TWI278320B - A complex immunity gene medicine composition for inhibiting tumor cell - Google Patents

A complex immunity gene medicine composition for inhibiting tumor cell Download PDF

Info

Publication number
TWI278320B
TWI278320B TW92130562A TW92130562A TWI278320B TW I278320 B TWI278320 B TW I278320B TW 92130562 A TW92130562 A TW 92130562A TW 92130562 A TW92130562 A TW 92130562A TW I278320 B TWI278320 B TW I278320B
Authority
TW
Taiwan
Prior art keywords
cell
cells
natural killer
tumor
interleukin
Prior art date
Application number
TW92130562A
Other languages
Chinese (zh)
Other versions
TW200514567A (en
Inventor
Rea-Min Chu
Ching-Yi Lin
Ya-Wen Hsiao
Kuang-Wen Liao
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW92130562A priority Critical patent/TWI278320B/en
Publication of TW200514567A publication Critical patent/TW200514567A/en
Application granted granted Critical
Publication of TWI278320B publication Critical patent/TWI278320B/en

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

This invention relates to a complex immune gene medicine composition for inhibiting tumor cell. Via activating natural killer cell primarily, it improves immune response. By the merging way of using several cell hormones, for instance, it uses the first helper T cell (T-helper type 1, Th1) and the second helper T cell (T-helper type 2, Th2) type cell hormone. By using the Th2 type cell to inhibit the anti-extension growth factor to the natural killer cell suppression, it relieves the host immune inhibitory state. Furthermore, by using the Th1 type cell to activate vivacious natural killer cell in host, it strengthens the ability of host immune system to resist the growth of tumor cell. Finally, it achieves the goal of removing tumor cell.

Description

1278320 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於一種抑制腫瘤細胞之醫藥組成物, 尤其有關於一種抑制腫瘤細胞之複合式免疫基因醫藥組 成物,及利用該醫藥組成物抑制腫瘤細胞生長的方法。 【先前技術】 犬傳染性花柳性腫瘤(canine transmissible venereal Uim〇r,CTVT)為一種自然發生、低度分化的癌化細胞。其 主要藉由交配或舔咬,經由活腫瘤細胞與受傷之皮膚或黏 膜相接觸而感染。其可於犬隻之間相互傳染,與同種異體 移植(allograft)相似。實驗接種的犬傳染性花柳性腫瘤會 表現出一可預期的生長模式。腫瘤生長的變化可分為生長 期(Progressive,P phase)、穩定期(Stasis,s phase),以及消 退期(Regression,R phage)。犬傳染性花柳性腫瘤細胞於生 長期僅能表現極少量的主要組織相容複合物(maj〇r histocompatibility complex,MHC),但於生長期及消退期 時則會產生大量的轉形生長因子(transf〇rming以⑽让 factor-β,TGF-β)。轉形生長因子具有使第一類及第二類主 要組織相容複合物(MHC I及MHC II)不表現以及抑制自 然殺手(natural killer,NK)細胞活性的特性。此外,犬傳染 性花柳性腫瘤之腫瘤浸潤淋巴球(tum〇r infihming lymphoytes,TILs)中有咼達90%的細胞為不表現丁細胞及 B細胞辨識抗原之非T非B淋巴球,該族群在型態學觀察 1278320 下壬現和自然殺手細胞極為相似之大顆粒性淋巴球,此非 T非B淋巴球應為自然殺手細胞。 第一類主要組織相容複合物抗原為一和β2小球蛋白 W2_mi⑽globulin,β2ηι)共同表現於細胞膜上之醣蛋白,大 小約為44kDa,在人類又名為組織相容性白血球抗原 (histocompatibility leukocyte antigens,HLA) 〇 於宿主體内,腫瘤會藉由多種不同的機制以逃避宿 主免疫系統的監控而生長,而其中主要組織相容複合物分 子的不表現或低表現性係為腫瘤細胞常用的機制之一。例 S員腫落包括原發性乳房惡性上皮癌(Primary breast CarCin〇ma)、惡性腎細胞上皮癌(Advanced renal cell CaiXln〇ma)、黑色素瘤(Melanoma)、攝護線癌(prostate cancer)、肺臟上皮癌(Lung carcinoina),以及其他包括結 ^膀脱皮膚、子宮内膜等各種來源之腫瘤,皆被發現 有不專程度之主要組織相容複合物表現量降低的現象,甚 至有些惡性腫瘤會完全的不表現。動物方面,發生在禽類 由馬力克病毒所引起的T淋巴瘤,以及犬的犬傳染性花柳 ί腫& 亦可見主要組織相容複合物表現量極低的情況。 當腫瘤細胞中主要組織相容複合物表現量低的情況 下’宿主體内的自然殺手細胞會因,,失去自我(missing ⑺的因素’使細胞表面之活化受器(activating receptors) ^乍用而進行毒殺作用。然而,許多的腫瘤細胞會產 生轉形生長因子來抑制會因主要組織相容複合物分子不 見斤活化之自然殺手細胞。因此,免疫系統便無法正常 1278320 的執行其功能,所以腫瘤得以於宿主體内肆無忌憚的生 長。 轉形生長因子為一大小約25kDa的同型雙體蛋白質 (homodimeric protein),於哺乳動物的免疫系統上具有非 常強的調節效應。以外加轉形生長因子的方式,於活體外 培養淋巴球發現,其可抑制B細胞、成熟之τ細胞、胸腺 細胞、自然殺手細胞,以及淋巴激素活化殺手細胞 (lymphokine-activated killer cells,LAK)的分裂。目前已知 有許多腫瘤會產生轉形生長因子,包括結腸直腸癌 (C〇l〇rectalcancer)、乳腺腫瘤、甲狀腺瘤、惡性肝細胞瘤 (Hepatocellular carcin⑽a,Hcc),以及 Meth a 腫瘤。轉 形生長因子除能藉由促進血管生成與細胞附著等特性來 ’助腫瘤生長外,更能藉由降低主要組織相容複合物分子 以及細胞間附著因子-1(Intercellular adhesi〇n卿^心I IC AM-1)的表現來躲避宿主免疫系統的啟動。 針對腫瘤來源之轉形生長因子對免疫系統的抑制作 用’如果以拮抗或減少分泌等方法來降低轉形生長因子的 效應,則體内的免疫系統就可正常的執行功能以移除腫瘤 細胞。目前關於抑制轉形生長因子的免疫療法,主要以施 打抗轉形生長因子的抗體及反意股寡核*酸(心仏咖 ohgomicleotides)的基因治療兩種方法為主。 在對抗因轉形生長因子或其他機制而造成細胞不表 現主要組織相容複合物分子的腫瘤時,免疫系統中抗原專 一性的T淋巴球細胞毒殺作用無法執行,因此針對不表現 1278320 主要組織相容複合物分子的細胞進行毒殺的自然殺手細 胞便私/貝極為重要的角色。所以和自然殺手細胞的分化、 激 與執行功能等息息相關的細胞激素便和自然殺手細 胞是否能成功的移除腫瘤有極大的相關。這些細胞激素包 括:γ-干擾素(γ-interferon,IFN-γ)、介白素(Interleukin-2, 以下簡稱IL-2)、介白素-12 (以下簡稱il-12)、介白素-15 (以下簡稱IL-15)、介白素-18 (以下簡稱il-18),以及介白 素-21 (以下簡稱il-2 1),它們對於免疫系統中τ淋巴球、 Β淋巴球、自然殺手細胞,以及相關的免疫細胞均有作用。 習知已有數種細胞素於活體外及特定的動物實验 上,皆證實有顯著的抗腫瘤效果,此發現使得細胞素在人 類癌症治療方面的研究引起眾人的注目。目前在臨床上用 來抗癌的細胞素主要分為兩類,一為第一型輔助型Τ細胞 (T-helper type 1,Thl)細胞素,此類細胞素所引起之反應主 要和IL-2及IFN-γ的產生,以及後續所引發的細胞免疫有 關,例如:IL-2、IL-12、IL-15、IL-18、IFN-γ ;另一為第 二型輔助型T細胞(T-helper type 2, Th2)細胞素,此類細 胞素則以引發IL-4、IL-5及IL-6(3者皆為刺激β細胞生 長及分化的細胞素)的產生,以引發體液免疫反應為特 徵。然而,細胞素的免疫療法在臨床上的研究結果顯示, 投藥的方式、劑量、腫瘤的類別、是否需搭配使用其他細 胞素或藥物,以及可能造成的副作用等,每一個因素都關 係著此一免疫療法的成效與臨床之應用性。雖然免疫基因 療法對於腫瘤具有一定程度之療效,但仍有使用上受限之 1278320 處。相對於此,針對腫瘤本身的免疫特性,強調以合併使 用多種細胞素之概念,以達到腫瘤消退之效果。 【發明内容】 本發明之目的,係提供一種抑制腫瘤細胞之複合式 免疫基因醫藥組成物,以拮抗轉形生長因子(transforming growthfactorJ’TGFj)的免疫抑制作用,以恢復自然殺手 細胞之毒殺能力。 本發明之另一目的,係提供一種抑制腫瘤細胞之複 合式免疫基因醫藥組成物’活化宿主體内自錢手細胞對 腫瘤細胞的毒殺活性。 由於某些腫瘤於生長過程中,腫瘤細胞會藉由降低 主要組織相容複合物(maj〇r hist〇c〇mpatibility MHC)分子的表現來逃避宿主體内特異性免疫反應(CD8+ τ細胞)的攻擊,而自然殺手細胞雖會因為組織相容複合物 分子的不表現而活化,但腫瘤卻同時會產生轉形生長因子 以抑制自然殺手細胞的分化及活性,同時造成其數目的降 低及細胞毒殺能力的抑制、細胞表面IFN_a受器、IL_2受 器之α鏈(a chain)的表現量降低,以及分泌ΙΝρ_γ之量減 少等。 本發明即針對上述腫瘤逃避宿主系統的機制,提供 一種複合式免疫基因醫藥組成物,用以活化以自然殺手細 胞為主之免疫反應。此複合式免疫基因醫藥組成物係藉由 合併使用複數種細胞激素之方式,即合併使用ΤΜ及Th2 類型細胞素之方式,藉由運用Th2類型細胞素拮抗轉形生 1278320 長因子對自然殺手細胞的抑制,解除宿主的免疫抑制狀 態’再以Thl類型細胞素活化宿主體内自然殺手細胞,以 增強宿主免疫系統對抗腫瘤細胞生長之能力,以期最後達 成腫瘤移除的目的。 前述之Thl類型細胞素,包含:IL_2、IL_12、IL_15、 IL-18及IFN-γ等;前述之Th2類型細胞素,包含·· IL_4、 IL-5 及 IL-6 等。 為確認根據本發明所指出之複合式免疫基因醫藥組 成物對於腫瘤細胞之抑制效果,在此本發明以犬傳染性花 柳性腫瘤(以下簡稱CTVT)作為測試之腫瘤模式,因為(〇 CTVT為一種主要組織相容複合物分子低表現性之腫瘤; (2)CTVT會產生大量的轉形生長因子;(3)CTVT的腫瘤浸 潤淋巴球(TILs)中,有高達85%的細胞為不表現CD3及 CD21之非τ非B淋巴球,其應為犬之殺手細胞。 根據本發明所指出之複合式免疫基因醫藥組成物, 係可藉由習知之技術分別構築出比“及IL_15的質體,構 築完成之質體於經過定序確定其序列無誤後,進行活體外 ⑽vzir〇)之細胞轉染,並收取轉染之上清液測試是否能產 生具有功能性之IL-6及IL-15蛋白質。 接著於活體外測試IL-6及IL-15合併及單獨使用 時,對轉形生長因子所抑制之自然殺手細胞毒殺能力的回 復作用。再以IL-6及il-15質體送入活體内(BALB/C小 鼠)’測量基因於小鼠體内之表現狀況,以及對脾臟之淋 巴球族群分佈及和自然殺手細胞毒殺能力之影響,藉以了 !278320 解IL_6及IL-15質體在被送入小鼠體内後,所製造之細胞 素的表現狀況。最後,以具有免疫缺陷之C b_17 scid小 鼠做為腫瘤接種之動物模式,由於此品系之小氣體内T及 B淋巴球無法執行功能,只具有功能性之自然殺手細胞, 以評估根據本發明所指出之複合式免疫基因醫藥組成物 針對自然殺手細胞作用之提昇及其對CTVT之抑制效果。 經前述之測試後,證實根據本發明所指出之複合式 免疫基因醫藥組成物,確實能達成拮抗轉形生長因子對自 然殺手細胞的抑制,解除宿主的免疫抑制狀態,以及活化 宿主體内自然殺手細胞,以增強宿主免疫系統對抗腫瘤細 胞生長之能力的目的。亦即,根據本發明所指出之含有 丁 hi及Th2種類的細胞素之複合式免疫基因醫藥組成物, 能針對具有組織相容複合物分子低表現性且產生轉形生 長因子之腫瘤,不但能對症下藥,展現對抗腫瘤之效果, 能旁及其他的免疫反應,以多管齊下之方式抑制腫瘤細胞 之生長。 本發明將藉由參考下列的實施方式做進一步的說 明,這些實施方式並不限制本發明前面所揭示之内容。熟 習本發明之技藝者’可做些許之改良與修_,但仍不脫離 本發明之範_。 1278320 【實施方式】 由於犬之IL-6基因無法輕易自犬體内取得,且IL-15 mRNA在正常動物體組織中的含量極少,故本發明在此使 用之 IL-6 (SEQ ID NO : 1)及 IL-15 (SEQ ID NO ·· 3)基因 係分別取自於人類之IL-6質體,以及人工合成之含IL-2 訊號胜肽(signal peptide,SEQ ID NO : 2)序列之人類 IL-15 基因(IL-2SP/IL-15MP 嵌合基因,SEQ ID NO ·· 4)。 將前述之IL-6及IL-15基因,藉由使用商品化實驗 套組 pcDNA3. l/V5-His-TOPO ΤΑ Expression Kit (Invitrogen,Groningen, Netherlands)選殖將 IL_6 基因及 IL-2SP/ IL-15MP 嵌 合基因 分 別 插 入 pcDNA3.1/V5-His-TOPO (5523鹼基對)質體中,以完成 IL-6及IL-2SP/ IL-15MP質體的構築。構築完成之質體再 以習知之質體轉形(transformation)技術,將此質體DNA 轉形至商品化之E. coli勝任細胞(competent cell)(益生, 台灣,中華民國)内,運用聚合酶鏈反應、限制酶酶切反 應,以及定序三步驟確認基因之正確性。將序列正確之質 體再大幅增殖並以Nucleobond AX大量質體DNA分離套 組(Macherey-Nagel,Oensingen,瑞士),將質體之 DNA 分 離出。 接著進一步測試測試構築完成之IL-6質體是否能表 現出具有功能之IL-6蛋白質。在此選用需以IL-6為生長 必須因子之細胞株TF-1 (ATCC No· CRL-2003),以習知之 MTS試驗測試質體轉染後所得之細胞上清液是否含有 12 1278320 IL-6之活性。測試之結果顯示IL-6質體轉染Balb/3T3細 胞(ATCC No· CCL-163)後所得之上清液可有效的使 細胞進行細胞分裂,而轉染不含任何基因的 PCDNA3· l/V5-His-T0P0質體及單獨培養Baib/3T3細胞的 上清液則不具此活性,顯示構築完成之iL_6質體確實能 表現出具有功能之IL-6蛋白質。 另運用相同之方法測試IL-15質體是否同樣可產生 具有功能性之IL-15蛋白質,在此使用需在IL-15存在下 才能進行細胞分裂之HT-2細胞(ATCCNo. CRL_1841)。將 轉染IL-15質體的Balb/3T3細胞培養上清液,加入ht/2 細胞中培養,測試之結果顯示IL-15質體轉染Balb/3T3細 胞後所得之上清液可有效的使HT-2細胞進行細胞分裂, 而轉染不含任何基因的pcDNA3.1/V5-His-TOP〇質體及單 獨培養Balb/3T3細胞的上清液則不具此活性,顯示構築 完成之IL_15質體確實能表現出具有功能之IL-15蛋白質。 接著以活體外試驗測試IL_6及IL-15對轉形生長因 子所抑制之自然殺手細胞活性的影響。由測試結果中可看 出合併使用IL-6及IL-15,和單獨使用IL-6或IL-15的處 理、、且相比,對於YAC-1小鼠淋巴瘤細胞的毒殺比率明顯提 南。此結果顯示,於單獨作用的情況下,若只有IL-6的 存在’雖解除了轉形生長因子對自然殺手細胞的抑制作 用,但卻缺乏活化自然殺手細胞的物質,使得毒殺的效應 不頒著’反之’若只存在活化自然殺手細胞的IL-15,卻 …、法私除I形生長因子,則自然殺手細胞之活性便會受其 13 1278320 抑制而無法完全回復。而惟有在IL-6和IL- 1 5同時存在的 情況下,以IL-6拮抗轉形生長因子對自然殺手細胞的免 疫抑制作用,再以IL-1 5進一步的活化自然殺手細胞,才 能有效提昇自然殺手細胞毒殺能力。 為進一步證實IL-6和IL-15合併使用時對於活體内 免疫之影響,在此以肌肉活體基因電衝方式,將iL-6及 IL-15質體單獨或一起送入BALB/C小鼠體内,以評估其 對小鼠脾臟中免疫細胞之影響。肌肉活體基因電衝是近年 來基因治療中非病毒載體傳遞基因極為常用之方法,其安 全性南’不似病毒載體容易引起宿主之免疫反應,且在抗 肉轉載質體之效率極佳,產生蛋白質的能力亦強,且靠近 體表谷易操作。由血清之酵素連結免疫吸附分析 (enzyme-linked immunosorbent assay,ELISA)結果顯示 IL-6及IL-1 5質體能在小鼠體内成功的進行全身性之表 現。 在進行貝體基因電衝後之第14天,發現相較於單獨 使用IL-6或IL-15質體,合併使用此二質體之處理組小鼠 的脾臟中,自然殺手細胞之數目及毒殺能力均呈明顯之上 升現象。此外,IL-15處理組在E/Trati〇 5〇/1及12 %時, 其自然殺手細胞毒殺能力雖然低於IL_6和IL_丨5合併使用 者,但仍顯著的高於IL-6和載體(Vector)處理組,此結果 說明了 IL-1 5本身即可促進自然殺手細胞之活化。 C.B-17 SCID小鼠.為一種由人工選殖引發之基因缺 陷所造成之免疫發育不全品系,其不具有成熟具功能性之 14 1278320 T細胞及B細胞。然而,其他的免疫細胞,包括骨髓母細 胞(myeloid cells)、抗原呈現細胞(antigen_presenting ceiis, APCs),以及自然殺手細胞,均具有正常的功能。在此以 C.B-17 SCID小鼠進行犬傳染性花柳性腫瘤之異種接種 (xenotransplantation)後,再以肌肉活體基因電衝之方式, 將IL-6和IL-15質體送入。測試分為兩部份進行··第一部 份在評估IL-6和IL-15兩者對於腫瘤形成之影響;第二部 份則進一步觀察此二細胞素對於已形成之腫瘤的抑制效 果。結果顯示,在腫瘤的形成方面,IL-6和IL-15合併使 用時對於腫瘤有最佳之抑制作用。IL-15單獨使用時對於 犬傳染性彳匕柳性腫瘤之生長亦有輕微之延緩作用,但單獨 使用IL-6腫瘤則無明顯影響。然而,當腫瘤已經形成後, 惟有合併使用IL-6和IL-15質體之小鼠才能有減緩犬傳染 性花柳性腫瘤之生長速度,只投予IL_6或IL-15質體街無 法遏阻腫瘤的持續生長。如由腹腔注射投予Anti_asiai〇 GM-1抗體,同時接受IL-6和IL-15質體後,犬傳染性花 柳性腫瘤仍然持續不斷的在其體内生長。此結果說明了, 自然殺手細胞在此複合式的基因療法中,扮演了決定性的 角色。 實施例一 IL-6及IL-15基因之取得與合成 IL-6 基因係根據取自於 NCBI pubmed (hup://www· ncbi.nlm.nih.gov),基因資料庫(Genbank)登錄號(Accessi〇n 15 1278320BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pharmaceutical composition for inhibiting tumor cells, and more particularly to a composite immunogenic composition for inhibiting tumor cells, and inhibiting the composition using the pharmaceutical composition A method of tumor cell growth. [Prior Art] Canine transmissible venereal Uim〇r (CTVT) is a naturally occurring, low-differentiated cancerous cell. It is mainly infected by contact with injured skin or mucous membranes by living tumor cells by mating or biting. It can be transmitted between dogs and is similar to allograft. Experimentally inoculated canine infectious sputum tumors will exhibit a predictable growth pattern. Changes in tumor growth can be divided into Progressive (P phase), Stasis (s phase), and Regression (R phage). Infectious canine tumor cells can only express a very small amount of major histocompatibility complex (MHC) during the growth phase, but produce a large number of transforming growth factors during the growth phase and the regression phase. Transf〇rming to (10) let factor-β, TGF-β). The transforming growth factor has the property of rendering the first and second major histocompatibility complexes (MHC I and MHC II) non-expressing and inhibiting the activity of natural killer (NK) cells. In addition, 90% of the cells in the tum〇r infihming lymphoytes (TILs) of the canine infectious tumor are non-T non-B lymphocytes that do not express the antigens of the cells and B cells. Large-sized lymphocytes, which are very similar to natural killer cells, are observed under the type observation 1278320. This non-T non-B lymphocytes should be natural killer cells. The first major histocompatibility complex antigen is a glycoprotein expressed on the cell membrane together with β2 small globulin W2_mi(10)globulin, β2ηι), which is about 44kDa in size, and is also called histocompatibility leukocyte antigens in humans. , HLA) In the host, tumors grow by evading the monitoring of the host immune system by a variety of different mechanisms, and the non-expression or low-expression of major histocompatibility complex molecules is a common mechanism for tumor cells. one. Case S swells include primary breast CarCin〇ma, advanced renal cell CaiXln〇ma, melanoma, prostate cancer, Lung carcinoina, as well as other tumors including various types of tissues such as the skin and the endometrium, have been found to have reduced levels of major histocompatibility complexes, and even some malignant tumors. Will not behave completely. In animal terms, it occurs in avian T-lymphoma caused by Marek's virus, as well as in dogs with canine infectious swells. It is also seen that the main histocompatibility complex has a very low performance. When the amount of major histocompatibility complex in tumor cells is low, the natural killer cells in the host will cause loss of self (missing factor (7) to activating receptors on the cell surface. However, many tumor cells produce a transforming growth factor to inhibit natural killer cells that are not activated by the major histocompatibility complex molecules. Therefore, the immune system cannot perform its function normally, 1278320, so The tumor can grow unscathed in the host. The transforming growth factor is a homodimeric protein of about 25kDa, which has a very strong regulatory effect on the mammalian immune system. By means of in vitro culture of lymphocytes, it is found to inhibit the division of B cells, mature tau cells, thymocytes, natural killer cells, and lymphokine-activated killer cells (LAK). Many tumors produce transforming growth factors, including colorectal cancer (C〇l Rectalcancer, breast tumor, thyroid tumor, hepatocellular carcinoma (10)a, Hcc), and Meth a tumor. In addition to promoting angiogenesis and cell adhesion, the transforming growth factor can help tumor growth. Avoiding the initiation of the host immune system by reducing the expression of major histocompatibility complex molecules and intercellular adhesion factor-1 (Intercellular adhesi〇nqingxin I IC AM-1). Inhibition of the immune system 'If the effect of transforming growth factor is reduced by antagonism or reduced secretion, the immune system in the body can perform functions normally to remove tumor cells. Current immunity against inhibition of transforming growth factor Therapy is mainly based on the application of antibodies against anti-transformation factors and gene therapy of anti-infected oligonuclear acid (oh m 仏 oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh oh When the tumors exhibiting major histocompatibility complex molecules, the antigen-specific T lymphocyte cytotoxicity in the immune system cannot be Execution, therefore, the role of natural killer cells that are not toxic to cells that do not express 1278320 major histocompatibility complex molecules is extremely important. Therefore, it is closely related to the differentiation, activation and executive function of natural killer cells. Whether natural killer cells can successfully remove tumors is highly relevant. These cytokines include: γ-interferon (IFN-γ), interleukin-2 (hereinafter referred to as IL-2), Baisu-12 (hereinafter referred to as il-12), interleukin-15 (hereinafter referred to as IL-15), interleukin-18 (hereinafter referred to as il-18), and interleukin-21 (hereinafter referred to as il-2) 1) They have effects on the τ lymphocytes, sputum lymphocytes, natural killer cells, and related immune cells in the immune system. It has been known that several kinds of cytokines have been confirmed to have significant anti-tumor effects in vitro and in specific animal experiments, and this discovery has led to the attention of cytokines in the treatment of human cancers. The cytokines currently used in clinical anti-cancer are mainly divided into two types, one is the first type of helper