effects on the phone's voice band performance. In order to make the filter 700 dynamic and to take care of the self-installation of the multi-filter for each phone by the user, add two reed switches 762, 764 (ΚΙ ' K2 ) to remove the call for standby (idle) Most of the filter capacitors. In the embodiment of Figure 7, the reed switches 762, 764 are magnetically coupled 26 1278877 to the dual inductor 770 (L5A), as evidenced at January 30, 2001 and April 3, 2001 respectively. U.S. Patent Nos. 6,181,777 and 6,212,259, entitled "Impedance Blocking Filter Circuit", are assigned to the assignee of the present application. More specifically, the reed switches 762, 764 are coupled to the inductor 770 by virtue of their physical proximity to the inductor and thus create a magnetic field. The inductor/reed switch 766 in this embodiment is comprised of a cylindrical frame and includes a dual inductor and two reed switches 7 6 2, 7 6 4 . It will be apparent to those skilled in the art that the dual inductor/reed switch device 766 can be replaced with two single inductor/switch units (not shown) to perform the same function. In the illustrated embodiment, the reed switches 762, 764 are disposed along a longitudinal level that is substantially parallel to the longitudinal axis of the spool of the device. This architecture provides the aforementioned magnetic coupling between the coil of the inductor 770 and the switch to operate the latter. Device 766 is selected to be activated at a predetermined loop current threshold (e.g., approximately 6-16 mA). If the loop current threshold is too low, the reed switch can vibrate during circuit operation and can therefore shorten the use of the switch. On the other hand, if the loop current threshold is too high, the loop current will not be sufficient to activate the switch under worst-case conditions. When no loop current flows (because the phone is in standby), there is no magnetic field from the dual inductor 770 and the reed switches 762, 764 are open, which disconnects the capacitors 727, 73 从 from the circuit (to C6). In this embodiment, this reduces the total capacitance from approximately 37.7 nF to 4.7 nF for each standby filter. This 4.7nF value is intended to drive either standby 27 1278877

電話諧振低於3 OKHz的電容所需的最小值。此外,為了保 護簧片開關262,264免於振铃電壓、功率交叉電壓和極快 的瞬時電壓的損害,正如在第7圖中所示那樣,包括越過簧 片開關762,764—或兩個穩壓二極體776,778(D1,D2) 以限制峰值電壓到低於1 2 V。由於電容與二極體串聯,圖 示實施例的單一二極體776,778可理想的運作,並且當AC 信號出現時將使單一二極體自偏。然而,或者前述的二極 體佈置可替代為雙背對背6-12V.穩壓二極體,單個穩壓二 極體,或甚至是低電容變阻器。這樣的元件的構造和選擇, 是與在裝置中提供最小電容這個當前目的一致的,也是在 電子領域公知的,因此,在這裡沒有進一步相應地描述。 當簧片開關關閉時,為了防止簧片開關762,764切換 電流的尖峰信號透過C9電容器728和C4電容器727 (並且 〇1’€7電容器734。736),增加兩個電阻器780,782(115,The minimum value required for a capacitor with a resonance below 3 OKHz. In addition, in order to protect the reed switch 262, 264 from ringing voltage, power crossover voltage and extremely fast transient voltage damage, as shown in Figure 7, including crossing the reed switch 762, 764 - or two Regulated diodes 776, 778 (D1, D2) to limit the peak voltage to less than 12 V. Since the capacitor is in series with the diode, the single diode 776, 778 of the illustrated embodiment is ideal for operation and will bias the single diode when the AC signal is present. However, either the aforementioned diode arrangement can be replaced by a dual back-to-back 6-12V. regulated diode, a single regulated diode, or even a low capacitance varistor. The construction and selection of such components is consistent with the current objective of providing a minimum capacitance in the device, and is also well known in the electronics arts and, therefore, is not described further herein. When the reed switch is turned off, in order to prevent the spike signal of the reed switch 762, 764 switching current from passing through the C9 capacitor 728 and the C4 capacitor 727 (and 〇1'7 7 capacitor 734.736), two resistors 780, 782 are added ( 115,

R6)與C4和C6電容器726,730串聯以限制開關電流低於開 關的最小電流定額。為了不影響濾波器的阻斷帶性能選擇 足夠低的R5,R6的電阻器值。 刖述的濾波器7 0 0的動態元件對提供足夠的回波損耗 改良所滿足先前討論(例如歐洲/英國規範的那些)的迫切 要求仍嫌不足。為了解決該問題,由雙電感器77〇 ( L5A, L5B ) ’平行的網路電容器790,792 ( C2,C3 ),和平行 的網路電阻器794,796 ( R4和R1 )構成的諧振阻抗校正電 路透過在2-3 KHz頻帶中增加正相阻抗來提升語音頻帶回 28 1278877 波損 正如 770 ( 路輸 (R3 把最 級上 供了 國) 用的; 電感 (L1 中通 阻抗: 中都 抗, 並且 升了 的分 尺寸 耗到1〇db。雙電感器770 ( L5A,L5B )實現雙用途; 先前所述除了驅動在使用期間的簧片開關,雙電感器 與網路電容器C2,C3 790,792結合)還組成了與線 入串聯的差動諧振阻抗。平行網路電阻器794,796 ’ R4 )把這個阻抗限制到大約在7〇〇歐姆諸振,這也 大插入損耗限制到了可接收的水準(也就是說,在2db 第7圖的電路7〇0在電話插孔的引腳4和5上進一步提 1 micro farad的振鈴電容791 ( C10 )。在某些(例如英 應用中需要使用這樣的濾波器來振鈴某些三線電話裝 然而應可理解的是,此電容可選的依據於本發明所使 慮波電路之特定應用而定。 進一步注意到第7圖實施例的電路7 0 0有利地用分離 線圈來形成各種電路的電感器7〇6,708,724,726 ’ L2 ’ L3 ’ L4 )而不是,例如,在許多習知技術設計 常使用的雙EP 13型電感器。該裝置提供了縱向模組化 和差動阻抗’這是某些應用(包括例如歐洲電信標準) 要求這樣。傳統的基於EP的設計沒有有效的縱向阻 因此需要額外的線圈。附加線圈增加了額外dc電阻, 為了補償增加的阻抗,經常要求較大的線圈,因而提 每慮波器有關的成本和空間要求。相反的,用本發明 難線圈設計’無須增加縱向線圈或提升濾波器電感的 。在圖示實施例中,透過使用受控飽和度電感器和/R6) is in series with the C4 and C6 capacitors 726, 730 to limit the minimum current rating of the switch current below the switch. In order not to affect the filter's blocking band performance, choose a sufficiently low R5, R6 resistor value. The dynamic component pairs of the filter 700 described above provide sufficient return loss. The urgent requirements for improving the previous discussions (such as those of the European/UK specifications) are still insufficient. To solve this problem, the resonant impedance consisting of a dual inductor 77〇(L5A, L5B) 'parallel network capacitors 790,792 (C2,C3), and parallel network resistors 794,796 (R4 and R1) The correction circuit boosts the voice band back by adding a positive phase impedance in the 2-3 KHz band. 28 1278877 Wave loss is as 770 (R3 is used for the most advanced country); Inductance (L1 in the pass impedance: Zhongdu Resistant, and the increased sub-size is 1 db. The dual inductor 770 (L5A, L5B) is dual-purpose; previously described in addition to the reed switch during drive, dual inductor and network capacitor C2, C3 The 790,792 combination) also constitutes the differential resonant impedance in series with the line-in. Parallel network resistors 794, 796 ' R4 ) limit this impedance to approximately 7 ohms, which also limits the insertion loss to large Acceptable level (that is, the circuit 7 〇 0 in Figure 2 of Figure 7 further mentions 1 micro farad ringing capacitor 791 (C10) on pins 4 and 5 of the telephone jack. In some (eg English applications) Need to use such a filter to ring some three lines It should be understood, however, that this capacitance may alternatively be dependent upon the particular application of the wave circuit of the present invention. It is further noted that the circuit 700 of the embodiment of Figure 7 is advantageously formed using separate coils. Inductors of various circuits 7 〇 6, 708, 724, 726 ' L2 ' L3 ' L4 ) instead of, for example, dual EP 13 inductors commonly used in many conventional designs. The device provides longitudinal modularization And differential impedance 'This is required for certain applications (including eg European telecommunications standards). Traditional EP-based designs do not have an effective longitudinal resistance and therefore require additional coils. Additional coils add extra dc resistance to compensate for the increased impedance Larger coils are often required, thus providing the cost and space requirements associated with each filter. Conversely, with the difficult coil design of the present invention, there is no need to increase the longitudinal coil or boost filter inductance. In the illustrated embodiment, Use controlled saturation inductors and /

29 1278877 二―,以及諸如*讓人所製料雙屏蔽電感器可以提 供刖述縱向阻抗並提供磁場以驅動簧片開關(正如可適用 的)。 此處所揭示之動態濾波電路7〇〇意味著在電信線路上 透過提供U)能依靠相關的擴展裝置的操作條件改變狀態 的,態”濾波器架構;和(Π)提供增強的回波損耗性能 等等的阻抗校正電路來解決不足夠的阻斷帶和語音頻帶性 b更明確而吕,在具有語音和DSL信號成分的電信線路 障况中,S在線路上的電話之一使用時(通常僅僅是在任 時間時電話之一使用),使用濾波器的動態電路就提升 了匕的電容,而所有在同一線路上的其它待機電話相對於 使用電路保持低電容。由於對於增強的DSL阻斷帶的主要 需要與使用電話,和電話的極性保護二極體電橋的存在相 應,因此,這個動態電容特性是可接受的並且與習知的應 用兼容。DSL高電平向上流能量的能過驅動在使用電話中 這個二極體電橋,從而產生不需要的調製間失真。因此, 需要增強的DSL阻斷帶阻止這樣的過驅動狀態。當電話或 其它擴展裝置待機時,二極體電橋從電路中移除,並且需 要較小的濾波器DSL阻斷帶衰減。因此在與待機電話相關 的濾波電路中可以應用很小的電容^這就准許了使用電話 具有一個比較大的電容,並且因此動態的濾波器能有接近 的分路器性能。 然而,應該認識到,移除在待機狀態期間的大部分電 30 1278877 容也能減少阻斷帶損耗,對某些需要增高的待機阻斷 耗(例如來電顯示.)的操作狀態來說這會出現問題。 發明的受控飽和度電感元件400, 500的電路7〇〇中的人 利地解決了這個問題,其僅透過提升在待機狀態中減 的輸入電感值(也就是說,透過提供相對於心電流特 “階梯式’’電感)。因此,動態開關濾波電路和受控飽和 入側電感器的結合以很低的成本提供了在大範圍應 (包括具有來電顯示或類似功能的多擴展應用)接近 的性能。 現下參考第8及第9圖,其描述了具有改良電感元 滤波電路的其它實施例。第8圖的電路包含具有連接到 各自輸入電感器840 ’ 842的輸入866,868的線或輸入 第8圖的示例性電路800利用了諸如第6圖這裡的雙線 感元件以提供這兩個電感840,842,然而亦可替換不 架構(例如兩個單線軸鼓芯裝置500 )。由雙線軸電感 6 0 0提供的較兩電感有利地為多於丨〇個的濾波器產生 夠的電感以允許渡波器800透過待機阻斷帶損耗,並同 許較大的使用電容來改善阻斷帶(例如為了來電顯示 它要求這樣較高阻斷帶的功能),但仍滿足返回損耗 求。替換了電感器840’842的雙線軸裝置6〇0的使用同 供了重要的成本利益’這是因為與製造兩個單線軸元 比,雙線軸裝置的製造成本通常是極低的。此外,第8 電路的製造也極簡單,僅僅需要兩個電感器84〇, 842 帶損 在本 併有 波器 性的 度輸 用中 理想 件的 兩個 側。 軸電 同的 元件 了足 時允 或其 的要 樣提 件相 圖的 (也 31 1278877 就是說,一雙線軸電感器)’從而考慮到了具有極好陴斷 帶和濾波器性能的的高有效成本電路。 第9圖的電路900’與上述的第8圖相似,包含具有連 接到兩個各自輸入電感器940’ 942的輸入966, 968的線路 或輪入側,還包括分發的與外側面插口 9 6 0 ’ 9 7 2通信之可 選擇式之三階段濾波電路。在某些環境中是期望這樣的三 階段濾波器元件的。 製造方法 現下參考第和l〇b圖,用於製造先前所描述的電感 元件的方法在這裡會詳細討論並且以邏輯流程圖的形式圖 示〇 應當認識到雖然根據先前所述實施例(也就是說,罐 形芯和鼓芯裝置)在這裡引出下面的描述,但是本發明的 方法通常透過合適的修改可以應用到各種在此所公開的的 其它架構和實施例中,這種改變在電子裝置製迤域中是處 於熟習該項技術人士的知識範圍之内。 首先參考第10&圖,描述了製造第4圖改良的罐形芯裝 置的方法1000。在方法1000的第一步驟10 02中,獲得或製 造罐形芯的第二元件402b ^第4圖的示例性裝置的芯402較 佳係使用許多已知悉的製程(例如材料製備、擠壓和燒結) 而由一磁性可滲透材料形成之。芯402被製造以具有特定的 性能,這些性能包括磁通量性能,截面型和面積,高度, 32 1278877 和柱直徑,由於是本領域所熟知的因而在這裡沒有進—步 相應描述。 第一怒元件402a在這裡可以由先前所述可變體狀縫 隙架構直接構成(步驟1 004 ),例如藉由製造用來裝配包 括所欲縫隙特性的第一芯元件4 0 2 a的鎢件或外型。或者, 經過步驟1006能有效地構成第一芯元件402a作為第二元件 402b的鏡象(步驟1007 ),並且處理(步驟1〇〇8 )以產生 期望的各種形狀縫隙。經過步驟10〇8這樣的製程包括在機 械加工至少第一芯元件402&的中心柱406的一部分到期望 的架構(例如具有縫隙寬度W1和W2的Μ%/1。%的架構)的 一實施例中。這樣的機械加工包含例如準確的磨光芯柱4 0 6 的所需部分。或者,該等製程可以包含微切割或磨碎,或 甚至是由鐳射能量切割或燒蚀。 接下來,經過步驟1010,芯元件402a,402b可以可選 地在一些或所有表面上塗上一層聚合物絕緣材料(例如聚 對二甲苯)或其它材料’以便保護線圈避免損壞或絕緣。 當使用纖細尺寸的線圈或以非常薄的塗層(在纏繞期間很 容易磨損)覆蓋的線圈時’該覆蓋層特別有用。 接下來,經過步驟1 〇 1 2,該芯吁以所欲導線形狀進行 纏繞。這樣的導線形狀可以包含例如以基本上環形“環形’’ 模式把薄規格磁線同中心地纏繞在芯的中心柱406上,然而 亦可使用其它類型的導線(絕緣或其它)和纏繞模式。 兩個芯元件402可接著組装並以所欲調整(如使用黏 33 1278877 結劑化合物進行匹配(步驟1014)。把線圈捕獲在形成在 心402内的凹口内,用他們的自由端路由透過形成在芯元件 402 (或其它類似穿透)一側内的孔徑409。 接下來經過步驟1016,提供或製造終端陣列425和/ 或終端429。雖然終端陣列架構427理想地使用從合適的聚 σ物中/主入或轉移模子過程來形成,然而亦可以用其它材 料和方法代替。終端429可以包括期望的特性,例如用於饒 接的凹口和在它們底端上的基板接觸衰減器,並且被壓模 進或隨後嵌入到框架427中。這樣終端陣列的製造在電子領 域疋公知的’所以在這裡沒有進一步描述。 接下來經過步驟1 〇 1 8,把線束鐵芯置入或安裝到先前 所述型號的終端陣列425中。例如,在示例性實施例中,使 用合適黏結劑的磁珠或落線,例如環氧樹酯,將芯402黏著 到終端陣列的框架427上。 接下來線圈端接到終端429上,例如使用透過繞接進 形成在終端末端内的凹口的焊接過程(步驟1〇2〇)。 組裝的電感元件400然後可選地經過步驟1022檢測, 從而完成了製造過程。 接下來參考第l〇b圖,描述了用於製造第5和6圖改良 鼓芯裝置的方法,為了簡單起見,特別參考第5圖的單線轴 怒。在該方法1 05 0的第一步驟1 052中,獲得或製造鼓芯。 第5圖的示例性裝置的芯502優選地從使用了許多很熟悉過 程’例如材料預備,壓制,和燒結的磁透材料中形成。產 34 1278877 生具有包括磁通量特性、截面型和面積、高度和柱直徑特 定性質的芯5 02,由於在本領域内是已知的,因此在此沒有 進一步描述。 & T來’經過步驟丨〇 5 4,為了保護線圈避免損壞或磨 損’在一些或所有表面上可以可選地用一層合金絕緣材料 (例如聚對二甲苯基)或者其它材料覆蓋芯502。 接下來’用期望的導線形狀經過步驟1 056纏繞芯。這 樣的導線形狀可以包含例如以基本上螺旋形絞模式把薄磁 線同中心地纏繞在芯的線轴區域,然而亦可以使用其它類 型的導線(絕緣或其它)和纏繞模式。 接下來經過步驟1058提供或構造終端529。正如先前 所表明的,終端42 9可以包括期望的特性,例如在它們的底 端上用於繞接的凹口和基板接觸衰減器。這種終端的構造 在電子領域是公知的,因此在這裡沒有進一步描述。 接下來經過步驟1060把終端529嵌入或焊接到線束鐵 芯502上。例如,在示例性實施例中,用一滴或株例如環氧 樹酯的合適黏結劑將終端529黏著到;g 502的槽535中。在步 驟1060期間透過路由它們的自由端在槽535内和終端529之 下把線圈終結到終端5 2 9上,因而與其形成了電連接。此外 或作為替換可以使用其它方法例如繞接和焊接(與選擇的 終端架構一致)。 接下來,經過步驟1062,構造一或多個受控飽和度元 件5 08。在第5圖的示例性實施例中,元件508包含Ni-Fe帶。 35 1278877 這個帶是透過首先形成的所需厚度的Ni_Fe合金片來製造 的(步驟1 064 )。經過步驟1〇66,在該片的一側隨後用合 適的侵餘性黏結劑(或可替換地以一種環氧樹酯基黏結劑) 浸滲,並且經過步驟1 068使用切割機將該片切割成合適尺 寸的帶。 接下來在步驟1070中把從上述的步驟1062中獲得的 一或多個帶5 0 8沿著它的軸的縱向固定到芯5 〇 2上以便橋接 在兩個終端元件502a,502b之間的空隙。這樣的連接可以 透過自動裝置(例如適合於把元件508準確放置到芯502上 機器),或人工來完成。 組裝的電感元件500隨後可選地經過步驟1072檢測’ 從而完成製造過程。 或者,在使用Ni-Fe連續帶或類似合金的鼓芯裝置的 實施例中,可以修政前述過程以便可以切割合適尺寸的帶 並應用到芯5 02上。然後應用熱收縮軸套或管道(如果使用) 至少到芯的末端凸緣的外圍區域’覆蓋受控飽和度帶5 0 8 ’ 並且然後曝光到足夠熱以收縮軸套緊緊的把帶5 08結合到 鼓芯凸緣。 現下參考第11和11a圖’係揭示根據本發明的受控電 感元件的另一實施例。在第11和11 a圖的實施例中’裝置 1 1 00基本上包含“鼓,,型磁透芯元件11 02和在電子元件領域 公知型號的雙股線圈1 1 〇4,線圈置於(纏繞到)後者中心 部分1 1 06周遭的芯元件1 1 02上。從上芯凸緣1 1 1 0直徑不同 36 1278877 於(此處係指小於)基體部分凸緣1 η 2直徑的立場來看’ 圖示實施例的芯元件基本上是不對稱的。在這個實施例 中,上凸緣1110的直徑大約是0.256英寸(6.52毫米)’然 而下凸緣1112,在唇緣1124内部,直徑大約0.346英寸(8·79 毫米),然而亦可以選擇其它值。本實施例中的芯元件1 1 02 用鐵氧體材料組成,然而亦應該認識到可以使用其它材料 (ΜΝ-Ζη等等)。多個孔徑1 1 10或孔洞也在基板凸緣中形 成,從而允許在裝置11 00的内體積外面路由該雙股電感器 來最終綁定(例如焊接)置於芯元件1 1 02基板之内的電感 終端1119。電感終端1119焊接進形成於基板凸緣1112下面 的凹口中(沒有示出),例如使用黏結劑(例如氧化磁鐵 黏結劑)或灌注混合物。如熟習該項技術人士應可理解且 實現者,其也可以使用用於這些終端的其它架構。路由於 内體積外面的引線使裝置更容易製造,然而亦應該認識到 如果期望與本發明一致可以使用其它架構(包括在裝置 1100的内體積内的終端)。 一基本上圓柱形帽(屏)元件1120基本上被置於在多 數線圈1104和芯元件11〇2附近,定製帽ι12〇的大小以與形 成在基板部分凸緣1112的上表面上的唇緣或邊緣1124相 配。因此,當組合兩個元件時帽丨丨2〇實際上依靠在凸緣丨丨j 2 的唇緣上。在圖示實施例中斜切帽匹配面丨丨2 7的内邊緣 1 1 23以便在基板凸緣丨丨丨2的外圍附近形成一逐漸變窄的縫 隙’然而這樣的斜切在實施本發明中並非必須。 37 1278877 在防護層方面,帽1120進一步提供了極大的好處,例 如’防護最接近裝置11 00的外部電子元件免於在操作期間 在裝置11 00内產生的EMI。該防護層效果的作用大部分來 自於由帽1120引導或強迫在帽的内體積之内的空隙。在圖 示的實施例中,帽大約0.067英寸(1.7毫米)厚,然而亦 可以使用其它厚度值。 帽1 1 2 0最終連接到基板凸緣1 1 1 2上,例如使用,黏結 劑或甚至焊接。然而,在帽1 1 2 〇聯結到芯元件1 1 02上之前, 觉控電感元件1130被置於帽1120和芯元件1102的基板之間 以便能在基體凸緣i丨丨2外圍的至少兩個不同位置的兩個元 件之間‘‘夾緊”受控電感元件丨丨3 〇 ;也就是說,在前述漸窄 縫隙之内。 在圖示實施例中,受控電感元件1130包含具有預定厚 度的錦(Ni )合金帶(例如,在〇 〇〇1-〇 〇〇5英寸的範圍之 内’然而亦可以使用其它值)。然而亦應該認識到可以使 JN||IW ____ 同帶寬和帶厚的結合以提供對於裝置丨丨〇〇期望的電氣 和電感特性’帶i丨30的寬度也控制到一期望值(這裡,大 約5·〇8納米(0·2〇〇英寸))。正如將會明白的,在飽和之 别升巧的寬度和/或厚度提升了帶丨丨3 〇的載流電容。此外, 乍為匕的長度的函數,帶1130可以具有不統一或變化的寬 X 或厚度’正如在第lib圖中所示。這樣的型可以在帶 的電机/飽和特性中提供期望的優點,這是因為,例如,在 材料内產生的渴電流或表面效果。它也可以包含多個較小 38 1278877 帶1 1 3 Oa,1 1 3 Ob,例如在第1 1 c圖中所示。可以使用用於提 供許多不同架構受控電感(是否為“帶狀”或其它)來與本 發明一致。然而,本案受讓人已發現在第11圖的實施例中 所示的單一均勻的帶可提供所欲特性的最佳匯合,也就是 說,低成本、好的電氣性能和製造的簡易性(整體上帶和 裝置都有),特別地由於帶的原因。29 1278877 II, and double shielded inductors such as * can provide a description of the longitudinal impedance and provide a magnetic field to drive the reed switch (as applicable). The dynamic filter circuit 7〇〇 disclosed herein means that the state of the filter structure can be changed on the telecommunication line by providing U) capable of changing the state depending on the operating conditions of the associated expansion device; and (Π) providing enhanced return loss performance. Etc. impedance correction circuit to solve the problem of insufficient blocking band and voice band b is more clear, in the telecommunication line fault with voice and DSL signal components, when one of the phones on the S line is used (usually only It is used by one of the phones during any time), and the dynamic circuit using the filter boosts the capacitance of the ,, while all other standby phones on the same line maintain a low capacitance relative to the used circuit. Because of the enhanced DSL blocking band The main need is to use the telephone, and the presence of the polarity-protected diode bridge of the phone. Therefore, this dynamic capacitance characteristic is acceptable and compatible with conventional applications. The DSL high-level energy can be overdriven. Use this diode bridge in the phone to create unwanted inter-modulation distortion. Therefore, an enhanced DSL blocking band is needed to block such Drive state. When the phone or other expansion device is in standby, the diode bridge is removed from the circuit and requires a smaller filter DSL blocking band attenuation. Therefore, it can be applied very small in the filter circuit associated with the standby phone. Capacitance ^ This allows the use of the phone to have a relatively large capacitance, and therefore the dynamic filter can have close splitter performance. However, it should be recognized that removing most of the electricity during standby mode 30 1278877 It also reduces the blocking band loss, which can cause problems for certain operating states that require increased standby blocking consumption (such as caller ID.) The inventive controlled saturation inductive component 400, 500 is in circuit 7 The problem is solved by the person who only reduces the input inductance value in the standby state (that is, by providing a "stepped" inductance relative to the heart current). Therefore, the combination of a dynamic switching filter circuit and a controlled saturation on-inductor provides near-performance at a very low cost over a wide range of applications, including multi-spread applications with caller ID or similar functions. Referring now to Figures 8 and 9, other embodiments with improved inductive element filtering circuits are described. The circuit of Figure 8 includes a line having inputs 866, 868 connected to respective input inductors 840' 842 or an exemplary circuit 800 of Figure 8 utilizing a two-line sensing element such as that shown in Figure 6 to provide both Inductors 840, 842, however, may also be substituted for no architecture (e.g., two single spool drum assemblies 500). The two inductors provided by the dual spool inductor 600 advantageously generate enough inductance for more than one filter to allow the waveguide 800 to block the band loss through the standby and improve with the larger use capacitor. The blocking band (for example, it requires the function of such a higher blocking band for the caller ID), but still meets the return loss. The use of the dual spool device 6〇0, which replaces the inductor 840'842, provides significant cost benefits' because the manufacturing cost of the twin spool device is typically extremely low compared to manufacturing two single wire spindles. In addition, the 8th circuit is also extremely simple to manufacture, requiring only two inductors 84〇, 842 with losses on both sides of the ideal part of the waveguide. The same component of the shaft is the same as the phase diagram of the required sample (also 31 1278877, that is, a double spool inductor), thus taking into account the high performance of the interrupted band and the filter. Effective cost circuit. The circuit 900' of Fig. 9 is similar to the above-described Fig. 8 and includes a line or wheel-in side having inputs 966, 968 connected to two respective input inductors 940' 942, and also includes distributed and external side jacks 96. 0 ' 9 7 2 Selectable three-phase filter circuit for communication. Such a three-phase filter component is desirable in some environments. Manufacturing Method Referring now to Figures 1 and b, the method for fabricating the previously described inductive component is discussed in detail herein and illustrated in the form of a logic flow diagram. It should be recognized that in accordance with the previously described embodiments (ie, The can core and drum core device are described herein below, but the method of the present invention can generally be applied to various other architectures and embodiments disclosed herein by suitable modifications, such as in electronic devices. The system is within the knowledge of those skilled in the art. Referring first to the 10&Fig., a method 1000 of making the improved can core device of Fig. 4 is described. In a first step 102 of method 1000, a second element 402b of a can core is obtained or fabricated. ^ The core 402 of the exemplary device of FIG. 4 is preferably fabricated using a number of known processes (eg, material preparation, extrusion, and Sintered) formed of a magnetically permeable material. The core 402 is fabricated to have specific properties including magnetic flux properties, cross-sectional shape and area, height, 32 1278877 and column diameter, as is well known in the art and thus is not described herein. The first anger element 402a may here be constructed directly from the previously described variable body slot structure (step 1 004), for example by fabricating a tungsten piece for assembling a first core element 4 0 2 a including the desired slot characteristics. Or appearance. Alternatively, the first core element 402a can be effectively constructed as a mirror image of the second element 402b via step 1006 (step 1007) and processed (step 1〇〇8) to produce the desired various shape slits. The process of step 10 〇 8 includes an implementation of machining at least a portion of the center post 406 of at least the first core component 402 & to a desired architecture (eg, a structure having a gap width W1 and W2 of Μ%/1%). In the example. Such machining involves, for example, the exact portion of the polished stem 4 60. Alternatively, the processes may include micro-cutting or grinding, or even cutting or ablation by laser energy. Next, through step 1010, core elements 402a, 402b may optionally be coated with a layer of polymeric insulating material (e.g., parylene) or other material on some or all of the surfaces to protect the coil from damage or insulation. This cover layer is particularly useful when using a coil of a slim size or a coil covered with a very thin coating that is easily worn during winding. Next, after step 1 〇 1 2, the core is wound in the shape of the desired wire. Such wire shapes may include, for example, winding a thin gauge magnetic wire concentrically around the center post 406 of the core in a substantially annular "annular" pattern, although other types of wires (insulation or other) and winding modes may be used. The two core members 402 can then be assembled and adjusted as desired (e.g., using a viscous 33 1278877 bonding compound (step 1014). The coils are captured in recesses formed in the core 402 and routed through their free ends. An aperture 409 in the core element 402 (or other similarly penetrating) side. Next, via step 1016, a terminal array 425 and/or terminal 429 is provided or fabricated. Although the terminal array architecture 427 is desirably used from a suitable poly-sigma The medium/primary or transfer mold process is formed, however, other materials and methods may be substituted. The terminal 429 may include desired characteristics such as notches for piercing and substrate contact attenuators on their bottom ends, and It is stamped or subsequently embedded in the frame 427. Thus the fabrication of the terminal array is well known in the electronics arts 'so it is not further described herein. Next, the harness core is placed or mounted into the terminal array 425 of the type previously described via step 1 。 18., for example, in an exemplary embodiment, a magnetic bead or drop, such as a ring, of a suitable binder is used. Oxygenate, the core 402 is adhered to the frame 427 of the terminal array. The coil is then terminated to the terminal 429, for example using a soldering process that is wound into a recess formed in the end of the terminal (step 1〇2〇). The assembled inductive component 400 is then optionally inspected through step 1022 to complete the manufacturing process. Referring now to Figure lb, a method for fabricating the improved drum apparatus of Figures 5 and 6 is described, for simplicity. See, in particular, the single-wire axis anger of Figure 5. In the first step 1 052 of the method 10000, the drum core is obtained or fabricated. The core 502 of the exemplary apparatus of Figure 5 is preferably familiar from many uses. The process 'is formed, for example, in material preparation, pressing, and sintered magnetically permeable materials. The production has a core 5 02 including magnetic flux characteristics, cross-sectional shape and specific properties of area, height and column diameter, since it is already in the art. And therefore not further described here. & T to 'after step 丨〇 5 4, in order to protect the coil from damage or wear' may optionally use a layer of alloy insulation (such as parylene) on some or all surfaces The base or other material covers the core 502. Next 'wrap the core with the desired wire shape through step 1 056. Such a wire shape may comprise, for example, a wire wound concentrically around the core in a substantially helical twist pattern. The shaft area, however, other types of wires (insulation or other) and winding modes can be used. Next, terminal 529 is provided or constructed via step 1058. As previously indicated, terminal 42 9 can include desired characteristics, such as in their The recess and substrate contact attenuator on the bottom end for winding. The construction of such terminals is well known in the electronics arts and is therefore not further described herein. Next, the terminal 529 is embedded or soldered to the harness core 502 via step 1060. For example, in an exemplary embodiment, terminal 529 is adhered to a groove 535 of g 502 with a drop or a suitable binder such as epoxy resin. During the step 1060, the coils are terminated in the slot 535 and under the terminal 529 by routing their free ends, thereby forming an electrical connection therewith. In addition or as an alternative, other methods such as routing and soldering (consistent with the selected terminal architecture) may be used. Next, through step 1062, one or more controlled saturation elements 508 are constructed. In the exemplary embodiment of Figure 5, element 508 comprises a Ni-Fe strip. 35 1278877 This tape is manufactured by first forming a Ni_Fe alloy sheet of the desired thickness (step 1 064). After step 1 to 66, one side of the sheet is subsequently impregnated with a suitable labile binder (or alternatively an epoxy resin based binder) and the sheet is passed through step 1 068 using a cutter. Cut into strips of the appropriate size. Next, in step 1070, one or more strips 5 0 8 obtained from step 1062 above are secured to the core 5 〇 2 along the longitudinal direction of its axis for bridging between the two terminal elements 502a, 502b. Void. Such connections may be made by automated means (e.g., suitable for placing component 508 accurately onto the core 502 machine), or by hand. The assembled inductive component 500 is then optionally tested via step 1072 to complete the manufacturing process. Alternatively, in an embodiment of a core device using a Ni-Fe continuous belt or similar alloy, the foregoing process may be practiced so that a suitably sized belt can be cut and applied to the core 502. Then apply a heat shrink sleeve or pipe (if used) at least to the peripheral region of the end flange of the core 'covering the controlled saturation band 5 0 8 ' and then exposing it to heat enough to shrink the sleeve tight band 5 08 Bonded to the drum core flange. Referring now to Figures 11 and 11a, another embodiment of a controlled inductive element in accordance with the present invention is disclosed. In the embodiment of Figures 11 and 11a, the device 1 100 basically comprises a "drum, a magnetic core element 11 02 and a double-stranded coil 1 1 〇 4 of the type known in the field of electronic components, with the coil placed ( Wound to the central part of the latter 1 1 06 around the core element 1 1 02. From the upper core flange 1 1 1 0 diameter difference 36 1278877 (here means less than) the base part flange 1 η 2 diameter position It is seen that the core element of the illustrated embodiment is substantially asymmetrical. In this embodiment, the upper flange 1110 has a diameter of approximately 0.256 inches (6.52 mm). However, the lower flange 1112, inside the lip 1124, has a diameter. Approximately 0.346 inches (8·79 mm), however, other values may be selected. The core element 1 1 02 in this embodiment is composed of a ferrite material, however, it should be recognized that other materials (ΜΝ-Ζη, etc.) may be used. A plurality of apertures 1 1 10 or holes are also formed in the substrate flange to allow routing of the double-stranded inductor outside the inner volume of the device 11 00 for final bonding (eg, soldering) to the core element 1 1 02 substrate Inductor terminal 1119. Inductor terminal 1119 is soldered into Formed in a recess below the substrate flange 1112 (not shown), such as with a binder (e.g., an oxidized magnet binder) or a perfusion mixture. As will be appreciated and implemented by those skilled in the art, it can also be used for Other architectures of these terminals. Routing the leads outside the inner volume makes the device easier to manufacture, however it should also be recognized that other architectures (including terminations within the inner volume of device 1100) may be used if desired in accordance with the present invention. A cylindrical cap (screen) element 1120 is placed substantially adjacent the majority of the coil 1104 and the core member 11A2, the size of the custom cap ι12〇 being the same as the lip or edge formed on the upper surface of the substrate portion flange 1112. 1124 is matched. Therefore, the cap 2丨丨 actually depends on the lip of the flange 丨丨j 2 when the two elements are combined. In the illustrated embodiment the beveled cap matches the inner edge 1 of the face 丨丨27 1 23 so as to form a tapered slit near the periphery of the substrate flange ' 2 ' However, such chamfering is not necessary in the practice of the invention. 37 1278877 In terms of the protective layer, the cap 1120 Further great benefits are provided, such as 'protecting the external electronic components closest to device 1 00 from EMI generated within device 11 00 during operation. The effect of this protective layer effect is mostly from being guided or forced by cap 1120 A void within the inner volume of the cap. In the illustrated embodiment, the cap is approximately 0.067 inches (1.7 mm) thick, although other thickness values may be used. Cap 1 1 2 0 is ultimately attached to the substrate flange 1 1 1 2 Above, for example, using a bonding agent or even soldering. However, before the cap 1 1 2 〇 is bonded to the core element 1 102, the conscious inductive element 1130 is placed between the cap 1120 and the substrate of the core element 1102 so that The two elements at at least two different positions on the periphery of the base flange i 丨丨 2 "clamp" the controlled inductance element 丨丨 3 〇; that is, within the aforementioned tapered gap. In the illustrated embodiment, the controlled inductive component 1130 comprises a ruthenium (Ni) alloy ribbon having a predetermined thickness (e.g., within 5 inches of the range of 〇 〇〇 〇 然而), although other values may be used. However, it should also be recognized that JN||IW ____ can be combined with bandwidth and strip thickness to provide the desired electrical and inductive characteristics for the device. The width of the band i 丨 30 is also controlled to a desired value (here, about 5 · 〇 8 nm (0.2 〇〇 inches)). As will be appreciated, the increased width and/or thickness of the saturation increases the current carrying capacitance with 丨丨3 。. Moreover, the band 1130 may have a width X or thickness that is not uniform or varied as a function of the length of the 匕 as shown in the lib diagram. Such a type can provide the desired advantages in the motor/saturation characteristics of the belt because, for example, a thirst current or surface effect generated within the material. It may also contain a plurality of smaller 38 1278877 with 1 1 3 Oa, 1 1 3 Ob, for example as shown in Figure 1 1 c. It can be used in conjunction with the present invention to provide a number of different architecture controlled inductors (whether "banded" or otherwise). However, the assignee of the present application has found that the single uniform strip shown in the embodiment of Figure 11 provides the best combination of desired characteristics, that is, low cost, good electrical performance, and ease of manufacture ( Both the belt and the device as a whole), especially due to the belt.

在製造期間,帶1 1 30對稱地置於芯元件(並按照要求 變體的)上凸緣1 1 1 0的頂部,以便它沿著芯元件中心部分 的一側下垂到基板至少凸緣1 1 1 2的水準面。可選地也可以 使用一滴矽樹酯或黏結劑以相對於芯元件1 1 02固定帶1 1 3 0 的位置。因此,當放置帽元件1 120在芯1 102的頂部之上時, 帶1130下垂部分在它們末端被部分地捕獲在帽1120的内邊 緣和基體凸緣1 1 12之間,藉以在帽1 120滑入它的最後停止 位置時可施加張力於帶1 130上。為了方便在組裝時容易地 匹配凸緣1 1 1 2和帽1 1 2 0,可選地可以在帶11 3 0的末端部分During manufacture, the belt 1 1 30 is placed symmetrically on top of the upper flange 1 1 1 0 of the core element (and as required) so that it hangs down along one side of the central portion of the core element to at least the flange 1 of the substrate 1 1 2 level. Alternatively, a drop of eucalyptus or a binder may be used to secure the position of the belt 1 1 3 0 relative to the core member 1 102. Thus, when the cap member 1 120 is placed over the top of the core 1 102, the sagging portions of the strap 1130 are partially captured at their ends between the inner edge of the cap 1120 and the base flange 1 1 12, whereby the cap 1 120 Tension can be applied to the belt 1 130 as it slides into its final stop position. In order to facilitate the easy matching of the flange 1 1 1 2 and the cap 1 1 2 0 at the time of assembly, it may optionally be at the end portion of the belt 1130

放置兩組彎曲物11 80。 在另一替代實施例中,電感元件1 1 3 0可以預先形成和 膠合或另外置於在覆蓋物或帽1120之内,以便當帽11 20置 於線束芯元件1 1 02上時可以被正確放置。 應該認識到,第11圖的電感元件1100可以具有多種不 同的用途,包括例如在先前所述的橢圓形濾波器的已調諧 部分提供一升高的電感和降低的消除頻率。這樣的性能允 許改良的裝置1100符合更嚴格或苛求的規定,習知技術裝 39 1278877 置不能符合該規定(至少在由本發明提供的相同的性能水 準,簡單性,和低成本方面),例如前述的E T SI T S 9 5 2 -1 - 5 標準。 現下參考第12圖,描述了製造第11圖裝置11〇〇的方法 的一示例性實施例。正如在第1 2圖中所示,方法丨200包含 首先提供的芯元件1 1〇2和帽1 120 (步驟1202 ),兩者都由 相同(或類似)磁透材料例如氧化磁鐵組成。這些類型元 件的構成是公知的,因此不再進一步描述。作為構造過程 的一部分,正如先前所討論的,在基板凸緣1112内形成兩 個或多個孔徑1 1 1 7,和用於終端1 1 1 9四凹口。 接下來,在步驟1204,提供傳導終端1119並置於前述 凹口内。其等可以摩擦力承接、利用環氧樹酯或膠質物黏 結或者若欲提高機械剛性則聯結到芯元件。 接下來,在步驟1206中,用分層的模式把(雙股)線 圈纏繞在芯元件1 1 02的中心部分附近到期望的深度/長 度。作為這個步驟的一部分,剝去在線圈的自由端外面的 任何絕緣材料,從而方便線圈隨後端接到它們各自的終端 1119。 線圈的自由端(被剝去的)接著路由透過孔徑並向下 到終端1 1 19,在此它們電終接(步驟1208 )。這樣的終接 可以包含焊接,環氧樹酯聯結,繞接,焊接或類似的,或 由此的任一結合。 接下來,經過步驟1210,提供電感元件(帶)1130 40 1278877 並在芯元件1102的上凸緣1110上成形’ 的,以便末端沿著芯的縱向傾斜。正如 以選擇性的使用黏結劑或石夕樹酯來固疋 接下來帽1120裝配在裝置I1 00的了 以嚙合基板凸緣1112,正如先前所述那 用實際上“停留”在形成在這些元件之間 餘長度,這就在兩個元件1120 ’ 1112之 末端。如果期望用來辅助固定元件位置 如使用所謂的“氧化磁鐵黏結劑”)膠‘ 1 1 0 2,然而也可以用其它技術替代’例 限來設計元件以便摩擦接合足以將元件 —起〇 最後,經過步驟12 14,用帽的側壁 1130的末端。如果需要’該裝置也可以3 驟 1216 )。 具間隙環面 現下參考第1 3 -1 4b圖,係揭示改 置。第1 3圖展不了有間隙環面的第一 圖。在這個實施例中,裝置1 3 0 〇通常包 磁透怒1 302。間隙1 304從外部半徑延伸 直到内半徑’然而應認識到為了提供期, 能可以在某些應用中使用整個或部分間 如在第11圖中所示 上面所討論的’可 帶1130的位置。 頁部上,並且向下滑 樣(步驟1212) ^ 的縫隙上的帶的剩 間捕獲了帶1130的 ,也可以將帽(例 合或聯結到芯元件 如用足夠地嚴格容 1 120,1102保持在 有效沖洗來修整帶 β選地進行檢測(步 良有間隙的環面裝 f施例的頂部正視 含具有環面形狀的 透過芯1 302的一段 [的磁和/或電的性 隙。間隙使環面元 41 1278877 件的電感作為負載電流的函數變化。在芯1 3 02從間隙的第 一侧開始大約3 0度並且從間隙的第二側大約3 0度結束的周 遭放置一或多個導電線圈1313,然而亦可領會也可使用其 它的角度關係(無論對於間隙是對稱還是非對稱)。在芯 剩餘粗略的300度圓周周遭平均分佈線圈,然而為了提供在 裝置中的變化的特性也可以利用不統一的線圈空間(密 度)。在示例性實施例中,線圈由所謂的在電子領域公知 類型的“磁線”組成;既因其相對低的成本也因其具有優良 的電氣和機械性能所以使用這種線。為了允許終接到外部 裝置線圈引線1 306從芯延伸出去。 現下參考第4圖,展示了有間隙環面裝置13 〇〇的第-實施例的截面圖(在這裡間隙區域稍微放大以能更清楚白 展示細節)。在間隙1 3 04内放置的是至少部分延伸進間β 1 3 04的磁透元件1 308。可以控制元件13〇8的深度以提供襄 望的磁特性和電性能;在圖示實施例中使用了在環面芯夕 邊緣上使兀件1 308頂部大約〇 〇8英寸快速延伸的深度。Place two sets of bends 11 80. In another alternative embodiment, the inductive element 1 130 can be preformed and glued or otherwise placed within the cover or cap 1120 so that it can be properly placed when the cap 11 20 is placed on the core element 1 102 Place. It will be appreciated that the inductive component 1100 of Figure 11 can have a variety of different uses including, for example, providing a boosted inductance and reduced cancellation frequency in the tuned portion of the elliptical filter previously described. Such performance allows the improved device 1100 to comply with more stringent or demanding regulations that are not compliant with the prior art (at least in the same level of performance, simplicity, and low cost provided by the present invention), such as the foregoing. ET SI TS 9 5 2 -1 - 5 standard. Referring now to Fig. 12, an exemplary embodiment of a method of manufacturing the device 11 of Fig. 11 is described. As shown in Fig. 2, the method 200 includes a core element 1 1〇2 and a cap 1 120 (step 1202) which are first provided, both of which are composed of the same (or similar) magnetically permeable material such as an oxidized magnet. The construction of these types of elements is well known and will not be further described. As part of the construction process, as previously discussed, two or more apertures 1 1 1 7 are formed in the substrate flange 1112 and four recesses are used for the terminal 1 1 1 9 . Next, at step 1204, a conductive termination 1119 is provided and placed within the aforementioned recess. They can be joined by friction, bonded with epoxy resin or colloid, or bonded to the core member if mechanical rigidity is desired. Next, in step 1206, the (double strand) coil is wound in a layered pattern near the central portion of the core element 1 102 to a desired depth/length. As part of this step, any insulating material outside the free ends of the coils is stripped to facilitate subsequent termination of the coils to their respective terminals 1119. The free ends of the coils (stripped) are then routed through the apertures and down to the terminal 1 1 19 where they are electrically terminated (step 1208). Such terminations may include soldering, epoxy resin bonding, routing, soldering or the like, or any combination thereof. Next, via step 1210, an inductive component (band) 1130 40 1278877 is provided and formed on the upper flange 1110 of the core component 1102 so that the tip is tilted along the longitudinal direction of the core. As with the selective use of a binder or a sulphate, the next cap 1120 is assembled to the device I1 00 to engage the substrate flange 1112, as previously described, which is actually "stayed" in the formation of these components. The length of the gap is at the end of the two elements 1120 '1112. If it is desired to assist the position of the fixing element such as the use of the so-called "oxidized magnet binder" glue '1 1 0 2, however, other techniques may be used instead of the 'example to design the element so that the frictional engagement is sufficient to bring the element to the end, After step 12, the end of the side wall 1130 of the cap is used. If you need 'the device can also be 3 steps 1216). With a gap torus, reference is now made to Figures 1 3 - 1 4b to reveal the changes. Figure 1 3 shows the first picture with a gap torus. In this embodiment, the device 1 300 is typically oscillated 1 302. The gap 1 304 extends from the outer radius up to the inner radius'. However, it should be recognized that for the duration of the supply, it is possible to use the position of the band 1130 as discussed above, either in whole or in part, as shown in Figure 11 for some applications. On the page portion, and the remaining portion of the strip on the slit of the slide (step 1212) ^ captures the strip 1130, and the cap can also be exemplified or bonded to the core member as if it were sufficiently tightly held 1 120, 1102 In the effective rinsing to trim the belt β for the detection (the top of the embodiment of the torus with gaps is applied to the top portion of the through-core 1 302 having a torus shape [magnetic and/or electrical gap. The inductance of the toroidal element 41 1278877 is varied as a function of the load current. One or more of the circumference of the core 1 3 02 from the first side of the gap is approximately 30 degrees and the second side of the gap is approximately 30 degrees. Conductive coils 1313, however, it is also appreciated that other angular relationships (whether symmetrical or asymmetrical to the gap) may be used. The coils are evenly distributed around the circumference of the core with a roughly 300 degree circumference, however, in order to provide varying characteristics in the device It is also possible to utilize a non-uniform coil space (density). In an exemplary embodiment, the coil consists of a so-called "magnetic wire" of the type well known in the electronics field; both because of its relatively low cost This type of wire is used for excellent electrical and mechanical properties. To allow termination of the external device coil lead 1 306 to extend out of the core. Referring now to Figure 4, a first embodiment of a gapped toroidal device 13 is shown. A cross-sectional view (where the gap region is slightly enlarged to show the details more clearly). Placed within the gap 1 3 04 is a magnetically permeable element 1 308 that extends at least partially into the intervening β 1 3 04. The elements 13 〇 8 can be controlled. The depth is to provide the desired magnetic and electrical properties; in the illustrated embodiment, the depth at which the top of the element 1 308 is rapidly extended by approximately 8 inches on the torus core edge is used.

可透元件1308由通常選擇比芯稍微大的透磁合金J 或帶構成(見第14a圖),在太固一也丨士 &丄, ) 在本圖不實施例中較大(最大) 粗略的是0.06英寸寬。虛# # 、 見應該涊識到同樣可以選擇具有本^ 域公知型號的合適電和磁 特性的其它材料(或與在這裡| 述的透磁合金結合使用 、The permeable member 1308 is composed of a permalloy J or a belt which is generally selected to be slightly larger than the core (see Fig. 14a), and is also larger (maximum) in the embodiment of the present invention. Roughly, it is 0.06 inches wide. Virtual ##, see that you can also choose other materials that have the appropriate electrical and magnetic properties of the model known in the field (or in combination with the permalloy described here).

番 如在雙金屬或分層的複合物I 置中,沒有示出)。這種封祖 裡材枓可以包括,例如,鎳,銅鎳 絡鎳鐵合金,或精確的磁透 透的任何一種其它金屬或傳導泰 42 1278877 料。也應該認識到雖然第4圖展示了 “U型,,磁透元件13〇8的 截面,元件1 308也可以由具有其它截面形狀組成,例如“V 型’’(見第14b圖)或甚至是截去尖端的V型(第l4c圖)。 這種架構提供了穿過芯間隙的磁“橋,,。在一實施例中, 使 用同時分發在芯元件外半徑表面和連接到上述外半徑表面 的元件的一側的環氧樹酯13 12把元件1 308綁到芯元件上。 為了把元件1 3 0 8綁到芯元件1 3 02上也可以使用其它方法, 而並不局限於其它黏結劑、凸起的表面特徵、或摩擦接觸 的限制。 絕緣墊片1310把磁透元件1 308的内側分離開。在一實 施例中,墊片13 10包含MylarTM元件,然而將會認識到可 以想像地到使用其它絕緣材料(聚合物或其它的),而並 不局限於聚醯胺(KaptonTM ),含氟聚合物(例如, TefzelTM),陶瓷和甚至是浸粉磁帶或牛皮紙和它們的組 合物。墊片1310避免了磁透元件1308的縮短,這將另外極 大地減小不穩定間隙環面的能力以維持在低電流時的高電 感和在高電流時的低電感。除了分離磁透元件13〇8的内 侧,墊片13 10還確保了在元件1308和鄰接的間隙壁之間的 物理接觸。在一實施例中,使用摩擦,然而也可以使用其 它諸如黏結劑綁定方法,把墊片1 3 1 〇綁到元件1 3 0 8上。 現下參考第1 5圖,描述了第1 3圖和1 4間隙環面的製造 方法。正如在第15圖中所示,概括的方法1500包括首先提 供在這裡所述型號的無縫環面(步驟1 5 02 )。應該注意的 43 1278877 · 疋可以預弈練 罐繞芯,或可替換地,完成在此所述方法之後 纏繞。 接下央 , 水’經過步驟1 504,根據期望的尺寸來構造有間 隙的環面(武土 、4者可選地,把在環面之内的習知的間隙配置 為期望的尺寸、 备 ^ 了)。這可以透過使用任何數量公知的機械技 術^來g $ 。可選地,應該理解到在它的製造過程期間可以 使用期望% 的間隙構成環面,從而除去了分離,隨後的機械 加工或間隙組成步驟。 在選擇合適的材料(例如,坡莫合金(permalloy))用 於可iS i 心几件1 308和絕緣元件13 10之後,為了符合(當組裝 時)在步驟15〇4形成的間隙,經過步驟1 5 06把這些物件構As shown in the bimetallic or layered composite I, not shown). Such seals may include, for example, nickel, copper-nickel-nickel-iron alloy, or any other metal or conductive material that is magnetically permeable. It should also be appreciated that while Figure 4 shows a "U-shaped, cross-section of magnetically permeable elements 13 〇 8 , element 1 308 may also be composed of other cross-sectional shapes, such as "V-type" (see Figure 14b) or even It is a V-shaped cut-off tip (Fig. l4c). This architecture provides a magnetic "bridge" through the core gap, in one embodiment, an epoxy resin 13 12 that is simultaneously dispensed on the outer radius surface of the core element and the side of the element attached to the outer radius surface. The element 1 308 is attached to the core element. Other methods may be used to attach the element 1 3 0 8 to the core element 1 3 02, and are not limited to other adhesives, raised surface features, or frictional contacts. The insulating spacer 1310 separates the inner side of the magnetically permeable element 1 308. In one embodiment, the spacer 13 10 includes a MylarTM component, however it will be appreciated that other insulating materials (polymer or other) may be envisioned. And not limited to polymethylamine (KaptonTM), fluoropolymer (eg, TefzelTM), ceramic and even powder-impregnated tape or kraft paper and combinations thereof. Gasket 1310 avoids shortening of magnetically permeable element 1308 This will additionally greatly reduce the ability of the unstable gap annulus to maintain high inductance at low currents and low inductance at high currents. In addition to separating the inside of the magnetically permeable elements 13〇8, the spacer 13 10 ensures In The physical contact between the element 1308 and the adjacent spacers. In one embodiment, friction is used, however other spacers such as adhesive bonding may be used to attach the spacer 13 1 to the element 1 3 0 8 . Referring now to Figure 15, a method of making the gaps of Figures 13 and 14 is described. As shown in Figure 15, the generalized method 1500 includes first providing a seamless annulus of the type described herein ( Step 1 5 02 ). It should be noted that 43 1278877 · 疋 can be pre-benched around the core, or alternatively, after the method described herein is wound. Next, the water 'passes through step 1 504, according to the desired size To construct a torus with a gap (the soil, 4 optionally, the conventional gap within the torus is configured to the desired size). This can be done by using any number of well-known mechanical techniques^ To g $ . Optionally, it should be understood that during the manufacturing process it is possible to use the desired % of the gap to form the annulus, thereby removing the separation, subsequent machining or gap composition steps. In selecting the appropriate material (for example, slope Mo alloy Permalloy)) may be used in the core after iS i 13 10, in order to meet (when assembled) 15〇4 gap formed in step, after the step 1506 of these objects and the insulating member 1308 configurations few

造成期望的形 狀和尺寸。至少透磁合金元件1308的一部分 與間隙的各個内(侧)表面直接物理接觸是必要的,從而 允許形成一個從間隙一側透過可透材料到達間隙另一側的Cause the desired shape and size. At least a portion of the permalloy element 1308 is in direct physical contact with each of the inner (side) surfaces of the gap, thereby permitting the formation of a permeable material from one side of the gap to the other side of the gap.

傳導路徑。正確選擇元件13〇8的厚度(例如,在圖示實施 例總是0.0005英寸)和絕緣元件13 10的厚度/形狀有助於實 施這個要求,然而同樣可以透過其它方法實現這樣的連接。 接下來,把可透元件1 308和絕緣元件13 10嵌入進間隙 (步驟1 508 )達期望的深度,並在適當的位置使用環氧樹 酯1 3 1 2聯結。應該理解到雖然第·1 4圖僅僅展示在間隙1 3 〇4 的外圍周遭放置彡衣氧樹S旨1 3 1 2 ’但疋為了在彼此的相對位 置上緊緊固定不同的元件可以使用環氧樹酯或密封劑覆蓋 整個間隙/町透元件/絕緣元件或它的任一部分。 44 1278877 現下參考第1 6和1 6 a圖,描述了本發明間隙環面裝置 的另一實施例。在這個實施例中,使用最接近與第1 3圖的 插入元件相對的間隙1 604放置的透磁合金帶16〇2橫越裝置 1 6 00的芯間隙。在該圖示實施例中,為了產生8 4mI1的整 體電感,選擇大約6千分( 而無疑地能使用其它值(和間隙架構),下面僅僅示範。Conduction path. The correct selection of the thickness of the elements 13 〇 8 (e.g., always 0.0005 inches in the illustrated embodiment) and the thickness/shape of the insulating member 13 10 facilitate the implementation of this requirement, although such connections can be achieved by other methods as well. Next, the permeable element 1 308 and the insulating member 13 10 are embedded into the gap (step 1 508) to a desired depth, and the epoxy resin 1 3 1 2 is bonded at the appropriate position. It should be understood that although the 14th figure only shows that the enamel tree S is placed around the periphery of the gap 1 3 〇4, it is possible to use the ring in order to tightly fix different components at the relative positions of each other. Oxygenate or sealant covers the entire gap/machining element/insulation element or any part thereof. 44 1278877 Referring now to Figures 16 and 16a, another embodiment of the gap annulus device of the present invention is described. In this embodiment, the permalloy strip 16 〇 2 placed closest to the gap 1 604 opposite the insert element of Figure 13 is used to traverse the core gap of the device 1 600. In the illustrated embodiment, to produce an overall inductance of 8 4 mI1, approximately 6 thousand points are selected (and other values (and gap architecture) can be used without doubt, just exemplified below.

在它的最基本架構中’裝置16〇〇包含與在間隙 的對立側上的芯材料直接匹配的透磁合金帶丨6〇2 ,從而由 帶1 602來維持在兩侧之間的傳導路徑。在一變體中(第i < 圖),帶僅僅黏結或搭接到最接近間隙的芯的外圍區域。 如果需要可以覆蓋組裝的芯和帶(使用例如矽樹醋或聚對 二甲苯基密封劑並且纏繞。可替換地,可以預键繞芯, 並且Ik後增加帶1602 (並且如果需要覆蓋)。In its most basic architecture, the device 16A includes a permalloy ribbon 丨6〇2 that directly matches the core material on the opposite side of the gap, thereby maintaining the conduction path between the two sides by the band 1 602. . In a variant (i<Fig.), the strip is only bonded or lapped to the peripheral region of the core closest to the gap. The assembled core and tape can be covered if desired (using, for example, eucalyptus vinegar or parylene sealant and wound. Alternatively, the core can be pre-bonded and the strip 1602 can be added after Ik (and if covered).

在裝置1650的另一變體中(第…圓)’使用具有透 磁合金帶4652和熱收縮管道的短圓筒或部分的未缠繞 和有間隙的芯1654。在圈示實施例中使用聚稀煙照射的劫 收縮,然而將會認識到可以使用其它材料和材料架構。例 如’可以使用對其它逮S并】I Μ β山 τ再匕類型曝先敏感或起回應的材料(例如 UV或電磁或特定輻 、例如 Μ ’化學化劑,等等的其它形式), 在圖示實施例中,把薄透磁合 尺寸的部分以橫赭Μ 纟帶的滾筒分割成正与 隙並纏繞於間隙的每-側上的外圍# / 一部分。可選地利用具有 、' 有利於最小數量的八…勒厚度的帶狀滾筒,從, 數量的“卜在熱收縮圓筒⑽内放置該帶, 45 1278877 並且把芯嵌入其中以便芯的間隙直接與透磁合金帶1 652符 合。然後該組裝被加熱到正確的溫度(或另外的在芯1654 周遭引起收縮)。正如熱收縮材料收縮那樣,它靠著芯的 外圍緊緊的把帶1652的邊緣壓制在間隙區域内,從而完成 了透過間隙的‘‘橋” ’並且在芯的適當位置上持久的固定該 帶。該組裝然後被纏繞。In another variation of the device 1650 (...circle)', a short cylinder or portion of unwound and gapped core 1654 having a permalloy strip 4652 and a heat shrink tubing is used. The shrinkage of the poly-smoke exposure is used in the illustrated embodiment, however it will be appreciated that other materials and material architectures can be used. For example, 'can use other materials that are sensitive or responsive to other types of exposure (eg, UV or electromagnetic or specific radiation, such as Μ 'chemicals, etc.), In the illustrated embodiment, the thin, transmissive sized portion is divided into positive and negative grooves by a roll of the cross-belt and wound around the periphery # / portion of each side of the gap. Optionally, a strip-shaped drum having a thickness of 'eight' is allowed, from the quantity "putting the strip in the heat-shrinkable cylinder (10), 45 1278877 and embedding the core so that the gap of the core is directly Consistent with the permalloy strip 1 652. The assembly is then heated to the correct temperature (or otherwise caused to shrink around the core 1654). Just as the shrink material shrinks, it is tightly held against the periphery of the core by the strip 1652 The edge is pressed into the gap region, thereby completing the ''bridge'' through the gap and permanently securing the strip at the proper location of the core. The assembly is then wound.

在另一實施例中(沒有示出),透磁合金(或其它的) 被連接到芯並跨過間隙以便電/磁連接於其上,例如透過在 配合連接點的頂部上面使用微量黏結劑(或可替換地在適 當位置上固定它的一些其它裝置例如邊緣帶)。整個組裝 隨後傾斜,霧化,或真空/汽化覆蓋在聚合物内,例如聚對 二甲苯基的沈積物。這個覆蓋物實際上在適當位置上‘‘凝 固’’了帶,並且提供了裝置線圈可以纏繞上面的座。如先前 討論且整體引用於此作為參考之美國專利申請號In another embodiment (not shown), a permalloy (or other) is attached to the core and spans the gap for electrical/magnetic coupling thereto, such as by using a micro-adhesive on top of the mating joint. (or alternatively some other device that secures it in place, such as an edge band). The entire assembly is then tilted, atomized, or vacuum/vaporized to cover the polymer, such as a deposit of parylene. This cover actually ''condenses' the band in place and provides a means for the device coil to wrap around. U.S. Patent Application Serial No.

09/661,628(現為美國專利第6,642,847號,其係於2000年9 月 13日所領證),標題為 “Advanced Electronic Microminiature Coil And Method Of Manufacturing”中已 揭示把這種覆蓋物應用到環面裝置的示例性方法。 現下參考第17a-17d圖,係揭示本發明改良電感元件 的其它實施例。整體看來,為了提供期望的電感特性和飽 和度控制,這些實施例每一個都利用了結合與芯配對的外 部控制元件的有間隙的芯(例如,環面)。這些實施例的 其它期望特性與成本和製造簡易性有關;正如在下面段落 46 1278877 中詳細討論的,為了產生電感元件,外部控制元件可以包 含低成本預製造元件,例如簡單搭接到芯、並用一或多個 線圈纏繞的墊圈。 正如在第17a-17b圖中所示,前述裝置17〇〇的第一實 施例包括在此先前所述型號的間隙環面芯丨7〇1。所示的芯 1 7 0 1有略似矩形的截面(見第1 7 b圖),然而應該理解到可 以使用與本發明一致的精確地任一截面形狀。使用黏結劑 或其它粘合劑,例如環氧樹酯、丙烯酸脂黏結劑、矽有機 樹酯膠,或甚至是熔化(焊接或焊接)過程,將受控飽和 度元件1703匹配於芯1701。可選地,元件17〇3可以被機械 地搭接到芯上(例如透過鉚釘、柱、摩擦裝配、夾板,或 其它固定器裝置)’然而這些後面的解決方案往往增加成 本和裝置製造過程的複雜度。正如另一可選的,僅僅能把 疋件1703定位在最接近芯的一期望位置和方向上,並且為 了固定這些元件的相對位置,整個組裝(芯丨7 〇〗和元件 1 7 0 3 )接著被外塗或外鑄模(例如用矽樹酯或基於聚對二 甲苯基的密封劑或其它材料)。然而甚至其它方法也是可 以的,因此前面的描述述僅僅作為示範。 在第17a-17b圖的實施例中,元件17〇3包含在機械領 域普遍存在型號的標準金屬“扁平,,墊圈。墊圈17〇3有一有 利於線圈1702纏繞的中心孔徑17〇4 (無論是透過手工或自 動方法這種墊圈通常由倚賴於其機械要求的不同百分 比的金屬合金製造並且以過剩的不同形狀和尺寸出現,並 47 1278877 且因此展現了 一重要屬性;也就是說,直徑、厚度、孔徑 尺寸、材料等等以低成本寬排列的的商業可用性。因此, 電感元件1700的製造者僅僅能以實驗發現墊圈的用於期望 的應用理想尺寸、形狀,等等,並且然後以低成本在商業 上獲得它們。可選地,墊圈能由與芯1 7 0 1相同的材料組成, 例如透過橫向的切斷芯以產生一系列的成疊的“墊圈,,。同 樣也能使用許多其它來源的墊圈元件1 703。 正如所理解到那樣,厚度(和墊圈1 7 0 3的較小程度的 其它物理參數)決定了芯1 7 0 1的飽和度特性,然而滲透性 突出的貢獻了它的電感性能。特別地,依靠本申請圖示實 施例具有一從每米(H/m)大約lk到l〇k Henrys變化的導磁 率。元件1 7 0 3滲透性越高,在無電流(例如待機)和操作 電流(例如使用時)值之間的區別就越大。例如,選擇墊 圈的厚度1705大約是墊圈1703和環面芯1701總厚度的 2 0 % ;當透過裝置1 7 0 0的電流升高時這個比率能變化以調 整飽和率。墊圈越厚,需要飽和裝置的電流就越大。墊圈 1 7 03的厚度1 705變化對總厚度(芯加墊圈)由5%到4〇%之 特定用途而言應可涵蓋大多數的任何應用。 還應該理解到元件1 703的厚度,形狀(包括寬度), 或甚至是材料混合物不需要統一,而是可以隨著期望獲得 的特定性能或特性變化。例如,在一變體中,可以使用多 層的墊圈排列(沒有示出)’其中為了提供關於芯的分層 的磁通量圖形在芯1 7 0 1的一側上變化厚度和/或滲透性的 48 1278877 雨個或多個墊圈實際上被夾在一起。正如另一可選地,在 元件的徑向和/或軸向位置上能製造不同種類的墊圈1703 厚度和/或滲透性,例如由元件1703的不同厚度和/或滲透 性的剩餘部分構成墊圈1 7 0 1的“嵌入”部分,並且這個嵌入 部分配置在最近芯内間隙的地方。因此,如果需要,可以 製作元件1 703以提供期望的特性和性能。 在製造方面,透過首先提供先前所述型號的有間隙的 芯來製造第1 7 a-1 7b圖的示例性裝置1 7 〇 〇。選擇一或多個元 件1 703 (例如墊圈),然後使用黏結劑、搭接過程或其他 所述的機械裝置連接到芯的一或兩個面上(見下面第l7d 圖所討論的)。如果需要,這兩個元件也可以保持不連接 直到外鑄模為止。 接下來’如果需要’經過任意數量的包括浸塗、喷霧、 真空/汽化沈積等等多個標準過程外鑄模芯和墊圈元件。這 個步驟在元件上產生(絕緣)覆蓋層,線圈最終纏繞在元 件頂上。 第17c圖是裝置1710另一實施例的截面圖,展示了彎 曲的(半球形)墊圈元件1713和互補芯17U的使用。在這 個實施例中’選擇墊圈元件丨7丨3的曲率以接近於芯丨7丨i部 分的曲率,至少在它的内表面上。這個實施例在使用具有 更多圓形(和較少矩形)的截面時是有用的。在一變體中, 為了避免不得不提供扁平墊圈的常規機械加工,應用了公 知的百利(Belleville)塾圈;也就是說,裝配器僅僅選擇預 49 1278877 製的百利(Belleville)墊圈並使用例如先前所述的黏結劑 17 16連接到芯。正如在第17a-17b圖的實施例那樣,如果需 要,裝配可以被外鑄模,並且最後以期望型號和數量的線 圈1 7 1 2纏繞。正如先前實施例所述的那樣,墊圈,][7丨3的厚 度1 7 1 5也影響裝置1 7 1 0的飽和度和電感特性;然而,由於 塾圈的曲率,磁致彈性是稍微不同的。 第17d圖是電感元件1720的另一實施例的透視圖,其 中兩個平面控制元件1 723^ 1 7231?被分發在環面芯P21的 對立面上。正如可以理解到的’可以使用具有任一形狀芯 的這種架構(包括例如第17c圖的怒17 1 1和圓形元件 1713 )。這兩個元件1 723在物理特性上(尺寸、厚度、滲 透性等)可以完全類似,或者為了把不對稱性引入裝置的 磁通量圖形中,可選擇地在一或多個特性上類似。例如, 與另一部分相比,希望早於電流升高期間飽和第一元件 1723a和/或芯1721的第一部分;在這種情況下,可以使用 較薄的墊圈1 723a作為第一元件1723a ,而使用相對較厚的 墊圈作為第二元件l 723b。與第17d圖的安排一致,可以使 用許多其它這樣的變化(包括那些先前所述的關於第 17a-17b圖的單墊圈實施例)° 正如另一可替換的,使用在機械領域公知型號的彈簧 墊圈,正如在第1以圖中所示。彈簧整圈基本上是非平面 的,但沒有間隙。因此,墊圈表面的高度變化係作為極軸 角的函數。故,當置於最接近芯時,彈簧墊圈在墊圈1733 50 1278877 和芯1 73 1之間提供一系列的斷續接觸點1 73 7。然後以基本 上連續的模式,或可選地以孤立的模式(例如,與前述的 接觸點1 737 —致,其中最高密度線圈發生在墊圈1 73 3的 “穴” 1 738中)在芯和墊圈上纏繞線圈(沒有示出)。 還應該理解到,與前述實施例一致,可以使用平面間 隙或裂開的墊圈。該間隙可以置於最接近芯中間隙的位 置,或可選地,在遠離間隙的另一極軸角。09/661, 628 (now U.S. Patent No. 6,642,847, issued on Sep. 13, 2000), entitled "Advanced Electronic Microminiature Coil And Method Of Manufacturing," An exemplary method of a face device. Referring now to Figures 17a-17d, other embodiments of the improved inductive component of the present invention are disclosed. In general, in order to provide the desired inductive characteristics and saturation control, each of these embodiments utilizes a gapped core (e.g., an annulus) that incorporates an external control element paired with the core. Other desirable characteristics of these embodiments are related to cost and ease of manufacture; as discussed in detail in paragraph 46 1278877 below, in order to create an inductive component, the external control component can comprise a low cost pre-fabricated component, such as simply lapped to the core, and used One or more coil wound gaskets. As shown in Figures 17a-17b, the first embodiment of the aforementioned device 17A includes a gap annulus core 7〇1 of the type previously described herein. The illustrated core 170 has a somewhat rectangular cross section (see Figure 17b), however it should be understood that any cross-sectional shape that is accurate consistent with the present invention can be used. The controlled saturation element 1703 is matched to the core 1701 using a binder or other binder, such as an epoxy resin, an acrylate binder, a bismuth organic resin, or even a melting (welding or welding) process. Alternatively, element 17〇3 can be mechanically lapped onto the core (eg, through rivets, posts, friction fits, splints, or other fixture devices). However, these latter solutions often add cost and device manufacturing processes. the complexity. As another alternative, the jaws 1703 can only be positioned in a desired position and orientation closest to the core, and in order to fix the relative positions of the components, the entire assembly (core 7 和 and element 1 7 0 3 ) It is then overcoated or overmolded (for example with eucalyptus or a paraxyl based sealant or other material). However, even other methods are possible, so the foregoing description is merely exemplary. In the embodiment of Figures 17a-17b, element 17〇3 contains a standard metal "flat", gasket, which is ubiquitous in the mechanical field. The gasket 17〇3 has a central aperture 17〇4 that facilitates winding of the coil 1702 (whether By hand or by automatic means such gaskets are usually made of different percentages of metal alloys depending on their mechanical requirements and appear in excess of different shapes and sizes, and 47 1278877 and thus exhibit an important property; that is, diameter, thickness Commercial availability of aperture size, material, etc. at low cost and wide alignment. Therefore, the manufacturer of the inductive component 1700 can only experimentally find the desired size, shape, etc. of the gasket for the desired application, and then at a low cost. They are commercially available. Alternatively, the gasket can be composed of the same material as the core 1 701, for example through a transverse cutting core to produce a series of stacked "washers." Source of gasket element 1 703. As can be appreciated, the thickness (and other physical parameters of the smaller extent of the gasket 1 703) determines The saturation characteristic of the core 1 701, however, the outstanding permeability contributes to its inductive performance. In particular, the illustrated embodiment of the present application has a variation from about lk to l〇k Henrys per meter (H/m). Permeability. The higher the permeability of component 1 0 3 3 , the greater the difference between the values of no current (eg standby) and operating current (eg when used). For example, the thickness of the gasket selected 1705 is approximately washer 1703 and The total thickness of the toroidal core 1701 is 20%; this ratio can be varied to adjust the saturation rate as the current through the device 1700 increases. The thicker the gasket, the greater the current required to saturate the device. A thickness of 1 705 varies from 5% to 4% for a specific thickness (core plus gasket) for any particular application. It should also be understood that the thickness, shape (including width) of element 1 703, or Even material mixtures need not be uniform, but can vary with the particular properties or characteristics desired to be obtained. For example, in one variation, multiple layers of gasket arrangements (not shown) can be used, where to provide delamination with respect to the core Magnetic flux The pattern varies in thickness and/or permeability on one side of the core 1 710. 1 1278877 Rain or multiple gaskets are actually clamped together. As another alternative, in the radial and/or axis of the element Different types of gasket 1703 thickness and/or permeability can be made in position, for example, the remainder of the different thicknesses and/or permeability of the element 1703 constitutes the "embedded" portion of the gasket 171, and this embedded portion is disposed at Where is the inner gap of the core. Therefore, if desired, element 1 703 can be fabricated to provide the desired characteristics and performance. In terms of manufacturing, the first 7 a-1 7b is manufactured by first providing a gapped core of the type previously described. An exemplary device of the figure 1 7 〇〇. One or more components 1 703 (e.g., gaskets) are selected and then joined to one or both sides of the core using a bonding agent, a lap process, or other mechanical means (see discussion of Figure l7d below). If desired, these two components can also remain unconnected until the outer mold. Next, if desired, a plurality of standard process outer mold core and gasket elements including dip coating, spray, vacuum/vaporization deposition, and the like. This step creates an (insulating) overlay on the component, which is finally wound on top of the component. Figure 17c is a cross-sectional view of another embodiment of device 1710 showing the use of a curved (hemispherical) gasket element 1713 and a complementary core 17U. In this embodiment, the curvature of the washer member 丨7丨3 is selected to be close to the curvature of the core 7丨i portion, at least on its inner surface. This embodiment is useful when using a cross section with more circles (and fewer rectangles). In a variant, in order to avoid the conventional machining that has to provide a flat washer, the well-known Belleville ring is applied; that is, the assembler only selects the Belleville washer of the pre-49 1278877 and The core is attached using, for example, a binder 17 16 as previously described. As in the embodiment of Figures 17a-17b, the assembly can be overmolded if desired and finally wound with a desired number and number of coils 1 71. As described in the previous embodiment, the gasket,][7丨3 thickness 1 7 1 5 also affects the saturation and inductance characteristics of the device 1 7 10 ; however, the magnetoelasticity is slightly different due to the curvature of the ring of. Figure 17d is a perspective view of another embodiment of an inductive component 1720 in which two planar control elements 1 723^1 7231 are distributed on opposite sides of the toroidal core P21. As can be appreciated, such an architecture having a core of any shape can be used (including, for example, the anger 17 1 1 and the circular element 1713 of Fig. 17c). The two elements 1 723 may be identical in physical properties (size, thickness, permeability, etc.) or alternatively may be similar in one or more characteristics in order to introduce asymmetry into the magnetic flux pattern of the device. For example, it is desirable to saturate the first portion of the first element 1723a and/or the core 1721 prior to the increase in current compared to the other portion; in this case, a thinner washer 1 723a may be used as the first element 1723a, A relatively thick washer is used as the second element l 723b. Consistent with the arrangement of Figure 17d, many other such variations can be used (including those previously described for the single gasket embodiment of Figures 17a-17b). As another alternative, springs of the type known in the mechanical arts are used. The gasket is as shown in Figure 1. The full circle of the spring is essentially non-planar but has no gaps. Therefore, the height variation of the gasket surface is a function of the polar axis angle. Therefore, when placed closest to the core, the spring washer provides a series of intermittent contact points 173 7 between the washer 1733 50 1278877 and the core 1 73 1 . Then in a substantially continuous mode, or alternatively in an isolated mode (eg, consistent with the aforementioned contact point 1 737, where the highest density coil occurs in the "hole" 1 738 of the washer 1 73 3) in the core and A coil is wound on the gasket (not shown). It should also be understood that, in accordance with the foregoing embodiments, a planar gap or a split gasket may be used. The gap can be placed closest to the gap in the core or, alternatively, at another pole angle away from the gap.

此外,在某些應用中可以使用非平面裂開的間隙,其 中在墊圈間隙的第一側的墊圈材料和另外一側上的墊圈材 料之間在高度上有不同,正如在機械領域中公知的。因此, 當這樣的墊圈置於芯的一面上時,它出現了不平的表面, 因而在裝置上引起了在作為極軸角的函數的磁通量圖形中 的梯度。線圈僅僅選擇性地纏繞在某些區域上,並且甚至 在墊圈下面的某些區域中纏繞(也就是說,墊圈平面與芯 的面不鄰接)。Furthermore, non-planar split gaps may be used in certain applications where there is a difference in height between the gasket material on the first side of the gasket gap and the gasket material on the other side, as is well known in the mechanical arts. . Thus, when such a gasket is placed on one side of the core, it presents an uneven surface, thus causing a gradient in the magnetic flux pattern as a function of the polar axis angle on the device. The coil is only selectively wound on certain areas and even wound in certain areas under the gasket (that is, the gasket plane is not adjacent to the face of the core).

在另一實施例中(第1 7f圖),在環面芯的部分之間 使用一或多個墊圈或類似墊圈的架構。在第1 7f圖的示例性 實施例中,芯1 7 5 0包含兩個芯部分1 7 5 1,1 7 5 2。在圖示的 實施例中,芯部分包括整個芯1 7 5 0的一半,然而可以使用 其它關係,例如在此,兩個部分是整體的不等片斷。墊圈 1 753包含高滲透性鐵氧體墊圈,並且基本上置於兩個部分 1751,1752之間。然而在鐵氧體的適當位置上可以使用具 有合適滲透性和物理特性的其它材料。 51 1278877 為了提供期望的磁耦合度,可以調整墊圈1753的内和 /或外徑和/或芯部分1 7 5 1,1 7 5 2。而且,例如在成疊的架 構中’透過使用多墊圈1 753可以改變裝置的磁特性。在這 樣的架構中’塾圈是類似的(也就是說,相同的型號,尺 寸,滲透性和材料),或可替換的可以是不同種類的,例 如在厚度’滲透度,或材料上變化。 而且’填充間隙的材料被插入在墊圈丨753單獨兩個之 間’或墊圈表面和芯部分之間,以便控制這些間隙的磁特 性。可以使用帶和/或黏結劑以固定不同元件之間的空間關 係’可以是在電子領域公知型號的外密封劑。然而因為它 的機械強度’通常以使用黏結劑為佳。 此外’應該理解到,可選地可以對第1 7f圖的裝置產 生裂隙’正如在第i 7f圖中所示的那樣,在兩個芯部分 1 7 5 1 ’ 1 7 5 2的一或兩者上都形成間隙。雖然可以在芯丨7 5 〇 被切斷之後或者在之前形成間隙,但是在單件芯形成兩個 芯元件1 7 5 1,1 7 5 2之前最容易形成。由於芯部分實際上是 彼此自由的,對於彼此來說能旋轉該部分(並且因他們的 間隙),因而如果需要,可以在彼此之間具有間隙偏移。 可選地’為了獲得渴望的磁/電性能,如果需要,間隙可以 在墊圈元件1 7 5 3中形成。透過給定的當前公開,熟習該項 技術人士將會認識到間隙和間隙佈置的許多不同組合。 應該認識到雖然透過一種方法的特定順序步驟描述 了本發明的某些方面,這些描述僅僅是本發明較寬方法的 52 1278877 示範’並且可以根據特 境下某些步驟可以不必 定應 要或 用的需求進行修改。在某些環 可選地來實施。此外,某些步 驟或功能可以 或多個步驟的 J、、〇到公開的實施例中,或者可以改變兩個 執行順序。所有這樣的變化在這裡都被認為 是包括在此所公開和要求的本發明權利之内 正如應用到不同的實施例中一樣,雖然上述詳細描述 顯示、描述並指出了的本發明的新穎性特性,應該理解,In another embodiment (Fig. 1f), one or more washers or gasket-like structures are used between the portions of the toroidal core. In the exemplary embodiment of Figure 1 7f, the core 1 75 50 contains two core portions 1 7 5 1,1 7 5 2 . In the illustrated embodiment, the core portion includes half of the entire core 1750, although other relationships may be used, such as here, the two portions are integral unequal segments. The gasket 1 753 contains a high permeability ferrite gasket and is placed substantially between the two portions 1751, 1752. However, other materials having suitable permeability and physical properties can be used in place of the ferrite. 51 1278877 In order to provide the desired degree of magnetic coupling, the inner and/or outer diameter of the washer 1753 and/or the core portion 1 7 5 1,1 7 5 2 may be adjusted. Moreover, the magnetic properties of the device can be varied, for example, by using multiple washers 1 753 in a stacked configuration. In such an architecture, the turns are similar (that is, the same model, size, permeability, and material), or alternatively can be of a different type, such as thickness, permeability, or material. Moreover, the material filling the gap is inserted between the two separate gaskets 753 or between the gasket surface and the core portion to control the magnetic characteristics of these gaps. Bands and/or binders may be used to secure the spatial relationship between the different elements'. An outer sealant of the type well known in the electronics art may be used. However, because of its mechanical strength, it is generally preferred to use a binder. Furthermore, it should be understood that, optionally, a crack can be created for the device of the 1st 7f', as shown in the figure i i ff, one or two of the two core portions 1 7 5 1 ' 1 7 5 2 A gap is formed in both. Although it is possible to form a gap after or after the core 丨 7 5 〇 is cut, it is most easily formed before the single core is formed into two core members 1 7 5 1,1 7 5 2 . Since the core portions are actually free from each other, the portions can be rotated for each other (and due to their gaps), and thus there can be gap offsets between each other if necessary. Alternatively, in order to obtain desired magnetic/electrical properties, a gap may be formed in the gasket member 1 7 5 3 if necessary. Through the given current disclosure, those skilled in the art will recognize many different combinations of gap and gap arrangements. It will be appreciated that while certain aspects of the invention have been described in terms of specific sequential steps of a method, these descriptions are merely exemplary of the broad method of the invention, and may not necessarily be used or used in accordance with certain steps in the context. The requirements are modified. It is optionally implemented in some loops. In addition, some of the steps or functions may be performed in multiple steps, or in the disclosed embodiments, or the two sequences of execution may be changed. All such variations are considered to be included within the scope of the present invention as disclosed and claimed herein, as applied to the various embodiments of the invention. Should understand,

在不脫離本發明的情況下,本領域技術人員可以對圖示裝 置或製程在形式和細節上做出各種省略、替換、和改變。 前面的描述是執行當前預期的本發明的最好模式。這個描 述決不意味著受限制’而是應該作為本發明概括原理的示 範。本發明的範園應該參考申請專利範圍來確定。 【圖式簡單說明】 配合附圖及前文提出的詳細描述中,本發明的特點’ 目的和優點將變的更明顯’其中: © 第1圖是在家用或小型商用環境中安裝的典型習知技 術的DSL的方框圖,包括習知技術的安裝在多電話擴展上 的微濾波器。 第la圖是第1圖所示的習知技術DSL微濾波器的概要 圖。 第2a圖是相對於典型固定電感習知技術裝置的心電 流特性(“電感特性的電感的圖解。 53 1278877 第2b圖是典型的可變電感(線性和“緩和階梯式,,)習 知裝置的電感特性的圖解表示。 '第3圖是具有可變電感特性的示例性習知電感元件 (Coilcraft)的頂部俯視圖。 第4圖是按照本發明改良的具有受控飽和度的罐形芯 電感元件的第一實施例的透視圖。 第4a圖是第4圖電感元件沿著線4-4的侧刮面圖. 第4b圖是第4圖電感元件的第一線芯元件的底部俯視 圖,圖示了可變體狀的間隙。 第4c圖是一電感對第4圖電感元件之dc電流的示意曲 線圖。 第4d-4f圖展示了本發明的電感元件可變體狀間隙的 另一替換實施例’分別展示了 (Ο三層間隙;(i i)同中 心的雙層間隙;和(丨丨1 )間歇的同中心雙層間隙的使用。Numerous omissions, substitutions, and changes may be made in the form and the details of the embodiments of the present invention without departing from the invention. The foregoing description is the best mode of carrying out the presently contemplated invention. This description is in no way meant to be limiting, but rather as an illustration of the general principles of the invention. The scope of the present invention should be determined with reference to the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will become more apparent in the detailed description of the drawings and the foregoing description. A block diagram of a technical DSL, including a microfilter installed on a multi-telephone extension of the prior art. Fig. 1 is a schematic diagram of a conventional DSL microfilter shown in Fig. 1. Figure 2a is a diagram of the core current characteristics of a conventional fixed-inductance device ("Inductance of Inductance Characteristics. 53 1278877 Figure 2b is a typical variable inductance (linear and "moderate step,") A graphical representation of the inductive characteristics of the device. 'Figure 3 is a top plan view of an exemplary conventional inductive component (Coilcraft) with variable inductance characteristics. Figure 4 is a pot shape with controlled saturation improved in accordance with the present invention. A perspective view of a first embodiment of a core inductive component. Figure 4a is a side plan view of the inductive component of Figure 4 along line 4-4. Figure 4b is the bottom of the first core component of the inductive component of Figure 4. The top view shows the gap of the variable body. Fig. 4c is a schematic diagram of the dc current of an inductor to the inductance element of Fig. 4. Fig. 4d-4f shows the variable body gap of the inductor element of the present invention. Another alternative embodiment 'shows the use of a three-layer gap; (ii) a concentric double-layer gap; and (丨丨1) intermittent concentric double-layer gaps, respectively.

第5圖是按照本發明的具有受控飽和度的改良鼓芯電 感元件(單線圈)的第一實施例的透視圖。 第5a圖是本發明具有多個受控飽和度元件的鼓芯裝 置的第一可替換實施例的透視圖。 第5b圖是本發明具有用於受控飽和度元件基本上連 續的片的鼓芯裝置的第二可替換實施例的的剖面圖。 第5c圖是本發明的附著在鼓芯内的具有L-型終端的 鼓芯裝置的第三可替換實施例的透視圖。 第6圖是按照本發明具有受控飽和度的改良鼓芯電感 54 1278877 元件(多線圈)的第一實施例的透視圖。 第7圖是使用本發明改良電感元件的第一實施例濾波 電路的概要圖。 第8圖是使用本發明改良的電感元件,利用了第6圖的 雙線圈鼓芯裝置的第二實施例濾波電路的概要圖。 第9圖是第8圖濾波電路的概要圖,包括選擇性的第三 階濾波器。Figure 5 is a perspective view of a first embodiment of an improved drum core sensing element (single coil) having controlled saturation in accordance with the present invention. Figure 5a is a perspective view of a first alternative embodiment of a drum core assembly having a plurality of controlled saturation elements of the present invention. Figure 5b is a cross-sectional view of a second alternative embodiment of the drum apparatus of the present invention having a sheet for controlled continuous saturation of substantially saturated elements. Fig. 5c is a perspective view of a third alternative embodiment of the drum core unit having an L-type terminal attached to the drum core of the present invention. Figure 6 is a perspective view of a first embodiment of an improved drum core inductor 54 1278877 component (multi-coil) having controlled saturation in accordance with the present invention. Fig. 7 is a schematic view showing a filter circuit of a first embodiment using the improved inductance element of the present invention. Fig. 8 is a schematic view showing a filter circuit of a second embodiment of the double-coil drum core device of Fig. 6 using the improved inductance element of the present invention. Figure 9 is a schematic diagram of the filter circuit of Figure 8, including a selective third-order filter.

第10a圖是圖示了製造第4-4f圖的罐形芯電感元件的 示例方法的邏輯流程圖。 第10b圖是圖示了製造第5-6圖鼓芯電感元件的邏輯 流程圖。 第1 1圖是按照本發明受控電感元件的第一示例性實 施例的頂部透視,部分分解圖。 第11 a圖是第1 1圖裝置的側剖視分解圖。Figure 10a is a logic flow diagram illustrating an exemplary method of fabricating a can core inductive component of Figures 4-4f. Figure 10b is a logic flow diagram illustrating the fabrication of the drum core inductive components of Figures 5-6. Figure 11 is a top perspective, partially exploded view of a first exemplary embodiment of a controlled inductive component in accordance with the present invention. Figure 11a is a side cross-sectional exploded view of the device of Figure 11.

第1 1 b圖本發明的受控電感元件的另一實施例的頂部 俯視圖,展示了可變條寬。 第1 1 c圖是受控電感元件的另一實施例的分解透視 圖,具有多個電感元件。 第12圖是圖示了第11圖裝置製造方法的示例性實施 例的邏輯流程圖。 第1 3圖是本發明環面間隙的一實施例的頂部正視圖。 第1 4圖是第1 3圖示例性環面間隙的截面圖(沒有線 圈),展示其中的間隙和在其中放置的元件。 55 1278877 第1 4a圖是第1 4圖環面間隙裝置的側俯視圖。 第1 4b圖是環面間隙(無線圈)的第二示例性實施例 的截面圖,其中使用了 “V”型間隙。 第1 4c圖是環面間隙(無線圈)的第三示例性實施例 的截面圖,其中使用了切去頂端的“V”型間隙。 第15圖是圖示了第13圖-14c裝置製造方法的一示例 性實施例的邏輯流程圖。Figure 1 1b is a top plan view of another embodiment of the controlled inductive component of the present invention showing variable strip width. Figure 11c is an exploded perspective view of another embodiment of a controlled inductive component having a plurality of inductive components. Fig. 12 is a logic flow chart illustrating an exemplary embodiment of the apparatus manufacturing method of Fig. 11. Figure 13 is a top elevational view of an embodiment of the annulus of the present invention. Figure 14 is a cross-sectional view (without coils) of the exemplary torus gap of Figure 13, showing the gaps therein and the components placed therein. 55 1278877 Figure 14a is a side plan view of the torus gap device of Figure 14. Figure 14b is a cross-sectional view of a second exemplary embodiment of a torus gap (without coils) in which a "V" shaped gap is used. Figure 14c is a cross-sectional view of a third exemplary embodiment of a torus gap (without coils) in which a "V" shaped gap with a top end cut away is used. Figure 15 is a logic flow diagram illustrating an exemplary embodiment of the method of fabricating the device of Figures 13-14c.

第1 6圖是本發明環面間隙裝置的另一實施例的側截 面圖。 第1 6a圖是本發明環面間隙裝置的另一實施例的側截 面圖,其中使用了熱收縮塗層。 第1 7a圖是本發明的另一實施例的透視截面圖,其中 平面環行控制元件用於與環面間隙芯連接。 第17b圖是沿著線17a-17a的第17a圖裝置的剖面圖, 展示了其中的架構。Figure 16 is a side cross-sectional view showing another embodiment of the toroidal gap device of the present invention. Figure 16a is a side cross-sectional view of another embodiment of the toroidal gap device of the present invention in which a heat shrink coating is used. Figure 17a is a perspective cross-sectional view of another embodiment of the present invention in which a planar loop control element is used to connect to the toroidal gap core. Figure 17b is a cross-sectional view of the device of Figure 17a along line 17a-17a showing the architecture therein.

第17 c圖是該裝置的另一實施例的剖面圖,展示了曲 線(半球形)墊圈和互補線芯的使用。 第1 7d圖是本發明的另一實施例的剖面圖,其中兩個 平面控制元件置於環面的相反面上。 第1 7e圖是本發明另一實施例的透視分解圖,其中非 平面控制元件用於與環面間隙芯連接。 第1 7 f圖是本發明的另一實施例的頂部透視分解圖。 56 1278877 【主要元件符號說明】 102 電感特性 106 基本線性模式 108 緩和梯狀 300 裝置 304 基座 306 柱 308 中心塊 310 孔徑 400 電感元件 402 罐形 406 柱 408 槽 409 孔徑 410 裝置 413 導電線圈 425 終端 416 區域 418 區域 427 非電感矩陣架構 429 面終端 450 電感特性 452 第一部份 454 第二部分 456 第三部份 458 第四部分 470 第三區域 500 裝置 502 鼓芯 504 中心線軸區域 506 終端元件 508 元件 510 線圈 529 終端 535 孔徑 561 帶 563 熱收縮管 586 L-型終端 588 凹口 600 裝置 602 雙鼓芯 604 線轴區域 608 中心元件 610 受控飽和度元件 611 軸 700 濾波電路 702 輸入部分Figure 17c is a cross-sectional view of another embodiment of the apparatus showing the use of a curved (hemispherical) gasket and a complementary core. Figure 17d is a cross-sectional view of another embodiment of the present invention in which two planar control elements are placed on opposite faces of the annulus. Figure 17E is a perspective exploded view of another embodiment of the present invention in which a non-planar control element is used to connect to the toroidal gap core. Figure 17F is a top perspective exploded view of another embodiment of the present invention. 56 1278877 [Explanation of main component symbols] 102 Inductance characteristics 106 Basic linear mode 108 Moderate ladder 300 Device 304 Base 306 Column 308 Center block 310 Aperture 400 Inductive component 402 Can 406 Column 408 Slot 409 Aperture 410 Device 413 Conductive coil 425 Terminal 416 Region 418 Region 427 Non-inductive Matrix Architecture 429 Face Terminal 450 Inductance Characteristics 452 First Port 454 Second Port 456 Third Port 458 Fourth Port 470 Third Region 500 Device 502 Drum Core 504 Center Bobbin Region 506 Terminal Element 508 Element 510 Coil 529 Terminal 535 Aperture 561 Band 563 Heat Shrink Tubing 586 L-Type Terminal 588 Notch 600 Device 602 Double Drum Core 604 Spool Area 608 Center Element 610 Controlled Saturation Element 611 Axis 700 Filter Circuit 702 Input Section

57 1278877 704 輸入終端 706 電感器 708 電感器 720 輸出部分 724 電感器 726 電感器 727 電容 728 電容 730 電容 736 電容 740 側插口 752 電子通路 762 簧片開關 764 簧片開關 770 雙電感器 780 電阻器 782 電阻器 790 電容器 791 震鈐電容 792 電容器 794 電阻器 796 電阻器 800 電路 840 電感 842 電感 866 輸入 868 輸入 900 電路 942 電感 966 輸入 968 輸入 1100 裝置 1102 磁透芯元件 1104 雙股線圈 1112 凸緣 1117 孔徑 1119 終端 1120 帽 1123 内邊緣 1124 唇緣 1127 配面 1130 電感元件 1180 彎曲物 1300 裝置 1302 磁透芯 1304 間隙 1306 線圈引線 1308 控制元件57 1278877 704 Input terminal 706 Inductor 708 Inductor 720 Output section 724 Inductor 726 Inductor 727 Capacitor 728 Capacitor 730 Capacitor 736 Capacitor 740 Side Socket 752 Electronic path 762 Reed switch 764 Reed switch 770 Dual inductor 780 Resistor 782 Resistor 790 Capacitor 791 Shock Capacitor 792 Capacitor 794 Resistor 796 Resistor 800 Circuit 840 Inductance 842 Inductance 866 Input 868 Input 900 Circuit 942 Inductance 966 Input 968 Input 1100 Device 1102 Magnetic Core Element 1104 Double Strand Coil 1112 Flange 1117 Aperture 1119 Terminal 1120 Cap 1123 Inner edge 1124 Lip 1127 Mating surface 1130 Inductive component 1180 Bending 1300 Device 1302 Magnetic core 1304 Clearance 1306 Coil lead 1308 Control element

58 導電線圈 透磁合金帶 透磁合金帶 熱收縮圓筒 芯 受控飽和度元件 厚度 芯 墊圈元件 黏結劑 控制元件 墊圈 穴 芯部分 墊圈 1600 裝置 1604 間隙 1 654 芯 1700 裝置 1702 線圈 1704 孔徑 1710 裝置 1712 線圈 1715 厚度 1720 電感元件 1731 芯 1 737 接觸點 1750 芯 1752 芯部分 5958 Conductive Coil Permeable Alloy with Permeable Alloy with Heat Shrink Cylindrical Core Controlled Saturation Element Thickness Core Washer Element Adhesive Control Element Washer Core Part Washer 1600 Device 1604 Clearance 1 654 Core 1700 Device 1702 Coil 1704 Aperture 1710 Device 1712 Coil 1715 Thickness 1720 Inductive Element 1731 Core 1 737 Contact Point 1750 Core 1752 Core Section 59

Claims (1)

1278877 拾、申請專利範圍: 1 · 一種電感元件,其至少包含: 一磁透芯(magnetically permeable core),其具有一間 隙形成其中; " 至少一線圈,置於該芯鄰近處;以及 * 至少一大致平面之磁透元件,置於該間隙鄰近處; 其中該至少一可透性元件及芯係相配合提供一所欲 電感特性以作為電流之一函數。 φ 2.如申請專利範圍第1項所述之電感元件,其中該至少一 磁透元件至少包含一金屬合金。 3 ·如申請專利範圍第1項所述之電感元件,其中該線圈係 設於距該間隙之指定距離處。1278877 Pickup, Patent Application Range: 1 - An inductive component comprising at least: a magnetically permeable core having a gap formed therein; " at least one coil disposed adjacent to the core; and * at least a substantially planar magnetically permeable member disposed adjacent the gap; wherein the at least one permeable member and the core are coupled to provide a desired inductance characteristic as a function of current. 2. The inductive component of claim 1, wherein the at least one magnetically transmissive component comprises at least one metal alloy. 3. The inductive component of claim 1, wherein the coil is disposed at a specified distance from the gap. 4.如申請專利範圍第1項所述之電感元件,其中該間隙大 致呈“V”型。 5 ·如申請專利範圍第1項所述之電感元件,其中該電感特 性至少包含一與一第一狀態相關的電感值,該電感值基 本上大於一與一第二狀態相關的電感值。 6 ·如申請專利範圍第5項所述之電感元件,其中該元件適 60 1278877 用於電信電路中,且該第一狀態至少包含一 “待機 (on-hook)”電流,而該第二狀態至少包含“使用中 (off-hook)’’電流。 7.如申請專利範圍第1項所述之電感元件,其中該至少一 大致平面元件係經放置以使一垂直於該元件平面之向 量大致平行於該芯的中心軸。4. The inductive component of claim 1, wherein the gap is substantially "V" shaped. 5. The inductive component of claim 1, wherein the inductance characteristic comprises at least an inductance value associated with a first state, the inductance value being substantially greater than an inductance value associated with a second state. 6. The inductive component of claim 5, wherein the component is suitable for use in a telecommunications circuit, and the first state includes at least one "on-hook" current, and the second state At least an "off-hook" current is provided. 7. The inductive component of claim 1, wherein the at least one substantially planar component is placed such that a vector perpendicular to the plane of the component is substantially Parallel to the central axis of the core. 8 ·如申請專利範圍第7項所述之電感元件,其中該的至少 一大致平面元件至少包含一平坦且基本上環形的墊圈。 9 ·如申請專利範圍第1項所述之電感元件,其中該至少一 大致平面元件至少包含一基本上環形的墊圈,其具有一 彎曲内表面,且該内表面係置於該芯之至少一面的鄰近 處。The inductive component of claim 7, wherein the at least one substantially planar component comprises at least one flat and substantially annular gasket. 9. The inductive component of claim 1, wherein the at least one substantially planar component comprises at least one substantially annular gasket having a curved inner surface and the inner surface is disposed on at least one side of the core The proximity of the place. 1 0 ·如申請專利範圍第9項所述之電感元件,其中該基本上 環形的塾圈至少包含一百利(Belleville)墊圈。 1 1 ·如申請專利範圍第1項所述之電感元件,其中該至少一 大致平面之磁透元件至少包含兩元件,其等係置於該間 隙鄰近處以及該芯元件之各自相對面上。 61 1278877 1 2 ·如申請專利範圍第1 1項所述之電感元件,其中該兩個大 致平面元件之每一者至少包含一平坦且基本上環形的 墊圈,該墊圈在至少一態樣中彼此不相同。 13.如申請專利範圍第12項所述之電感元件,其中該至少一 態樣包含厚度。The inductive component of claim 9, wherein the substantially annular loop comprises at least one Belleville washer. The inductive component of claim 1, wherein the at least one substantially planar magnetically transmissive component comprises at least two components disposed adjacent to the gap and respective opposing faces of the core component. The inductive component of claim 1, wherein each of the two substantially planar components comprises at least one flat and substantially annular gasket, the gaskets being in each other in at least one aspect Not the same. 13. The inductive component of claim 12, wherein the at least one aspect comprises a thickness. 1 4 ·如申請專利範圍第1 2項所述之電感元件,其中該至少一 個態樣包含透磁率(magnetic permeability)。 1 5 ·如申請專利範圍第1項所述之電感元件,其中該大致平 面元件包含一具有至少第一及第二層的多層裝置,該第 一層具有至少一種不同於第二層的特性。The inductive component of claim 12, wherein the at least one aspect comprises a magnetic permeability. The inductive component of claim 1, wherein the substantially planar component comprises a multilayer device having at least first and second layers, the first layer having at least one property different from the second layer. 16.—種製造一受控電感元件的方法,其至少包含下列步 驟: 提供一磁透環形芯,其具有一延伸透過其至少一部分 之間隙; 將一磁透元件置於該間隙及該芯之鄰近處;以及 將多個傳導線阻(conductive turns)環繞該芯和該元16. A method of making a controlled inductive component, comprising the steps of: providing a magnetically permeable toroidal core having a gap extending through at least a portion thereof; placing a magnetically transmissive component in the gap and the core Adjacent; and a plurality of conductive turns surrounding the core and the element 件。 17.如申請專利範圍第16項所述之方法,其中該放置動作至 62 1278877 少包含下列步驟: 將一黏結劑放置於下列至少一者(i )該芯之一面(ii ) 該元件之一相配面;以及 將該可透性元件置於該芯之鄰近處以使該黏結劑可 將該元件結合至該芯。Pieces. 17. The method of claim 16, wherein the placing action to 62 1278877 comprises the following steps: placing a bonding agent on at least one of the following (i) one side of the core (ii) one of the elements a mating surface; and placing the permeable element adjacent the core such that the bonding agent can bond the element to the core. 18.如申請專利範圍第17項所述之方法,其更包含在該環繞 動作之前在聚合物内密封該芯之至少一部分。 1 9.如申請專利範圍第1 8項所述之方法,其更包含在該環繞 動作之前在聚合物内密封該元件之至少一部分。 20.如申請專利範圍第16項所述之方法,其更包含將一第二 磁透元件置於該間隙和該芯之鄰近處,該環繞多個線匝 的動作亦包圍該第二元件之至少一部分。18. The method of claim 17, further comprising sealing at least a portion of the core within the polymer prior to the surrounding action. The method of claim 18, further comprising sealing at least a portion of the component within the polymer prior to the wrapping action. 20. The method of claim 16, further comprising placing a second magnetically permeable element adjacent the gap and the core, the action surrounding the plurality of turns also surrounding the second component At least part. 21.—種適用於電信電路中的電感元件,該元件具有一受控 電感特性,其至少包含: 一磁透環形芯,其具有一間隙形成其中; 至少一磁透元件,適用於磁性橋接該間隙之至少一部 分;以及 至少一線圈,其纏繞在該芯及諒至少一可透元件上; 其中該電感特性包含一與「待機」電流相關的電感值 63 1278877 基本上大於與「使用」電流相關的電感值。 22·如申請專利範圍第21項所述之元件,其中: 該至少一元件係由一磁透材料及以一第一預定架構 ~ 所形成;以及 · 該間隙係形成在一第二預定架構内; 該第一和第二預定架構和該材料係配合以提供該電 感特性。 φ 23.如申請專利範圍第22項所述之元件,其中該第一預定架 構包含基本上環型的元件,且該第二預定架構包含一特 定的間隙寬度和形狀。 24.—種電信元件,具有: 一第一端口,用於與外部電話線聯繫的;21. An inductive component suitable for use in a telecommunications circuit, the component having a controlled inductance characteristic comprising at least: a magnetically transparent toroidal core having a gap formed therein; at least one magnetically transmissive component adapted for magnetically bridging the At least a portion of the gap; and at least one coil wound around the core and at least one permeable member; wherein the inductance characteristic includes an inductance value associated with the "standby" current 63 1278877 substantially greater than the "usage" current Inductance value. The component of claim 21, wherein: the at least one component is formed by a magnetically permeable material and formed by a first predetermined structure; and the gap is formed in a second predetermined structure The first and second predetermined structures and the material cooperate to provide the inductive characteristic. The element of claim 22, wherein the first predetermined frame comprises a substantially annular element and the second predetermined structure comprises a specific gap width and shape. 24. A telecommunications component having: a first port for communicating with an external telephone line; 一第二端口,用於在該第一端口及一第一用戶元件間 傳送第一信號; 一第三端口,用於在該第一端口和一第二用戶元件間 傳送第二信號;以及 一濾波電路,該濾波電路適於選擇性地封鎖該第一信 號被傳送到該第二端口,該濾波電路包含具有一電感特性 之至少一環形芯元件,該電感特性至少部分由該至少一環 形芯鄰近處之一磁透元件的厚度所決定, 64 1278877 其中該電感特性包含一與“待機”電流相關的電感 值’其基本上大於與“使用中”電流相關的電感值。 25· 一種電感元件,其至少包含: 一磁透芯,其具有一間隙形成其中; 至少一線圈,設於該芯鄰近處;以及 至少一磁透元件,設於該間隙鄰近處; 其中該至少一可透性元件及芯係配合以提供_所 礅特性作為一電流函數,該電感特性包括該至少_元件 趟和時的比率,該比率至少部分地與該至少一元件的厚声 有關。 ^ 26·〜種低成本電感元件,其至少包含: 一磁透且基本上環型的芯,其具有一間隙形成其中; 至少一大致平面的墊圈,其設於該間隙鄰近處且利用 結合劑與該芯的至少一面相配,該至少一墊圈為磁可透 性日曰 及具有一經選擇的厚度,該經選擇的厚度至少部分可判 定在待機和使用狀態間電流變化期間之飽和率;和 其中該至少一可透性元件及芯係配合以提供一所欲 電感特性作為該電流之一函數。 •種電感元件,包含·· 一磁可透性芯,其具有/間隙形成其中,該芯具有一 65 1278877 截面,該截面在其外圍至少部分地成圓形靠近於該芯的至 少第一側; 至少一磁透元件,其係設於該第一面和該間隙之鄰近 處,該元件具有一内表面,其具有至少一彎曲區域適於與 該芯的至少部分成圓形的外圍配合以提供它們之間的封閉 耦合;以及 多個線圈線匝,其環繞該芯和該元件的至少一部分a second port for transmitting a first signal between the first port and a first user element; a third port for transmitting a second signal between the first port and a second user element; and a a filter circuit adapted to selectively block the first signal from being transmitted to the second port, the filter circuit comprising at least one annular core element having an inductive characteristic, the inductive characteristic being at least partially comprised by the at least one toroidal core Depending on the thickness of one of the magnetically permeable elements in the vicinity, 64 1278877 wherein the inductance characteristic includes an inductance value associated with the "standby" current 'which is substantially greater than the inductance value associated with the "in use" current. An inductive component comprising: at least: a magnetically permeable core having a gap formed therein; at least one coil disposed adjacent to the core; and at least one magnetically permeable element disposed adjacent the gap; wherein the at least A permeable element and a core are coupled to provide a current function as a function of current, the inductance characteristic comprising a ratio of the at least _ component 趟 and the time, the ratio being at least partially related to the thick sound of the at least one component. a low-cost inductive component comprising: a magnetically transparent and substantially toroidal core having a gap formed therein; at least one substantially planar gasket disposed adjacent the gap and utilizing a bonding agent and At least one side of the core is mated, the at least one gasket being magnetically permeable and having a selected thickness that at least partially determines a saturation rate during a change in current between standby and use states; and wherein At least one permeable element and core are mated to provide a desired inductance characteristic as a function of the current. An inductive component comprising: a magnetically permeable core having a / gap formed therein, the core having a 65 1278877 cross section at least partially rounded at its periphery adjacent to at least a first side of the core At least one magnetically transmissive element disposed adjacent the first face and the gap, the element having an inner surface having at least one curved region adapted to cooperate with at least a portion of the periphery of the core Providing a closed coupling between them; and a plurality of coil turns surrounding the core and at least a portion of the component 的, 其中該至少一可透性元件及芯係配合以提供一所欲 電感特性作為電流之一函數。 28.—種電感元件,包含: 一磁透芯,其包含第一和第二基本上分離的芯部分; 以及The at least one permeable element and the core are coupled to provide a desired inductance characteristic as a function of current. 28. An inductive component comprising: a magnetically permeable core comprising first and second substantially separate core portions; 至少一磁透元件,其至少部分置於該第一和第二芯部 分之間; 其中該至少一可透性元件及芯係配合以提供一所欲 電感特性作為電流之一函數。 29.如申請專利範圍第28項所述之元件,其中該芯的形狀基 本上是環型的,且該第一和第二部分包含數個由一與平 行於該芯主要面之該芯相交的面所界定的部分。 66 1278877 3 0.如申請專利範圍第29項所述之元件,其中該至少 包含至少一類似墊圈的環型元件,其大致置於該 第一和第二部分間。 3 1.如申請專利範圍第3 0項所述之元件,其中該芯部 類似墊圈元件中至少一者包含一間隙,以大致徑 形成其中。 一元件 芯之該 分或該 向方向 67At least one magnetically transmissive element at least partially disposed between the first and second core portions; wherein the at least one permeable element and the core are mated to provide a desired inductance characteristic as a function of current. 29. The element of claim 28, wherein the core is substantially annular in shape and the first and second portions comprise a plurality of intersecting the core parallel to the major face of the core The part defined by the face. The element of claim 29, wherein the at least one gasket-like ring-shaped member is disposed substantially between the first and second portions. 3. The component of claim 30, wherein at least one of the core-like gasket elements comprises a gap formed in a substantially radial diameter. The component or direction of a component core 67
TW93128332A 2003-09-17 2004-09-17 Controlled inductance device and method TWI278877B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/666,580 US7109837B2 (en) 2003-03-18 2003-09-17 Controlled inductance device and method
US10/882,864 US20050088267A1 (en) 2002-09-17 2004-06-30 Controlled inductance device and method

Publications (2)

Publication Number Publication Date
TW200519984A TW200519984A (en) 2005-06-16
TWI278877B true TWI278877B (en) 2007-04-11

Family

ID=34890612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93128332A TWI278877B (en) 2003-09-17 2004-09-17 Controlled inductance device and method

Country Status (2)

Country Link
CN (1) CN1641805A (en)
TW (1) TWI278877B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562684B (en) * 2012-06-19 2016-12-11 Tokyo Electron Ltd

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468648A (en) * 2010-11-10 2012-05-23 程燕铷 Electromagnetic current impeder
TWI481249B (en) * 2010-12-03 2015-04-11 Foxconn Tech Co Ltd Splitter for splitting voice data and adsl data
EP3035348B1 (en) * 2014-12-17 2017-08-09 ABB Schweiz AG Shielding for an inductive device with central first winding connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562684B (en) * 2012-06-19 2016-12-11 Tokyo Electron Ltd

Also Published As

Publication number Publication date
TW200519984A (en) 2005-06-16
CN1641805A (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US7109837B2 (en) Controlled inductance device and method
EP1615243A2 (en) Controlled inductance device and method
US8643456B2 (en) Form-less electronic device assemblies and methods of operation
US7009482B2 (en) Controlled inductance device and method
US8310331B2 (en) Stacked inductive device assemblies and methods
US7057486B2 (en) Controlled induction device and method of manufacturing
EP2104114A1 (en) Multi-core inductive device and method of manufacturing
TWI278877B (en) Controlled inductance device and method
TWI316724B (en) Form-less electronic device and methods of manufacturing
WO2004027793A1 (en) Controlled inductance device and method
US7110931B2 (en) Advanced electronic signal conditioning assembly and method
US20040252825A1 (en) Integrated coupled inductor xDSL POTS filter apparatus
US20030043996A1 (en) Magnetically activated electric filter apparatus
JP2005142320A (en) Stacked magnetic core and electronic component
US20030190039A1 (en) Saturable core POTS/DSL filter
KR200384024Y1 (en) Adsl/vdsl combined splitter comprising a pair of inductor using the ferrite core
JP2003163118A (en) Winding-type inductor
JP2006180328A (en) Filter block

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees