1278124 • 九、發明說明: 【發明所屬之技術領域】 - 本發明係屬一種化合物半導騁夕私+ a + /壯 卞v脱之静電放電保護裝置之 •技術領域’尤指一種免於靜雷你+ . 砰包放電破壞的方法及具靜電放 電保護能力之發光半導體元件。 【先前技術】 按,化合物半導體元件常用 吊用以作為發光元件等,並與 其它電子元件同樣需要面對靜雷 _ , ^ > 」茚私問碭。一般而言,化合物 半導體凡件常以並聯一齊柄—拉础 I β肩一極體或一簫基二極體作為抗 靜電之方式,或亦可更串聯—濾波電路等。 k年來I I I V奴化合物半導體材料因在光電與微波 .元件方面的潛力而吸引大量注目,特別是含m-v族氮化 物的半導體材料,如氮化键(「M、卜 . A化緣(GaN)、氮化鋁鎵(AlGaN)及氮 化姻蘇(I n G a N)寻半導體元株 ^ θ 今篮凡件但疋、由於氮化物沒有自然生 成之同質基板’因為一直磊曰止忐 且猫日日&成鬲密度之缺陷於磊晶層 中,以致於抗靜電能力低下。 • 如第五左圖所示,_插与/ ^ 一 、 種II化物元件以齊納二極體並聯 一覆晶半導體作為防止靜雷耠兩* 止奸电放包破壞之電路的示意圖。請 參考第五圖之左侧一圖,兔卩卜芦 α 為防止覆日日半導體結構di在操作 時因靜電放電而使j:社爐太身為糾a κ八、、。構本身父到破壞,一齊納二極體d2 .被加入以與覆晶半導體D1並聯’如此得達防止靜電放電破 壞之效、當正常川員向偏壓施加於覆晶半導體D1的兩端V+ 與V-時,一順向電流產吐於萝曰生 產生於伋日日+導體的p與N接面上, 此時覆晶半導體正常發光。 」而田有異《電壓或靜電產生時,此過高的電壓便 5 I278l24 廿朋潰區工作的齊納二極體放带 過齊納-把* 文免,其中放電路徑經 : 〜極體而不經過覆晶半導體,因&变s ± , 破異常雷段士 a , ^ U此復晶半導體不會 1或尚靜電破壞,覆晶半導^ 回復的傷余 卞净體也因此不會有不可 %告而恶法工作。 弟/、圖為苐五左圖之具有齊納— 構剖面圖.上 極體的覆晶半導體結 固,如圖所示,半導體部份(4 一第—挟 匕含一基板(45)、 知雜型摻雜氮化鎵(GaN) (48)、一 氮化鎵〔Γ⑽、/μ、 Μ —弟二摻雜型摻雜 aN) (43)及電極,保護部份( 一 極體)則勺人— v μ )(為一背納二 '已3弟一摻雜型摻雜矽(如Ν 型摻雜石々“ η ) ( 4 6 )、第二摻雜 …夕(如Ρ + +型)(47)及金屬層。Α 焊錫,筮4. 其中,球型區域為 弟一摻雜型摻雜矽電性耦接至 (48),而笛 ρ 乐—摻雜型摻雜層 而弟一摻雜型摻雜矽電性則耦接 層(43)。 受主弟一摻雜型摻雜 、“ ί正常操作下,一順向偏壓作用於V+與V-之間,使電 肌攸弟一摻雜型摻雜声r 4 ) 电 )飢過弟一摻雜型摻雜層(43 ), 斤產生的光則經由透明基板(45)發出。當有显常*斤 靜電產生時,沿第二摻雜型摻雜石夕p++(47)與第= 型(46)摻雜石夕構成一放電路徑,使電荷不平1 半導體部份。 饭保瞍 雖然上述結構可達防止靜電放電破壞而保護半 伤之效是此種結構在製程上卻很難製作。再者^ 納二極體在順偏時有漏電流較大的問題並且外加電路::: 本上升製作困難之問題,故利用其作為防止靜電放電之· 組件並不盡理想。 令 而本案發明人等從199〇年代就開始從事發光元件、兩 由 1278124 射元件之研究(請參見 TW5 5 1 77 7,TW530425,TW502457, TW5 0 243 8,TW4 96 0 0 0,TW49 5 9 9 9 等國内專利)以及發光二 極體蕭基元件、表面漏電流等之研究(請參見US6225200 •US6 1 9 766 7,US6 08 770 22等美國專利)對於過電壓以及靜電 保護元件方面也有一些成果(請參見TW5 1 0 5 6 9, TW2004 1 6 975,TW2004 1 0 908等國内專利),有鑑於矽半導 體中過電壓及防靜電保護措施已經完備,但是在單石型發 光二極體元件而言並不是那麼成熟,往往在靜電的突襲之 下卉夕發光一極體半導件都會損壞,造成問題,目前雖 然有許多的覆晶元件上可以將發光二極體元件並聯反向二 極體或是並聯-個背對背蕭基二極體或是一個齊鈉二極體 等等都已經揭卜但該等作法皆必須加入額外元件以行並 聯,也會有較大漏電流的問題。因此,化合物半導體元件 之有效過電壓及防靜電保護措施確有提出的必要性。 本案發明人亦長久致力於導電層絕緣層導電層(CIC) -件方面的研究,由於導電層絕緣層導電層⑹C)電容包括 如半導體層(30)/絕緣層(31)/半導體基板(32)⑻幻, 如第-圖A所示,或是金屬層(33)/絕緣層(34) 基板(32) (MIS)如第一圖b所示, " "下,或是金屬層(33) /絕 緣層(34)/金屬層(33)(_),如第-圖C所示,等.構 在微波集成電路中極為普遍,用於匹配、濾波、隔 電容值可到十幾PF如果以蜂巢結構為之其電容值可更大, 如第—圖奢示,導電層絕緣層導電層(CK)電容的剖面沾 構,電容值由上下導電層的重疊面積、介質的等致電介: 綜合上所述,目前尚未有任何文獻或發明專矛 導電層絕緣層導電層(HC)電容元件拿來做為潑 以此構想為基礎試著 靜電保護上,終於發 放電破壞的I I I-V族 1278124 •常數和厚度決定。常用的上半導體層(30 )(如第一 可以用化學氣相沈積(CVD )沉積覆晶矽或是多晶石夕並 ’琉磷或硼砷等原子完成中間為絕緣層(3 1 )其下為半 . 基板(32 )如矽基板等,常用的金屬層可以用沉積或 - 金屬或金屬氮化物完成金屬層(3 3 )例如氮化鈦(如 圖B或C),其中之絕緣層(34 )可為一般之二氧化矽, 矽或是咼介電係數之三氧化二釓(Gd a I ),三氧化 (Al2〇3) —氧化二镨(Pr 20 3 ),五氧化二钽(Ta 〇、 _氧化铪(Hf〇2)等等。 再者,因為電鑄技術的發展迅述,就目前紫外光 模造法(UV-LIGA)是微細加工中深具發展潛力的微結 …造技術之一,利用厚膜光阻(su —8 ph〇t〇resist)可^ .高深寬比(hlgh aspect ratl〇)及任意二維幾何形狀= 版,再配合微電鑄技術,即可製作出高強度之合金微模 例如見第二圖所示。也可應用於本案之導電層絕緣居、 φ層(01(〇電容覆晶基板製造量產以降低成本並加大電 質。 將 體的覆晶基材。故,本案發明人 該二元件而用於解決過電壓及防 一種保護化合物半導體免於靜電 半導體結構。 【發明内容】 圖Α) 參雜 導體 濺鍍 第一 氮化 二鋁 深刻 構製 造出 微模 仁。 導電 容量 直接 二極 結合 明出 8 1278124 為此’本發明之主要目的係提供一種保護一化合物車 ,導體免於靜電放電破壞的UI_V族覆晶半導體結構。 本發明之次一目的在於提屮一 扠® 種具靜電放電破壞保幾 -能力的I I I -V族覆晶封裝半導俨处Μ * 、. ^ 又 卞夺to結構,其以導電層絕緣層 笔層(CIC)為覆晶半導體的基杯 〜I板,邊基板在加電壓時不需 區分陽極或陰極,故製程可以簡化,且成本較石夕基板更低。 本U之另一目的在於提出一種具靜電’放電破 能力的III-V族覆晶封裝半導體結構,其以導電爲:乐、 導電層(CIC)作為覆晶半導體的.基板,在正常工作聍巴、彖層 小;同時在直流工作電壓時不會有導通之慮。了漏電凌 本發明之又再另一目的在於提出一種具靜 μ I故電破掠 保護能力的I I I-V族覆晶半導體結構,其上電極制 奴 衣程中以^ 全面鍍Ρ金屬接觸層,或是先鍍上氧化銦錫(ιτ〇 “ 再全面鍍P金屬接觸層,並得以一銀鉬或銀鉻 q 反射層Ρ電極增進發光覆晶後半導體之發光效率。此5 本發明之又再另一目的在於提出一種具靜 ^ 攻電破壞 保4能力的I I I -V族覆晶半導體結構,其上電極制 一 衣程之前 先行生長上布拉格(DBR)反射層再全面鍍ρ合屬 蜀璆觸層,或 疋生長上布拉格(DBR)反射再鍍上氧化銦錫 粘著層再全面鍍p金屬接觸層,使其有別於一 曰” %光二極 體具有下布拉格(DBR)反射層結構,並其Ρ金屬挺 、’ 聲觸層得以 一銀鉬或銀鉻或銀趴混合反射層ρ電極增進發先港曰〃 一 彳I晶後丰 導體之發光效率。 為達上述目的,本發明之保護一化合物半 '技免於靜 1278124 電放電的方法包括下列步驟:形成該發光二極體半導體於 一基板上,其中該發光二極體半導體具有一多層結構及— 第一與一第二電極;形成一導電層絕緣層導電層電容 •覆晶基板,其中該導電層絕緣層導電層(c丨c)雷六舜曰 兄谷復日日暴板 上具有一第一及一第二電極;及分別電性連結該發光二極 體半導體元件之第一及第二電極至該導電層絕緣層導電層 (CIC)電容覆晶基板之第一及第二電極。 本發明所揭露之具靜電放電破壞保護能力的丨I丨—V族 •覆晶半導體結構包含一半導體部份及一保護部份,該半導 體部份在一基板上具有一晶核區域層、一導電緩衝声 下束缚層、一主動層、一上束缚層及一接觸層,該保護部 •份為一導電層絕緣層導電層(CIC)電容覆晶基板,其中該半 導體部份之一第一電極形成於該接觸層上,並經由導電構 件及焊料球等與該保護部份之一第一電極電性耦接;I一 第二電極與該#電缓衝層接冑,並經由導電#件及焊料球 . 等與該保護部份的一第二電極電性輕接。 本發明揭露之另一種具靜電放電破壞保護能力的 III-V族覆晶半導體結構包含一丰導 ^ 千蜍體部份及一保護部 份,其中該半導體部份在_秀 透明基板上具有一晶核區域 .層、-導電缓衝層、1 —束缚層…主動層、—第二束 缚層及一接觸層,該接觸層可 ^ 9 j再形成以一上DBR結構及一 反射金屬層,該保護部份則岌 _ ^ 、马—¥笔層絕緣層導電層(c〗c) 電容覆晶基板,其中該半導μ μ八 V體部份的一第一電極形成於該 反射金屬層下方,用作為該坐t & Λ半‘月豆部份的陽極,並經由導 10 1278124 電構件及焊料姑、榮 干科球寺與該保護部份 且一第二+ 罘一電極電性耦接; • 私極形成於該導電緩衝層上,访婉丄、曾 焊料球等盥該彳 二由V電構件及 . …亥保邊部份的-第二電極電性福接。 奄明揭露之又另一種呈靜 III-V族覆曰本道 ,、奸包放電破壞保護能力的 、伋日日+ ¥體結構包含一半導 份’該半導體部份 a。77 -保護部 形式倒襄”伴“丰導體部份之任-者,並以覆晶 導電二:Γ 4部份上,該保護部份為-導電層絕緣層 ¥包層(CIC)電容覆Β其 i ^ 豕增 分別經由導電構件土 弟—電極與一第二電極 容,日其士件無接至該導電層絕緣層導電層(nc)電 合復日日基板金屬膜上一第一電極 體部份發出的#飞山 罘一電極,且该半導 射層以及布拉格⑽)反射層以增力^率出亚且心金屬反 其合=之!屬膜可以為電路板上的銅錫銀錯金㈣"或 導⑥ °此’將覆晶半導體倒扣於陶瓷導電層絕緣層 、私€(CIC)電容覆S其扭μ 基板上’可以防止靜電放電破壞,又 尤毛兀件的光可以由於氺— 並且補以金屬反射==透明基板直接發出, Γ ^ ^ " 布拉秸(DBR)反射層以增加效率。 L只施方式】 千 放電的方法二=護-化合物半導體免於靜電 導體 /、"放毛保護能力的III-V族覆晶半 - 、中该nl—v族覆晶半導體結構具有一笋光一 極體丰墓Μ姓摄” “ 口傅々男 知九_ 美搞,U構及一導電層絕緣層導電層aic)電容覆晶 其中w者稱為—半導體發光部份(以下簡稱作半導體 …後者則稱為一靜電電路保護部份(以下簡稱作保護 11 1278124 部份)’且前者在以下將以 發光二極體為例進行說明 I I I - V族元素氮化物半導體材料 ’並以藍光與綠光二極體為該發 光二極體的較祛者#也丨々、 例况明之,當然其它具光接收及微波 元件能力之其它籍麵彳募、7 種員件以覆晶形式出現之半導體結構亦屬 本發明的範圍。 請參閱第四圖所示’其係本發明之m-v族元素氮化 物半導組材料覆晶半導體結構之半導體部份的示意圖。 首先,在一基板(25)上依序設有一晶核層(nucleation layer) (27)及第一摻雜型摻雜導電缓衝層(28),其中該 導電缓衝層(28)為第一摻雜型摻雜的氮化鎵(⑽),用以 使後續的長晶更加順利與容易。導電緩衝層(28)上設有一 主動層(23),用以發光;—般其上下並各設有一束缚層或 稱為被覆層(231)及(232 )。上束縛層(231)、下束縛層(232 ) 的#雜型疋相反的,其中下束缚層(-232 )為第一摻雜型摻雜 的氮化鎵銘(GaA1N),而上束縛層(231)為第二摻雜型摻雜 的氮化鎵銘(GaA1N)。其後,上束缚層(231)之上形成一接 觸層(24),其為第二摻雜型氮化鎵(GaN),為增加反射率, 可在該接觸層(24)附近再形成一布拉格(DBR)反射層,或是 再增加一氧化銦錫(IT0 )作為粘著層,但圖中未示。接著, 再形成一陽極電極(29 )。為增加反射率,可在該電極上鍍 以一銀料反射m摻人1%至12%的銦或鉻或叙為更佳又 (貫驗所得值),用以調節膨脹係數不匹配所造成的應力。 另外,在導電缓衝層(28)與上束缚層(231)、下束縛層 及主動層(2 3 )隔離的區域上設有一陰極電極(2 6 )。 12 1278124 請參閱第五圖右側所 ^ 、 /',係為第一圖所示覆晶丰導;3* 結構的等效電路。其顯示兮士、, 叙日日+ ¥體 . ·、 °、半導體部份及該保護部份並聯 存在。在正常操作下,一 ‘帝、、六 、向偏壓施加於V +與V-之間,使 私教在+導體部份( )流過“… 極體)D1中自正摻雜型掺雜 Γ:Γ 接雜層’而使所產生的光經由透明基板發 異常電壓脈衝或靜電脈衝產生時,電荷 導電層絕緣層導電™容覆晶基板:;: …二-電極間導通放電,而不會通過該半導體部份。 >目第二圖’其繪示第五圖右側等效電路之覆 日日半V體結構的剖面圖。 ρ 如圖所不,一基板(1 5 )、一主動 廣(13)、上束缚層、下束缚層及一接觸層(為增加反射率 可在該接觸層附近形成-布拉格反射結構,但圖中未示)’ 成I 1 1 —V族氮化鎵(GaN )覆晶半導體。 、“在4半導體部份中,-第-電極(16)設以作為覆晶半 W紅之陽極(為增加反射率,可在該第一電極(1 6)上鍍以哿 =為^射層(14),並以摻入1%至12%的的鉬或鉻或鈥為^ (貝、驗所知值),用以調節膨脹係數不匹配所造成的應 )位在該反射金屬層(丨4 )下方,並經由導電構件 料球_ ί 1 2、μ 久蜂 ’ 8 )等與保護部份(導電層絕緣層導電層(CIC)略〜 曰土反)(1 2 )之一第一電極(1 9 )電性耦接。在該半敬 部份中,—a _ 賤 一弟二電極(161)位於一導電緩衝層(28)上 矣呈ώ道兩 5 ' ¥笔構件及焊料球(1 8 )等與保護部份(導電層々 層m 色矣氣 、% s ( C I C )電容覆晶基板)(1 2 )之一第二電極(1 g 1 性耦接。 J電 13 1278124 ' , 在正常操作下,當順向偏壓施加於v+與恥之間^ 一電流從第一電極(16)流過半導體部份,而使所產^ 4, (17)經由透明基板(15)發出。當有異常電壓或靜電產:光 •時,放電路徑便會轉至導電層絕緣層導電層(cic)電容*曰 基板(1 2 )上’而不會通過半導體部份,此時本發明所:明 的保護機制便在20 0V時開始啟動保護,最佳例可以承t成 體模式耐壓到8KV。 又人 本發明更提出-種具有防止靜電放電破壞能力之 :1 η族覆晶半導體結構’在一透明基板上具有_晶核區 域層’導電緩衝層,第一束缚層、主動層、第二束缚層與 接觸層,接觸層可以增加包括有DBR結構。第、在 反射么嵐@ 、3广=^下方,做為覆晶半導體之陽極經由導電構件及 焊料球等與導電層絕緣層導電層(C 1C)電容覆晶基板第一 電桎曼性耦接。第二電極位於導電緩衝層上,具第二電極 電性知 接’亚經由導電構件及焊料球等與導電層絕緣層導 矣9 c 1 c)電容覆晶基板第二電極電性耦接。其中導電層絕 “ $電層(C I C)電容覆晶基板,可為打線(丨丨)基板,或是 、衣5^基板’其型恶中表面封裝型基板可經由穿孔或 1 則面部11力# 毛錢而成。其中導電層絕緣層導電層(CIC)電容覆晶基 口JP命】 a作成多層結構,其保護電壓大小可藉由該多層結構 苐 包極與第二電極圖形或間距改變調整。 '束發明之具有防止靜電放電破壞之丨丨丨—V族覆晶半導 體結棬ώΑ V ^ 缚的另一貫施例將說明如下。在半導體部份中,在一 透^明# 之反上具有一晶核區域層、一導電緩衝層 '一第一束 14 1278124 缚層、一主動層、一 — 束缚層及一接觸層,該接觸厚可 更包§ 一銀銷反射今屬岛 曰了 • 射至屬層。此外,-第-電極設為半導释 口 P伤的%極,並經由導泰 、to 五、.工由v电構件及焊料球等與保護部份 層絕緣層導電層(CIC)電 、电 接,其中該第一雷 輕 电極上方可再設以金屬反射層, 例者同。一第—恭 Λ ⑴只% 昂一电極§又於該導電緩衝層上,並經由 件及焊料料與保護部”電層騎層WIC)t; 板的第二電極電性輕接。其中,導電層絕緣層導電 :(1C)電容覆晶基板可為打線基板或表面封襄型基板4 基板可經由穿孔或側面電鐘而成。導電層絕 =::層:)電容覆晶基板可製作成多層結構,其保護 圖形或間距決定,藉由改變今等失^电極與弟一電極 欠及等荼數值即可調整之。 J J J 了將况明本發明之具防止靜電放電破壞能力之 1 1 —V族覆晶半導體結構的又一者 導體部份中,—透明心…““列。在該結構的半 ^ ^, 土 5又有具有一晶核區域層、一導 L衝層、一第一束缚層、一 ^ 4# ^ ^ 主動層、一第二束缚層及一 曰,该接觸層可更包含一上右 射金屬展 布拉袼反射結構及一上反 、 3 。一弟一電極設為半導俨 雷搂从 々千¥肢邛份的陽極,並經由導 牛及焊料球等與保護部 電交母Α 刀Q V電層絕緣層導電層(CIC) 〜覆晶基板)的第一電極電 ) 金凰昆 , 具上亚可汉以一反射 王屬層’與前實施例者同。一干 上,、,_ … 弟一电極設於該導電緩衝層 亚經由導電構件及焊料盘 導電屉寺/、保護部份導電層絕緣層 甩層(CIC)容封裝基板的⑷ 包從電性耦接。其中,導電 15 1278124 層絕緣層導電層(C I c)電容覆晶基板可為打線基板或表面 封裝型基板,其中表面封裝型基板可經由穿孔或側面電鍍 β而成。導電層絕緣層導電層(c I C )電容覆晶基板可製作為 - I多層結構,其保護電壓大小由該多層結構及第一電極與第 - 二電極圖形或間距決定,藉由改變該等參數值即可調整之。 【圖式簡單說明】 · 第一圖係為導電層絕緣層導電層(C I C)電容的剖面結構。 第二圖係為蜂巢電容結構。 • 第三圖係為本發明實施例,覆晶發光二極體電性連結導電 層絕緣層導電層電容覆晶基板之結構不意圖。 第四圖係為本發明實施例,覆晶發光二極體的結構示意圖。 第五圖係習用之實施例與本發明實施例的電路比較圖。 第六圖系習用之實施例,用以表示覆晶發光二極體電性連 結石夕基板齊納二極体之結構示意圖-。 【主要元件符號說明】 (11 )打線 φ ( 1 2 )導電層絕緣層導電層(C I C)電容覆晶基板 (13) ( 23)主動層 (1 4 )反射層 (1 5 ) ( 25 ) ( 32 ) ( 45 )基板 (1 6 ) ( 1 9 )第一電極 * (161)(191)第二電極 (1 7 )光 (1 8 )焊料球 (2 3 1 )上束缚層 ( 23 2 )下束縛層 (24 )接觸層 16 1278124 ^ ( 26 )陰極電極 (2 7 )晶核層 .(28)導電缓衝層 (2 9 )陽極電極 —> (30 )半導體層 - (31)(34)絕緣層 (3 3 )金屬層 (4 0 )半導體部分 (4 1 )保護部份 (43 )第二掺雜型摻雜層 # ( 46 )第一摻雜型摻雜矽(如N型) (47 )第二摻雜型摻雜矽(如P + +型) (48 )第一摻雜型摻雜層 171278124 • Nine, invention description: [Technical field to which the invention belongs] - The invention belongs to the technical field of a compound semi-conducting + 私 + a + / 卞 卞 脱 • • 技术 技术 技术 技术 技术 技术 技术Jing Lei you +. The method of breaking the sacrificial pack and the light-emitting semiconductor component with electrostatic discharge protection capability. [Prior Art] According to the compound semiconductor device, it is commonly used as a light-emitting element, and the same as other electronic components, it is necessary to face the static _, ^ > In general, compound semiconductors are often used in parallel with the shank—the base I β shoulder or a bismuth diode—as an antistatic method, or a series-filter circuit. In the past year, IIIV slave compound semiconductor materials have attracted a lot of attention due to their potential in optoelectronics and microwave components, especially semiconductor materials containing mv nitrides, such as nitriding bonds ("M, Bu. A GaN, Nitrogen Aluminum gallium (AlGaN) and nitriding sulphide (I n G a N) finder semiconductor element ^ θ This basket is a piece of 疋, because the nitride does not naturally form a homogeneous substrate 'because it has been stretched and cat day The defects of the day & density are in the epitaxial layer, so that the antistatic ability is low. • As shown in the fifth left figure, the _plug and / ^ one, the species II compound is connected in parallel with the Zener diode. As a schematic diagram of the circuit for preventing the destruction of the static thunder and the smashing electric discharge package, please refer to the left side of the fifth figure, and the rabbit 卩 芦 α is used to prevent the electrostatic discharge of the semiconductor structure di during operation. And let j: the furnace is too much to correct a κ 八 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The normal Sichuaner applies a bias voltage to both ends of the flip-chip semiconductor D1 V+ At V-, a forward current is produced by the sputum produced on the p and N junctions of the day + conductor, and the flip-chip semiconductor emits light normally. "Where the field is different, "when voltage or static electricity is generated, this Excessive voltage 5 I278l24 齐 溃 溃 工作 工作 工作 工作 工作 工作 工作 工作 - - - - - - - - - - , , , , , , , , , , , , , , , , , , , , , , , , 放电 放电 放电 放电 放电, breaking the abnormal thunder section a, ^ U this polycrystalline semiconductor will not be 1 or static damage, the flip-chip semi-conducting ^ recovery of the 卞 卞 也 也 也 也 也 也 也 也 也 也 也 也 也 也 也 也 也 。 。 。 。 。 。 。 。 。 。 。 。 。 The left side of the figure has a Zener-structure cross-section. The flip-chip semiconductor of the upper pole is solidified. As shown in the figure, the semiconductor part (4-first---containing a substrate (45), doped type doping Gallium nitride (GaN) (48), gallium nitride [Γ(10), /μ, Μ-di-doped doping aN) (43) and electrodes, protective part (one polar body) is scoop-v μ ) (for a dorsal nano two 'three brothers - one doped type doped yttrium (such as ytterbium doped sarcophagus " η ) ( 4 6 ), second doped ... ( (such as Ρ + + type) (47 ) and the metal layer.Α Tin, 筮4. Among them, the spherical region is doped-doped with a doped erbium electrically coupled to (48), while the flute-doped doped layer and the doped-doped doped 矽 electrical property Then the coupling layer (43) is doped by the younger brother, " ί under normal operation, a forward bias acts between V+ and V-, so that the electric muscle is a doping type doping sound r 4 ) Electrically hunger-doping a doped doping layer (43), the light generated by the jin is emitted through the transparent substrate (45). When there is a significant amount of static electricity generated, the second doped type doped shi p p++ (47) and the y = (46) doped yoke form a discharge path, so that the charge is not equal to the semiconductor portion.饭保瞍 Although the above structure can prevent electrostatic discharge damage and protect the half-injury, this structure is difficult to manufacture in the process. Furthermore, the nano diode has a large leakage current when it is biased and the circuit is added:: This is a problem that is difficult to make, so it is not ideal to use it as a component to prevent electrostatic discharge. Therefore, the inventors of the present case have been engaged in the research of light-emitting components and two components from 1278124 since the 1970s (see TW5 5 1 77 7, TW530425, TW502457, TW5 0 243 8, TW4 96 0 0 0, TW49 5 9 9 9 and other domestic patents) and the research of light-emitting diodes, such as Xiaoji components, surface leakage currents, etc. (see US6225200 • US6 1 9 766 7, US6 08 770 22, etc.) for overvoltage and electrostatic protection components. Some results (please refer to TW5 1 0 5 6 9, TW2004 1 6 975, TW2004 1 0 908 and other domestic patents), in view of the over-voltage and anti-static protection measures in the semiconductor, but in the single-stone type The body components are not so mature, and often under the electrostatic attack, the illuminating one-pole semiconductor will be damaged, causing problems. Although there are many flip-chip components, the LED components can be reversed in parallel. Diodes or parallel-back-to-back Xiaoji diodes or a sodium-sodium diode have been uncovered, but these methods must add additional components to be connected in parallel, and there will be a large leakage current. . Therefore, effective overvoltage and antistatic protection measures for compound semiconductor devices are indeed necessary. The inventor of the present invention has also long been devoted to the conductive layer insulating layer (CIC)-piece research, since the conductive layer insulating layer conductive layer (6) C) capacitor includes, for example, a semiconductor layer (30) / insulating layer (31) / semiconductor substrate (32 (8) Magic, as shown in Figure-A, or metal layer (33) / insulating layer (34) substrate (32) (MIS) as shown in the first figure b, "", or metal layer (33) / Insulation layer (34) / metal layer (33) (_), as shown in Figure-C, etc., is very common in microwave integrated circuits, used for matching, filtering, and capacitance values up to ten If a few PFs have a honeycomb structure, the capacitance value can be larger. For example, the first layer shows that the conductive layer (CK) capacitor has a cross-section of the capacitor, and the capacitance value is the overlap area of the upper and lower conductive layers, the medium, etc. Calling: According to the above, there is no literature or invention special conductive layer conductive layer conductive layer (HC) capacitive element used as a reflection on the basis of this concept to try to protect the electrostatic protection, finally the discharge failure II Group IV 1278124 • Constant and thickness determined. a commonly used upper semiconductor layer (30) (for example, the first can be deposited by chemical vapor deposition (CVD), or the dolomite and the atom such as phosphorus or boron arsenic, the intermediate layer is an insulating layer (3 1 ) The lower part is half. The substrate (32) such as a germanium substrate, etc., the common metal layer can be deposited or metal or metal nitride to complete the metal layer (3 3 ) such as titanium nitride (as shown in Figure B or C), wherein the insulating layer (34) may be general ruthenium dioxide, ruthenium or osmium trioxide (Gd a I ), trioxide (Al 2 〇 3) - bismuth oxide (Pr 20 3 ), bismuth pentoxide (Ta 〇, _ 铪 铪 (Hf 〇 2), etc. Moreover, because of the rapid development of electroforming technology, the current UV-moulding method (UV-LIGA) is a micro-junction with deep development potential in micro-machining... One of the techniques, using thick film photoresist (su - 8 ph〇t〇resist) can be used with high aspect ratio (hlgh aspect ratl〇) and any two-dimensional geometry = version, combined with micro-electroforming technology, For the production of high-strength alloy micro-die, see the second figure. It can also be applied to the conductive layer insulation of this case, φ layer (01 (〇 capacitor flip-chip The production of the board is mass-produced to reduce the cost and increase the electric quality. The inventor of the present invention uses the two components to solve the overvoltage and prevent a compound semiconductor from being protected from the electrostatic semiconductor structure. 】 Figure Α) The first conductor of the doped conductor is sputtered to form the micro-mold. The conductive capacity is directly combined with the two poles. 8 1278124 For this purpose, the main purpose of the present invention is to provide a compound car, conductor. The UI_V flip-chip semiconductor structure is protected from electrostatic discharge damage. The second object of the present invention is to provide a III-V flip-chip package semi-conducting Μ*, which is capable of electrostatic discharge damage protection. ^ The structure is also usped up. The conductive layer insulating layer (CIC) is used as the base cup to the I-chip of the flip-chip semiconductor. The edge substrate does not need to distinguish between the anode and the cathode when the voltage is applied, so the process can be simplified and the cost is relatively low. The Si-Xi substrate is lower. Another purpose of this U is to propose a III-V flip-chip semiconductor structure with electrostatic 'discharge breaking ability, which is made of conductive: conductive and conductive layer (CIC) as a flip chip. The substrate of the body is small in normal operation, and the layer of germanium is small; at the same time, there is no conduction during the DC working voltage. Another object of the present invention is to provide a static break. The protective ability of the Group II IV flip-chip semiconductor structure, in which the upper electrode is made of a ruthenium metal layer, or is first plated with indium tin oxide ("I" and then fully plated with a P-metal contact layer. A silver molybdenum or silver chrome q reflective layer Ρ electrode enhances the luminescence efficiency of the semiconductor after luminescent flip chip. 5 Another object of the present invention is to provide a III-V flip chip with the ability of static attack and power destruction. In the semiconductor structure, before the upper electrode is formed, a Bragg (DBR) reflective layer is first grown and then fully plated with a 蜀璆 contact layer, or a Bragg (DBR) reflection is grown and then an indium tin oxide adhesion layer is applied. Fully p-plated metal contact layer, which is different from a 曰"% photodiode with a lower Bragg (DBR) reflective layer structure, and its bismuth metal, 'acoustic touch layer can be mixed with a silver molybdenum or silver chrome or silver enamel Reflective layer ρ electrode enhances the first port The luminous efficiency of a 彳I crystal after abundance conductor. In order to achieve the above object, the method for protecting a compound of the present invention from electrostatic discharge 1278124 includes the steps of: forming the light emitting diode semiconductor on a substrate, wherein the light emitting diode semiconductor has a multilayer structure And a first electrode and a second electrode; forming a conductive layer insulating layer conductive layer capacitor and a flip chip substrate, wherein the conductive layer insulating layer conductive layer (c丨c) has a solar cell a first electrode and a second electrode; and first and second electrodes electrically connected to the first and second electrodes of the light emitting diode semiconductor component to the conductive layer insulating layer (CIC) capacitor flip chip substrate . The 丨I丨V group flip-chip semiconductor structure with electrostatic discharge damage protection capability disclosed in the present invention comprises a semiconductor portion and a protection portion, the semiconductor portion having a nucleation region layer on a substrate, a conductive buffering sound lower binding layer, an active layer, an upper binding layer and a contact layer, the protective portion is a conductive layer insulating layer conductive layer (CIC) capacitor flip-chip substrate, wherein the semiconductor portion is first An electrode is formed on the contact layer, and is electrically coupled to the first electrode of the protective portion via a conductive member, a solder ball, or the like; the first electrode is connected to the # electrical buffer layer, and is electrically conductive. And a solder ball. The device is electrically connected to a second electrode of the protective portion. Another III-V flip-chip semiconductor structure with electrostatic discharge damage protection capability disclosed in the present invention comprises a quantum portion and a protective portion, wherein the semiconductor portion has a transparent substrate a nucleus region, a layer, a conductive buffer layer, a 1 - tie layer, an active layer, a second tie layer, and a contact layer, the contact layer being re-formed to form an upper DBR structure and a reflective metal layer. The protective portion is a 覆 _ ^ , a horse - a pen insulating layer (c ) c) a capacitor flip-chip substrate, wherein a first electrode of the semi-conductive μ μ 8 V body portion is formed on the reflective metal layer Below, used as the anode of the t& half-moon bean part, and through the electric conductor 10 1278124 and the solder, the glory of the ball temple and the protective part and a second + 罘 electrode electrical Coupling; • The private pole is formed on the conductive buffer layer, and the access point, the solder ball, etc., are electrically connected by the V-electric component and the second electrode of the protective edge portion. Yan Ming revealed another kind of static III-V family covering the original, and the packet breaking discharge protection ability, the day + ¥ body structure contains half of the conductor 'the semiconductor part a. 77 - The protection part is in the form of "returning the conductor part", and the flip-chip conductive part is: Γ 4 part, the protection part is - the conductive layer insulation layer (CIC) capacitor cover Β其i ^豕增增 via the conductive member of the earth-electrode and a second electrode, the Japanese element is not connected to the conductive layer insulating layer conductive layer (nc) The electrode of the electrode body is emitted from the #飞山罘-electrode, and the semi-conductive layer and the (30) reflection layer of the semiconductor layer are increased in force and the metal is reversed. The film can be copper-tin-silver gold on the circuit board (four)" or lead 6 ° this 'turn the flip-chip semiconductor on the ceramic conductive layer insulation layer, private (CIC) capacitor cover S its twisted μ substrate' can prevent Electrostatic discharge damage, and especially the light of the hair can be due to 氺 - and complemented by metal reflection = = transparent substrate directly, Γ ^ ^ " Brass straw (DBR) reflective layer to increase efficiency. L only applies the method] The method of the second discharge = the protection - the compound semiconductor is free of the electrostatic conductor /, the "protective ability of the III-V family of flip-chip half--, the nl-v family of flip-chip semiconductor structure has a bamboo shoot "The first light of the body of the tomb of the tomb" "The mouth of the Fu 々 々 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The latter is called an electrostatic circuit protection part (hereinafter referred to as the protection part 11 1278124) and the former will use the light-emitting diode as an example to illustrate the III-V element nitride semiconductor material 'with blue light and The green light diode is the latter of the light-emitting diode. It is also a case study. Of course, other semiconductors with the ability to receive light and microwave components, and seven kinds of semiconductors in the form of flip-chips The structure is also within the scope of the present invention. Please refer to the fourth embodiment of the semiconductor portion of the mv group element nitride semiconductor group material flip-chip semiconductor structure of the present invention. First, on a substrate (25) a crystal nucleus (nucleation layer) (27) and a first doped type doped conductive buffer layer (28), wherein the conductive buffer layer (28) is a first doped type doped gallium nitride ((10)) for The subsequent crystal growth is made smoother and easier. The conductive buffer layer (28) is provided with an active layer (23) for emitting light; generally, it is provided with a binding layer or a coating layer (231) and (232). The upper binding layer (231) and the lower binding layer (232) are opposite to each other, wherein the lower binding layer (-232) is a first doped type doped gallium nitride (GaA1N), and The tie layer (231) is a second doped type doped gallium nitride (GaA1N). Thereafter, a contact layer (24) is formed over the upper tie layer (231), which is a second doped type nitride Gallium (GaN), in order to increase the reflectivity, a Bragg (DBR) reflective layer may be formed in the vicinity of the contact layer (24), or indium tin oxide (IT0) may be added as an adhesion layer, but not shown in the figure. Then, an anode electrode (29) is formed. In order to increase the reflectivity, the electrode may be plated with a silver material to reflect 1% to 12% of indium or chromium or better. The value is used to adjust the stress caused by the mismatch of the expansion coefficient. In addition, a region is provided on the region where the conductive buffer layer (28) is separated from the upper tie layer (231), the lower tie layer and the active layer (23). Cathode electrode (2 6 ). 12 1278124 Please refer to the right side of Figure 5 for the ^, /', which is the flip-chip derivative shown in the first figure; the equivalent circuit of the 3* structure. It shows the gentleman,, and the sunday + ¥ body. ·, °, semiconductor part and the protection part are connected in parallel. Under normal operation, a 'di, hex, and bias voltage is applied between V + and V- to make the private conductor in + conductor Part of ( ) flows through the "...polar body" D1 from the positive doping type doping Γ: 接 the impurity layer', and the generated light is generated by an abnormal voltage pulse or electrostatic pulse through the transparent substrate, the charge conductive layer is insulated. Layer Conductive TM Capacitor::: ... the conduction between the two electrodes is not conducted through the semiconductor portion. > The second figure ’ shows a cross-sectional view of the half-V body structure of the equivalent circuit on the right side of the fifth figure. ρ As shown, a substrate (1 5 ), an active wide (13), an upper tie layer, a lower tie layer, and a contact layer (a Bragg reflection structure can be formed in the vicinity of the contact layer for increasing the reflectance, but Not shown) 'I 1 1 - V group gallium nitride (GaN) flip chip semiconductor. "In the 4 semiconductor portion, the -electrode (16) is provided as the anode of the flip-chip half-W red (to increase the reflectance, the first electrode (16) can be plated with 哿 = ^ Layer (14), and incorporating 1% to 12% of molybdenum or chromium or bismuth (b, known value) to adjust the expansion coefficient mismatch caused by the position of the reflective metal layer (丨4) below, and through the conductive member ball _ ί 1 2, μ long bee '8) and so on with the protective part (conductive layer insulation layer (CIC) slightly ~ 曰土反) (1 2) The first electrode (1 9 ) is electrically coupled. In the half-respected portion, the -a _ 贱 弟 二 二 electrode (161) is located on a conductive buffer layer (28), and is formed by two 5' members. And the solder ball (18) and the protective portion (the conductive layer m layer m color xenon, % s (CIC) capacitor flip-chip substrate) (1 2) one of the second electrodes (1 g 1 coupling). 13 1278124 ' , under normal operation, when a forward bias is applied between v+ and shame ^ a current flows from the first electrode (16) through the semiconductor portion, so that the produced 4, (17) is passed through the transparent substrate (15) Issued when there is abnormal voltage or static Production: When the light is light, the discharge path will be transferred to the conductive layer (cic) of the conductive layer and the substrate (1 2 ) will not pass through the semiconductor portion. In this case, the invention has a clear protection mechanism. Starting protection at 20 0V, the best example can be to withstand voltage to 8KV in the bulk mode. The invention further proposes a kind of resistance to electrostatic discharge destruction: 1 η-type flip-chip semiconductor structure 'on a transparent substrate There is a nucleation region layer 'conductive buffer layer, a first tie layer, an active layer, a second tie layer and a contact layer, and the contact layer can be increased to include a DBR structure. First, under reflection 岚@,3广=^ The anode of the flip-chip semiconductor is coupled to the first layer of the conductive layer (C 1C) capacitor flip-chip substrate via a conductive member and a solder ball, etc. The second electrode is located on the conductive buffer layer. The two electrodes are electrically connected to each other via a conductive member and a solder ball, and the conductive layer is electrically conductively coupled to the second electrode of the capacitor flip-chip substrate. The conductive layer is completely "CIC". Capacitor flip-chip substrate, which can be used for wire bonding Or, coated substrate 5 ^ 'type which the evil-type substrate surface of the package may be made via a dime or a perforated portion 11 forces #. The conductive layer insulating layer conductive layer (CIC) capacitor flip-chip base JP life a is formed into a multi-layer structure, and the protection voltage can be adjusted by the multi-layer structure 苐 package pole and the second electrode pattern or pitch change. Another embodiment of the invention of the V-type flip-chip semiconductor crucible V ^ binding which is to prevent the destruction of the electrostatic discharge will be explained as follows. In the semiconductor portion, a nucleus region layer, a conductive buffer layer 'a first bundle 14 1278124 tie layer, an active layer, a — tie layer and a contact layer are formed on the opposite side of the transparent surface The thickness of the contact can be even more § A silver pin reflection is now an island. • Shoot to the genus. In addition, the -first electrode is set to the % pole of the semi-conductive port P, and is electrically connected to the protective portion of the insulating layer (CIC) via a conductive member, a solder ball, or the like. Electrical connection, wherein the first lightning light electrode can be further provided with a metal reflective layer, for example. A first - Congratulations (1) only % of an electrode § on the conductive buffer layer, and through the piece and solder material and the protection part "electric layer riding layer WIC" t; the second electrode of the board is electrically connected. Conductive layer insulation layer Conductive: (1C) capacitor flip-chip substrate can be a wire-bonding substrate or a surface-sealed substrate 4 The substrate can be formed by a perforation or a side electric clock. The conductive layer is absolutely =:: layer:) the capacitor flip-chip substrate can be It is made into a multi-layer structure, and its protection pattern or spacing is determined. It can be adjusted by changing the value of the current and the electrode and the equivalent of the electrode. JJJ will explain the ability of the present invention to prevent electrostatic discharge damage. In the other conductor part of the 1 1 -V-type flip-chip semiconductor structure, the transparent core ... "" column. In the half of the structure, the soil 5 has a layer of nucleation region, a layer of L-transfer layer a first tie layer, a ^ 4 # ^ ^ active layer, a second tie layer and a turn, the contact layer may further comprise an upper right shot metal bronze reflection structure and an upper reverse, 3 . The first electrode of the brother is set to a semi-conducting thunder, from the anode of the ¥ thousand limbs, and through the guide cattle and solder balls, etc. The protective part of the electric mother Α knife QV electric layer insulation layer conductive layer (CIC) ~ flip-chip substrate) of the first electrode electricity) Jin Huangkun, with the upper Akan Han with a reflection of the king layer 'the same as the previous example. The upper electrode, the first electrode is disposed on the conductive buffer layer via the conductive member and the solder disk, and the protective portion of the conductive layer (CIC) of the package substrate (4) is electrically coupled. Conductive 15 1278124 layer insulating layer conductive layer (CI c) capacitor flip chip substrate can be a wire bonding substrate or a surface package type substrate, wherein the surface package type substrate can be formed by perforation or side plating β. Conductive layer insulation layer is conductive The layer (c IC ) capacitor flip-chip substrate can be fabricated as a multi-layer structure, and the protection voltage is determined by the multi-layer structure and the first electrode and the second electrode pattern or the pitch, and can be adjusted by changing the parameter values. [Simple diagram of the diagram] · The first diagram is the cross-sectional structure of the conductive layer (CIC) capacitor of the conductive layer. The second diagram is the honeycomb capacitor structure. • The third diagram is the embodiment of the invention, flip-chip illumination Diode electrical The structure of the conductive layer of the conductive layer is not intended to be the structure of the flip-chip substrate. The fourth figure is a schematic diagram of the structure of the flip-chip light-emitting diode according to the embodiment of the present invention. The fifth figure is a conventional embodiment and an embodiment of the present invention. The sixth figure is a conventional embodiment for indicating the structure of the flip-chip light-emitting diode electrically connected to the Zener diode Zener diode. [Main component symbol description] (11) Wire φ ( 1 2) Conductive layer insulating layer conductive layer (CIC) capacitor flip-chip substrate (13) (23) active layer (14) reflective layer (1 5 ) ( 25 ) ( 32 ) ( 45 ) substrate (1 6 ) ( 1 9) First electrode* (161) (191) Second electrode (17) Light (18) Solder ball (2 3 1 ) Upper tie layer (23 2 ) Lower tie layer (24) Contact layer 16 1278124 ^ ( 26) Cathode electrode (27) crystal core layer. (28) Conductive buffer layer (29) Anode electrode-> (30) Semiconductor layer - (31) (34) Insulation layer (3 3 ) Metal layer (4) 0) semiconductor portion (4 1 ) protection portion (43) second doped type doping layer # (46) first doping type doping 矽 (such as N type) (47) second doping type doping 矽(eg P + + type) (48) First doped type Doped layer 17