cell (T-helper type 1, Th1) cytokine, and the response caused by such cytokines is mainly IL- 2 and the production of IFN-γ, and subsequent induced cellular immunity, such as: IL-2, IL-12, IL-15, IL-18, IFN-γ; the other is a second type of helper T cells ( T-helper type 2, Th2) cytokine, which triggers the production of IL-4, IL-5 and IL-6 (all three are cytokines that stimulate the growth and differentiation of beta cells) The immune response is characterized. However, the clinical results of cytokine immunotherapy show that the way of administration, the dose, the type of tumor, whether it is necessary to use other cytokines or drugs, and the possible side effects, etc., each factor is related to this one. The effectiveness and clinical applicability of immunotherapy. Although immunogenic therapy has a certain degree of efficacy for tumors, there are still 1278320 restricted in use. On the other hand, in view of the immunological characteristics of the tumor itself, the concept of combining a plurality of cytokines is emphasized to achieve the effect of tumor regression. SUMMARY OF THE INVENTION The object of the present invention is to provide a composite immunogenic composition for inhibiting tumor cells, which antagonizes the immunosuppressive effect of a transforming growth factor (J'TGFj) to restore the killing ability of natural killer cells. Another object of the present invention is to provide a recombinant immunogenic pharmaceutical composition for inhibiting tumor cells, which activates the killing activity of the cells from the hand cells to the tumor cells. Due to the growth of certain tumors, tumor cells evade specific immune responses (CD8+ τ cells) in the host by reducing the expression of major histocompatibility complex (MAJ〇r hist〇c〇mpatibility MHC) molecules. Attack, while natural killer cells are activated by the lack of expression of histocompatibility complex molecules, but tumors also produce transforming growth factors to inhibit the differentiation and activity of natural killer cells, while causing a decrease in the number and cell killing The inhibition of the ability, the amount of expression of the α-chain of the cell surface IFN_a receptor, the IL-2 receptor, and the amount of secreted ΙΝρ_γ are decreased. The present invention provides a composite immunogenic drug composition for activating the immune response of natural killer cells in response to the above-described mechanism of tumor escaping host system. The composite immunogenic drug composition is a natural killer cell by using a combination of a plurality of cytokines, that is, a combination of sputum and Th2 type cytokines, by using a Th2 type cytokine to antagonize the transformation of the 1278320 long factor to the natural killer cell. The inhibition, the release of the host's immunosuppressive state, and then the Thul type cytokines activate the natural killer cells in the host to enhance the host immune system's ability to resist tumor cell growth, with the goal of finally achieving tumor removal. The aforementioned Th1 type cytokines include: IL_2, IL_12, IL-15, IL-18, and IFN-γ; and the aforementioned Th2 type cytokines include IL_4, IL-5, and IL-6. In order to confirm the inhibitory effect of the composite immunogenic pharmaceutical composition according to the present invention on tumor cells, the present invention uses a canine infectious sputum tumor (hereinafter referred to as CTVT) as a test tumor model because (〇CTVT is a kind) Tumors with low expression of major histocompatibility complex molecules; (2) CTVT produces a large number of transforming growth factors; (3) CTVT tumor infiltrating lymphocytes (TILs), up to 85% of cells do not exhibit CD3 And a non-tau-B lymphocyte of CD21, which should be a killer cell of a dog. According to the composite immunogene drug composition indicated by the present invention, a plastid of "and IL_15" can be constructed by a conventional technique. After the constructed plastid is sequenced and determined to be correct, the cells of the in vitro (10) vzir〇 are transfected, and the supernatant is transfected to test whether the functional IL-6 and IL-15 proteins can be produced. Then, in vitro, when IL-6 and IL-15 were combined and used alone, the recovery effect on the killing ability of the natural killer cells inhibited by the transforming growth factor was further introduced into the living body with IL-6 and il-15 plastids. Internal (BALB/C mice)' measurement of the performance of genes in mice, as well as the distribution of lymphocyte populations in the spleen and the ability of natural killer cells to kill, 278320 solution IL_6 and IL-15 plastids The performance of the produced cytokines after being administered into mice. Finally, the immunodeficient C b_17 scid mice were used as the animal model for tumor inoculation, due to the small gas T and B lymphocytes of this line. The ball is incapable of performing functions, only functional natural killer cells, to evaluate the effect of the composite immunogenic pharmaceutical composition indicated in accordance with the present invention on natural killer cells and its inhibitory effect on CTVT. It is confirmed that the composite immunogenic drug composition according to the present invention can achieve the antagonism of the inhibition of natural killer cells by the transforming growth factor, the immunosuppressive state of the host, and the activation of natural killer cells in the host to enhance host immunity. The purpose of the system against the ability of tumor cells to grow, that is, the fineness of the diced hi and Th2 species as indicated by the present invention The compound immunological gene composition of the compound can target tumors with low expression of histocompatibility complex molecules and produce transforming growth factors, which can not only provide the right medicine, but also exhibit anti-tumor effect, and can be adjacent to other immune reactions. The present invention will be further described with reference to the following embodiments, which are not intended to limit the disclosure of the present invention. Those skilled in the art can make a little The improvement and repair _, but still does not deviate from the scope of the present invention. 1278320 [Embodiment] Since the IL-6 gene of the dog cannot be easily obtained from dogs, and the IL-15 mRNA is rarely contained in normal animal tissues. Therefore, the IL-6 (SEQ ID NO: 1) and IL-15 (SEQ ID NO.·3) gene lines used in the present invention are derived from human IL-6 plastids, respectively, and synthetic IL-containing bodies. -2 Human IL-15 gene (IL-2SP/IL-15MP chimeric gene, SEQ ID NO.. 4) of the signal peptide (SEQ ID NO: 2) sequence. The IL-6 and IL-15 genes were cloned by using the commercial assay kit pcDNA3.1/V5-His-TOPO® Expression Kit (Invitrogen, Groningen, Netherlands) to IL_6 gene and IL-2SP/IL. The -15MP chimeric gene was inserted into the pcDNA3.1/V5-His-TOPO (5523 base pair) plastid to complete the construction of IL-6 and IL-2SP/IL-15MP plastids. The constructed plastid is transformed into a commercial E. coli competent cell (probiotic, Taiwan, Republic of China) using a conventional morphological transformation technique. Enzyme chain reaction, restriction enzyme digestion reaction, and sequencing three steps confirmed the correctness of the gene. The plastids with the correct sequence were further multiplied and the plastid DNA was isolated using the Nucleobond AX bulk plastid DNA isolation kit (Macherey-Nagel, Oensingen, Switzerland). It is then further tested to test whether the constructed IL-6 plasmid exhibits a functional IL-6 protein. Here, the cell line TF-1 (ATCC No. CRL-2003) which requires IL-6 as a growth factor is selected, and the cell supernatant obtained after transfection of the plastid by the conventional MTS test contains 12 1278320 IL- 6 activity. The results of the test showed that the supernatant obtained after transfection of IL-6 plastids into Balb/3T3 cells (ATCC No. CCL-163) was effective for cell division and transfection of PCDNA without any gene. The V5-His-T0P0 plastid and the supernatant of the Baib/3T3 cells cultured alone did not have this activity, indicating that the constructed iL_6 plastid did indeed exhibit a functional IL-6 protein. In addition, the same method was used to test whether the IL-15 plastid also produced a functional IL-15 protein, and HT-2 cells (ATCC No. CRL_1841) which were required to undergo cell division in the presence of IL-15 were used. The supernatant of Balb/3T3 cells transfected with IL-15 plastids was cultured in ht/2 cells, and the results showed that the supernatant obtained after transfection of IL-15 plastids with Balb/3T3 cells was effective. HT-2 cells were subjected to cell division, and the supernatant of pcDNA3.1/V5-His-TOP plastids without any gene and the supernatant of Balb/3T3 cells cultured alone did not have this activity, indicating that the constructed IL_15 was completed. The plastid does indeed exhibit a functional IL-15 protein. The effect of IL-6 and IL-15 on the natural killer cell activity inhibited by the transforming growth factor was then tested in vitro. It can be seen from the test results that the combined use of IL-6 and IL-15, and the treatment with IL-6 or IL-15 alone, compared with the ratio of the killing rate of YAC-1 mouse lymphoma cells . This result shows that, in the case of acting alone, if only the presence of IL-6 'releases the inhibitory effect of the transforming growth factor on natural killer cells, but lacks the substance that activates natural killer cells, the effect of poisoning is not awarded. If the opposite is true, only IL-15, which activates natural killer cells, is present, but the growth factor of the natural killer cells is inhibited by 13 1378320 and cannot be completely recovered. Only in the presence of IL-6 and IL-15, IL-6 antagonizes the immunosuppressive effect of transforming growth factor on natural killer cells, and then further activates natural killer cells with IL-1 5 to be effective. Improve the ability of natural killer cells to kill. To further confirm the effect of IL-6 and IL-15 in combination on in vivo immunity, iL-6 and IL-15 plastids were separately or together sent to BALB/C mice by muscle bio-injection. In vivo, to assess its effect on immune cells in the spleen of mice. Muscle in vivo gene electroporation is a very common method for transmitting genes in non-viral vectors in gene therapy in recent years. Its safety is not like a viral vector, which easily causes the host's immune response, and is highly efficient in anti-meat-transfer plastids. The ability of the protein is also strong, and it is easy to operate near the surface of the valley. The results of enzyme-linked immunosorbent assay (ELISA) showed that IL-6 and IL-1 5 plastids could be fully expressed in mice. On the 14th day after the electroporation of the shellfish gene, it was found that the number of natural killer cells in the spleen of the mice treated with the two plastids was compared with that of IL-6 or IL-15 plastid alone. The poisoning ability showed a significant increase. In addition, the IL-15 treatment group had a natural killer cell killing ability at E/Trati〇5〇/1 and 12%, although it was lower than IL_6 and IL_丨5 combined users, but still significantly higher than IL-6 and Vector (Vector) treatment group, this result indicates that IL-1 5 itself can promote the activation of natural killer cells. C.B-17 SCID mouse. An immunodeficient strain caused by a genetic defect caused by artificial selection, which does not have mature functional 14 1278320 T cells and B cells. However, other immune cells, including myeloid cells, antigen-presenting ceiis (APCs), and natural killer cells, all have normal functions. Here, the C.B-17 SCID mice were subjected to xenotransplantation of canine infectious squamous tumors, and then IL-6 and IL-15 plastids were fed by muscle biopsy. The test was divided into two parts. The first part evaluated the effects of both IL-6 and IL-15 on tumor formation; the second part further observed the inhibitory effect of this dicytokine on the formed tumor. The results showed that in the formation of tumors, IL-6 and IL-15 were combined to have the best inhibitory effect on the tumor. IL-15 alone had a slight delay in the growth of canine infectious sputum tumors, but IL-6 tumors alone had no significant effect. However, when tumors have been formed, only mice that use IL-6 and IL-15 plastids can slow the growth rate of canine infectious tumors. Only IL_6 or IL-15 plastids can not be stopped. The continued growth of the tumor. If the anti-asiai GM-1 antibody is administered by intraperitoneal injection and the IL-6 and IL-15 plastids are simultaneously received, the canine infectious sputum tumor continues to grow in the body. This result demonstrates that natural killer cells play a decisive role in this complex gene therapy. Example 1 Acquisition and Synthesis of IL-6 and IL-15 Genes The IL-6 gene line was obtained from the NCBI pubmed (hup://www.ncbi.nlm.nih.gov), GenBank accession number. (Accessi〇n 15 1278320

No.)為NM—000600之人類IL-6之mRNA序列,增幅出全 長為636個鹼基對之IL-6基因(第63〜701個鹼基對,SEQ ID NO ·· 1)。 參考Kazuhiro等人(2001)之設計,以人工合成方式 將基因資料庫登錄號分別為V00564及U14407之mRNA 序列的人類IL-2之訊號胜肽基因(IL-2SP,60個鹼基對, 第48〜107個鹼基對,SEQ ID NO : 2)連接於人類IL-1 5基 因之完整胜肽(mature peptide)基因(IL -1 5MP,342個驗基 對,第461〜802鹼基對,SEQ ID NO : 3)前,構成一嵌合 的基因序列(IL-2SP/IL-15MP嵌合基因,SEQ ID NO : 4), 此設計可克服IL-1 5因在轉譯及轉錄時所必須經過的多個 調節點,而造成IL-15蛋白質產量極低的現象。於增幅時, 於正向股(sense strand)方面,將此欲合的基因序列以30 個鹼基為單位,將全長402個鹼基之序列由5’端開始全數 寫成引子(共計26條引子),而反向股(antisense strand)則 從IL-2SP基因起始之第15個鹼基後開始設計,每一個反 向股之引子恰好與前後兩個正向股之序列有1 5個鹼基之 重疊,以做為連結的橋樑。 接著,將上述嵌有人類IL-6基因之pcDNA3質體(取 自台大毒理所),以習知之聚合酶鏈反應技術,進行增幅 並將其純化以獲得所需之DNA產物。至於人類 IL-2SP/IL-15MP嵌合基因,則係將前述之26條引子放置 在一起,藉由習知之聚合酶鏈反應技術,進行增幅並將其 純化以獲得所需之DNA產物。由於所設計之引子其反向 16 1278320 股分別和前後序列之正向股各有15個鹼基之重合,在 DNA水合酶之作用下,這些引子會自行配對黏合,黏合後 之基因形成原始之模板,經由聚合酶鏈反應後即可獲得 IL-2SP/IL-15MP 嵌合基因。 實施例二 活體外小鼠脾臟自然殺手細胞毒殺試驗 將6〜8週齡之BALB/c小鼠(取自台大醫學院動物中 心及國家動物中心)犧牲後,取出脾臟置於RPMI-1640培 養液中’以細胞研磨器製備成單細胞懸浮液,經離心(丨,5〇·〇 rpm,4C’10分鐘)去除上清液後,加入5ml之IX ACK溶 解緩衝液(10 X ACK lysis buffer· : 0.15M NH4C1,1.0 mM KHC03, 〇·1 mM Na2EDTA,溶於二次蒸餾水中),於室溫 中作用5分鐘,使紅血球溶解。再加入! 〇 mi之rPMI_丨64〇 培養液’於4 C下以1,5 00 rpm離心10分鐘。去除上清液 後,再以RPMM 640培養液重複清洗一次。於細胞計數 後’稀釋於LAK培養液【RPMI -1 0内含2-mecaptoethanol : 50μΜ和IL-2 : 500U/lxl06活細胞】,於24孔培養盤中, 每孔放2ml/2xl〇6活細胞,於37°C,5% C02培養箱中培 養4〜6天,並於培養第三天再加一次IL-2 : 5〇〇υ/ΐχΐ〇6 活細胞,培養4〜6天。若欲評估IL-6、IL-15及轉形生長 因子對小鼠脾臟細胞之自然殺手細胞毒殺能力的影響,則 脾臟細胞的培養同淋巴激素活化殺手細胞,惟所加入之細 胞素以IL-6、IL-15及轉形生長因子替換。 17 1278320 將YAC-1小鼠淋巴瘤細胞(ATCC No· TIB-160)以 RPMI-1640培養液清洗2次(1,500 rpm,4°C,10分鐘)後計 數細胞【錐藍排除法(trypan blue exclusion test)】,以5x105 活細胞/ml懸浮於RPMI-10中【細胞數視作用細胞(Effector cells)而定】。之後將 10pl3,3’-dioctadecyloxacarbocyanine (DIOC 18, Sigma,MO, USA)螢光染劑每5x1 05活細胞加入 其中,於37°C,5% C02培養箱中反應16小時。之後將 YAC-1細胞清洗2次(1,500 rpm, 4°C,10分鐘)懸浮於 RPMI-10 中。 將上述經處理之脾臟細胞與YAC-1細胞以不同比例 混合(Effector/Target ratio,E/T ratio = 50/1,25/1,12.5/1, 6.25/1,3.125/1)於圓底96孔盤中(每孔最多可放200μ1), 短暫離心1,100 rpm,4°C,5分鐘。於暗室37°C,5% C02 培養箱中作用4小時。將細胞收起,再加入細胞液體積 1/100 之蛾化丙 〇定(propidium iodide, PI) (2500pg/ml) (Sigma,MO,USA)混合,最後以流式細胞分析儀 (FACSCalibur flow cytometer, Becton Dickinson, NJ? USA) 進行檢測並以CellQuest軟體進行分析。 使用不同劑量之IL-6刺激B ALB/c小鼠之脾臟細胞 後,結果發現YAC-1小鼠淋巴瘤細胞株之死亡比率沒有隨 著IL-6之劑量加高而上升,且在800U以上之IL-6作用 下,自然殺手細胞毒殺能力反而開始下降(第一圖)。在 IL-15方面,使用400U之IL-15活化脾臟細胞6天後可使 其自然殺手細胞毒殺能力和2000U之IL-2所活化者相 18 1278320 近;當將IL-2或IL-15和轉形生長因子共同加入以培養細 胞時’可以看出轉形生長因子會完全抑制由IL-2組所活 化之淋巴激素活化殺手細胞細胞之毒殺能力,而只能部分 抑制IL-15組之自然殺手細胞的毒殺能力,此結果顯示 IL-15本身對自然殺手細胞的激活、以及回復由轉形生長 因子所抑制之自然殺手細胞細胞毒殺活性的能力優於 IL-2(弟一圖)。此外,當將IL_6和轉形生長因子或是以 IL-15和轉形生長因子一同和小鼠脾臟細胞培養時,和只 加入轉形生長因子之處理組相比,發現IL-6在此並無法 促成自然殺手細胞毒殺活性之提升,而IL-15則能緩慢& 提升被轉形生長因子所抑制的自然殺手細胞毒殺能力。但 若合併使用IL-6和IL-15則其提升效果將會非常顯著。而 轉形生長因子組及IL_6 +轉形生長因子組之毒殺結果和自 然殺手細胞一致,而無法於結果中看出IL-6對轉形生長 因子之拮抗效果(第三圖)。 實施例三 肌肉活體基因電衝(Electroporation,EP)轉載IL-6及IL-15 基因於BALB/c小鼠對自然殺手細胞毒殺能力的影響 將 BALB/c 小鼠分成四組,分別為 (l)pcDNA3.1/V5/His /TOPO (Mock)載體 lOOpg、(2)IL-6 質體 lOOpg、(3)IL-15 質體 1〇〇吨,及(4)IL-6 及 IL-15 質 體合併使用各l〇〇pg,每組6隻小鼠。於進行電衝前預先 將IL-6及IL-15質體以生理食鹽水將濃度調成1 mg/ml。 19 1278320 將BALB/C小鼠麻醉後,抽取ι〇〇μι之質體,於小鼠 兩側肌肉分別注射50μ卜靜置2分鐘使基因在肌肉中均勻 擴散’使用電衝儀(Electro Square Porator,BTX ECM 830) 進行肌肉電衝(電極插入深度〇·5公分,loo伏特,次, 每次50毫秒)。自電衝日起,分別於第〇、3、8、12、14、 15、20、25、27及30天進行採血,所得之血液樣本離心 取血清保存於-20。(:。 為了解在活體中IL-6及IL-15質體是否能正常的表 現出IL-6及IL-15蛋白質,在此將電衝當曰及電衝後之固 定時間點進行採血所得之血清,藉由商品化之酵素連結先 疫吸附分析套組(IL-6 : Endogen,MA,USA ; IL-15 :No.) is the mRNA sequence of human IL-6 of NM-000600, and the IL-6 gene (63th to 701th base pair, SEQ ID NO.·1) having a total length of 636 base pairs is amplified. Referring to the design of Kazuhiro et al. (2001), the human IL-2 signal peptide gene (IL-2SP, 60 base pairs, the gene database accession number V00564 and U14407 mRNA sequences were synthesized by artificial synthesis. 48 to 107 base pairs, SEQ ID NO: 2) the entire peptide gene of human IL-1 5 gene (IL -1 5MP, 342 base pairs, 461 to 802 base pairs) , before SEQ ID NO: 3), constitutes a chimeric gene sequence (IL-2SP/IL-15MP chimeric gene, SEQ ID NO: 4), which is designed to overcome IL-1 5 during translation and transcription. A number of adjustment points must pass, resulting in a very low production of IL-15 protein. In the case of increasing the amplitude, in the case of the sense strand, the gene sequence to be combined is expressed in units of 30 bases, and the sequence of 402 bases in total is written from the 5' end into a primer (a total of 26 primers). ), and the antisense strand is designed from the 15th base of the IL-2SP gene. Each primer of the reverse strand has exactly 15 bases with the sequence of the two forward strands. The overlap of the bases serves as a bridge for the connection. Next, the above pcDNA3 plastid (occurring from Taitung Toxicology Institute) in which the human IL-6 gene is embedded is amplified by a conventional polymerase chain reaction technique and purified to obtain a desired DNA product. As for the human IL-2SP/IL-15MP chimeric gene, the aforementioned 26 primers are placed together, and amplified by a conventional polymerase chain reaction technique and purified to obtain a desired DNA product. Because the designed primer has a reverse 16 1278320 strands and 15 strands of the forward strands of the front and rear sequences, these primers will bind to each other under the action of DNA hydratase, and the bound genes form the original. The template, the polymerase chain reaction can be used to obtain the IL-2SP/IL-15MP chimeric gene. Example 2 In vitro spleen natural killer cell killing test in vitro The BALB/c mice (taken from the National Taiwan University Animal Center and the National Animal Center) at 6-8 weeks of age were sacrificed, and the spleen was removed and placed in RPMI-1640 medium. Prepare a single cell suspension in a cell grinder, remove the supernatant by centrifugation (丨, 5〇·〇 rpm, 4C'10 minutes), then add 5ml of IX ACK lysis buffer (10 X ACK lysis buffer· : 0.15 M NH4C1, 1.0 mM KHC03, 〇·1 mM Na2EDTA, dissolved in double distilled water), allowed to stand at room temperature for 5 minutes to dissolve red blood cells. Join again! The rPMI_丨64〇 culture solution of 〇mi was centrifuged at 1,500 rpm for 10 minutes at 4 C. After removing the supernatant, wash it again with RPMM 640 medium. After cell counting, 'diluted in LAK medium [RPMI -1 0 containing 2-mecaptoethanol: 50μΜ and IL-2: 500U/lxl06 living cells], in a 24-well culture plate, put 2ml/2xl〇6 live in each well. The cells were cultured for 4 to 6 days at 37 ° C in a 5% CO 2 incubator, and IL-1 : 5 〇〇υ / ΐχΐ〇 6 viable cells were added to the third day of culture, and cultured for 4 to 6 days. To evaluate the effects of IL-6, IL-15 and transforming growth factor on the natural killer cell cytotoxicity of mouse spleen cells, spleen cells are cultured with lymphokines to activate killer cells, but the added cytokines are IL- 6, IL-15 and transforming growth factor replacement. 17 1278320 YAC-1 mouse lymphoma cells (ATCC No. TIB-160) were washed twice with RPMI-1640 medium (1,500 rpm, 4 ° C, 10 minutes) and counted for cells [cone blue exclusion method ( Trypan blue exclusion test)], suspended in 5x105 viable cells/ml in RPMI-10 [cell number depending on the effector cells (Effector cells)]. Thereafter, 10 pl 3,3'-dioctadecyloxacarbocyanine (DIOC 18, Sigma, MO, USA) fluorescent dye was added to each 5 x 105 viable cells, and reacted at 37 ° C in a 5% CO 2 incubator for 16 hours. YAC-1 cells were then washed twice (1,500 rpm, 4 ° C, 10 minutes) in RPMI-10. The treated spleen cells were mixed with YAC-1 cells in different ratios (Effector/Target ratio, E/T ratio = 50/1, 25/1, 12.5/1, 6.25/1, 3.125/1) at the bottom. In a 96-well plate (up to 200 μl per well), briefly centrifuge at 1,100 rpm for 4 minutes at 4 °C. It was allowed to act for 4 hours in a dark room at 37 ° C in a 5% CO 2 incubator. The cells were stowed, and then mixed with a cell volume of 1/100 of propidium iodide (PI) (2500 pg/ml) (Sigma, MO, USA), and finally a flow cytometer (FACSCalibur flow cytometer). , Becton Dickinson, NJ? USA) Tested and analyzed with CellQuest software. After stimulation of spleen cells of B ALB/c mice with different doses of IL-6, it was found that the death rate of YAC-1 mouse lymphoma cell line did not increase with the increase of IL-6 dose, and was above 800 U. Under the action of IL-6, the killing ability of natural killer cells began to decline (first figure). In the IL-15 aspect, activation of spleen cells with 400 U of IL-15 resulted in a natural killer cell killing ability and 2000 U of IL-2 activated phase 18 1278320 near; when IL-2 or IL-15 and When the transforming growth factor is added together to culture the cells, it can be seen that the transforming growth factor completely inhibits the killing ability of the lymphocyte-activated killer cell cells activated by the IL-2 group, and only partially inhibits the nature of the IL-15 group. The killing ability of killer cells, this result shows that IL-15 itself is superior to IL-2 in the ability to activate natural killer cells and to restore the natural killer cell cytotoxic activity inhibited by transforming growth factors. In addition, when IL_6 and the transforming growth factor were cultured together with IL-15 and the transforming growth factor and the mouse spleen cells, IL-6 was found here and compared with the treatment group in which only the transforming growth factor was added. It does not contribute to the increase in the killing activity of natural killer cells, while IL-15 can slow & enhance the natural killer cell killing ability inhibited by the transforming growth factor. However, if IL-6 and IL-15 are combined, the improvement effect will be very significant. The results of the poisoning of the transforming growth factor group and the IL_6 + transforming growth factor group were consistent with those of the natural killer cells, and the antagonistic effect of IL-6 on the transforming growth factor could not be seen in the results (Fig. 3). Example 3 Effects of Electron Reperfusion (EP) on IL-6 and IL-15 Genes in BALB/c Mice on Natural Killer Cell Toxicity The BALB/c mice were divided into four groups, respectively (l pcDNA3.1/V5/His/TOPO (Mock) vector lOOpg, (2) IL-6 plastid lOOpg, (3) IL-15 plastid 1 ton, and (4) IL-6 and IL-15 The plastids were combined using each l〇〇pg, with 6 mice per group. The IL-6 and IL-15 plastids were adjusted to a concentration of 1 mg/ml in physiological saline before electroporation. 19 1278320 After anesthetizing BALB/C mice, extract the plastids of ι〇〇μι, and inject 50μ of the muscles on both sides of the mice for 2 minutes to spread the gene evenly in the muscles. Using Electron Poroscope (Electro Square Porator) , BTX ECM 830) Perform muscle electrical impulses (electrode insertion depth 〇 5 cm, loo volts, times, 50 ms each). Blood was collected from Dijon, 3, 8, 12, 14, 15, 20, 25, 27, and 30 days from the date of electroporation, and the obtained blood samples were centrifuged and stored in -20. (:. In order to understand whether IL-6 and IL-15 proteins in the living body can express IL-6 and IL-15 proteins normally, blood collection is performed at a fixed time point after electroporation and electroporation. Serum, linked to the Epidemic Adsorption Assay Kit by Commercial Enzyme (IL-6: Endogen, MA, USA; IL-15:

Bi〇s〇Urce,CA,USA)以習知之技術檢測血清中之几_6及 IL-15》辰度變化。 貝驗結果證貫,此二質體均會於小鼠體内產生蛋白 負。血清中的IL-6在各實驗組中均可被測得,惟濃度高 低及表現時間有所差異。而血清中比_15之濃度則只有在 IL 1 5及IL-6 + IL-15處理組中才會被偵測到。(測試結果 未顯示) 於4組小鼠進行肌肉電衝後之第14天,每組取斗隻 小亂收集脾臟細胞,以測試脾臟中之淋巴球族群B及 自然殺手細胞)以及自然殺手細胞毒殺能力是否發生 化。 將前述進行肌肉活體基因電衝後之小鼠脾臟取出, 研磨得到脾臟細胞,以内含lxl〇7活細胞/ml之脾臟細胞 20 1278320 1 00μ卜與下列鍵結螢光物質的各種單株抗體作用,包含: rat anti mouse CD3-FITC (Serotec, Oxford, UK) ^ rat anti mouse CD19-FITC (Serotec, Oxford, UK) ^ rat anti mouse NK1.1-FITC (PharMingen),及其 isotype。各以 lpg 加入 ΙΟΟμί之脾臟細胞中,於4°C中避光感作45分鐘後以1X PBS清洗2次,之後加入500pg/ml蛾化丙啶,以辨識細 胞存活狀況。最後以流式細胞分析儀(FACSCalibur flow cytometer,Becton Dickinson,NJ,USA)進行檢測。 經以流式細胞分析儀分析之結果顯示,脾臟細胞中 之T細胞以及B細胞,在4處理組間之比率極為相近,互 相之間沒有顯著性之差異(第四圖八及B);而在自然殺手 細胞方面,則很明顯發現合併使用IL_6和IL_15之處理組 之比率顯著的上升(第四圖)。同時’在自然殺手細胞之毒 的自然殺手細胞毒殺能 於其他3組;IL-15處 殺能力方面’ IL·6 + il-15處理組 力不論在任何之E/丁比率下,均優 理組則在E/T比率=50/θ 19 ς/1 # # _ 手50/及12.5/1顯著高於M〇ck及IL_ 質體組,而於3 12S/1 η士』廿α。 Τ和其他2組無顯著性差異;IL- 和Mock處理組則於任 ^ ^ 1比羊下,其自然殺手細胞4 殺旎力均無顯著差異。(第五圖) 合併使用IL_6及1L-15對接種於C.B_17Scid”之 染性花柳性腫瘤的抑制效果 小- 以外科無_手術方式採取人q種於犬隻身上 21 1278320 傳染性花柳性腫瘤,剪碎後研磨並通過雙層不銹鋼網(N〇. 25 stainless steel mesh)將腫瘤組織做成單細胞懸浮液。並 使用 42% Percoll (Amershampharmacia biotech,NJ,USA) 分離犬傳染性花柳性腫瘤細胞,利用活體染色(vital stain) (錐監排除法)判定腫瘤細胞存活狀態。使用18〇之注射器 將lxlO8活腫瘤細胞懸浮液各接種於C.B-17 SCID小鼠兩 側背部之皮下各一處,接種後使用游標尺(Aer〇space, China)每週測量並觀察腫瘤生長狀態兩次。計算大小之公 式為 V=tcxLxWxH/4【V :體積(cm3),L :長度(cm),W : 見度(cm),Η :厚度(cm)】。 - 於Θ述C.B-17 SCID小鼠接種犬傳染性花柳性腫瘤 的第7天(腫瘤尚未形成時),即進行肌肉活體基因電衝, 用以觀察IL-6及IL-15對犬傳染性花柳性腫瘤形成 (establishment)之影響。結果發現合併使用IL-6及IL15 質體之C.B-17 SCID小鼠其腫瘤約在第14天才開始長成 肉眼可見之扁平腫瘤團塊(直徑2〜3mm),且在觀察期間其 腫瘤體積明藏小於其他處理組。而單獨使用IL_ 1 5質體之 小鼠其腫瘤體積雖然有小於IL-6及載體處理組之趨勢, 但在統計上無顯著差異(p>〇.〇5)。IL_6質體組之犬傳染性 ί匕柳性腫瘤之生長速度則和载體處理組相近,統計學上亦 無顯著差異。 使用Anti-asialo GM-1抗體(Wak〇,大阪,日本)以 lml注射用水回溶,每隻小鼠一次腹腔注射3〇μ1,每週兩 次’藉以阻斷自然殺手細胞的作用,再施以IL-6和 22 1278320 基因電衝。結果發現其腫瘤生長速度明顯加快,腫瘤體積 也明顯大於其他處理組(第六圖)。 此外,接種有犬傳染性花柳性腫瘤之C.B-17 sciD 小乳,於腫瘤生長至直徑約為5mm時,開始進行肌肉活 體電衝。結果顯示,合併使用IL_6及IL-15之處理組,其 於進行電衝後腫瘤之生長速度明顯減緩,並有3顆腫瘤 (N=6,每隻小鼠接種背部兩側)完全消退,不再生長。而 且於觀察期間該組之腫瘤平均體積明顯低於其他3組(載 體質體組、!"及IL_15質體組)。相較於合併使用時之_ · 著抑制效果,IL-6及IL_15單獨使用時則抑制效果不明 顯,和Mock質體的負對照組體積相近(第七圖)。 為進一步了解合併使用IL_6及IL_15所顯現之腫瘤 抑制效果是否和自然殺手細胞有關’因此另外設計—組 * C.B-17 SCID小鼠注射Anti_asial〇 gm」抗體以阻斷自 然殺手細胞之功能。結果顯示,施打gm_丄抗 體之小鼠,即使同樣給予等量之IL_6及IL_15質體,也無 、 法壓抑腫瘤之生長’且其死亡率明顯升高(第八圖及第% 、 圖)。 23 1278320 【圖式簡單說明】 第一圖IL-6對自然殺手細胞毒殺能力之影響。圖中 比率為13/1,每一處理組均進行三重複(Ν==3)。χ 軸表示不同之IL-6劑量;Υ軸為YAcq細胞被毒 殺之百分比。 第二圖IL-15與IL-2對轉形生長因子(TGF_p)所抑制之自 然殺手細胞毒殺能力的回復作用比較。圖中Ε/τ 比率為13/1,每一處理組均進行三重複(N==3)。χBi〇s〇Urce, CA, USA) detects changes in the serum levels of _6 and IL-15 by conventional techniques. The results of the test showed that the two plastids produced protein negative in mice. IL-6 in serum can be measured in each experimental group, but the concentration is high and the performance time is different. The concentration of _15 in serum was only detected in the IL 1 5 and IL-6 + IL-15 treatment groups. (Test results not shown) On the 14th day after muscle electroporation in 4 groups of mice, each group was spleenly collected to collect spleen cells to test lymphocyte population B and natural killer cells in the spleen and natural killer cells. Whether the poisoning ability has occurred. The spleen of the mouse after electroporation of the muscle living body is taken out, and the spleen cells are ground to obtain spleen cells containing lxl〇7 living cells/ml 20 1278320 1 00 μb and various monoclonal antibodies of the following binding fluorescent substances Contains: rat anti mouse CD3-FITC (Serotec, Oxford, UK) ^ rat anti mouse CD19-FITC (Serotec, Oxford, UK) ^ rat anti mouse NK1.1-FITC (PharMingen), and its isotype. Each was added to ΙΟΟμί spleen cells at lpg, and washed at 4 ° C for 45 minutes in the dark in 1X PBS, followed by 500 pg / ml mothidine to identify the cell survival. Finally, the assay was performed by a flow cytometer (FACSCalibur flow cytometer, Becton Dickinson, NJ, USA). The results of analysis by flow cytometry showed that the ratio of T cells and B cells in spleen cells in the 4 treatment groups were very similar, and there was no significant difference between them (Fig. 8 and B); In terms of natural killer cells, it was apparent that the ratio of the treatment groups using IL_6 and IL_15 was significantly increased (fourth panel). At the same time 'natural killer cell poisoning in natural killer cells can be in the other 3 groups; IL-15 killing ability' IL · 6 + il-15 treatment group force regardless of any E / D ratio, are the excellent group Then the E/T ratio = 50 / θ 19 ς / 1 # # _ hand 50 / and 12.5 / 1 is significantly higher than the M 〇 ck and IL _ plastid groups, and at 3 12S / 1 η 士 』 廿 α. There was no significant difference between the two groups in the sputum and the other two groups; the IL- and Mock-treated groups had no significant difference in the killing power of the natural killer cells under the ^ ^ 1 than the sheep. (Picture 5) The combined use of IL_6 and 1L-15 has little inhibitory effect on the inoculation of C.B_17Scid's stained canine tumors - the use of surgical non-surgical methods to adopt human q species on dogs 21 1278320 Infectious flowering Tumors, ground and ground, and the tumor tissue was made into a single cell suspension through a double stainless steel mesh (N〇. 25 stainless steel mesh) and the canine infectious cannabis was isolated using 42% Percoll (Amersham pharmacia biotech, NJ, USA). Tumor cells were determined by viable stain (cone staining method). The lxlO8 live tumor cell suspensions were each inoculated into the subcutaneous back of CB-17 SCID mice using a 18-inch syringe. At the time of inoculation, the tumor growth state was measured twice a week using a vernier scale (Aer〇space, China). The formula for calculating the size is V=tcxLxWxH/4 [V: volume (cm3), L: length (cm), W : Visibility (cm), Η: thickness (cm)] - On the 7th day of CB-17 SCID mice vaccinated with canine infectious sputum tumors (when the tumor has not yet formed), the muscle living gene Rushing, used to observe IL-6 The effect of IL-15 on the formation of canine infectious tumors. It was found that CB-17 SCID mice with IL-6 and IL15 plastids began to grow into visible flat tumors on day 14 The mass (2~3mm in diameter), and its tumor volume was significantly smaller than other treatment groups during the observation period. However, the mice with IL_1 5 plastid alone had a smaller tumor volume than the IL-6 and vehicle treatment groups. However, there was no statistically significant difference (p>〇.〇5). The growth rate of canine infectious lymphoid tumors in the IL_6 plastid group was similar to that in the vehicle-treated group, and there was no statistically significant difference. -asialo GM-1 antibody (Wak〇, Osaka, Japan) was reconstituted with 1 ml of water for injection, and each mouse was intraperitoneally injected with 3 μl twice a week to block the action of natural killer cells and then apply IL. -6 and 22 1278320 gene electroporation. The results showed that the tumor growth rate was significantly accelerated, and the tumor volume was also significantly larger than other treatment groups (Fig. 6). In addition, CB-17 sciD small breast was inoculated with canine infectious sputum tumor. Growing to the diameter of the tumor When the skin was 5 mm, the electrophysical electrofusion was started. The results showed that the treatment group with IL_6 and IL-15 combined had a significantly slower tumor growth rate after electroporation, and there were 3 tumors (N=6, each The mice inoculated on both sides of the back) completely resolved and no longer grew. The average tumor volume of this group during the observation period was significantly lower than that of the other three groups (carrier plastid group, !" and IL_15 plastid group). Compared with the combined use, the inhibition effect was not obvious when IL-6 and IL_15 were used alone, and the volume of the negative control group of the Mock plastid was similar (seventh figure). To further understand whether the tumor suppressive effects exhibited by the combined use of IL_6 and IL_15 are related to natural killer cells, so the design was additionally set to *C.B-17 SCID mice were injected with Anti_asial〇 gm" antibody to block the function of natural killer cells. The results showed that mice administered with gm_丄 antibody did not suppress the growth of tumors even if they were given the same amount of IL_6 and IL_15 plastids, and their mortality increased significantly (Fig. 8 and Fig. ). 23 1278320 [Simple description of the diagram] The effect of IL-6 on the killing ability of natural killer cells. The ratio in the figure is 13/1, and each treatment group performs three repetitions (Ν==3). The χ axis represents the different IL-6 dose; the Υ axis is the percentage of YAcq cells that are sterilized. The second panel compares the reversal effect of IL-15 and IL-2 on the natural killer cell killing ability inhibited by transforming growth factor (TGF_p). In the figure, the Ε/τ ratio is 13/1, and each treatment group performs three repetitions (N==3). χ

軸表不同之處理組;Υ軸為YAC-i細胞被毒殺之 百分比。 第三圖合併使用IL-6及IL-15對轉形生長因子所抑制之 自然殺手細胞活性之影響。圖中E/丁比率為 13/1,每一處理組均進行三重複(Ν==3)。χ軸表不 同之處理組,Υ轴為YAC-1細胞被毒殺之百分比。 第四圖肌肉活體基因電衝導入IL_6及IL_15質體於The axis table has different treatment groups; the axis is the percentage of YAC-i cells that are poisoned. The third panel combines the effects of IL-6 and IL-15 on the natural killer cell activity inhibited by the transforming growth factor. In the figure, the E/butyl ratio is 13/1, and each treatment group is subjected to three repetitions (Ν==3). The x-axis table was different from the treatment group, and the x-axis was the percentage of YAC-1 cells that were poisoned. The fourth figure shows that the muscle living organisms are electrically injected into the IL_6 and IL_15 plastids.

B ALB/c小鼠體内後,脾臟淋巴球族群之分布狀 況。(N=3) A ··各處理組中CD3+丁細胞之百分比。 B :各處理組中CD 19+B細胞之百分比。 C ··各處理組中NK1 · 1+NK細胞之百分比。 第五圖肌肉活體基因電衝導入IL_6及IL-15質體於 BALB/c小鼠體内後,脾臟細胞之自然殺手細胞毒 殺能力之測試。(N=4) ▲:表Mock質體組;□:表IL-6質體組; 24 1278320 第六圖 ◊:表IL-15質體組;♦:表IL-6+IL-15質體組 複合式免疫基因療法對於犬傳染性花柳性腫瘤形 成之影響。每組處理組含5隻小鼠(N=5)。 ▲ ··表Mock質體組;□:表IL-6質體組; ◊ •表IL-15質體組;♦:表IL-6+IL-15質體組; _ :表施打 Anti-asialo GM1抗體並接受 IL-6+IL-15 質體組; 第七圖 X :表施打正常兔子血清接受IL-6+IL-1 5質體組。 複合式免疫基因療法治療下之犬傳染性花柳性腫 瘤生長曲線圖。每處理組含6隻小鼠(N==6)。 - ▲:表Mock質體組;□:表IL-6質體組; 第八圖 ◊ •表IL-1 5質體組;♦:表IL-6+IL-1 5質體組。 合併式免疫療法對於小鼠存活率之影響(N==5〜6)。 ▲:表Mock質體組;□:表il-6質體組; ◊:表IL-15質體組;♦ : IL-6+IL-15質體組· _ :表施打Anti-asialo GM1抗體並接受 IL-6+IL-15 質體組。 第九圖 阻斷自然殺手細胞的作用對複合式免疫基因療法 中犬傳染性花柳性腫瘤生長之影響(n=:6)。 + :施打 Anti-asialo GM1 抗體組;— 25 1278320 序列表 <110>國立台灣大學 <120>—種抑制腫瘤細胞之複合式免疫基因醫藥組成物 <160>4 <210>1 <211>636 <212>mRNA 及轉譯 PRT <213〉人類IL-6基因 <300> <308>NCBI pubmed Genbank ; Accession No. : NM 000600 <400>1 63 78 93 108The distribution of spleen lymphocyte populations in B ALB/c mice. (N=3) A · The percentage of CD3+ cells in each treatment group. B: Percentage of CD 19+ B cells in each treatment group. C · The percentage of NK1 · 1+ NK cells in each treatment group. Figure 5 shows the test of the natural killer cytotoxicity of spleen cells after the introduction of IL_6 and IL-15 plastids into BALB/c mice. (N=4) ▲: Table Mock plastid group; □: Table IL-6 plastid group; 24 1278320 Figure 6: Table IL-15 plastid group; ♦: Table IL-6+IL-15 plastid The effect of group immuno-gene therapy on the formation of canine infectious tumors. Each group of treatment groups contained 5 mice (N=5). ▲ ·· Table Mock plastid group; □: Table IL-6 plastid group; ◊ • Table IL-15 plastid group; ♦: Table IL-6+IL-15 plastid group; _ : Table applied Anti- The asialo GM1 antibody was also subjected to the IL-6+IL-15 plastid group; Figure 7 X: Table normalized rabbit sera received the IL-6+IL-1 5 plastid group. A graph of the growth curve of infectious canine tumors in dogs treated with compound immunogenic therapy. There were 6 mice per treatment group (N==6). - ▲: Table Mock plastid group; □: Table IL-6 plastid group; Figure 8 ◊ • Table IL-1 5 plastid group; ♦: Table IL-6+IL-1 5 plastid group. The effect of combined immunotherapy on survival rate of mice (N==5~6). ▲: Table Mock plastid group; □: Table il-6 plastid group; ◊: Table IL-15 plastid group; ♦: IL-6+IL-15 plastid group· _ : Table applied Anti-asialo GM1 The antibody received the IL-6+IL-15 plastid group. Figure IX Effect of blocking natural killer cells on the growth of canine infectious squamous tumors in composite immunogenic therapy (n=:6). + : Anti-asialo GM1 antibody group; - 25 1278320 Sequence Listing <110> National Taiwan University<120>-complex immunogenic drug composition for inhibiting tumor cells <160>4 <210><211>636<212> mRNA and translation PRT < 213 > human IL-6 gene <300><308> NCBI pubmed Genbank; Accession No. : NM 000600 <400>1 63 78 93 108

ATG AAC TCC TTC TCC ACA AGC GCC TTC GGT CCA GTT GCC TCC TCC CTG GGG CTG CTC CTG 60 M N S F S T S A F G P V A F S L G L L L 123 138 153 168 GTG TTG CCT GCT GCC TTC CCT GCC CCA GTA CCC CCA GGA GAA GAT TCC AAA GAT GTA GCC 120 V L P A A F P A P V P P G E D S K D V A 183 198 213 228 GCC CCA CAC AGA CAG CCA CTC ACC TCT TCA GAA CGA ATT GAC AAA CAA ATT CGG TAC ATC 180 A P H R Q P L T S S E R I D K Q I R Y I 243 258 273 288 CTC GAC GGC ATC TCA GCC CTG AGA AAG GAG ACA TGT AAC AAG AGT AAC ATG TGT GAA AGC 240 L D G I S A L R K E T C N K S N M C E S 303 318 333 348 AGC AAA GAG GCA CTG GCA GAA AAC AAC CTG AAC CTT CCA AAG ATG GCT GAA AAA GAT GGA 300 S KEALAENNLNLPKMAE K D G 363 378 393 408 TGC TTC CM TCT GGA TTC AAT GAG GAG ACT TGC CTG GTG AAA ATC ATC ACT GGT CTT TTG 360 C F Q S G F N E E T C L V K I I T G L L 423 438 453 468 GAG TTT GAG GTA TAC CTA CAG TAC CTC CAG AAC AGA TTT GAG AGT AGT GAG GAA CAA GCC 420 E F E V Y L E Y L Q N R F E S S E E Q A 483 498 513 528 AGA GCT GTG CAG ATG AGT ACA AAA GTC CTG ATC CAG TTC CTG CAG AAA AAG GCA AAG AAT 480 R A V Q M S T K V L I Q F L Q K K A K N 543 558 573 588 CTA GAT GCA ATA ACC ACC CCT GAC CCA ACC ACA AAT GCC AGC CTG CTG ACG AAG CTG CAG 540 L D A I T T P D P T T N A S L L T K L Q 603 618 633 648 GCA CAG AAC CAG TGG CTG CAG GAC ATG ACA ACT CAT CTC ATT CTG CGC AGC TTT AAG GAG 600 A Q N Q W L Q D M T T H L I L R S F K E 1 1278320 663 678 693ATG AAC TCC TTC TCC ACA AGC GCC TTC GGT CCA GTT GCC TCC TCC CTG GGG CTG CTC CTG 60 MNSFSTSAFGPVAFSLGLLL 123 138 153 GTG TTG CCT GCT GCC TTC CCT GCC CCA GTA CCC CCA GGA GAA GAT TCC AAA GAT GTA GCC 120 VLPAAFPAPPGPGEDSKDVA 183 198 213 228 GCC CCA CAC AGA CAG CCA CTC ACC TCT TCA GAA CGA ATT GAC AAA CAA ATT CGG TAC ATC 180 APHRQPLTSSERIDKQIRYI 243 258 273 288 CTC GAC GGC ATC TCC GCC CTG AGA AAG GAG ACA TGT AAC AAG AGT AAC ATG TGT GAA AGC 240 LDGISALRKETCNKSNMCES 303 318 333 348 AGC AAA GAG GCA CTG GCA GAA AAC AAC CTG AAC CTT CCA AAG ATG GCT GAA AAA GAT GGA 300 S KEALAENNLNLPKMAE KDG 363 378 393 408 TGC TTC CM TCT GGA TTC AAT GAG GAG ACT TGC CTG GTG AAA ATC ATC ACT GGT CTT TTG 360 CFQSGFNEETCLVKIITGLL 423 438 453 468 GAG TTT GAG GTA TAC CTA CAG TAC CTC CAG AAC AGA TTT GAG A GT AGT GAG GAA CAA GCC 420 EFEVYLEYLQNRFESSEEQA 483 498 513 528 AGA GCT GTG CAG ATG AGT ACA AAA GTC CTG ATC CAG TTC CTG CAG AAA AAG GCA AAG AAT 480 RAVQMSTKVLIQFLQKKAKN 543 558 573 588 CTA GAT GCA ATA ACC ACC CCT GAC CCA ACC ACA AAT GCC AGC CTG CTG ACG AAG CTG CAG 540 LDAITTPDPTTNASLLTKLQ 603 618 633 648 GCA CAG AAC CAG TGG CTG CAG GAC ATG ACA ACT CAT CTC ATT CTG CGC AGC TTT AAG GAG 600 AQNQWLQDMTTHLILRSFKE 1 1278320 663 678 693

HC CTG CAG TCC AGC CTG AGG GCT CIT OGG CAA ATG 636 FLQSSLRALRQM <210>2 <211>60 <212> mRNA 及轉譯 PRT <213〉人類IL-2訊號胜肽 <300> <308>NCBI pubmed Genbank ; Accession No. : V00564 <400>2HC CTG CAG TCC AGC CTG AGG GCT CIT OGG CAA ATG 636 FLQSSLRALRQM <210>2 <211>60 <212> mRNA and translation PRT <213>human IL-2 signal peptide <300><308>NCBI pubmed Genbank ; Accession No. : V00564 <400>2

ATG TAC AGG ATG CAA CTC CTG TCT TGC ATT GCA CTA AGT CTT GCA CTT GTC ACA AAC AGT MYRMQLLSCIALSLALVTNS <210>3 <211>342ATG TAC AGG ATG CAA CTC CTG TCT TGC ATT GCA CTA AGT CTT GCA CTT GTC ACA AAC AGT MYRMQLLSCIALSLALVTNS <210>3 <211>342

<212> mRNA 及轉譯 PRT <213〉人類IL-15能轉譯蛋白質的部分基因 <300> <308>NCBI pubmed Genbank ; Accession No. : U14407 <400>3<212> mRNA and translation PRT <213> Human IL-15 translatable partial gene of protein <300><308> NCBI pubmed Genbank; Accession No. : U14407 <400>3

AAC TGG GTG AAT GTA ATA AGT GAT TTG AAA AAA ATT GAA GAT CTT ATT CAA TCT ATG CATAAC TGG GTG AAT GTA ATA AGT GAT TTG AAA AAA ATT GAA GAT CTT ATT CAA TCT ATG CAT

N W V N V I SDLKK I EDL I Q SMHN W V N V I SDLKK I EDL I Q SMH

ATT GAT GCT ACT m TAT ACG GAA AGT GAT GH CAC CCC AGT TGC AAA GTA ACA GCA ATGATT GAT GCT ACT m TAT ACG GAA AGT GAT GH CAC CCC AGT TGC AAA GTA ACA GCA ATG

IDATLYTESDVHPSCKVTAMIDATLYTESDVHPSCKVTAM

MG TGC TTT CTC TTG GAG TTA CM GTT ATT TCA CTT GAG TCC GGA GAT GCA AGT ATT CAT KCFLLELQVISLESGDASIHMG TGC TTT CTC TTG GAG TTA CM GTT ATT TCA CTT GAG TCC GGA GAT GCA AGT ATT CAT KCFLLELQVISLESGDASIH

GAT ACA GTA GAA AAT CTG ATC ATC CTA GCA AAC AAC AGT TTG TCT TCT AAT GGG AAT GTA DTVENLI ILANNSLSSNGNVGAT ACA GTA GAA AAT CTG ATC ATC CTA GCA AAC AAC AGT TTG TCT TCT AAT GGG AAT GTA DTVENLI ILANNSLSSNGNV

ACA GAA TCT GGA TGC AAA GAA TGT GAG GAA CTG GAG GAA AAA AAT ATT AAA GAA TTT TTG TESGCKECEELEEKNIKEFLACA GAA TCT GGA TGC AAA GAA TGT GAG GAA CTG GAG GAA GAA AAA AAT ATT AAA GAA TTT TTG TESGCKECEELEEKNIKEFL

CAG AGT TIT GTA CAT ATT GTC CAA ATG Ή0 ATC AAC ACT TCT 342 QSFVHIVQMFINTS 2 1278320 <21〇>4 <211>402 <212〉mRNA 及轉譯 PRT <213>IL-2SP/IL-15MP 人工序列 <220〉 <223>人類IL_2訊號胜肽結合人類IL-15能轉譯蛋白質的部分基因 <300> <308>NCBI pubmed Genbank ; IL-2 Accession No. : V00564 IL-15 Accession No. : U14407 <400>4CAG AGT TIT GTA CAT ATT GTC CAA ATG Ή0 ATC AAC ACT TCT 342 QSFVHIVQMFINTS 2 1278320 <21〇>4 <211>402 <212>mRNA and translation PRT <213>IL-2SP/IL-15MP Artificial Sequence <220> <223> Human IL_2 signal peptide binds to human IL-15 to translate partial gene of protein <300><308>NCBI pubmed Genbank; IL-2 Accession No. : V00564 IL-15 Accession No . : U14407 <400>4

ATG TAC AGG ATG CM CTC CTG TCT TGC ATT GCA CTA AGT CTT GCA CTT GTC ACA AAC AGT MY RMOLLSCIALSLA LVTNS IL-2訊號胜肽基因 'ATG TAC AGG ATG CM CTC CTG TCT TGC ATT GCA CTA AGT CTT GCA CTT GTC ACA AAC AGT MY RMOLLSCIALSLA LVTNS IL-2 Signal Peptide Gene '

AAC TGG GTG AAT GTA ATA AGT GAT TKj AAA AAA ATT GAA GAT CIT ATT CM TCT ATG CAT NWVNVISDLK KIEDLIQSMHAAC TGG GTG AAT GTA ATA AGT GAT TKj AAA AAA ATT GAA GAT CIT ATT CM TCT ATG CAT NWVNVISDLK KIEDLIQSMH

ATT GAT GCT ACT m TAT ACG GAA AGT GAT GTT CAC CCC AGT TGC AAA GTA ACA GCA ATG ID ATLYTESDVHPSCKVT AMATT GAT GCT ACT m TAT ACG GAA AGT GAT GTT CAC CCC AGT TGC AAA GTA ACA GCA ATG ID ATLYTESDVHPSCKVT AM

AAG TGC TIT CTC m GAG TTA CM GTT ATT TCA CTT GAG TCC GGA GAT GCA AGT Απ CAT KCFLLEL Q VISLESGDASIHAAG TGC TIT CTC m GAG TTA CM GTT ATT TCA CTT GAG TCC GGA GAT GCA AGT Απ CAT KCFLLEL Q VISLESGDASIH

GAT ACA GTA GAA AAT CTG ATC ATC CTA GCA AAC AAC AGT TTG TCT TCT AAT GGG AAT GTA DTVENLI ILANNSLSS NGNVGAT ACA GTA GAA AAT CTG ATC ATC CTA GCA AAC AAC AGT TTG TCT TCT AAT GGG AAT GTA DTVENLI ILANNSLSS NGNV

ACA GAA TCT GGA TGC AAA GAA TGT GAG GAA CTG GAG GAA AAA AAT ATT AAA GAA ΤΤΓ Ήΰ TESGCKECEELEEKNIKEFLACA GAA TCT GGA TGC AAA GAA TGT GAG GAA CTG GAG GAA GAA AAA AAT ATT AAA GAA ΤΤΓ Ήΰ TESGCKECEELEEKNIKEFL

CAG AGT TTT GTA CAT ATT GTC CAA ATG TTC ATC AAC ACT TCT 402 QSFVHIVQMFINTS 3CAG AGT TTT GTA CAT ATT GTC CAA ATG TTC ATC AAC ACT TCT 402 QSFVHIVQMFINTS 3

Claims (1)

1278320 --撕败叫•…·抑 公告本' 拾、申 1. 一種抑制腫瘤細胞之複合式免疫基因醫藥組合物,該複 合式免疫基因醫藥組合物至少包含一有效劑量之含有 能表現介白素-6 (Interleukin-6,IL-6,SEQ ID NO : 1) 之基因片段的質體及一有效劑量之含有能表現介白素 -15 (Interleukin-15, IL-15,SEQ ID NO : 3)之基因片段1278320---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The plastid and an effective dose of the gene fragment of Inter-6 (Interleukin-6, IL-6, SEQ ID NO: 1) can express Interleukin-15 (IL-15, SEQ ID NO: 3) Gene fragment 的質體,該腫瘤細胞具有組織相容複合物(major histocompatibility complex,MHC)分子低表現性或不表 現’以及會產生轉形生長因子(transforming growth factor-β,TGF-β)的特性。 2.如申請專利範圍第1項所述之複合式免疫基因醫藥組合 物’其中該複合式免疫基因醫藥組合物係藉由該介白素 , -6拮抗該轉形生長因子對宿主體内自然殺手細胞的抑 ” 制,以解除該宿主的免疫抑制狀態,再藉由該介白素-i 5 活化該自然殺手細胞,以增強該宿主免疫系統,達成抑 制該腫瘤細胞生長之目的。 龜 3·如申請專利範圍第1項所述之複合式免疫基因醫藥組合 w 物,其中該腫瘤細胞係為犬傳染性花柳性腫瘤細胞。 4 · 一種抑制腫瘤細胞之醫藥組合物,該醫藥組合物至少包 含一有效劑量之介白素-6(SEQ ID NO: 1)表現蛋白質及 一有效劑量之介白素-15(SEQ ID NO: 3)表現蛋白質,該 腫瘤細胞具有組織相容複合物(major histocompatibility complex,MHC)分子低表現性或不表現,以及會產生轉 形生長因子(transforming growth factor-β,TGF-β)的特 26 1278320 性。 5. —種抑制腫瘤細胞之醫藥組合物,該醫藥組合物至少包 含一有效劑量之含有介白素-6(SEQ ID NO: 1)且能使其 表現之載體及一有效劑量之含有介白素-15(SEQ ID NO·· 3)且能使其表現之載體,該腫瘤細胞具有組織相容複合 物(major histocompatibility complex,MHC)分子低表現 性或不表現,以及會產生轉形生長因子(transforming growth factor-β,TGF-β)的特性。The plastid, the tumor cell has a characteristic of a major histocompatibility complex (MHC) molecule that is low-performance or non-expressed and produces a transforming growth factor-β (TGF-β). 2. The composite immunogenic pharmaceutical composition according to claim 1, wherein the composite immunogenic pharmaceutical composition antagonizes the transforming growth factor to the host body naturally by the interleukin, -6 The killer cell is inhibited to release the immunosuppressive state of the host, and the natural killer cell is activated by the interleukin-i 5 to enhance the host immune system and achieve the purpose of inhibiting the growth of the tumor cell. The composite immunogenic pharmaceutical composition as described in claim 1, wherein the tumor cell line is a canine infectious tumor cell. 4 · A pharmaceutical composition for inhibiting tumor cells, the pharmaceutical composition being at least An effective amount of interleukin-6 (SEQ ID NO: 1) expressing protein and an effective amount of interleukin-15 (SEQ ID NO: 3) expressing protein having a histocompatibility complex (major) Histocompatibility complex (MHC) is characterized by low or no expression of molecules, and the production of transforming growth factor-β (TGF-β). A pharmaceutical composition for treating tumor cells, the pharmaceutical composition comprising at least an effective amount of a carrier containing interleukin-6 (SEQ ID NO: 1) and capable of causing its expression and an effective dose of interleukin-15 ( SEQ ID NO. 3) and a vector capable of expressing the tumor cells having a low or no expression of a major histocompatibility complex (MHC) molecule, and a transforming growth factor -β, TGF-β) characteristics. 2727
TW92130562A 2003-10-31 2003-10-31 A complex immunity gene medicine composition for inhibiting tumor cell TWI278320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92130562A TWI278320B (en) 2003-10-31 2003-10-31 A complex immunity gene medicine composition for inhibiting tumor cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92130562A TWI278320B (en) 2003-10-31 2003-10-31 A complex immunity gene medicine composition for inhibiting tumor cell

Publications (2)

Publication Number Publication Date
TW200514567A TW200514567A (en) 2005-05-01
TWI278320B true TWI278320B (en) 2007-04-11

Family

ID=38645116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92130562A TWI278320B (en) 2003-10-31 2003-10-31 A complex immunity gene medicine composition for inhibiting tumor cell

Country Status (1)

Country Link
TW (1) TWI278320B (en)

Also Published As

Publication number Publication date
TW200514567A (en) 2005-05-01

Similar Documents

Publication Publication Date Title
JP3825467B2 (en) Selected immunotherapy with interleukin-7
DE60029460T3 (en) METHOD USING NUCLEIC ACID-INDUCED IMMUNOSTIMULATORY INTERFERON
ES2382775T3 (en) Adoptive immunotherapy with enhanced T lymphocyte survival.
AU704012B2 (en) Gene therapy for effector cell regulation
CN106535934A (en) Defined composition gene modified t-cell products
EP1615662A1 (en) Transfection of blood cells with mrna for immunostimulation and gene therapy
CN104870477B (en) GM-CSF and IL-4 conjugates, composition and relative method
CN102575227A (en) Engineered cells expressing multiple immunomodulators and uses thereof
JP5036546B2 (en) Thymus-specific protein
WO1996036366A9 (en) Gene therapy for effector cell regulation
Burkart et al. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters
KR101652767B1 (en) Vaccines and Immunotherapeutics using IL-28 and compositions and methods of using the same
JPH10510147A (en) Method for producing drug for treating secondary immunodeficiency
US20160296620A1 (en) Hmgn polypeptides as immune enhancers and hmgn antagonists as immune suppressants
JP2975117B2 (en) Live vaccines for the treatment of tumor diseases
Shi et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF
JP2006280324A (en) Hla class ii binding wt1 antigen peptide
DE60128070T2 (en) VACCINATED SPECIFIC TO NURSED TUMORS, DIRECTED AGAINST THE ANTIGEN G-250 OF THE KIDNEY DUMPER
KR20100126390A (en) Selective agonist of toll-like receptor 3
JPH09508116A (en) Use of IL-10 to stimulate peripheral blood mononuclear cytolytic activity
Qin et al. Human lymphotoxin has at least equal antitumor activity in comparison to human tumor necrosis factor but is less toxic in mice
Okada et al. Interleukin-4
TWI278320B (en) A complex immunity gene medicine composition for inhibiting tumor cell
US7323450B2 (en) Complex immuno-gene medical composition for inhibiting tumor cells
TW201840327A (en) Methods of treating multiple sclerosis using autologous t cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees