TWI276238B - White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method - Google Patents

White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method Download PDF

Info

Publication number
TWI276238B
TWI276238B TW94113234A TW94113234A TWI276238B TW I276238 B TWI276238 B TW I276238B TW 94113234 A TW94113234 A TW 94113234A TW 94113234 A TW94113234 A TW 94113234A TW I276238 B TWI276238 B TW I276238B
Authority
TW
Taiwan
Prior art keywords
light
phosphor
wavelength
emitted
photoluminescence
Prior art date
Application number
TW94113234A
Other languages
Chinese (zh)
Other versions
TW200638565A (en
Inventor
Chia-Cheng Kang
Ru-Shi Liu
Hung-Yuan Su
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to TW94113234A priority Critical patent/TWI276238B/en
Publication of TW200638565A publication Critical patent/TW200638565A/en
Application granted granted Critical
Publication of TWI276238B publication Critical patent/TWI276238B/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

A white light emitting diode component capable of emitting white light includes an LED chip capable of emitting photoluminescence light, a first photoluminescence phosphor for absorbing first photoluminescence light of the photoluminescence light and emitting first emitting light, and a second photoluminescence phosphor for absorbing second photoluminescence light of the photoluminescence light and emitting second emitting light. A blend of the photoluminescence light except the first and the second photoluminescence lights and the first and the second emitting lights forms the white light. The first photoluminescence phosphor has a chemical formula of (Ca1-x-yEuxMy)Se, where x is not equal to zero, y is between zero and one, and M is composed of at least one element selected from a group consisting of Be, Mg, Sr, Ba, and Zn.

Description

1276238 九、發明說明: 【發明所屬之技術領域】 本發明係相關於一種發光二極體(light-emitting diode, LED),尤指一種内含單一發光二極體晶片及兩種螢光粉 (photoluminescence phosphor)之白光發光二極體元件。 【先前技術】 由於具有低耗電、長壽命(約為傳統日光燈的十倍)、以 及敢重要的南演色性(color rendering index,CRI)與可產生 不會對藝術品造成傷害之電磁輻射(visible radiation)等優 點’白光發光二極體(white-light LED)元件已漸漸成為一種 敢受市場、尤其是對演色性有特別要求之高階市場歡迎的 照明元件了。 一種最直接製作一白光LED元件之方法為將三個分別 舍出監、紅、及綠光之監光(blue-light)、紅光、 及綠光(green_light)LED晶片組合起來、以形成該白光led 元件。如此一來’㊂亥白光LED元件便可發射出該該光、該 紅光、及該綠光所混合而成之白光。 然而,由於必需包含三個LED晶片,所以,上述之三 合一白光LED元件之製作成本相當高。此外,由於該等 LED晶片之發光效率不盡相同,具體言之,該藍光led晶 1276238 片之發光效率通常係高於該紅光led晶片 '及該綠光LED 晶片之發光效率,所以,内含該等LED晶片之白光led 元件所發射出之白光儘具有較差之演色性。 為了克服上述之缺點,日亞化费(Nichia Chemical)提出 種内含單一 LED晶片及螢光粉(photoluminescence phosphor)之白光LED元件,該螢光粉之化學式為 ❿(YimGdpCeqSnirMAh-sGaAOu,其中,p 係介於 〇 及 0.8 之間、q係介於〇·〇〇3及〇·2之間、r係介於0.0003及0.08 之間、而s係介於〇及1之間。該單一 LED晶片可發射一 激發光’而該螢光粉係滲雜於一用來覆蓋該單一 LED晶片 之環氧樹脂(epoxy resin)内,並藉由吸收該單一 LED晶片 所發射之激發光中具有一預定波長之預定激發光之方式來 激發出一發射光。如此一來,該單一 LED晶片所發射之除 了該預定激發光以外之激發光與該螢光粉所激發之發射光 •便可混合成該白光。 由於僅包含該單一 LED晶片及已屬成熟產品故而相當 便宜之螢光粉,所以,日亞化學所提出之白光LED元件之 製作成本相當低廉。 然而,可用來配合該單一 LED以形成該白光LED元件之螢 光粉之化學式並不僅限於(Ym rGdpCeqSmrMAlpsGashOu 1276238 一種0 此外’為了提昇其演色性’習知白光led元件 另包含-紅光榮光粉caS:Eu。然而,其内包含硫⑻化合^ 之紅光螢光粉⑽仙對周圍環境之穩定性較差。舉例來 說,紅光螢光粉C a S: E u报容易在朝濕及高溫之環境下自行 分解,如.此一來,勢必連帶地影響到其所在之白光LED元 件之演色性及使用壽命。 ^ 【發明内容】 ^ 因此本發明之主要目的在於提供一種白光LED元件及 相關螢光粉與製備方法。 根據本發明之申請專利範圍,本發明係揭露一種用來發 射一白光之白光發光一極體(light-emitting diode,LED)元 _件,其包含一用來發射一激發光之發光二極體晶片.、一第 一螢光粉(photoluminescence phosphor)以及一第二螢光 粉。該第一螢光粉可吸收該發光二極體晶片所發出之激發, 光中具有一第一波長之第一激發光,並據以激發出一第一 杳射光,該弟一發射光之波長係相異於該第一波長;該第 二螢光粉可吸收該發光二極體所發出之激發光中具有一第 二波長之第二激發光,並據以激發出一第二發射光,該第 一發射光之波長係相異於該第二波長;該發光二極體晶片 1276238 所發射之除了邊弟一及遠弟—激發光以外之激發光與兮第 一螢光粉所激發出之第一發射光及該第二螢光粉所激發出 之弟一發射光係混合成該白光;該第一螢光粉之化學式為 (Ca1-x_yEuxMy)Se’其中X係不等於〇、y係介於〇與1之間、 而Μ係至少一種以上選自鈹(Be)、鎂(Mg)、鳃(Sr)、鋇⑴勾、 鋅(Zn)等之元素;該第二螢光粉之化學式為 (LuxQyCez)Al5012,其中 x+y+z 係等於 3、z 係介於 〇 及 〇 5 •之間、而Q係選自铽(Tb)、姒(γ)、以及鏡(Yb)等元素所組 成之群組。 • 在本發明之較佳實施例中,該發光二極體晶片所發射之 激發光之主波長(domination wavelength)係介於380至480 • 奈米(nan⑽eter)之間。此外,為了具有較佳之演色性與均 勻性,該第一及該第二螢光粉之粒徑(particlesize)皆小於 20微米(micrometer),而其平均粒徑皆約等於5微米。 • 【實施方式】 請爹閱第1圖,第i圖為本發明之較佳實施例中一白光 LED元件10之示意圖,元件1〇可發射一白光。元件 10包含一杯狀殼體12、一設置於殼體12底部用來發射一 激發光Lled之LED晶片14、一填充於殽體12內用來覆蓋 LED日日片14之環氧樹脂(ep〇xyresin)16、以及摻雜於環氧 樹脂16内之第一及第二螢光粉18及20。第一及第二螢光 1276238 粉18及20可分別吸收LED晶片14所發出之激發光]^ED 中苐、及一第二激發光LLedi及LLed2,並據以激發出 弟及一苐二發射光LpHOl及Lph〇2,其中,第一發射光 Lphoi之波長係相異於第一激發光LLED1之波長,而第二發 射光LPH〇2之波長係相異於第二激發光lLED2之波長。 在本發明之較佳實施例中,LED晶片14所發射之激發 a φ 光 Lled 之主波長(domination wavelength)係介於 380 至 480 奈米(nanometer)之間,換言之,LED晶片14所發射之激發 光lled之顏色係介於藍紫色及藍色之間;第一螢光粉18 之化學式為(Cai-x-yEuJVySe,其中X係不等於〇、y係介於 〇與1之間,而Μ係至少一種以上選自鈹(Be)、鎂(Mg)、 銘(Sr)、鋇(Ba)、鋅(Zn)等之元素,亦即μ可以使用一種或 一種以上之上述元素。第一螢光粉18可吸收]LED晶片14 所發射之第一監紫色光(或藍光)LLED1、並據以激發出其顏 色為橘色之弟一發射光Lpho1,其中,CaSe係充作第一螢 光粉18的弟一主體晶格結構(host)、而Eu、Μ係充作換雜 (doping)於該第一主體晶格結構内之第一異離子咖代啦 ions),其可被結合(incorporated)併入該第一主體晶格結構 内以形成可激發出第一發射光Lpho1之第一活化者 (activator) ; 20 ^^#^^(LuxQyCez)Al5012 ^ 其中x+y+z係等於3、z係介於〇及〇·5之間、而卩係選自 铽(Tb)、姒(Υ)、以及镱(Yb)等元素所組成之群組。同樣地, 11 1276238 第二螢光粉20可吸收LED晶片14所發射之第二藍紫色光 (或藍光)Lled2、並據以激發出其顏色為黃綠色之第二發射 光LPH〇2’其中,LuxA15〇12係充作一第二主體晶格結椹、 而Q、Ce係充作摻雜於該第二主體晶格結構内之第二異離 子’其可被結合併入該第二主體晶格結構内以形成可激發 出弟一發射光LPH〇2之第二活化者。 Φ 如此一來’由於LED晶片14所發射之除了第一、及第 二激發光LLED1及Llem以外之激發光Lled與第一螢光粉 18所激备出之第一發射光。麵及第二螢光粉加所激發出 ,之第一發射光lpH〇2可混合成白光LWH,所以,等效上,元 件10可發射白光lwh。 在本發明之較佳實施例中,為了提昇白光LWH之演色性 ^ 弟及弟一榮光粉18及20之粒徑(particle size) 白】、於20微米⑽⑽祕的、而其平均粒徑皆約等於5微 米。 清茶閱第2圖至第5圖。第2圖為第一螢光粉18所激 &出之第一發射光LpH⑴及使第一螢光粉18激發出第一發 射光LpH01之一第一螢光粉激發光LEX1之頻譜分佈圖,其 中’ k轴表示第一發射光LPH01及第一螢光粉激發光LEX1 之波長、縱轴表示第一發射光Lpho1及第一螢光粉激發光 12 1276238 lex1之相對強度、而第一螢光粉激發光Lexi之主波長係相 同於LED晶片14所發射之激發光Lled之主波長,而第一 螢光粉18之化學式中之x係等於〇 〇〇5、y係等於〇 ;第3 圖為第二螢光粉20所激發出之第二發射光lph〇2及使第二 蚤光粉20激發出第二發射光LpH〇22一第二螢光粉激發光1276238 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode (LED), and more particularly to a single light-emitting diode chip and two kinds of phosphor powder ( Photoluminescence phosphor) A white light emitting diode element. [Prior Art] Due to its low power consumption, long life (about ten times that of traditional fluorescent lamps), and the daring importance of color rendering index (CRI) and electromagnetic radiation that can cause harm to artworks ( Visible radiation) The white-light LED component has gradually become a popular lighting component that is popular in the market, especially for high-end markets where color rendering is particularly demanding. One method for directly producing a white LED component is to combine three blue-light, red, and green_light LED chips, respectively, to monitor, red, and green. White light led component. In this way, the Sanhai white LED element can emit white light mixed with the light, the red light, and the green light. However, since it is necessary to include three LED chips, the above-described three-in-one white LED element is relatively expensive to manufacture. In addition, since the luminous efficiency of the LED chips is not the same, in particular, the luminous efficiency of the blue LED crystal 1276238 is generally higher than that of the red LED wafer and the green LED chip, so The white light emitted by the white LED device containing the LED chips has poor color rendering. In order to overcome the above disadvantages, Nichia Chemical has proposed a white LED element containing a single LED chip and a photoluminescence phosphor, the chemical formula of which is ❿ (YimGdpCeqSnirMAh-sGaAOu, wherein, p The system is between 〇 and 0.8, the q series is between 〇·〇〇3 and 〇·2, the r system is between 0.0003 and 0.08, and the s is between 〇 and 1. The single LED chip Exciting light can be emitted and the fluorescent powder is immersed in an epoxy resin for covering the single LED wafer, and has a predetermined emission light emitted by absorbing the single LED wafer The predetermined excitation light of the wavelength is used to excite an emitted light. In this way, the excitation light emitted by the single LED chip except the predetermined excitation light and the emitted light excited by the fluorescent powder can be mixed into the The white light LED component proposed by Nichia Chemical Co., Ltd. is relatively inexpensive to manufacture because it contains only the single LED chip and the phosphor powder which is already a mature product and is relatively inexpensive. However, it can be used to match the single LED. The chemical formula of the phosphor powder of the white LED element is not limited to (Ym rGdpCeqSmrMAlpsGashOu 1276238, a 0. In addition, 'in order to enhance its color rendering', the white light LED element further includes - red glory powder caS:Eu. However, it contains sulfur (8) The red light fluorescent powder of the compound ^ (10) is less stable to the surrounding environment. For example, the red fluorescent powder C a S: E u is easy to decompose in the environment of wet and high temperature, such as this. Firstly, it will inevitably affect the color rendering and service life of the white LED components in which it is located. ^ [Summary] Therefore, the main object of the present invention is to provide a white LED element and related phosphor powder and a preparation method thereof. The invention claims a light-emitting diode (LED) element for emitting a white light, which comprises a light-emitting diode wafer for emitting an excitation light. a first phosphor powder and a second phosphor powder, the first phosphor powder absorbing the excitation emitted by the LED chip, and having a first wavelength in the light a first excitation light, and according to the first excitation light, the wavelength of the emitted light is different from the first wavelength; the second fluorescent powder can absorb the excitation emitted by the LED Having a second excitation light of a second wavelength, and stimulating a second emitted light, the wavelength of the first emitted light being different from the second wavelength; the light emitting diode wafer 1276238 is emitted Except for the younger brothers and the far-child-excited light, the excitation light is mixed with the first emitted light excited by the first fluorescent powder and the second light emitted by the second fluorescent powder to form the white light; The chemical formula of the first phosphor is (Ca1-x_yEuxMy)Se', wherein the X system is not equal to 〇, the y system is between 〇 and 1, and the lanthanide is at least one or more selected from the group consisting of beryllium (Be) and magnesium (Mg). , 鳃 (Sr), 钡 (1) hook, zinc (Zn) and other elements; the chemical formula of the second phosphor is (LuxQyCez) Al5012, wherein x+y+z is equal to 3, z is between 〇 and 〇5 • The Q system is selected from the group consisting of 铽 (Tb), 姒 (γ), and mirror (Yb). • In a preferred embodiment of the invention, the domination wavelength of the excitation light emitted by the LED wafer is between 380 and 480 • nanometer (nan). Further, in order to have better color rendering and uniformity, the first and second phosphors have a particle size of less than 20 micrometers, and an average particle diameter of about 5 micrometers. [Embodiment] Please refer to Fig. 1, which is a schematic view of a white LED component 10 in accordance with a preferred embodiment of the present invention, which can emit a white light. The component 10 includes a cup-shaped casing 12, an LED chip 14 disposed at the bottom of the casing 12 for emitting an excitation light Lled, and an epoxy resin (ep〇) filled in the confounding body 12 for covering the LED day sheet 14. Xyresin)16, and first and second phosphors 18 and 20 doped in the epoxy resin 16. The first and second fluorescent 1276238 powders 18 and 20 respectively absorb the excitation light emitted by the LED chip 14 and the second excitation light LLedi and LLed2, respectively, and thereby excite the second and second emission The light LpHO1 and Lph〇2, wherein the wavelength of the first emitted light Lphoi is different from the wavelength of the first excitation light LLED1, and the wavelength of the second emitted light LPH〇2 is different from the wavelength of the second excitation light 1LED2. In a preferred embodiment of the invention, the domination wavelength of the excitation a φ light Lled emitted by the LED chip 14 is between 380 and 480 nanometers, in other words, the LED chip 14 is emitted. The color of the excitation light lled is between blue purple and blue; the chemical formula of the first fluorescent powder 18 is (Cai-x-yEuJVySe, wherein the X system is not equal to 〇, and the y system is between 〇 and 1, The lanthanide is at least one element selected from the group consisting of beryllium (Be), magnesium (Mg), indium (Sr), barium (Ba), zinc (Zn), etc., that is, μ may use one or more of the above elements. The phosphor powder 18 can absorb the first purple light (or blue light) LLED1 emitted by the LED chip 14, and thereby excite the light emitting light Lpho1, wherein the CaSe system is used as the first firefly. The body of the light powder 18 is a host lattice structure, and the Eu and the lanthanum are used as the first heterogeneous gains in the first host lattice structure, which can be combined. Incorporated into the first host lattice structure to form a first activator capable of exciting the first emitted light Lpho1; ^^#^^(LuxQyCez)Al5012 ^ where x+y+z is equal to 3, z is between 〇 and 〇5, and 卩 is selected from 铽(Tb), 姒(Υ), and 镱( Yb) and other groups of elements. Similarly, 11 1276238 second phosphor powder 20 can absorb the second blue-violet light (or blue light) Lled2 emitted by the LED chip 14, and thereby excite the second emitted light LPH 〇 2' whose color is yellow-green. , the LuxA15〇12 series acts as a second host lattice junction, and the Q, Ce system acts as a second hetero-ion doped in the second host lattice structure, which can be incorporated into the second body A second activator is formed within the lattice structure to excite a light-emitting LPH 〇2. Φ is the first emitted light that is excited by the excitation light Lled and the first phosphor powder 18 emitted by the LED chip 14 except for the first and second excitation lights LLED1 and Llem. The surface and the second phosphor powder are excited, and the first emitted light lpH〇2 can be mixed into white light LWH, so, equivalently, the element 10 can emit white light lwh. In a preferred embodiment of the present invention, in order to enhance the color rendering property of the white light LWH, the particle size of the phosphor powders 18 and 20 is white, at 20 micrometers (10) (10), and the average particle diameter thereof is Approximately equal to 5 microns. Read the 2nd to 5th pictures of the tea. 2 is a spectrum distribution diagram of the first fluorescent light LpH(1) excited by the first fluorescent powder 18 and the first fluorescent powder excitation light LEX1 which causes the first fluorescent powder 18 to excite the first emitted light LpH01. Wherein the 'k axis represents the wavelength of the first emitted light LPH01 and the first fluorescent powder excitation light LEX1, and the vertical axis represents the relative intensity of the first emitted light Lpho1 and the first fluorescent powder excitation light 12 1276238 lex1, and the first firefly The dominant wavelength of the light excitation light Lexi is the same as the dominant wavelength of the excitation light Lled emitted by the LED wafer 14, and the chemical formula of the first fluorescent powder 18 is equal to 〇〇〇5, and the y system is equal to 〇; The figure shows the second emitted light lph〇2 excited by the second phosphor powder 20 and the second phosphorescent powder 20 excites the second emitted light LpH〇22-second fluorescent powder excitation light.

Lex2之頻譜分佈圖,其中,橫軸表示第二發射光及 第二螢光粉激發光lEX2之波長、縱軸表示第二發射光L阳⑴ 及第二螢光粉激發光LEX2之相對強度、而第二螢光粉激發 光LEX2之主波長係相同於LED晶片14所發射之激發光义a spectral distribution diagram of Lex2, wherein the horizontal axis represents the wavelengths of the second emitted light and the second fluorescent powder excitation light lEX2, and the vertical axis represents the relative intensity of the second emitted light L (1) and the second fluorescent powder excitation light LEX2, The dominant wavelength of the second phosphor excitation light LEX2 is the same as the excitation light emitted by the LED chip 14.

Lled之主波長;第4圖為元件1 〇所發射之白伞 θ尤之頻譜 分佈圖,其中,橫轴表示白光LWH之波長、縱軸表示白光The main wavelength of Lled; Fig. 4 is a spectrum distribution diagram of the white umbrella θ emitted by the element 1 ,, wherein the horizontal axis represents the wavelength of the white light LWH and the vertical axis represents the white light.

Lwh之相對強度,由於元件10係包含兩種螢光粉,所以 相應地,調整激發光lled、第一發射光Lph〇i第二^射 光LPH〇2的相對強度,就能得到不同的白色朵 、 υ球lwh,例如 第4圖中虛線曲線代表其色溫為6182K的白伞τ 疋、而實 線曲線代表其色溫為2714K的白光]^^;第5圖為包人激 發光lled、第一發射光lpho1、第二發射光、其色、 為2714K之白光Lwh、其色溫為6182K之白杏γ ’ 疋lwh、及一 真正(genuine)白光LWHG所分別對應之色品座標值⑴扭 chromaticity coordinates)之 CIE 色品座標圖(C l E chromaticity diagram),其中,横軸表示x色品座 示縱轴 表示 y 色品座標、而 Α(0·1252, 〇.〇991)、B(〇.337〇, 〇 C(0.6154,0.3790)、D(0.4603,0·4133)、Ε(0·3191, υ·3262)、 13 1276238 及F(0.3卜〇·32)等六點分別表示其波長為47〇奈米之激發 光lled、被其波長為47〇奈米之第一激發光l_所激發 出之第-發射光lpho1、被其波長為47〇奈米之第二激發光 lle〇2所激發出之第二發射光LpH〇2 '由其波長為47〇奈米 之激發光Lled及其所激發出之第一、及第二發射光L即⑴ 及lph〇2所共同混合而成之其色溫為27丨4K之白光L、 由其波長為470奈米之激發光Lled及其所激發出之第一、 籲及第二發射光Ι^ηο1& ερη〇2所共同混合而成之其色溫為 6182Κ之白光]^^、以及真正白光Lwhg所對應之色品座標。 在本發明之較佳實施例中,第一螢光粉18可選擇性地 猎由一固態燒結法(solid state method)、一共沈澱法 (co_precipitation method)、一凝膠法(gel method)、或一微 乳膠法(microemulsion method)所製成。 鲁 上述之四種方法各有優缺點。舉例來說,該共沈殿法雖 較為繁複,然而其反應時間卻相當短,並且,其所產生之 第一螢光粉18之粒徑較細小且均勻;該微乳膠法所製備之 第一螢光粉18,較諸傳統之共沉澱法所製備者具有較大之 比表面積(specific surface area)。 第一螢光粉18之製備方法100說明如后:請參閱第6 圖,第6圖為製備方法1〇〇之流程圖,製備方法1〇〇包含 14The relative intensity of Lwh, since the element 10 contains two types of phosphor powder, correspondingly, the relative intensity of the excitation light lled, the first emitted light Lph〇i, and the second light LPH 〇2 can be adjusted to obtain different white flowers. , Ryukyu lwh, for example, the dotted curve in Figure 4 represents the white umbrella τ 其 whose color temperature is 6182K, and the solid curve represents the white light whose color temperature is 2714K] ^^; Figure 5 shows the human excitation light lled, first The chromaticity coordinate value of the emitted light lpho1, the second emitted light, the color thereof, the white light Lwh of 2714K, the white apricot γ' 疋lwh whose color temperature is 6182K, and the true white light LWHG respectively (1) torsion chromaticity coordinates C C E chromaticity diagram, where the horizontal axis represents the x-color product, the vertical axis represents the y chromaticity coordinates, and the Α (0·1252, 〇.〇991), B (〇. 337〇, 〇C(0.6154,0.3790), D(0.4603,0·4133), Ε(0·3191, υ·3262), 13 1276238, and F(0.3 〇·32) indicate that the wavelength is The excitation light of 47 nanometers is lled, and the first-excitation light lpho1 excited by the first excitation light l_ having a wavelength of 47 nanometers is The second emitted light LpH〇2 excited by the second excitation light lle〇2 having a wavelength of 47 nanometers is excited by the excitation light Lled having a wavelength of 47 nanometers and the first and second excitations thereof. The emitted light L, which is a mixture of (1) and lph〇2, has a white light L of 27丨4K, an excitation light Lled with a wavelength of 470 nm, and the first, second and second emission excited by the excitation light Lled The Ι 光 ο 1 1 1 1 1 1 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 18 can be selectively hunted by a solid state method, a co_precipitation method, a gel method, or a microemulsion method. The four methods have their own advantages and disadvantages. For example, although the common sedimentation method is complicated, the reaction time is relatively short, and the particle size of the first phosphor powder 18 produced is fine and uniform; The first phosphor powder 18 prepared by the latex method is prepared by the conventional coprecipitation method. The preparation has a larger specific surface area. The preparation method 100 of the first phosphor powder 18 is as follows: Please refer to FIG. 6 , and FIG. 6 is a flow chart of the preparation method 1 , preparation method 1 〇〇 contains 14

Claims (1)

1276238 年1(月\曰修^正本 十、申請專利範圍: —- 1· 一種白光發光二極體元件,至少包含·· 一發光晶片’用來發射一^數發光; 一第一螢光粉,用來吸收該發光晶片所發出之具有一第 一波長之第一激發光並據以激發出一第一發射 光,該第一發射光之波長係相異於該第一波長,該 第一螢光粉之化學式為(Cai+yEuJVlj^Se,其中x係 不等於0,y係介於〇與1之間,而Μ係至少一種 以上選自鈹(Be)、鎮(Mg)、銘(Sr)、鋇(Ba)、鋅(Ζη) 等之元素;以及 • . 一第二螢光粉,用來吸收該發光晶片所發出之具有一第 二波長之第二叙發光並據以激發出一第二發射 光,該第二發射光之波長係相異於該第二波長,該 第二螢光粉之化學式為(LuxQyCez)Al5012,其中 x+y+z係等於3,z係介於〇及〇·5之間,而Q係選 自铽(Tb)、姒(Y)、以及鏡(Yb)等元素所組成之群組; 其中,該發光晶片所發射之除了該第一及該第二激發光 以外之激發光與該第一螢光粉所激發出之苐一發射光 及該第二螢光粉所激發出之第二發射光係混合成白光。 2.如申請專利範圍第1項所述之白光發光二極體元件, 其中該發光晶片所發射之激發光之主波長(d〇mination 19 1276238 wavelength)係介於 380 至 480 奈米(nanometer)之間。 3·如申請專利範圍第1項所述之白光發光二極體元件, 其中該苐一螢光粉之粒徑(particle size)係小於20微米 (micrometer) 〇 4·如申請專利範圍第3項所述之白光發光二極體元件, 其中該第一螢光粉之平均粒徑約等於5微米。 5·如申請專利範圍第1項所述之白光發光二極體元件, 其中該第二螢光粉之粒徑係小於2〇微米。 6.如申請專利範圍第5項所述之白光發光二極體元件, 其中·該第二螢光粉之平均粒徑約等於5微米。 7· —種螢光粉,其化學式為(Ca^yEuxMjSe,其中X係不 等於〇、y係介於0與1之間,而Μ係至少一種以上選 自鈹(Be)、鎂(Mg)、锶(Sr)、鋇(Ba)、鋅(Ζη)等之元素。 8·如申請專利範圍第7項所述之螢光粉,其係藉由一固態 燒結法(solid state method)所製成。 9·如申請專利範圍第7項所述之螢光粉,其係藉由一共沈 澱法(co_precipitation method)所製成。 20 1276238 10·如申請專利範圍第7項所述之螢光粉,其係藉由一凝膠 法(gel method)所製成。 11·如申請專利範圍第7項所述之螢光粉,其係藉由一微乳 膠法(microemulsion method)所製成。 # 12· —種螢光粉之製備方法,該方法包含: 提供碳酸妈(CaC03)、氧化銪(Eu203)、硒粉末(Se)及至少一 種以上包含選自鈹(Be)、鎂(Mg)、鋰(Sr)、鋇(Ba)、或鋅(Zn) 元素之反應物; 以研磨之方式混合該等反應物; 將該等混合後之反應物置於一還原氣氛; # · . 以一預定升溫速率將置於該還原氣氛中之該等混合後 ^ 之反應物加熱至一預定溫度、並進行一預定時間長 度之還原燒結程序(reduction sintering process),以 形成一化合物;以及 以一預定降溫速率將該化合物冷卻至室溫,以產生一螢 光粉,其化學式為(CaLyEuxMJSe,其中X係不等 於0,y係介於0與1之間,Μ係至少一種以上選自 鈹(Be)、鎂(Mg)、鳃(Sr)、鋇(Ba)、鋅(Ζη)等之元素。 ;13·如申請專利範圍第12項所述之製備方法,其中該預定 21 -1276238 溫度係介於攝氏1000至1600度。 14. 如申請專利範圍第12項所述之製備方法,其中該預定 時間長度係介於3至24小時。 15. 如申請專利範圍第12項所述之製備方法,其中該還原 氣氛包含氫氣及氮氣。 16. 如申請專利範圍第12項所述之製備方法,其中該還原 氣氛包含氫氣及氬氣。 17. 如申請專利範圍第12項所述之製備方法,其中該預定 _ 升溫速率為5QC/秒。 • 18.如申請專利範圍第12項所述之製備方法,其中該預定 降溫速率為5QC/秒。 Η—、圖式: 221276238 1 (month\曰修^正本十, application patent scope: —- 1· A white light-emitting diode component, at least containing ··a light-emitting chip' is used to emit a certain number of light; a first phosphor And absorbing a first excitation light having a first wavelength emitted by the illuminating chip and exciting a first emitted light, the wavelength of the first emitted light being different from the first wavelength, the first The chemical formula of the fluorescent powder is (Cai+yEuJVlj^Se, where x is not equal to 0, y is between 〇 and 1, and at least one of lanthanides is selected from Be (Be), town (Mg), Ming ( An element of Sr), barium (Ba), zinc (Ζη), and the like; and a second phosphor for absorbing the second luminescence emitted by the illuminating chip having a second wavelength and stimulating a second emitted light having a wavelength different from the second wavelength, the chemical formula of the second phosphor is (LuxQyCez) Al5012, wherein x+y+z is equal to 3, and the z-line is Between 〇 and 〇·5, and Q is selected from the group consisting of 铽 (Tb), 姒 (Y), and mirror (Yb); The excitation light emitted by the wafer except the first and second excitation lights is mixed with the first emission light excited by the first fluorescent powder and the second emission light generated by the second fluorescent powder. 2. The white light emitting diode component according to claim 1, wherein the dominant wavelength of the excitation light emitted by the light emitting chip (d〇mination 19 1276238 wavelength) is between 380 and 480 nm. 3. The white light emitting diode element according to claim 1, wherein the particle size of the first fluorescent powder is less than 20 micrometers. The white light emitting diode component of claim 3, wherein the first phosphor powder has an average particle diameter of about 5 micrometers. 5. The white light emitting diode component according to claim 1 The particle size of the second phosphor is less than 2 μm. 6. The white light emitting diode device according to claim 5, wherein the average particle diameter of the second phosphor is approximately equal to 5 micron. 7 · a kind of fluorescent powder, its chemical formula is (Ca^yEuxMjSe, wherein X is not equal to 〇, y is between 0 and 1, and at least one of lanthanides is selected from the group consisting of beryllium (Be), magnesium (Mg), strontium (Sr), barium (Ba), An element such as zinc (Ζη). 8. The fluorescent powder according to claim 7 of the patent application, which is produced by a solid state method. The phosphor powder is produced by a co_precipitation method. 20 1276238. The phosphor powder of claim 7, which is produced by a gel method. 11. The phosphor powder of claim 7, wherein the phosphor powder is produced by a microemulsion method. #12· A method for preparing a phosphor powder, the method comprising: providing a carbonated mother (CaC03), a cerium oxide (Eu203), a selenium powder (Se), and at least one or more comprising a material selected from the group consisting of beryllium (Be) and magnesium (Mg) a reaction of lithium (Sr), barium (Ba), or zinc (Zn) elements; mixing the reactants by grinding; placing the mixed reactants in a reducing atmosphere; # · . a temperature rising rate of the reactants placed in the reducing atmosphere to a predetermined temperature and subjected to a reduction sintering process for a predetermined length of time to form a compound; and a predetermined cooling temperature The compound is cooled to room temperature to produce a phosphor having a chemical formula of (CaLyEuxMJSe, wherein the X system is not equal to 0, the y system is between 0 and 1, and at least one of the lanthanides is selected from the group consisting of bismuth (Be). And a preparation method of the magnesium (Mg), strontium (Sr), strontium (Ba), zinc (?n), etc.; 13. The preparation method according to claim 12, wherein the predetermined 21 -1276238 temperature system is between 1000 to 1600 degrees Celsius. 14. The system described in claim 12 The method, wherein the predetermined length of time is between 3 and 24 hours. The method of preparation of claim 12, wherein the reducing atmosphere comprises hydrogen and nitrogen. The preparation method, wherein the reducing atmosphere comprises hydrogen gas and argon gas. 17. The preparation method according to claim 12, wherein the predetermined temperature increase rate is 5 QC/sec. The preparation method, wherein the predetermined temperature drop rate is 5 QC/sec. Η—, pattern: 22
TW94113234A 2005-04-26 2005-04-26 White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method TWI276238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94113234A TWI276238B (en) 2005-04-26 2005-04-26 White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94113234A TWI276238B (en) 2005-04-26 2005-04-26 White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method

Publications (2)

Publication Number Publication Date
TW200638565A TW200638565A (en) 2006-11-01
TWI276238B true TWI276238B (en) 2007-03-11

Family

ID=38646186

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94113234A TWI276238B (en) 2005-04-26 2005-04-26 White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method

Country Status (1)

Country Link
TW (1) TWI276238B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404239B (en) * 2009-01-16 2013-08-01 Foxsemicon Integrated Tech Inc Illuminating apparatus

Also Published As

Publication number Publication date
TW200638565A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US7358542B2 (en) Red emitting phosphor materials for use in LED and LCD applications
JP5503871B2 (en) Charge compensated nitride phosphors for use in lighting applications
US7442326B2 (en) Red garnet phosphors for use in LEDs
US6765237B1 (en) White light emitting device based on UV LED and phosphor blend
JP5313173B2 (en) Doped garnet luminophore for pcLED
US8710487B2 (en) Color stable manganese-doped phosphors
JP5503870B2 (en) Phosphors used in LEDs and blends thereof
US7274045B2 (en) Borate phosphor materials for use in lighting applications
JP4617323B2 (en) Yellow light emitting Ce3 + activated silicate-based yellow phosphor having a new composition, method for producing the same, and white light emitting diode including the phosphor
JP4843990B2 (en) Phosphor and light emitting device using the same
KR20080081058A (en) Yellow light-emitting phosphor and white light-emitting device using same
US20070040502A1 (en) High CRI LED lamps utilizing single phosphor
JP2004115633A (en) Silicate phosphor and light-emitting unit therewith
US8440104B2 (en) Kimzeyite garnet phosphors
CN102337121B (en) Silicate luminescent material and preparation method thereof
KR20190013976A (en) Lutetium nitride-based fluorescent powder and light emitting element having the same
JP5361736B2 (en) Phosphor, coating phosphor composition, phosphor production method, and light emitting device
US9080104B2 (en) Mn-activated phosphors
JP2014221890A (en) Phosphor, phosphor-containing composition, light-emitting device, image display device, and lighting device
TWI551667B (en) Carbodiimide phosphors
JP4098354B2 (en) White light emitting device
TWI276238B (en) White light emitting diode component having a first photoluminescence phosphor and a second photoluminescence and related photoluminescence phosphor and formation method
US20110127905A1 (en) Alkaline earth borate phosphors
JP2019513305A (en) Oxybromide phosphor and use thereof
CN1836334A (en) Full spectrum phosphor blends for white light generation with LED chips

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees