TWI275886B - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TWI275886B
TWI275886B TW092117124A TW92117124A TWI275886B TW I275886 B TWI275886 B TW I275886B TW 092117124 A TW092117124 A TW 092117124A TW 92117124 A TW92117124 A TW 92117124A TW I275886 B TWI275886 B TW I275886B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
display device
image element
orientation
crystal display
Prior art date
Application number
TW092117124A
Other languages
Chinese (zh)
Other versions
TW200410026A (en
Inventor
Masumi Kubo
Kiyoshi Ogishima
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200410026A publication Critical patent/TW200410026A/en
Application granted granted Critical
Publication of TWI275886B publication Critical patent/TWI275886B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)

Abstract

A liquid crystal display device includes picture element regions defined each by a first electrode and a second electrode opposing the first electrode via the liquid crystal layer therebetween. The first electrode includes, in each picture element region, a plurality of unit solid portions arranged in a first direction, whereby the liquid crystal layer takes a vertical alignment in the absence of an applied voltage, and forms a liquid crystal domain taking a radially-inclined orientation in each unit solid portion by an inclined electric field produced around the unit solid portion in response to an applied voltage. The picture element regions are arranged in a matrix pattern including a rows extending in the second direction different from the first direction and columns extending in the first direction, and picture elements adjacent to each other in the second direction are driven with voltages of opposite polarities in each frame.

Description

1275886 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示裝置,更明確地說,係關於 一種具廣視角特性且能夠產生高品質顯示的液晶顯示裝置。 【先前技術】 近年來,輕薄型的液晶顯示裝置已經被使用於個人電腦 顯示器及PDA(個人數位助理)顯示器中。不過,慣用的扭轉 向列(TN)型及超扭轉向列(STN)型的液晶顯示裝置的視角 都非常窄。目前已經有人著手進行各種技術研究來解決該 項問題。 用以改良TN或STN型液晶顯示裝置視角的典型技術便是 於其中加入光補償板。另一種方式則是採用橫向電場模式 ,其中係將相對於該基板平面的水平電場施加至整個液晶 層上。近年來’橫向電場模式的液晶顯示裝置已經成為眾 所矚目的焦點,並且被大量製造。還有一種技術則是採用 DAP(垂直對準相變形)模式,其中係以具有負介電各向異性 的向列型液晶材料作為液晶材料,並且以垂直對準膜作為 對準膜。這係一種ECB(電控雙折射)模式,其中該透射率係 使用液晶分子的雙折射來控制。 雖然橫向電場模式係一種改良視角的有效方式,但是 -般的TN型裝置比較起來,其製程的製造容限值非常的 ’所以無法穩定地製造該裝置。這係因為顯示器亮度或 比會明顯地受到該等基板間的間隙的影響,或會明顯地 到偏光板的透光軸(偏光軸)相對於該等液晶分子之方位 86289 ^75886 ^偏移的影響。其需要在技術上作進一步的研發,方能精 崔地控制該些因素,以便穩定地製造該裝置。 白、、此夠利用DAP模式液晶顯示裝置來實現均勻顯示的目 的,、而不會顯示出不均勾的結果,必須要控制方位。為了 制方心' 必須藉由摩擦對準膜的表面進行對準處理。 不過’對垂直對準膜進行摩擦處理時,非f容易在顯示影 像中出現摩擦條紋,因此並不適合大量製造。 白有鐵於此,本發明的發明者連同其他人,心本技術中 勺另種方法來控制方位且不需要摩擦處理,在該方法中 ,一組彼此相對的電極之一,透過居間的液晶層提供作為 兩層式電極,包括-下方電極、-包含有開口的上方電極 ,以及一介電層居兩者之間,以致方位的方向由上方電柘 開口邊緣部份產生的傾斜電場控制(請參見,例如日本開放 專利公開案第2002-55343號)。藉由此種方式,每一個完= 圖像元件的液晶分子都可取得具有足夠方位連續性的穩= 方位,藉此改良視角並實現高品質的顯示。 但是,近年來,除了要求視角和顯示品質的提升之外, 還進一步要求增加孔徑比,以產生較明亮的顯示。但在方 位控制仍使用傾斜電場執行的情況下,該技術中尚未出玉 任何特殊方法可進一步地改良孔徑比。 【發明内容】 本發明係設計來克服上述的缺點,本發明的目的α要才 供一種液晶顯示裝置,具有廣視角特性、高顯示品質_ : 孔徑比,並能夠產生明亮的顯示。 86289 1275886 一種創新的液晶顯示裝置包括··一第一基板;一第二基 板;和一液晶層,位在第一基板和第二基板之間,其中: 複數個圖像兀件區,由―第—電極定義,胃電極位在接近 該液晶層第一基板的某一側 該電極位在第二基板上,透過居間的液晶層與第一電極相 對;該第一電極包括,在複數個圖像元件區的每一區内, 複數個以卜万向對準的單元實體部份,藉此該液晶層在 第私極和第一兒極之間未存在有施加電壓時採取垂直對 準,並在弟-電極的複數個單元實體部份中,藉由複數個 單元實體部份周圍產生的傾斜電場,形成複數個液晶域, 以回應在第-電極和第二電極之間施加的電壓,每個複數 個液晶域都採取放射狀傾斜方位;複數個圖像元件區對準 成-矩陣圖案,該圖案包括複數個列,以不 的第二方向延伸,以及複數個行,以第一方向延伸·以及 施加在複數個圖像元件區中第—圖像元件區液晶層上的電 壓極性’不、同於施加在複數個圖像元件區中第二圖像元件 區液晶層上的電壓極性,該複數個圖像元件區在每一圖框 中與第一圖像元件區屬於同一 件區所屬行的一行。 並“一-圖像元 在較佳具體實施例中,複數個圖像幻牛區中每—區的米 ::其長度方向由第一方向定義,而寬度方向由第二方向 疋我0 中 在較佳具體f施例中’施加在屬於複數個圖 一行的液晶層的電壓極性,在每—圖框中, 像元件區其 每η列(η為1 86289 -9- 1275886· 或以上的整數)反轉一次。 在一較佳具體實施例中,施加在第_圖 的電壓極性,不同於施 診#- 在罘一圖像兀件區的電壓極性, λ弟二圖像元件區在每一图祐+而贫 ^ 同&一 圖枢中人罘一圖像元件區屬於相 、仃,且屬於鄰近第一圖像元件區所屬列的—列。 、在-較佳具體實施例中,每—複數個單元實體部份具有 :轉對稱的形狀。例如,每一個複數個單元實體部份都具 —般圓形的形狀,或每一個複數個單元部份都且有帶有 Γ般^形隅角部份的—般矩形形狀。另外,每-個複數個 單元實體邵份還可以具有銳角隅角的形狀。 在-較佳具體實施例中,該第二基板,在對應到至少複 數個液晶域之-的區域中,包括—施力調整方位的調整方 。構用太在至少存在有施加電壓時使至少一液晶域中 的液晶分子朝向放射狀傾斜方位。 在較佳具體實施例中,每一對應到複數個液晶域的區 域都具有調整方位結構。 在一較佳具體實施例中,鄰近至少一液晶域中心的區域 具有調整方位結構。 在一較佳具體實施例中,在至少一液晶域中,調整方位 結構的方位凋整方向,與每一個第一電極單元實體部份附 近產生的放射狀傾斜電場所形成的放射狀傾斜方位的方向 對準。 在一較佳具體實施例中,調整方位結構會施力調整方位 ’使液晶分子即使在未存在有施加電壓時仍能朝向放射狀 86289 -10 - 1275886 液义。例如’調整方位結構可以是從第二基板突出到 二二的!—突出部,液晶層的厚度由從第二基板突出到 攻阳印的弟-突出部定義。在一較佳具體實施例中,第— :出邵有-側表面’以小於第二基板面90。的角度傾 方位結構可包括-水平方位表面,位在比較靠近 及日日層弟二基板的—侧。 ,在:較佳具體實施例中’調整方位結構會施力調整方位 。’使硬晶分子只在存在有施加電壓時朝向放射狀傾斜方位 例如,5周整万位結構可包括一由第二電極提供的開口。 十在—較佳具體實施例中,第—基板包括複數個不與第— 5重疊的開放區;以及當在第一電極和第二電極間施加 兒二時’液晶層在傾斜電場旁的複數個開放區中形成複 數個额外的液晶域,每一個額外的液晶域都呈現放射狀傾 斜方位。 在—較佳具體實施例中’至少—些複數個開放區實質上 具有相同的形狀和實質上相同的大小,並形成對準為複數 個單元晶格,因此具有旋轉對稱的形狀。在一較佳具體實 她例中’至少—些複數個開放區的形狀為旋轉對稱。 在-較佳具體實施例中’至少一些複數個開放區具有一 般圓形的形狀。 在幸父佳具體實施例中,液晶顯示裝置另包括一第二突 出邵’位於第一基板複數個開放區内,其中該突出部的侧 表面’對液晶層的液晶分子施加與傾斜電場所形成的方位 调整方向相同的調整方位力。 S6289 -11 - 1275886 在-較佳具體實施例中,第—基板另包括複數個轉換元 件,分別提供給複數個圖像元件區;以及該第一電杯包括 複數個圖像元件電極,分別提供給複數個圖像元件區,並 分別由轉換元件轉換,且該第二電極至少是一反電極,與 複數個圖像元件電極相反。㉟常,該反電極形成為單一電 極,延伸至整個顯示區。 私 現在將說明本發明的功能。 在本發明的液晶顯示裝置中,施加電壓至圖像元件區整 個液晶層的一組電極,包括複數個單元實體部份,以預= 方向對準(以下稱為「第-方向」)。液晶層在未存在有施加 電壓時採取垂直對準,在存在有施加電壓時,〃電杨的複 數個單元實體部份周圍產生的頷斜電場,形成複數個液晶 域,每一個複數個液晶域都採取放射狀傾斜方位。因此, 界=出該組其中之—電極的外部形狀,使傾斜電場在複數 個單元實體部份的周圍產生,形成複數個液晶_,每—個 區域都採取放射狀傾斜方位,以回應施加在該组電極之間 的電壓。一般來說,該液晶層係由具有負介電各向異性的 液晶材料所製成’並且該液晶層的方位可由⑽其對面側 上的垂直對準膜來控制。 該等液晶域係由對應該單元實體部份的傾斜電場所構成 的,而且每個液晶域的方位都可根據施加電壓而改變,從 :產生顯示。因為每個液晶域都呈放射狀傾斜方位,也: 疋轴對稱万位,所以幾乎不會有顯示品質的視角依存性問 題,因此可實現寬視角特性。 " 86289 -12 - 1275886 此處,有傳導性薄膜存在的電極部份稱為「實體部份」 產生笔%以構成單一液晶域的實體邵份稱為「單元實體 部份」。每個實體部份通常由連續的傳導性薄膜構成。 在本务明的液晶頭示裝置中,每個圖像元件電極包括複 數個單元實體部份,當作是次要圖像元件電極,藉此可根 據圖像元件區的形狀和大小等適當對準圖像元件區中複數 個單元實體部份,在圖像元件區實現穩定的放射狀傾斜方 位’不需受到圖像元件區的形狀及大小等的限制。 甚至,複數個單元實體部份在每個圖像元件區中以預定 万向對準(排成一排),相較於單元實體部份對準成兩列以 上的情況,藉由可增加圖像元件區單元實體部份的面積比 ’還可藉此改良孔徑比。 複數個圖像元件區對準成一矩陣圖帛,該圖案包括複數 個列二以不同於第一方向的第二方向延伸,以及複數個行 以第一方向延伸;在本發明的液晶顯示裝置中,施加在 複數個圖像兀件區中第—圖像元件區液晶層上的電壓極性 ,不同於施加在複數個圖像元件區中第二圖像元件區液晶 k上的电壓極性,該複數個圖像元件區在每一圖框中與第 :圖像元件區屬於同-歹1】,並屬於鄰近第-圖像元件區所 屬行的^行。因此,以列方向(第二方向)彼此毗連的圖像元 件:在資料被寫人所有圖像元件(也就是說,—個圖框)期間 ,受到相反極性電壓的驅動。 因此,相較於非由相反極性電壓驅動的以列方向彼此毗 L的圖像元件,可以在以列方向彼此毗連的圖像元件間產 86289 -13 - 1275886 ,、陡南包么斜度的傾斜電場。因此,即使當以列方向 =蛾連的圖像元件之間電極間所對準的距離很短,仍有 可此形成夠穩定的放射狀傾斜方位,且孔徑比也很高。 通常,圖像元件區的形狀,長度方向以第一方向(單元眘 =部份所對準的方向)Μ,其橫向方向以第二方向定義: 回象元件區王這種形狀的時候,有可能有效地改良孔徑 ^例如,圖像兀件區具有一般矩形的形狀,其長邊以第 方向延伸,而短邊以第二方向延伸。 π藉由使每η列(其中丨或以上的整數)圖像元件的施加電 壓極性倒反,可抑制燦,也就是說,針對行方向上每_ 圖像兀件(換句話說,使每㈣相同行圖像元件區中液晶層 的二加私壓極性反向),同時在每個圖框中利用相反極性的 私壓驅動以列方向彼此毗連的圖像元件。 特別是,當以行方向彼此毗連的圖像元件以相反極性的 電壓驅動時,也就是,施加在複數個圖像元件區第一圖像 兀件區液晶層的電壓極性,不同於施加在第三圖像元件區 的私壓極性,其中第三圖像元件區在每一圖框中與第一圖 像兀件區屬於相同的行,且屬於鄰近第一圖像元件區所屬 列的一列,也可以在以行方向彼此毗連的圖像元件間產生 具有陡峭電位斜度的傾斜電場,藉此可以縮短以行方向彼 此毗連圖像元件之間電極間的距離,因此進一步地改I孔 徑比。 較好每一個複數個單元實體部份的形狀都具有旋轉對稱 。當單元實體部份具有旋轉對稱的形狀時,所形成的液晶 86289 -14- 1275886 域放射狀傾斜方位也將是具有旋轉對稱的、^ 、 對稱方位,藉此改善視角特性。 万亿,也就是軸 當每一複數個單元實體部份具有一般f 狀時,液,曰为子在放射狀傾斜方位上的 形 加,藉此改良方位穩定性。 *連續性將會增 相對地,當每一複數個單元實體部份具有— 狀時’圖像元件區中單元實體部 積比;般矩形的形 曰晋加’精此改艮展現的光學特性(也就是傳輪),以) 加在液晶層上的電壓。 ^她 甚至,當每一複數個單元實體部份具有 々二 有一般狐形腺 月邵备的-般矩形時’可以改良方位穩定性和光學特性。 此^當每一複數個單元實體部份具有銳角隅卞角的時候 ^著產生傾斜電場的電極側的總長度會增加,藉此頻斜 电%可以對更多的液晶分子有所反應。因 速度。 改艮了回應 較好是另一個基板(也就是相對於具有單 /、β平7L貫體邵份的 基板),在對應到至少複數個液晶域之一的區域中,包括 施力調整方位的調整方位結構’在至少存在有施加電壓時 ’使至少一液晶域中的液晶分子朝向放射狀傾斜的方付 然後’至少在存在有施加電壓時,來自單元實體部份電極 及來自調整方位結構的調整方位力,作用在液晶域的液晶 分子上,藉此穩定液晶域的放射狀傾斜方位,並抑制由於 在液晶層上施加的應力導致顯示品質惡化的問題(例如,〒 像後現象的發生)。 86289 -15 - 1275886 ,:調fr結構提供給對應到複數個液晶域的每-個時 °以I®疋所有液晶域的放射狀傾斜方位。 . 當調整方位結構提供給鄭近由、 取放射狀傾斜方位的液曰戏中丨正結構所構成且採 丁力U &0硬日日域中央的區 狀傾斜方位中央軸的位置,萨站, 义正放射 位對應力的抗力。 ⑽匕有效地改良放射狀頻斜方 當調整方位結構所調整的方位方向,對準由在每 儿貫體部份周圍產生的傾斜電場所構成的放射狀俩 的方向,方位的連續性和穩定性會增加,藉此改良題于Γ 質和回應特性。 & 定==存t有施加電壓時施力調整方位即可獲得穩 疋万么的效果,此外還可獲得進一步的好處,如果執行的 對準即使在未存在有施加電壓時仍可施加調整方位的力, 則不論施加電壓的位準高低’都可穩定方位。但是應注意 ’由於本發明的液晶顯示裝置利用垂直對準型的液晶層7 其中該液晶分子在未存在有施加電壓時實質上會對準:與 基板垂直,因此當利用即使未存在有施加電壓仍施力調整 万位的凋整万位結構時’顯示品質可能會惡化。然而,由 於即使是調整方位結構的調整方位力相當地弱,仍能提供 所需的效果’將在稍後描述’因此即使相對於圖像元件大 小屬於小的結構仍足以穩定方位。藉由這類小結構,因未 存在有施加電壓使顯示品質惡化的狀況,實際上會變得無 足fe重。在某些情況下,會根據所應用的液晶顯示裝置(例 如,從外部施加的應力位準)或電極結構(來自具有單元實體 86289 16 1275886 兒極的凋整方位力的強度),提供施加相當強調整方位 力的凋整万位結構。在這類情況下,可能會提供—光阻層 以便抑制因調整方位結構所導致的顯示品質惡化。各種 不^結構都可用來當作調整方位結構,因為調整方位結 構/、而要施加比單元實體部份電極弱的調整方位力即可。 另—基板上提供的調整方位結構可以是,例如’從第二 基板哭出到液晶層的突出部,或可包括位於較接近液晶層 基板-侧上的水平方位表面。另外,調整方位結構可以^ 由電極提供的開口。這些結構可湘本技料的已知 製造。 通常,包含單元實體部份電極的基板,包括複數個不盘 電極重疊㈣放區(也就是說,作為電極的料性薄膜不备 在開放區形成)。本發明的液晶顯示裝置可使用—種對準: 使採用放射狀傾斜方位的液晶域也會在開放區形成。 在開放區形成的液晶域和在單元實體部份形成的液晶域 ’都是由開放區邊緣部份產生的傾斜電場所構成(也就是說 ’沿著單元實體部份的周緣),因此這些液晶域另外也彼此 田比連’且液晶分子的方位本質上在田比連的液晶域之間連績 。因此’在開放區形成的液晶域和在單元實體部份形成的 液晶域之間的邊界並未形成任何向錯線’因此顯示品質未 受到向錯線的惡化’且液晶分子方位的穩定性也很高。 當液晶分子採取放射狀傾斜方位的時候,不只在對應到 電極單元實體部份的區域,還有對應到開放區的區域,眘 現具有高度液晶分子方位持續性的穩定方位’藉此取得均 86289 -17- ^75886 、〜7^,不會顯示不均勻。特別是,為了要實現所希望 的回應特性(也就是說,高速回應),控制液晶分子方位的傾 斜兒%,必須對許多液晶分子有所反應,而這需要開放區 的總面積(相關邊緣部份的總長度)很大才能做到。當具有穩 疋放射狀傾斜方位的液晶域對應到開放區形成的時候,為 了要改良回應特性即使開放區總面積增加,仍可以抑制顯 示口口負(非均勻顯示的發生)的惡化。 當至少部分該等複數個開孔實質上具有相同的形狀且實 貝上具有相同的尺寸並且構成具旋轉對稱對準的至少一個 ^日日礼時,便可針對母個單元晶格,以極高的對稱性來 斜準複數個液晶域,從而可改良顯示品質的視角依存 題。 當每個至少某些複數個開放區(通常是那些構成單元晶 格的區域)的形狀具旋轉對稱時,便可增加形成於該開放^ 中液晶域放射狀傾斜方位的敎度。舉例來說,每個開放 區的形狀(從該基板的法線方向看去)較好是圓形或是多邊 形(例如正方形)。請注意’視圖像元件的形狀(長寬比二 ,亦可採用不具旋轉對稱的形狀(例如橢圓形)。 為%足形成於該開放區中之液晶域的放射狀傾斜方位, 較好是形成於開放區中的液晶域為—般的圓形形狀。:言 〈’可將該開放區的形狀設計成讓形成於該開放區中的液 晶域為一般的圓形形狀。 =上所述,當液晶域形成於開放區和單元實體部份時, 可藉由在另一基板上提供調整方位处盖 万位、、、口構以對應到將形成的 86289 -18 - 1275886 ^足所有液晶域的放射狀傾斜方位。卜 可以只為形成於單元實體部份的液 ;-,也 ,就能夠取得實際上足夠程 “…結構 度的%'疋性(應力阻抗)。 特別疋’從生產力的觀點,最好所使用的調 ,其所施加的調整方位力符合形 '结構 放射狀傾斜方位,這類調整方位結構所使::::邵:的 加在開放區中形成符合放射狀傾斜方位的調整方施 整方Γ結構的流程要簡單。雖然調整方位的結構較好^ 母一^㈣部份提供,但實際上足夠程度的方位穩^ ’在某些情況下,仍可視電極結構(例如,單元實體 數量和相關設置),只針對某些單元實體部份提供調整方位 結構來取得這是由於形成於本發明液晶顯示裝置液晶層^ 放射狀傾斜方位,本質上是連續的。 、 甚至,為了要改良對應力的阻抗,在每個開放區中,提 i、具有侧表面、且針對液晶層的液晶分子施加調整方位 力與傾斜電場方位調整方向同方向的突出部。較好是突出 邵在基板平面上具有與開放區形狀相同的橫斷面形狀,並 具有與開放區形狀相同的旋轉對稱。但是應注意,由於受 到笑出邵侧表面調整方位力調整方位的液晶分子,對施如 的電壓(這些液晶分子的遲延較不會因施加電壓而改變)較 無反應,因此顯示對比度可能會降低。因此,較好是所決 定的哭出部的大小、高度和數量不會使顯示品質惡化。 本發明的液晶顯示裝置是,例如,用於每個圖像元件區 、包括像TFT的轉換元件的主動矩陣式裝置。其中包括如上 86289 -19 - 1275886 斤w開口的電極,是連接至轉換元件的圖像元件電極’另 電極是至少與複數個圖像元件電極相反的反電極。 【實施方式】 現在將參照該等附圖來說明本發明的具體實施例。 體實後 首:,將說明的是本發明的液晶顯示裝置之電極結構及 其功能。本發明的液晶顯示裝置具有所f的顯示特性,因 此通合當作主動矩陣式液晶顯示裝置使用。現在將針對使 用/尊膜電晶體(TFT)之主動矩陣式液晶顯示裝置來說明本 毛明之較佳具體實施例。本發明不限於該裝置,也可以使 用MIM結構的主動矩陣式液晶顯示裝置來替代。甚至,當 本發明具體實施例針對傳送型液晶顯示裝置描述的時候, 本^明也不PMil於該裝置,#可以將於稍後描述的反射型 硬晶顯示裝置或甚至傳送反射型液晶顯示裝置來替代使用。 請注意,在本說明書中,對相「圖像元件」(其為最小 的顯示單元)的液晶顯示裝置區域將稱為「圖像元件區」。 :彩色液晶顯示裝置中,R、GU「圖像元件」將對應到 :個「像素」。在主動矩降式液晶顯示裝置中,圖像元件 區係由-圖像兀件電極以及—位於該圖像元件電極對面的 反%極疋義而成。在被動矩陣式液晶顯示裝置中,圖像元 件區被疋義為一個以對準成條狀圖案的行電極之一穿過也 是對準成條狀圖案的列電極之_、與行電極呈垂直的區域 。在具黑矩陣的對準中,嚴格地說,圖像元件區係根據預 期的顯示狀態於其上施加電壓的每個區域的一部份,其會 86289 -20. 1275886 對應該黑矩陣的開孔。 現在將參考圖1A&1B說明根據本發明具體實施例1之液 晶顯717裝置1〇0之圖像元件區PI、P2和P3其中之一的結構。 在後面的說明中,為簡化起見,會省略彩色濾光片及黑矩 陣。再者,在後面的圖式中,每個具有與液晶顯示裝置1⑽ 中相應元件實質相同功能的元件將會以相同的元件符號來 表不,並且不會於下面作進一步的說明。圖1A為從該基板 法線方向看去的平面圖,圖1B則為沿著圖1A之直線1B]B, 之剖面圖。圖1B所示的係於整個液晶層中未存在有施加電 壓時的狀態。 該液晶顯示裝置100包括一主動矩陣式基板(後面將稱為 「TFT基板」)i〇〇a、一反基板(後面將稱為「彩色漉光片基 板」)i〇〇b,以及一位於TFT基板100a與反基板1〇〇1)之間的 液晶層30。該液晶層30的液晶分子3〇a具有負介電各向異性 ’並對準成與垂直對準膜(未顯示)表面垂直,如圖〗B所示 ’在未透過垂直對準膜於整個液晶層3〇上施加電壓時,會 在TFT基板1 00a及接近液晶層30的反基板丨〇〇b兩者的其中 一個表面上形成一垂直對準層。這個狀態被描述為呈垂直 對準的液晶層3 0。不過,請注意,視垂直對準膜的種類以 及所使用的液晶材料的種類而定,在呈垂直對準的液晶層 3〇中的液晶分子30a可能會與該垂直對準膜表面(該基板的 表面)法線之間呈現出稍微傾斜的現象。一般來說,垂直對 準係定義為一種該等液晶分子的軸(亦稱為「軸方向」)與該 垂直對準膜的表面形成約85。或更大角度的狀態。 86289 •21 - 1275886 液晶顯示裝置1 00的TFT基板1 00a包括一透明基板(例如 ,玻璃基板)11以及一圖像元件電極14,位在透明基板丨丨的 表面上。反基板io〇b包括一透明基板(例如,玻璃基板)21 以及一反電極22,位在透明基板21的表面上。液晶層3〇的 方位’會根據圖像元件電極14和反電極22之間施加的電壓 針對各個圖像元件區而改變,因此對準為透過液晶層3〇彼 此相反。利用通過液晶層30的偏極化或光量會隨液晶層3〇 方位改變的現象,可產生顯示。 TFT基板l〇〇a其中包括複數個開放區15,該區不與由傳導 性薄膜(例如,1丁〇薄膜)構成的圖像元件電極14重疊(開放區 1 5沒有圖像元件電極丨。 開放區15對準成其個別中心形成正方形晶格,以及圖像 兀件電極14的一邵份丨4a,實質上由四個開放區丨5環繞,詨 開放區的個別中心位於形成一單元晶格的四個晶格點上。 由開放區15包圍的圖像元件電極14的部份14a,將稱為「單 兀實體邵份」。圖像元件電極14(有傳導性薄膜存在的部份) 的每個見體部份包括許多的單元實體部份丨。換句話說, 圖像兀件電極14包括複數個單元實體部份14a,當作次要圖 像元件電極。複數個單元實體部份14a基本上是由單一連續 的傳導性薄膜所組成。 複數個圖像元件區對準成矩陣圖案。因此,圖像元件區 係足期對準成列方向和與列方向垂直的行方向。列方向和 订万向將稱為圖像元件(圖像元件區)的「週期對準方向」。 " 】方向和行方向彼此成垂直。甚至,在本具體實施 86289 -22- 1275886 例中’每個圖像元林 - 口像兀件£(圖像兀件)具有包含一長邊和—短邊 的-般擴圓矩形的形狀。因,匕,圖像元件區以列方向和行 方向對準時具有不同的間距(稱為「㈣㈣心… 在-圖像元件區中,圖像元件電極14的許多單元實體部 份14a以任—週期對準方向排成—排。在說明範例中,單元 實體部份Ua如圖1A所示對準成行方向⑴,其中顯示以列 万向D2彼此毗連的三個圖像元件區pi、。 一在說明範例中,單元實體部份W有呈一般圓形的形狀。 母個開放區1 5都具有大致呈星形的形狀,其在四個側邊的 中心處有包含四重旋轉轴的四分之形侧邊(邊緣)。每個 開放區15通常至少與„些田比連的開放區15相連。 開放區15具有實質上相同的形狀和實質上相同的大小。 母個仏在由開放區15形成的單元晶格中的單元實體部份 14a ’都具有大致上呈圓形的形狀。單元實體部份具有 爲貝上相同的形狀和實質上相同的大小。在圖像元件區中 彼此毗連的單元實體部份14a連接在一起,形成實質上當作 單傳導性薄膜使用的實體部份(圖像元件電極丨4)。 當在該圖像元件電極14(其具有如上所述的結構)與該反 私極22之間施加電壓之後,便會在單元實體區域14<也就 是開放區15的邊緣部分)的周圍產生一傾斜電場,從而產生 複數個各具有放射狀傾斜方位的液晶域。液晶域在每個對 應到開放區15的區域以及每個對應到單元實體部份14a的 區域產生。 應汪意,在本發明具體實施例中,以列方向D2彼此毗連 86289 -23 - 1275886 、圖像兀件’在貧料被寫入所有圖像元件(也就是說,一個 圖框)期間,受到相反極性電壓的驅動,如圖2所示。參見 ^圖2極性電壓施加到圖像元件區P1和P3(圖像元件區 以+」唬表7F)液晶層30的同時,不同(相反)極性的電壓施 到圖像兀件區P2(圖像元件區以「-」號表示)的液晶層30 挺句居說,在每個圖框中,施加到一圖像元件區液晶層 3 〇的電壓極性,π π ^、A , ^ 不冋A施加到另一圖像元件區液晶層3 0的 弘壓極性’其中該另—圖像元件區以與單元實體部份14a的 對準方向(行方向D1)垂直的方向(列方向〇2),與該第一圖 像元件區毗連。 現在將苓考圖3A及圖沾來說明上述以傾斜電場形成液 曰曰域的機制。圖3A及圖3B所示的各係圖⑺的液晶層3〇被施 加私壓之後的不意圖。圖3 A概略說明根據施加至液晶層 的電壓,液晶分子3〇a方位剛開始改變(初始〇N狀態)的狀態 。圖3B概略說明根據施加的電壓,液晶分子30a方位先改變 後又變穩疋的狀態。圖3 A及圖3B中的曲線EQ代表的是等位 線0 如圖1 B所示,當圖像元件電極丨4及反電極22具相同電位 時(也就疋’並未於整個液晶層3 〇施加電壓的狀態),每個圖 像元件區中的液晶分子30a都會被對準成垂直於該等基板 11及21的表面。 當在整個液晶層30中施加電壓後,便會產生圖3 A中等位 線EQ(垂直於電力線)所示的電位梯度。該等等位線EQ係平 行於該液晶層30(其係位於該圖像元件電極14之實體部分 86289 -24 - 1275886 ⑷及反電極22之間)中的單元實體部份ΐ4&及反電極_ 表面’並且會在對應該圖像元件電極14之開放區。的區域 中往下降。在開放區15的邊緣部分EG(開放區。的周圍部分 及其内部,包含其邊界在内)上彳的該液晶層3〇中,產生由 該等等位線EQ之傾斜部分所表示的傾斜電場。應注意,在 本發明具體實施例中,以列方向D2彼此田比連的兩個圖像元 件,受到反電極電壓的驅動,因此等位線EQ在圖像元件間 的開放區!5内劇降,藉此等位線EQ沒有繼續穿過這此 元件。 會有-力矩作用在具負介電各向異性的液晶分子3 〇 &之 上’用以將該等液晶分子,的轴方向引導成平行該等等位 線EQ(垂直於電力線)。所以’圖从中右邊邊緣部份eg上方 的液晶分子3Ga會朝順時針方向傾斜(旋轉),而左邊邊緣部 份EG上方的液晶分子池則會朝反時針方向傾斜(旋轉),如 圖3 A的箭頭所示。因此妙签、 I 丁 U此及寺邊緣邵份Ε(}上方的液晶分子 3 〇 a會朝向與該等位線E Q的對應部分平行。 現在將參考圖4Α至請更詳細地說明該等液晶分子3〇a 中的方位變化。 當在該液晶層30中產生電場之後,便會有—力矩作用在 具負介電各向異性的液晶分子3〇a之上,用以將其軸方向引 導成與等位線EQ平行。如圖4A所示,當產生由垂直於液晶 分子3〇a的軸方向之等位線EQ所表示的電場之後,發生促使 該寺視晶分子他朝順時針方向傾斜的力矩或促使該等液 晶分子心朝反時針方向傾斜的力矩的機率是相等的。所以 86289 -25 - 1275886 ,對位於該對彼此相對之平行 丨' 兒位又間的液晶層 言,會有部分的液晶分子3Ga係受到順時針方向的力 ,以及會有部分的其它液晶分子3。續受到反時針方向的力 矩作用。因此,並無法非常順利地根據施加於 30的電壓而轉換成預期的方位。 阳增 如圖3A所示,當在本發明的液晶顯示裝置⑽之開放已 的邊緣邵分EG處產生由傾斜於該等液晶分子心的轴方 向(傾斜電場)之等位線叫的一部份所表示的電場之後,兮 等液晶分子30a會朝只要最小的旋轉便能使其平行該等: 線EQ的方向傾斜(圖中所示的範例為反時針方向),如圖^ 所示。對位於已經產生由垂直於該等液晶分子…的轴方向 之等位線EQ所表示的電場區域中的液晶分子3〇a來說,其會 與位於該等等位線EQ的傾斜部份巾的液晶分子3Qa朝相同 的方向傾斜’因此如圖4C所示’纟方位與位於該等等位線 EQ的傾斜部份中的液晶分子3(^的方位係連續的(一致如 圖4D所* ’當電場使得等位線EQ形成連續的凹形/凸形圖 案時’位於該等位線EQ的平面部份中的液晶分子3〇a會被方 位成與由位於該等位線EQ的鄰近傾斜部份中的液晶分子 30a所定義的方位方向一致。本文所使用的「位於該等位線 EQ」的語意是指「位於該等位線Eq所表示的電場中」。 該等液晶分子30a的方位變化(從該等等位線£卩的傾斜部 份中的液晶分子開始)會如上述般的方式進行並達到穩定 的狀悲’圖3 B所示的即為其示意圖。位於開放區〗5之中心 邙分附近的液晶分子30a會實質相等地受到位於該開放區 86289 -26 - 1275886 之相對邊緣邯分EG處的液晶分子30a之個別方位的影響 斤、H維持其方位垂直於該等等位線Eq。遠離開放區1 5 的液晶分子30在接近邊緣部份EG處受到其他液晶分子3〇a 万位的影響傾斜,藉此形成對稱於開放區15中心SA的傾斜 万位。從垂直於液晶顯示裝置100顯示平面的方向(與基板 11和2 1面垂直的方向)看過去的方位,是液晶分子儿的軸方 向以放射狀朝向開放區15中心(未顯示)的狀態。在本說明書 中,此種方位將稱作「放射狀傾斜方位」。再者,該液晶 層30呈現出以單一軸為基準之放射狀傾斜方位的區域則稱 作「液晶域」。 液晶分子30a呈現放射狀傾斜方位的液晶域,也在對應到 實質上由開放區15包圍的單元實體部份14a之區域形成。位 於對應到單元實體部份14a區域的液晶分子3〇a,在開放區 1 5的各邊緣邵份EG受到液晶分子3〇a方位的影響,因此呈現 以單元實體部份14a中心SA(對應到開放區15形成的單元晶 格的中心)。 在單元實體部份14a中形成的液晶域的放射狀傾斜方位 ,以及在開放區1 5中形成的放射狀傾斜方位,會彼此連绩 ,而且都與在開放區1 5邊緣部份EG的液晶分子3(^的方位一 致。在開放區1 5中形成的液晶域的液晶分子30a方位,為向 上延伸的錐形(朝向基板1 00b),在單元實體部份]4a中形成 的液晶域的液晶分子30a方位,為向下延伸的錐形(朝向基 板1 00a)。如上所述’在開放區1 5内形成的液晶域中的放射 狀傾斜方位與在該單元實體部份14a内形成的液晶域中的 86289 -27 - 1275886 放射狀傾斜方位,係彼此連續的。所以,在其間的邊界處 並不會構成向錯線(方位缺陷),因而可以避免因為出現向錯 線而導致顯示品質下降。 凊 >王意,開放區1 5之中心部分附近的液晶層3〇中可能並 未施加足夠的電壓,所以開放區15之中心部分附近的液晶 層J並無法用以進行顯示。換言之,即使開放區Μ之中心 邯分附近的液晶層3 0的放射狀傾斜方位受到某種程度的干 擾(例如,即使中心軸偏離開放區15的中心),仍不會降低顯 示品質。因此,只要至少對應到單元實體部份i4a的區域 形成液晶域,就可以在每個圖像元件區獲得連續的液晶分 子並貫現廣視角特性以及高顯示品質。 士為改良所有方㈣中的視綠存性(其為—項液晶顯示 裝置的顯示品質),被方位於各種方位角方向中的液晶分子 30a之存在機率較佳的係在每個圖像元件區中具有旋轉對 稱性’更佳的係具有軸對稱性。因此,最好是液晶域在每 個圖像7C件區中都對率成〶度對稱。在本具體實施例中, 單元實體部份14a預定方向(行方向m)排成一排,因此具有 旋轉對稱和對等的軸對稱。因此,每個對應到單元實體部 份14a的液晶域也對準成旋轉對稱和對等的軸對稱。 如上逑參考圖3A及圖3B的邵分,本發明的液晶顯示裝置 1〇〇的圖像元件電極14包括複數個單元實體部份,每個 部份都由複數個開放區15所圍繞,並且會在圖像元件區内 的液晶層30中產生由具有傾斜部分之等位線叫所表示的 電場。在該液晶層30中具負介電各向異性的液晶分子3〇a 86289 -28- 1275886 (當未存在㈣加電壓時,其係呈垂直對準)會隨著位於當作 觸發信號之等位線EQ的傾斜部份中的液晶分子3〇&的方位 變化而改變其方位方向。因&,具穩定放射狀傾斜方位的 液晶域會形成於開放區15以及單元實體部份⑷中。根據施 加於整個液晶層中的電壓’ &變該液晶域中液晶分子的方 位便能夠進行顯示。 以下將描述本具體實施例液晶顯示裝置i 〇 〇的圖像元件 電極14的$元實體部份14a的形狀(從基板法線方向看去)和 對準以及液晶顯示裝置⑽的m基板⑽_開放區Μ。 液晶顯示裝置的顯示特性會因為該等液晶分子的方位 (光學各向異性)的關係,而呈現出方位角依存性。為降低顯 不特徵中的方位角依存性,鲈杜认Μ 、 Μ〖軌佳的係以實質相等的機率將 該等液晶分子方位於所有的方位角中。更佳的係能夠以實 質相等的機率將每個圖像元件區中的液晶分子方位於所有 的方位角中。 :以,單元實體部份14a較佳的形狀係形成於每個圖像元 件區中的液晶域能夠以f暂^ $ 男貝相寺的機率使對應到單元會髀 部份14a的每個液晶域中的液晶分子恤朝向所有的方位角 :更明確地說,較佳的係’單元實體部份…的形 1 目對於延伸穿過每個單元實體部份中心的對稱轴(法線方 向)的旋轉對稱性(更佳的係對稱於至少一個二重旋轉轴)。 此外’由於只有對應到開放區15形成的液晶域部份包各 =像兀件區中並對顯示有幫助,因此最料包含在圖像 的W域邵份(片段)集合中的液晶分子有實質相等 ^6289 -29 - 1275886 的義率朝向所有方&角。因&,最好是開放區1 5的形狀及 對準能夠使液晶域片段以互補方式共同形成液晶域。特別 是,最好開放區15的形狀有旋轉對稱而且開放區15能夠對 率成具有旋轉對稱。請注意,由於在開放區15形成的液晶 域有-部份位於圖像元件區之外,因此開放區15可能很難 對準成使液晶域片段以互補方式共同形成液晶域。然而, 只要朝向不同方位角的液晶域片段每個集合的液晶分子, 存在有旋轉對稱(更好是軸對稱)的機率,就足以降低顯示特 性的方位角依存性。 現在將參考圖5A至圖5C說明將圍繞一般圓形單元實體 部份14a的一般星形的開放區15,如圖丨A所示對準於正方形 日曰格中時’讀等液晶分子3 0 a的方位。 圖5 A至圖5 C所示的各係從該基板的法線方向看去時該 等液晶分子30a的方位示意圖。在顯示著以該基板法線方向 看去的液晶分子30a的方位的圖式中(例如圖冗及%),橢圓 形的液晶分子術的黑色斑點端表示的係該液晶分子池被 傾斜成讓該端比另一端更接近其上具有圖像元件電極14的 基板。此種表示方式同樣適用於後面的圖式中。下面將說 明圖1A所示的圖像元件自巾的單一單元晶格(其係由四個 開放區15所構成的)。圖5A至圖5C之個別對角線的剖面圖分 別對應到圖1B、圖3A及圖3B,而下面的說明同樣會參考圖 1B、圖3A及圖3B。 當圖 整個液 像元件電極14及反電極22具相同電位時(即並未於 晶層30施加電壓時的狀態),該等液晶分子3〇a的方 86289 -30 - 1275886 位万向會受到位於各TFT基板100a某一侧的垂直對準層(未 顯示)以及較接近該液晶層30的反基板1〇扑所調整,而呈現 垂直對準,如圖5A所示。 當在整個液晶層30中施加電場以便產生如圖3a之等位線 EQ所表tf的電場之後,便會有一力矩作用在具負介電各向 異性的液晶分子30a之上,用以將其軸方向引導成平行該等 位線EQ。如上述的圖4A及圖4B所示,對處於由垂直於其分 子軸的等位線EQ所表示之電場下的液晶分子3〇a來說,並未 唯一足我出该等液晶分子3 〇 a應該朝哪個方向傾斜(旋轉) (圖4 A) ’所以並不容易發生方位變化(傾斜或旋轉)。相反地 ,對處於由傾斜於其分子軸的等位線EQ下的液晶分子3〇a 來說’則唯一定義出傾斜(旋轉)的方向,所以很容易發生方 位邊化。所以’如圖5 B所示,該等液晶分子3 0 a會從液晶分 子30a分子軸傾斜於該等等位線EQ之位置處的開放區15的 邊緣部份開始傾斜。然後,週遭的液晶分子3〇a便會跟著傾 斜以便與該開放區1 5邊緣部份處已經傾斜的液晶分子3〇a 的方位一致,如圖4C所述。接著,該等液晶分子3〇a的軸方 向便會呈現如圖5C般的穩定狀態(放射狀傾斜方位)。 如上所述,當開放區1 5的形狀具旋轉對稱性時,在施加 電壓後,該圖像元件區中的液晶分子30a便會從該開放區1 5 的邊緣部份開始朝該開放區1 5的中心依序傾斜。因此便會 產生一種方位,其中在該開放區1 5中心(來自各邊緣部分的 液晶分子3〇a的個別的方位調整力量於此處達到平衡狀態) 附近的液晶分子30a會保持與該基板平面成垂直的對準,而 86289 -31 - 1275886 週遭的液晶分子30a則會以該開放區1 5中心附近的液晶分 子30a為基準以放射圖案的方式傾斜’其傾斜程度會隨者遠 離该開放區1 5中心而逐漸地增加。 對應到由對準成正方形晶格圖案的一般星形開放區1 5所 圍繞的一般圓形的單元實體部份14a區域中的液晶分子3〇a ’也會跟著傾斜,使符合已經由各開放區15邊緣部份產生 的傾斜電%所傾斜的液晶分子3 〇 a的方位。因此便會產生一 種方位,其中在該單元實體部份14a中心(來自各邊緣部分 的液晶分子30a的個別的方位調整力量於此處達到平衡狀 態)附近的液晶分子30a會保持與該基板平面成垂直的對準 ,而週遭的液晶分子30a則會以該單元實體部份14a中心附 近的液晶分子30a為基準以放射圖案的方式傾斜,其傾斜程 度會隨著遠離該單元實體部份14a中心而逐漸地增加。 如上所述,f液晶域(每個液晶射的液晶分子3〇a都係 呈放射狀傾斜方位)都被對準成正方形晶格圖案時,個別袖 方向的液晶分子3Qa就存在有具有旋轉對稱性的機率,因此 便能夠實現高品質的顯示而不會有任何視角上的不均勾現 象。為降低具放射狀傾斜方位之液晶域的視角依存性’該 液晶域較佳的係具有高度的旋轉 力疋〜對%性(較佳的係對稱於 至少一個二重旋轉軸,更佳的係對盤& = i 」你對%於至少一個四重旋轉 車由)。 队巧斜万位來說,具有如 或圖6C所示的反時針或順時針之螺旋圖案的放射狀柄 位都會比圖6A所示的簡易放射狀傾斜方位要來編 86289 -32 - 1275886 :万位不同於一般的扭轉方位(該等液晶分子術的方位方 。會隨著該液晶層30的厚度而呈現螺旋式變化)。在螺旋方 Ά該等液晶分子3〇a在-微小區域中的方位方向實質上 ,不會隨著該液晶層30的厚度而變化。換句㈣,在任何 居度的液晶層30的橫斷面中(在與層平面平行的平面中)的 万位是如圖6B或圖6C所示,且沿著液晶層3〇的厚度實質上 ^任何扭轉㈣。但若將液晶域視為-個整體來看,則 有若干程度的扭轉變形。 當使用將對掌性試劑加入具負介電各向異性之向列液晶 材料中而獲得的材料時,在施加電壓存在時,該等液晶分 子Ma便會分別如圖6B或圖6(:所示呈現出以該開放區15及 該單元實體部份14a為基準的反時針或順時針螺旋圖案的 放射狀傾斜方位。而究竟會呈現反時針或順時針螺旋圖案 則係取決於所使用的對掌性試劑種類。因此,冑由在有施 加電壓存在時控制開放區1 5中的液晶層3〇,使其變成螺旋 圖案的放射狀傾斜方位,那麼,以垂直於該基板平面之其 b液晶分子30a為基準的放射狀傾斜液晶分子3〇a之螺旋圖 案的方向便能夠在所有的液晶域中保持固定不變,因此便 能夠實現均勻的顯示而不會顯示出不均勻的結果。因為在 垂直於該基板平面之液晶分子3〇a附近的螺旋圖案的方向 相當地明確,所以亦能夠改良施加電壓於整個液晶層3〇之 後的響應速度。 再者’當添加大量的對掌性試劑之後,該等液晶分子3〇a 的方位便會如同一般的扭轉方位般地隨著該液晶層3〇的厚 86289 -33 - 1275886 度而改變其螺旋圖案。在該等液晶分子30a的方位並不會隨 著該液晶層30的厚度而改變其螺旋圖案的方位中,被方位 成垂直或平行於該偏光板之偏光軸的液晶分子3 0 a對於入 射光並不會造成相位差,因此穿透過具此種方位之區域的 入射光對於透射率並不會造成任何的影響。相反地,在該 等液晶分子30a的方位會隨著該液晶層3〇的厚度而改變其 螺旋圖案的方位中,被方位成垂直或平行於該偏光板之偏 光軸的液晶分子3(^則會對入射光造成相位差,並且亦會使 用到光學旋轉力,因此穿透過具此種方位之區域的入射光 對於透射率將會造成影響。因此便能狗獲得一種能夠產生 鬲亮度顯示的液晶顯示裝置。 圖1A所7F的範例中,每個單元實體部份14a都為一般的圓 形形狀,而每個開放區15則都為一般的星形形狀,其中此 等單元實體部份14a及此等開放區15都係設置在一正方形 晶格圖案中。但是,單元實體部份14a的形狀以及開放區^ 的形狀和對準都不限於上述範例。 圖7A和圖7B是平面圖,分別說明具有不同形狀的個別開 放區15和早兀實體部份14a的液晶顯示裝置丨⑽八和1⑽b。 如圖7A和圖7崎示的液晶顯示裝置100A和100B的開放 區η和單元實體部份14,分別與圖丨八的液晶顯示裝置 的開放區和單元實體部份有些微地扭曲。液晶顯示裝置 100A與100B的開放區15及單元實體部份i4a都具有—二重 旋轉軸(並不具有四重旋轉軸),並且經過規律的對準後,構 成長矩形的單元晶格。在液晶顯示裝置100A與100B中,開 86289 -34 - 1275886 放區1 5為被扭曲的星形形狀,而單元實體部份14a則為一般 的橢圓形形狀(被扭曲的圓形形狀)。圖7 A和圖7B所示的液 晶顯裝置1 Ο Ο A和1 Ο Ο B仍具有兩的顯示品質和預期的視 角特性。 此外,如圖8A和圖8B所示的液晶顯示裝置10〇(:和1〇〇1) 兩者仍具有高的顯示品質和預期的視角特性。 在液晶顯示裝置100C和100D中,一般十字形狀的開放區 15設置成正方形圖案,因此每個單元實體部份具有一般 正方形的形狀。當然,這些圖案可被扭曲因而構成長矩形 單元晶格。如上所述,另外藉由規律對準該等一般矩形(包 含正方形及長方形)的單元實體部份14a,亦可獲得具高顯 示品S及了員期視角特性的液晶顯示裝置。 不過,開放區1 5及/或單元實體部份14 a的形狀較佳為圓 形或橢圓形,而非矩形,如此方能使該放射狀傾斜方位更 穩定。咸信具有圓形或橢圓形之開孔及/或單元實體部份的 放射狀傾斜方位會更穩定,這係因為開放區丨5的邊緣會更 為連續(平順),如此該等液晶分子3〇a的方位方向能夠以更 連續(平順)的方式進行變化。 考慮到如上所述液晶分子3 〇 a方位方向的連續性,也可預 期有如圖9所示的液晶顯示裝置ι〇〇Ε。圖9的液晶顯示裝置 100E是圖8B液晶顯示裝置1〇〇D的變形,其中單元實體部份 14a上開放區15的每一侧都是弧形。在液晶顯示裝置1〇〇£中 ’開放區1 5和單元實體部份14a都具有四重旋轉軸並且設置 成正方形晶格圖案(具有四重旋轉軸)。另外,可將該開放區 86289 -35 - 1275886 1 5的單元實體部份14a的形狀扭曲成一具有二重旋轉軸的 形狀,並且可將此等單元實體部份14a設置成長矩形的晶格 (其具有二重旋轉軸),如圖7A及圖7B所示。 施加於在該開放區15内形成的液晶域中的電壓會低於施 加於在該實體部14a内形成的另一液晶域中的電壓。因此, 舉例來說,在正常的黑色模式顯示中,形成在該開放區Η 内的液晶域會比較暗。因此,最好圖像元件區内的單元實 體部份14a的面積比要高一點,而開放區15的面積比要低— 點。 在本發明的液晶顯示裝置中,圖像元件電極14包括複數 個單元實體部份14a,藉此可以根據圖像元件區的形狀和大 小等適當對準圖像元件區中複數個單元實體部份“a,在圖 像元件區實現穩定的放射狀傾斜方位,不需受到圖像元件 區的形狀及大小等的限制。相較之下,如果圖像元件電極 只包括一個單元實體部份,可能就無法根據圖像元件區的 形狀和大小等實現穩定的放射狀傾斜方位。如果圖像元件 區有圓形或正方形形狀,只包括—個單元實體部份的圖像 元件電極便不是問題。但是,例如,如果當圖像元件區是 位於能夠產生彩色顯示的液晶顯示裝置中而且圖像元件區 具有大長寬比的長矩形形狀時,單元實體部份便需要具有 大長寬比的形狀,此時可能就無法實現穩定的放射狀傾斜 方4此夕卜例如胃圖像元件區的尺寸很大時,單元實 體邵份就需要有大的尺寸,在這種情況下,只由在單元實 體部份周圍產生的傾斜電場可能無法獲得穩定的方位。、 86289 -36 - 1275886 此外,在本發明的液晶顯示裝置巾,複數解元實體部 份14a在每個圖像元件區中以駄方向對準(排成-排),舉 例來說如圖1A所示,相舫认苗一杂减、 相季乂I早兀貫體邵份對準成兩排以上 的情況,如此可增加單开眘贿 早兀貫眼E域14a的面積比,且相對於 圖像元件區的總面積(右教 /、I哥效孔仫比),可增加貢獻給顯示的面 積比。接下來,將參考圖1〇來說明原因。 如圖10所示,液晶顯示裝置100£包括閉匯流排線淡描線) 4卜以列万向D2彼此平行延伸,還包括來源匯流排線(信號 線)42,以行方向D1彼此平行延伸。每個閘匯流排線(掃描 線)41以電連接到提供給各圖像元件區的丁ft(未顯示)的閘 極私極母個來源匯泥排線(信號線)42則以電連接到tF丁的 來源電極。此外,TFT的汲極電極以電連接到圖像元件電極 14 4液日日顯不裝置1 〇 0 E另包括儲存電容線4 3。 在液晶顯示裝置100E中,許多單元實體部份14a在各圖像 兀件區中對準成一排,圍繞單元實體區域14&的開放區15的 一邵份與閘匯流排41或來源匯流排42重疊,且該部份位於 圖像元件區之外。因此’每個複數個開放區1 5,至少有一 部份位在圖像元件區之外。 當複數個單元實體邵份14 a對準成兩排以上時,在每個圖 像元件區中會存在一個由單元實體部份14a包圍的開放區 1 5,而且這類開放區1 5是完全位於圖像元件區之内。例如 ’在比較級範例的液晶顯示裝置10 0 0中,當單元實體部份 14 a對準成兩排以上如圖Π所示時,在每個圖像元件區中就 會存在一個由單元實體部份14a包圍的開放區1 5,而且這類 86289 -37 - 1275886 開放區15是完全位於圖像元件區之内。接著,圖像元件區 中的開放區15的面積比增加,因此降低單元實體部份的 面積比。 相較之下,當複數個單元實體部份14a在每個圖像元件區 中排成一列如圖1 〇所示時,每個複數個開放區〗5就至少會 有一部份位於圖像元件區之外,因此可以降低圖像元件區 中開放區15的面積比並增加單元實體部份14a的面積比,從 而改良孔徑比。 現在,將參考使用特定規格的液晶顯示裝置所取得的資 料,更詳細地描述可以如何改良孔徑比。該液晶顯示裝置 的規格如下所示··顯示區的對角線長度是15英吋,單元實 te邛伤14 a具有包含j瓜形隅角邵份的一般正方形的形狀(如 圖9和圖1 0所示),閘匯流排線的寬度和來源匯流排線上的 光阻隔層的寬度均為12 μπι,單元實體部份〗4a之間的間隔 是8·5 μπι。以下將比較單元實體部份14a排成一列時液晶顯 示裝置的透射率與單元實體部份14a排成兩列時液晶顯示 裝置的透射率。與單元實體部份14a排成兩列時的透射率相 較,當單元實體部份14a排成一列時的透射率有改進,用於 SXGA (12 80 X 1〇24個像素)B寺提升 6%,用於UXGA (1600 X 1200個像素)時提升9〇/〇、用於qxga (2048 X 1536個像素) 時提升11%。因此,藉由在每圖像元件區中使複數個單元 實體邵份14a排成一列來改良孔徑比的效果,在高畫質液晶 顯示裝置時特別明顯。 請注意,在圖像元件電極14與閘匯流排線41或來源匯流 86289 -38 - 1275886 排線42重疊(在圖1〇所示)的結構中,最好在匯流排線上所形 成的纟巴緣膜(例如,一有機絕緣膜)的厚度能夠儘可能的厚, 而且圖像元件電極14形成於其上,才能降低這些匯流排線 的影響。 二見圖12, s」指示由開放區1 5和單元實體部份14a形 成的正方形單兀晶格之間的間隙長度(以下稱為「側留間隔 S」)。侧留間隔S必須等於或大於預定長度,才能產生獲得 %足的放射狀傾斜方位所需的傾斜電場。 雖然側留間隔S是以列方向D2和行方向叫定義,但在本 具體實施例中,只有沿著列方向D2彼纽連的圖像元件才. 會受到如圖2所示圖框中相反極性的電壓驅動。因此,相較 於沿著列方向D2彼此毗連的圖像元件不會受到相反極性電 壓驅動的情況,這種方式可以獲得足夠的調整方位力,即 使列方向D2的侧留間隔3被縮小也一樣。這是因為當沿著列 方向D2彼此毗連的圖像元件受到相反極性電壓驅動時,可 產生相s強的傾斜電場。下面將參考圖i3A和圖來說明 其原因。 圖13A概略說明當施加+5 ,v電壓至列方向d2上彼此毗連 的兩個圖像元件區内的液晶層時所產生的等位線叫,圖 13B則概略說明當施加+5 v電壓至列方向D2上彼此毗連的 兩個圖像元件區其中之一内的液晶層的同時還施加V電 壓至兩個圖像元件區的另—個區域内的液晶層時所產生的 等位線EQ。 如圖1 3 A所,當相同的極性電壓施加在兩個毗連的圖像 86289 -39 - 1275886 :件區内的液晶層時’所產生的電場會使等位線叫形成連 續的中央凹下/中央凸起的圖案。 相車乂〈下如圖1 3B所不’當相反極性的電壓施加在兩個 田比連圖像元件區的液晶層時,代表兩個圖像元件區產生的 電場的等位線叫不會連續,而是在開放區15急劇下降。因 此’在開放區15的邊緣部份,也就是在單元實體部份Ha的 周圍,形成陡山肖的電位梯度,因而所產生的傾斜電場的電 力比圖1 3 A顯示的情況要大。 如上所述,當沿著列方向D2彼此毗連的圖像元件是受到 相反極性電壓驅動時,τ以獲得足夠的調整方位力,即使 列万向D2的侧留間隔S被縮小也一樣。因此,即使當在列方 向D2上彼此毗連的兩個圖像元件電極14間的距離被縮小, 仍可以形成足夠穩定的放射狀傾斜方位來增加孔徑比。 其他實驗也S利用如上所示具有特^規格的液晶顯示裝 置來進行(液晶顯示裝置顯示區的對角線長度是15英吋,單 兀實體部份14a具有包含弧形隅角部份的一般正方形的形 狀,閘匯流排線的寬度和來源匯流排線上的光阻隔層的寬 度均為12 μπι,單元實體部份14a之間的間隔是8 5卜咖)。明 確地說,就是將比較在列方向D2上彼此毗連的圖像元件受 到相反極性電壓驅動的情況與他們不是受到相反極性電壓 驅動的情況。在列方向D2上彼此毗連的圖像元件不是受到 相反極性電壓驅動的情況中,實現穩定的放射狀傾斜方位 所需的圖像元件電極14間的最小距離是8·5 μίη,也就是等 於每個圖像元件區中單元實體部份14a之間的距離。相較之 86289 -40 - 1275886 方向D2上彼此毗連的圖像元件受到相反極性電壓 ㈣的情況中’即使列方向D2上彼此峨連的圖像元件電極 14間的距#減少到3 μιη,仍彳以獲得穩定的放射狀傾斜方 位。 在本具體實施例中,雖然行方向D1上彼此毗連的圖像元 牛不疋义相反極性的電壓驅動,如圖14 a所示(所謂的「來 源線反轉驅動配置」),但{當列方向D2上彼此毗連的圖像 兀件受到相反極性的電壓驅動時,仍能充份地改良孔徑比 。然而,為了要得到其他有利的結果例如像抑制閃爍的效 果,以相反極性電壓驅動列方向〇2上彼此毗連的圖像元件 時,取好每η列(其中!!是丨或以上的整數)的圖像元件(也就是 行万向D1上每η個圖像元件),便使施加電壓的極性反轉。 換句話說,在每個圖框中,最好是施加在相同行的圖像元 件區中液晶層的電壓極性,每η列便反轉一次。 例如,如圖14Β所示,施加電壓的極性每2列的圖像元件 即反轉一次,也就是行方向m上的每2個圖像元件(所謂的 「2H點反轉驅動配置」)。另外,如圖14C所示,施加電壓 的極性在每一列的圖像元件上都反轉一次,也就是行方向 D1上的每一個圖像元件(所謂的「點反轉驅動配置」)。如 果當列方向D2上彼此毗連的圖像元件受到反電極的電壓驅 動時,行方向D1上彼此毗連的圖像元件也受到反電極的電 壓驅動’如圖14C所示,就可以縮短行方向d 1上彼此毗連 的圖像元件電極14間的間距,藉此進一步改良孔徑比。 現在,將描述單元實體部份14a的形狀與放射狀傾斜方位 86289 -41 - 1275886 的%疋性4間的關係、,以及I元實體部份i4a的形狀與透射 率值之間的關係。 本叙明的發明者揭不的一項研究中發現,當單元實體部 伤14a(#j留間S)的間隔保持固定不變時,若單元實體部份 ⑷的形狀越接近圓形或橢圓㈣時候,方位穩定性就越高 。這是因為當單元實體部份14a的形狀越接近圓形或一㈣ 形的時候,放射狀傾斜方位中的液晶分子3〇a的方位方向的 連續性就越高。 另外還發現到,當單元實體部份14a的形狀越接近矩形, 例如像正万形或長矩形透射率就越高。這是因為當侧 留間隔s值保持較不變時,若單元實體部份i4a的形狀越 接近長方形,實體部份的面積比就會增加,因此增加了受 到電極產生的電場所直接影響到的液晶層面積(該面積由 與基板法線万向垂直的平面定義),因此增加有效的孔徑比。 所以,單元實體部份14a的形狀可根據預期的方位穩定性 和預期的透射率來決定。 例如,當單元實體邵份丨4a具有包含一般弧形隅角部份的 般正方形的形狀時,如圖9和圖〗〇所示,就有可能實現相 田回的方位%定性和相當高的透射率。當然,當單元實體 邯份14a具有包含一般弧形隅角部份的一般矩形的形狀時 ,也可獲得類似的效果。應注意,由於製造流程上的限制 ,因此嚴格來說傳導性膜所形成的單元實體部份14a的隅角 邵份不可能是弧形,但是可改為是鈍的多角形的形狀(由複 數個超過90。的角所構成的形狀),且隅角部份可具有些微 86289 -42 - 1275886 扭曲的弧形(例如,橢圓的一部份)或扭曲的多角形,而不是 四分之一的弧形或正多角形(例如,正多邊形的一部份)。另 外,隅角邵份可以是組合曲線和鈍角的形狀。此處使用的 a囊「一般?瓜形」,可表示這些形狀之中的任何一種。應 注意,由於類似的流程相關理由,如圖1Α所示的一般圓形 的單元實體部份14a的形狀,可以是多角形或是扭曲的形狀 ’而不是嚴格的圓形。 考慮到回應速度,單元實體部份14a的形狀可以是圖15所 示的液晶顯示裝置100F中的形狀。在圖15所示的液晶顯示 裝置100F中,圖像元件電極14的單元實體部份的形狀, 是帶有銳角隅角的扭曲正方形。應注意,此處所使用帶有 銳角的隅角是指具有角度小於9 〇。的隅角或圓角。 當單元實體部份14a具有銳角隅角部份的時候,如圖15所 示,產生傾斜電場的邊緣部份的總長度會增加,因此傾斜 電場可作用.在更多的液晶分子3〇a上。因此,為回應電場, 剛開始傾斜的液晶分子3()a的數量會增加,從而減少在整個 圖像元件區上形成放射狀傾斜方向所需的時間量。因此, 改良了電壓施加在液晶層30上的回應速度。 此外,當單元實體部份14a具有含銳角隅角的形狀時,相 較於單元實體部份14a的形狀是一般圓形或一般矩形形狀 的情況’液晶分子30a朝向各特定方位角方向的存在機率會 增加(或減少)。換句話說,液晶分子3(^朝向特定方位角= 向的存在機率中,可採行高方向@。因此,當在具有線性 偏光入射至液晶層3〇的偏光板的液晶顯示裝置的單元實體 86289 -43 - 1275886 部份14a中採用銳角隅角時,可能可以降低液晶分子3〇&垂 直或水平朝向偏光板極轴的存在機率,也就是不提供相位 差給入射光的液晶分子30a。因此’有可能改良光線透射率 並實現較明亮的顯示。 如上所述的具體實施例1的液晶顯示裝置的對準方式,可 採用本技藝中已知的垂直對準型液晶顯示裝置的相同對準 方式,並可以利用已知的製造方法生產’㈣下兩點除外 ,第一,圖像元件電極14包括複數個以兩個週期對準方向 其中之一排成一列的單元實體部份14a,其中圖像元件為週 期對準’帛一 ’以另一週期對準方向彼此毗連的圖像元件 由相反的電極電壓驅動。 一般來說,作為垂直排層的垂直對準膜(未顯示)係位於每 一個圖像元件電極14及較接近該液晶層3〇的反電極22的其 中-側上,以便垂直對準該等具有負介電各向異性的液晶 分子。 該液晶材料可能是一具有負介電各向異性的向列液晶材 料。在該具有負介電各向異性的向列液晶材料中添加雙色 染料之後便可獲得主客型的液晶顯示裝置。主客型的液晶 顯示裝置並不需要偏光板。 具體實施例2 現在將參考圖16A及圖1 6B說明根據本發明具體實施例2 的液晶顯示裝置200之其中一個圖像元件區的結構。再者, 在後面的圖式中,每個與液晶顯示裝置100中相應元件具有 實質相同功能的元件將會以相同的元件符號來表示,並且 86289 -44 - !275886 不會於下面作進一步的說明。圖16A為從該基板法線方向看 去的平面圖,圖16B則為沿著圖16A之直線16B-16B,之剖面 圖。圖1 6B所π的係於整個液晶層中未存在有施加電壓時的 狀態。 如圖16A和圖16B所示,液晶顯示裝置2〇〇不同於圖丨八和 圖1B所示的具體實施例丨中的液晶顯示裝置1〇〇,其中丁打 基板200a在圖像元件電極14的開放區15中包括一突出部仆 。哭出邵40的表面上有一垂直對準膜(未顯示)。 忒大出邯40沿著該基板π平面的剖面一般星形剖面,也 就是與開放區15的形狀相同,如圖16A所示。請注意,相鄰 的大出邯40係互相連接的,因此可以一般圓形的圖案完全 包圍每個單兀實體邵份14a。該突出部4〇沿著垂直該基板j ^ 平面的剖面一般梯形形狀,如圖16B所示。明確地說,其剖 面具有一平行該基板平面的頂面4〇t,以及一與該基板平面 王銳角Θ (< 90。)傾斜的侧表面4〇s。因為具備該垂直對準膜 (未顯示)以覆蓋該突出部40的關係,所以該突出部4〇的侧表 面40s具有一方位調整力量,其方向與該液晶層3〇之液晶分 子30a的傾斜電場所造成的方位調整方向相同,因而可用以 穩定該放射狀傾斜方位。 現在將參考圖17A至圖l7D、圖18A及圖18β來說明該突出 邵4 0的功能。 首先將參考圖17A至圖17D來說明該等液晶分子30a之方 位與具垂直對準力之表面結構之間的關係。 如圖17A所示,由於該具垂直對準力之表面(一般為垂直 86289 -45 - 1275886 對準膜的表面)的方位調整力量的 1係’水平面中的潘曰八 子30a會被對準成垂直該表面。备細 〒L夜印刀 两、、、工由垂直對準的液晶 施加由垂直該液晶分子3〇a 卞h夜日曰刀子 勺軸万向之等位線EQ所表亍 的電場後,促使該液晶分子3〇a| 泣, 興時針万向傾斜的力矩以 及促使孩液晶分子30a朝反時針方 J I、計的力矩便會以相 同的機率作用於該液晶分子3〇a上。 所以,對位於平行板對 +中的一對反電極之間的液晶声 促日曰層30而1,會有部分的液晶 y刀子30a係受到順時針方向的力 、、、 刀矩作用,以及會有部分的其 它液晶分子30a係受到反時針方向的 、, |乃回的力矩作用。因此,並無 法非常順利地根據施加於整個凌曰 似履日日層30的電壓而轉換成為 其方位。 當經由與-傾斜表面呈垂直對準的液晶分子心施加由 水平等位線EQ所表示的電場後,如圖17β所示,該液晶分 子30a便會朝只要較小的旋轉便能使其平行該電位線£〇的 方向傾斜(圖中所示的範例為順時針方向)。接著,如圖i7c 所示,其它與水平面成垂直對準之相鄰的液晶分子3〇a便會 與位於該傾斜表面中的液晶分子3〇a朝相同的方向(順時針 万向)傾斜,因此其方位便會和與該傾斜表面呈垂直對準的 液晶分子3 0 a的方位連續(一致)。 如圖17D所示,對於具有凹形/凸形部且其剖面包含一連 串梯形之表面來說,位於頂面的液晶分子3〇a及位於底面的 液晶分子30a會被方位成與由位於該表面的傾斜部份中的 其它液晶分子30a所調整的方位方向一致。 在本具體實施例的液晶顯示裝置中,由.該表面結構(突出 86289 -46- 1275886 口η所她加的方位調整力量的方向會對準傾斜電場所施加 的万位調整力*的方向,目π可穩定該放射狀傾斜方位。 圖18Α及圖ι8Β所示的各係圖16Β的液晶層3〇於施加電壓 存在時的狀態示意圖。圖18Α概略說明根據施加至液晶層 的壓,液晶分子3(^方位剛開始改變(初始〇Ν狀態)的狀態 。圖18Β概略說明根據施加的電壓,液晶分子30a方位先改 變後又變穩定的狀態。圖18A及圖18B中的曲線EQk表的是 等位線。 如圖16B所示,當圖像元件電極14及反電極22具相同電位 時(也就疋,並未於整個液晶層3 〇施加電壓時的狀態),每個 圖像元件區中的液晶分子3〇a都會被對準成垂直於該等基 板11及21的表面。與位於該突出部4〇的側表面4〇s中的垂直 對準膜(未顯tf)接觸的液晶分子3(^便會被對準成垂直於該 侧表面40S,而位於該侧表面4〇s附近的液晶分子3〇a侧會因 為與週遭的液晶分子30a互相作用(其如同彈性連續性般都 係其本質)的關係而呈現出如圖所示傾斜方位。 田在正個液晶層3 〇中施加電壓後,便會產生圖1 8 a中等位 、、泉EQ所不的電位梯度。該等等位線eq係平行於該液晶層 3〇(其係位於該圖像元件電極14之實體部及反電極22之間) I的實體部及反電極22的表面,並且會在對應該圖像元件 包fe 1 開放區1 5的區域中往下降,因而便會在開放區工5 的邊緣部分(開放區15的周圍部分及其内部,包含其邊界在 内)EG上方的該液晶層3 〇的每個區域中產生由該等等位線 E Q之傾斜邵分所表示的傾斜電場。 86289 -47 - 1275886 如上所述,由於該傾斜電場的關係,圖18A中右邊邊緣部 份EG上方的液晶分子30a會朝順時針方向傾斜(旋轉),而左 邊邊緣部份EG上方的液晶分子30&則會朝反時針方向傾斜 (旋轉),如圖1 8 A的箭頭所示,以便平行該等等位線Eq。因 此,該傾斜電場所施加的方位調整力量便會與位於每個邊 緣部分EG的侧表面40s所施加的方位調整力量相同。 如上所述,該方位的變化會從位於該等等位線^^之傾斜 部份中的液晶分子30a開始,然後達到圖18B所示的穩定的 方位狀毖。位於開放區1 5之中心部分附近(也就是,位於該 义出部4 0的頂面4 0t之中心部分附近)的液晶分子3 〇 a會實質 相等地受到位於該開放區1 5之對面邊緣部分£(:}處的液晶 分子30a之個別方位的影響,所以會維持其方位垂直於該等 等位線EQ。遠離開放區15之中心(該突出部4〇的頂面4〇t)的 液晶分子30a則會因受到位於較近的邊緣部分EG處的其它 液曰曰分子3 0 a的方位的影響而傾斜,從而形成一對稱於該開 放區15之中心SA(該突出部40的頂面40t)的傾斜方位。在對 應至由該等開放區1 5及該等突出部40包圍)的單元實體部 份14a的區域中,也會形成對稱於該單元實體部份i4a之中 心SA的傾斜方位。 如上所述’在具體實施例2在液晶顯示裝置2 0 〇中,會如 同在具體實施例1的液晶顯示裝置1〇〇中一樣,對應該等開 、欠[1 及居等卓元貫體部份14 a的區域也會形成各具放射 狀傾斜方位的液晶域。由於具有突出部40才能以—般圓形 的圖案完全包圍每個單元實體部份14a,因此每個液晶域會 86289 -48 - 127588.6 在對應到由突出部40包圍的一般圓形的區域中形成。此外 ’開放區U中提供的突出部侧表面,用來使開放區⑽ 緣部份EG附近的液晶分子m同傾斜電場所施加的調 整万位力的相同方向傾斜,藉此穩定放射狀傾斜方位。 當然,該傾斜電場所施加的方位調整力量僅有在施加電 壓存在時方能產生作用,其強度則係取決於該電場的強度 (該施加電壓的位準)。所以,當該電場強度很小時(即當該 施加電壓很低時),該傾斜電場所施加的方位調整力量便非 常弱,此時當施壓^該液晶面板時,該放射狀傾斜方位便 可能會因為液晶材料的浮動而瓦解。當該放射狀傾斜方位 瓦解之後便無法還原,除非施加一非常強的電壓,足以產 生-傾斜電場來施加-非常強的方位調整力量。相反地, 不論該施加電壓為何,以、金奋> 4丄、、、 义疋會她加由孩哭出部40之侧表面 他所產生的方位調整力’而且因為先前技術中所熟知的該 對準膜的「定準效應」@關係,其強度會非常地強。所以 ’即使液晶材料的產生浮動且該放射狀傾斜方位已經瓦解 ’在孩突出部40的侧表面40s附近中的液晶分子3〇a仍然可 維持與該放射狀傾斜方位相同的方位方向。所以,一但該 液晶材料的浮動現象停止之後’便可輕易地還原該放射狀 傾斜方位 因此,具體實施例2的液晶顯示裝置2〇〇除了具有具體實 施例i的液晶顯示裝置100的優點之外,财很㈣抗應: 的伙;因此,液晶顯不裝置200可適用於經常要承受應力 的裝置,例如像時常攜帶外出的pc:* pDA。 86289 -49 - 1275886 一/田大出邵40是由具有高透明度的介電材料所製成時,所 獲:的好處為’可改㈣於對應到開放區15區域中形成的 液晶域的貢獻。當突出部40是由不透明的介電材料所製成 寺所獍侍的好處為,可避免因突出部40的侧表面40s的關 ^由么&傾斜方位的液晶分子3 〇a的遲延所導致的光漏問 ^疋否使用透明的介電材料或不透明的介電材料可取決 於,例如液晶顯示裝置的應用。不論是在哪種情形中,使 用感光樹脂都會具有能夠簡化為對應該等開放區15之突出 邙4〇進仃圖案化的步驟的優點。為獲得足夠的方位調整力 ’當該液晶層30的厚度約為3,時,該突出部仙的高度較 佳的係介於約0.5,至約2 _範圍之間。—般來說,該突 出邯40的高度較佳係介於該液晶層儿厚度的約ι/6至約 範圍之間。 如上所述,液晶顯示裝置200包括位於圖像元件電極14 的開放區15中的哭出邵4〇,而且突出部4〇的侧表面他以與 液晶層30液晶分子3〇a的傾斜電場所施加的調整方位力相 同的方向來施力調整方位。現在將參見圖l9A至Μ說明以 與傾斜電場所施加的調整方位力相同的方向來施力調整方 位的侧表面4 0 s的較佳條件。 圖A 土圖19 C所示的分別係液晶顯示裝置2 〇 〇 a、2⑽b 及200C之剖面示意圖。圖19A至圖19〇對應到圖“A。液晶 顯示裝置200A、2議及在開放區】5中都具有—突出部 ’不過就作為單-結構的整個突出部4Q與其對應的開放區 15之間的位置關係方面來說’則不同於液晶顯示裝置·。 86289 -50 - 1275886 在上述的液晶顯示裝置2 〇 〇中,該作為單—結構的突出部 40係形成該開放區之中,而且該突出部4〇的底面小於該 開放區” ’如圖所示。在圖19Α所示的液晶顯示裝置 200Α中,突出部40Α的底面與開放區叫準。在圖ΐ9β所示 的液晶顯示裝置聰中’突出部卿的底面大於開放區。 ,因此會覆蓋由開放區15包圍的實體部份(傳導性軸的一 部份。實體部份不是在任—突出部4Q、術和柳的側表面 40s上形纟。因此,如該等個別圖式所示,該等等位線叫 在實體部之上實質上係為走平的線,並且於開放區Η中下 降。所以,如同液晶顯示裝置2〇〇的突出般,液晶顯示 裝置腿的突出部術的側表面4〇s以及液晶顯示裝置 2議的突出部卿的側表面4〇s都會施加方位調整力量,其 方向都會與該傾斜電場所施加的方位調整力量的方向相同 因而可知足6亥放射狀傾斜方位。 相反地,在圖19C所示的液晶顯示裝置200C中’突出部 縱的底面大於該開放區15,因此會有—部份延伸至該開放 區15上方區域中的實體部形成於該突出部慨的側表面40s 《中。由於形成於該侧表面4qs中的部分實體部的影響,在 該等等位線EQ中會出現脊狀部分。等位線印的脊狀部份相 對於下降至開放區15内的等位線EQ的其他部份的脊狀部 份有一傾度。這表示已產生的傾斜電場的方向與使液晶分 子,朝向放射狀傾斜方位的倾斜電場方向相反。所以,為 使得孩侧表面40s的方位調整力具有與該傾斜電場所施加 的万kill整力量相同的方向’該實體部(傳導性薄膜)最好不 86289 -51 - 1275886 要形成於側表面4 0 s中。 接著,將參考圖20說明該突出部4〇沿著圖16A之直線 20A-20A之剖面結構。 由方;如圖1 6 A所形成的突出部40可以—般圓形的圖案完 全圍繞每個單元實體部份14a,如上所述,因此就會在如圖 2〇所示的突出部40上形成用來連接相鄰單元實體部份 的部份(分支部份從圓形部份向四個方向延伸)。因此,在沈 積傳導性薄膜為圖像元件電極14的實體部份的步驟中,很 有可能在突出部40上發生不連續的問題或在製造流程的後 處理中發生分層的問題。 有鑑於此,在圖21A及圖21 B所示的液晶顯示裝置2〇〇D中 會形成彼此不相關的突出部40D,讓每個突出部4〇D都被完 全包含於開放區15之中,以便在該基板丨丨的平坦表面中形 成欲作為實體部的傳導膜,因而可消除發生不連續或分層 的可此性。雖然该等突出邵40D並未以一般圓形的圖案完全 包圍每個單元實體部份14a,但是會形成對應每個單元實體 砟伤14a的一般圓形液晶域,並且可如上述範例般地穩定該 單元實體部份14a的放射狀傾斜方位。 於該開放區15中形成突出部4〇所獲得的放射狀傾斜方位 穩定之後所產生的效果並不僅限於上述的開放區15的圖案 其同樣適用於具體貫施例1中所述之開放區1 5的各種圖 案中的任一種圖案,以獲得上述的效果。為了使突出部4〇 施加足夠的力以獲得可對抗應力的穩定方位,最好突出部 40的圖案(從基板法線方向所看到的圖案)儘可能地覆蓋較 86289 -52 - 1275886 ^的液晶層30區域。因此,突出部4〇如果例如利用具有圓 形單元實體部份14a的正像圖案就會比利用具有圓形開放 區15的負像圖案,獲得更多穩定效果的方位。 具體貫施例3 根據本發明具體實施例3的液晶顯示裝置不同於圖丨八和 圖1B所示的具體實施例}的液晶顯示裝置1〇〇,前者中的反 基板包括調整方位的結構。 圖22A至圖22E概略說明具有調整方位結構冗的反基板 3 00b具有貝貝上與上述液晶顯示裝置相同功能的每個元 件都將以相同的苓考數字標示並且將不作更進一步描述。 如圖22八至圖22£所不的調整方位結構28可用來使液晶 層30的液晶分子30a朝向放射狀傾斜方位。應注意,如圖22a 至圖22D以及如圖22E所示的調整方位結構28,就液晶分子 3 0a將傾斜的方向而言是不同的。 以如圖22A到圖22D所示的調整方位結構28使液晶分子 傾斜的方向,會與在對應至圖像元件電極1 4的單元實體部 份14a(參見,例如,圖1A和圖1B)的區域中形成的各液晶域 的放射狀0、斜方位的方位方向對準。相較之下,以如圖 所示的凋整方位結構28使液晶分子傾斜的方向,會與在對 應至圖像元件電極14的開放區15(參見,例如,圖1A和圖ib) 的區域中形成的各液晶域的放射狀傾斜方位的方位方向對 準。 如圖22A所示的調整方位結構28係由反電極22的開口 22a 以及相對於開口 22a的圖像元件電極(圖22A中未顯示;請參 86289 -53 - 1275886 見’例如,圖ΙΑ) 14的單元實體部份14a所構成。垂直對準 艇(未顯示)由較靠近液晶層3〇的反基板3〇〇b的某一面提供。 凋整万位結構28只在施加電壓存在時才施加調整方位的 力。由於調整方位結構28只用來施力調整方位至以丁f 丁基板 , 1 00a ®極結構形成的放射狀傾斜方位的每個液晶域中的液 曰曰分子上,因此開口22a的大小會小於TFT基板i〇〇a所提供 勺開放區1 5,也會小於由開放區1 5包圍的單元實體部份1 * & (苓見例如圖1A)。例如,只要利用小於或等於開放區"或 單兀貫體邵份14a—半的面積即可獲得足夠的效果。當所提 供的反電極22的開口 22與圖像元件電極14的單元實體部份 14a的中央。卩份相對時,液晶分子的方位連續性會增加,並 有可此修正放射狀傾斜方位中心轴的位置。 如上所述,當使用只在施加電壓存在時才施力調整方位 的結構來當作調整方位結構的時候,上表示液晶層3〇 的所有液晶分子30a會在未存在有施加電壓時採取垂直對 準。因此,當使用一般黑色模式時,實質上是在黑色顯示 _ 中沒有光漏發生,藉此實現有預期對比率的顯示。 但是,在未存在有施加電壓時,不會施加調整方位的力 ,因此不會形成放射狀傾斜方位。此外,當施加低的電壓 ·· 時’只會有弱的調整方位力,因此當在液晶面板上施加才目, 當大的應力後可能會看到殘留影像。 如圖22B至圖22D的每個調整方位結構28不論是否有施 加電壓的存在都會施加調整方位的力,因此可在任何顯示 灰階處獲得穩定的放射狀傾斜方位並能夠抿抗高的應力。 86289 -54- 1275886 / 第一,如圖22B所示的調整方位結構28包括一突出部2儿 ,位於反電極22之上,並突出到液晶層3〇中。雖然突出部 22b在材料上並沒有特別的限制,但突出部22b使用例如像 樹脂的介電材料很容易地就可以提供。垂直對準膜(未顯示) 由較靠近液晶層30的反基板300b的某一面提供。突出部22匕 藉由其表面的結構可使液晶分子3〇a朝向放射狀傾斜方位 (使用垂直對準力)。最好能夠使用會受熱變形的樹脂材料, 如此-來在經過圖案化之後的加熱處理,便可非常輕易地 形成具有如屬22B所示之微凸剖面的突出部22b。具有含頂 點(例如,球體的一部份)的微凸剖面的突出部22b或錐^突 出部可提供修正放射狀傾斜方位的中央位置的預期效果。 圖2C所示的凋整方位結構28被提供當做具有面對液晶 層30的水平對準力的表面,其中該液晶層在反電極^(也 就是說,在比較靠近基板21的反電極22的一侧上)之下形成 的介電層23中的開口(或凹下部份)仏中提供。所提供的垂 直對準膜24可覆蓋比較靠近液晶層30的反基板3_的一侧 ’冋時留下-個區域對應到未被覆蓋的開口仏,因此開口 23a中的表面當作水平對準表面使用。另一方面,水平對準 膜25只可由如圖22D的開口23&提供。 圖2D中的水平對準膜可藉由,例如,一次提供垂直對準 月^24土反基板3〇〇b的整個表面,然後選擇性地以紫外線光 射在開口 23a的垂直對準膜24的一部份上,藉此減少其垂 直對準力凋整方位結構28所需的水平方位力不需要高到 產生的丁^、先傾斜角度與用於丁N型液晶顯示裝置的對準 86289 -55 - 1275886 膜一樣小。例如,45。或以下的預先傾斜角就夠了。 如圖22C和圖22D所示,在開口 23a的水平方位表面上, 液晶分子30a被激勵為與基板面成水平。因此,液晶分子 所形成的方位與周遭在垂直對準膜24上垂直對準^夜晶分 子30a的方位連續,藉此取得如圖所示的放射狀傾斜方位。 放射狀傾斜方位僅可藉由選擇性地在反電極22平面上提 供一水平方位表面(例如,電極表面或水平對準膜)且不在反 電極22平面上提供凹下的部份(該部份由在介電層23中的 開口形成)來取得。但是,放射狀傾斜方位可利用凹下部份 的表面結構使其更穩定。 最好例如使用色彩過濾層或色彩過濾層的防護層當作介 電層23,形成比較靠近液晶層30的反基板300b表面的凹下 部份’因為它不會加入任何柬西至流程中。在圖22C和圖 22D所示的結構中,光效率一點也不會減少,因為沒有區域 透過突出部22b在整個液晶層30上施加電壓,如圖22A的結 構所示° 在如圖22E所示的調整方位結構2 8中,一個凹下部份使用 介電層23的開口 23a形成於較接近液晶層30的反基板3〇〇b 的一侧上,如同在圖22D所示的調整方位28結構中一樣,並 且水平對準膜2 6只在凹下部份的底部形成。若不形成水平 對準膜26,反電極22的表面可暴露出來如圖22C所示。 具有調整方位結構如上所述的液晶顯示裝置300顯示於 圖2 3 A和圖2 3 B中。圖2 3 A為平面圖,而圖2 3 B則為沿著圖 2 j A之直線23B-23B’的剖面圖。 86289 -56- 1275886 該液晶顯示裝置300包括TFT基板l〇〇a,具有包括單元膏 體部份14a和開放區1 5的圖像元件電極14,以及包括該反基 板300b,具有調整方位結構28。TFT基板1〇〇a的結構不限於 此處所述的結構,而可以是上述的任何其他結構。此外, 當即使未存在有施加電壓仍會施力調整方位的結構(圖 至圖22D以及圖22E)將用來當作調整方位的結構2δ時,如圖 22Β至圖22D的調整方位結構28可以用圖22Α所示的結構取 代。 在液晶顯不裝置300的反基板30〇b提供的調整方位纟士構 28之中,相對於圖像元件電極14的單元實體部份的區域 中心附近提供的調整方位結構28是屬於圖22β至圖22D其 中之一的結構,而相對於圖像元件電極14的開放區15的區 域中心附近提供的調整方位結構28是屬於圖22£所示的結 構。 藉由這類設置,在整個液晶層30上存在有施加電壓時, 也就是說施加電壓存在於圖像元件電極丨4和反電極2 2之間 時,圖像元件電極14的單元實體部份14a所形成的放射狀傾 斜方位的方向會與由調整方位結構28所形成的放射狀傾斜 方位的方向一致,藉此使放射狀傾斜方位穩定。其示音圖 顯示於圖24A至圖24C中。圖24A所示的係未存在有施加電 壓的狀態,圖24B所示的係在施加電壓之後,方位剛開始改 變時的狀態(初始〇N狀態);以及圖24C所示的則係電壓施加 期間的穩定狀態。 如圖24 A所tf,即使未存在有施加電壓時,由該調整方位 86289 -57- 1275886 結構(如圖22B至圖22D) 28所施加的方位調整力仍然會作 用於其附近的液晶分子30a之上,因而可形成一放射狀傾斜 方位。 當開始施加電壓時,便會(由TFT基板1〇〇a的電極結構)產 生如圖24B所示之等位線Eq所代表的電場,並且會在對應 该開放區1 5的每個區域以及對應該實體部份丨4a的每個區 域中形成液晶分子30a呈現放射狀傾斜方位的液晶域,而且 该液晶層30會達到如圖24C所示之穩定狀態。在每個液晶域 中的液晶分子30a的傾斜方向,與在對應區中提供的調整方 位結構28所施加的調整方位力使液晶分子3〇a傾斜的方向 一致。 當施加應力於穩定狀態的液晶顯示裝置3〇〇時,該液晶層 3〇的放射狀傾斜方位會一度瓦解,不過當應力被移除之後 ,便可還原該放射狀傾斜方位,這係因為單元實體部份14& 和凋整方位結構28的方位調整力作用於該等液晶分子3〇a 4上的緣故。所以,便可避免因為應力而發生的殘影。當 來自調整方位結構28的調整方位力過強的時候,由於放射 狀傾斜方位,即使未存在有施加電壓仍會發生延遲,因此 頌不對比度會減少。但是,來自調整方位結構28的調整方 心》力不而要很強,因為只需要有穩定由單元實體部份^心形 成的放射狀傾斜方位且修正其中央軸位置的效果即可。因 此,只需要有不會導致這種程度的遲延而使顯示惡化的調 整方位力就足夠了。 例如,當使用如圖22B所示的突出部2213時,每個突出部 86289 1275886 22b的直徑可以為約15 μιη,高度(厚度)約}卜血,而單元會 體部份14a的直徑可以為約30 μιη至約35 μΐΉ,如此即可獲得 足夠的調整方位力並抑制由於實際層面的遲延所導致對比 度降低的問題。 圖25Α和圖25Β說明包括調整方位結構的另一液晶顯示 裝置400。 液晶顯示裝置400在相對於TFT基板i〇〇a的開放區15的區 域中不具有調整方位結構。應該在相對於開放區1 5的區域 中形成的圖22E所示的調整方位結構28的形成,會增加製造 流程的困難度。因此,為了提升生產力,最好只使用圖22A 至圖22D所示的其中一種調整方位結構28。特別是,較佳使 用圖22B的調整方位結構28,因為它能夠以簡單的流程生產 出來。 即使在對應至開放區1 5的區域中沒有提供調整方位結構 如同在液晶顯示裝置400中一般,實質上仍可獲得與液晶顯 示裝置300相同的放射狀傾斜方位,如圖26a至圖26C大致 上顯示,並且其應力阻力也在可實施的程度。 具有調整方位結構的液晶顯示裝置的範例如圖27A、圖 27B和圖27C所示。圖27A、圖27B和圖27C都是剖面圖,概 略說明具有調整方位結構的液晶顯示裝置5〇〇。圖27A所示 的係未存在有施加電壓的狀態;圖27B所示的係在施加電壓 之後’方位剛開始改變時的狀態(初始ON狀態);以及圖27C 所示的則係電壓施加期間的穩定狀態。 液晶顯示裝置500在TFT基板200a的開放區1 5中包括如圖 86289 -59 - 1275886 16B所示的突出部40。液晶顯示裝置500另包括圖22B所示 的突出部22b,作為相對於圖像元件電極丨4的單元實體部份 1 4 a的區域中心附近提供的調整方位結構2 §。 在液晶顯示裝置500中,放射狀傾斜方位受到突出部4〇 的側表面4〇s施加的調整方位力以及突出部22b表面施加的 凋整方k力而變穩定。由於如上所述的突出部4 〇和突出部 22b的表面結構施加的調整方位力使放射狀傾斜方位在不 論是否施加電壓的情況下都能夠穩定,如此一來液晶顯示 裝置5 0 0就會有預期的應力阻力。 在使用如圖22B所示從反電極22突出至液晶層3〇的突出 部22b當作調整方位結構28的情況下,液晶層3〇的厚度可由 哭出邵22b定義。換句話說,突出部22b可當作控制單元間 隙(液晶層30的厚度)的襯墊。 圖28A和圖28B說明一液晶顯示裝置600,具有也當作襯 墊的突出部22b。圖28A為從該基板法線方向看去的平面圖 ’圖28B則為沿著圖28A之直線28Β_2δΒ,之剖面圖。 如圖28A和圖28B所示,在液晶顯示裝置6〇〇中,液晶層 3〇的厚度由當作調整方位結構28相對於圖像元件電極^的 單元實體部份14a的區域中心附近提供的突出部22b所定義 這連對準的優點為不需要個別提供一個襯塾來定義液晶 層3 0的厚度,因此可簡化製造流程。 在說明範例中,突出部22b具有如圖28B所示含側表面 22b 1的截斷的錐形形狀,其中該侧表面與基板2丨的基板面 呈小於90〇的銳角㊀傾斜。當側表面221}1與基板面呈小於 86289 -60 - 1275886 的角度傾斜時,突出部22b的側表面22bl具有與用於液晶層 3〇的液晶分子30a的傾斜電場所施加的調整方位力方向一 致的調整方位力,因此可用來穩定放射狀傾斜方位。 如圖29 A至圖29C中概略說明,利用具有用來當作襯塾的 突出部22b的液晶顯示裝置600,也可獲得放射狀傾斜方位 ’如同液晶顯示裝置300和400—般。 雖然在圖28B的範例中突出部22b具有與基板面呈小於 90°角傾斜的侧表面22b 1,但是突出部22b可另外具有與基 板面呈90。角或大於9〇◦角傾斜的斜面22bl。為了放射狀傾 斜方么的%定性,最好側表面22b 1的傾斜角度實質上不超 過90°,更好是說該傾斜角度能小於9〇。。即〆吏傾斜角度超 過9〇。,只要該角度接近90。(只要該角度實質上不超過9〇。) ,鄰近哭出邵22b侧表面22bl的液晶分子30a仍會以奮質上 與基板平行的方向傾斜,因此採取與邊緣部份液晶分子 的傾斜方向一致的放射狀傾斜方位,而且僅有些微的扭曲 但疋,如果突出邯22b侧表面22bl的傾斜角度實質上超過 90。如圖30所示,突出部22b的侧表面221)1將具有用於液晶 層30的液晶分子3(^的傾斜電場所施加的調整方位力的相 反方向的凋整方位力,因此放射狀傾斜方位可能會不穩定。 也當作襯墊使用的突出部22b並不限於具有截斷錐形形 狀的突出部,如圖28A和圖28B所示。例如,突出部可 具有如圖3!所示的形狀,如此—來與基板面垂直的平面上 的剖面’會呈現橢圓的-部份(也就是說,類似像橢圓的球 體-部份的形狀)。在如圖31中所示的突出部Μ中,當側 86289 -61 - 1275886 表面22bl與基板面的傾斜角度(錐形角度)沿著液晶層刪 厚度改變時’不論是否沿著液晶層3〇的厚度,侧表面以以 的傾斜角度都會小於90。。因此,具有這類形狀的突出部瓜 可適用於當作穩定放射狀傾斜方位的突出部。 人上方及下方基板(TFT基板和反基板)接觸、還當作定義 液晶層30厚度的襯墊使用的如上所述的突出部22b,在製造 〉夜晶顯示裝置的流程中’可在上方基板或下方基板上形成 。-旦上万和下方基板彼此依附在一起,不論它是在上方 或下方基板上形成,突出部221)都將與兩個基板相接觸,且 當作襯塾和調整方位結構使用。 不是所有在相對於單元實體部份14a的區域中提供的突 出部22b都當作襯塾使用。藉由形成_些高度比當作槪塾的 其他突出部22b要低的突出部22b,可以抑制光漏的發生。 圖32、圖33和圖34分別說明包括調整方位結構的其他液 晶顯示裝置600A、600B和600C。圖32、圖33和圖34中所示 的各個液晶顯示裝置600A、600B和600C都包括在相對於圖 像元件電極14的單元實體部份14a的區域中作為調整方位 結構的突出部22b。 在圖32的液晶顯示裝置600A中,每個位於儲存電容線^ 上的單元實體邵份14a,都比其他單元實體部份工略小一 點。在圖33的液晶顯示裝置600B中,每個位於儲存電容線 43上的單元實體邵份14a,都比其他單元實體部份工&略大 一點。圖像元件電極14的複數個單元實體部份14&, 仕* 圖 像元件區中不需要具有相同的大小。由於在不透明元件上 86289 -62 - 1275886 早疋實體部份14a中形成的液晶域使得儲存電容線43未對 傳送型液晶顯示裝置中的顯示有任何貢獻,它不是傳逆刑 液晶顯示裝置,因此不需要在不透明元件上單元膏體部: W中形成夠穩定的放射狀傾斜方位,而且這類單元會㈣部 份W的形狀及/或大小可能與其他單元實體部份⑷不同。 例如,在圖34的液晶顯示裝置6_中,每個位於儲存電容 線43上的單元實體部份…都具有像桶子的形狀(具有—般 狐形隅角部份的一般矩形)’同時其他單元實體部份14a具 有一般星形的形狀。 雖然以上顯示了 一些位於儲存電容線43上的單元宭體部 份!4a的範例,但可以相對於圖像元件區總面積增加用來顯 π的面㊆的比’並藉由採用位不透明元件上的區域使 儲存®合、.泉43儘可能地被開放區} 5佔據的對準來改良亮度。 偏光板和相位板的势胃 所謂的「垂直對準型液晶顯示裝置」(其包含一液晶層, 在無施加電壓存在時’該液晶層中之具負介電各向異性的 液晶分子會呈垂直對準)能夠以各種顯示模式來顯示影像 。舉例來說1 了雙折射模式(在此模式中係藉由電場來控 制該液晶層的雙折射,以便顯示影像)之外,垂直對準型液 晶顯示裝置還可使用於光學旋轉模式,或是使用於光學旋 轉模式及雙折射模式之組合顯示模式中。藉由在上述任一 種液日日,/'示衣且之忒對基板(例如該TFT基板及該反基板) 的外側(遠離該液晶層3〇的一侧)上配備一對偏光板便能夠 |又得又折射模式的液晶顯示裝置。再者,必要時亦可配 86289 -63 - 1275886 備一相位差補償器(一般為相位板)。更進一步地說,藉由一 般圓形偏光便能夠獲得一高亮度的液晶顯示裝置。 根據本發明’可利用高度連續性穩定地形成具有放射狀 傾、斜方位的液晶域。因此,可以進一步地改良具有廣視角 特性的傳統液晶顯示裝置的顯示品質。 此外’在每個圖像元件區中,複數個單元實體部份以第 —了員足方向排成一列,因此可以增加圖像元件區内單元實 體部份的面積比,因而改良孔徑比。 再者’與單元貫體邵份對準的第一預定方向不同的第二 預足方向,以該方向彼此毗連的圖像元件會受到與每個圖 框極性相反的電壓的驅動。因此,有可能在以第二預定方 向彼此毗連的圖像元件之間,產生一個具有陡峭電位斜度 的傾斜電場。因*,即使使用有短的内部電極距離與高孔 徑比的對準,仍有可能形成夠穩定的放射狀傾斜方位。 如上=述,本發明所提供的液晶顯示裝置,具有廣視角 特性、高的顯示品質和高的孔徑比而且能夠產±明亮的顯 示。 〆、 雖然已經以較佳的具體實施例對本發明作說明,但"办 習本技術的人士將會瞭解可以各種方式對此處所揭 明進行修改,並且可假設出除上面已經明確提出且說明的 具體貫施例之外的各種具體實施例。因此,本" 以隨附的申請專利範圍來涵蓋屬 二;: «内的所有修改情形。 ^精神及挑 【圖式簡單說明】 86289 -64 - 1275886 圖1 A及圖1 B概略顯示根據本發明具體實施例1之液晶顯 不裝置100的一圖像元件區結構,其中圖!八為平面圖,而圖 1B則為沿著圖ία之線1B_1B,的剖面圖。 圖2概略顯示以液晶顯示裝置1 〇〇的列方向對彼此毗鄰的 圖像元件區施加不同電極電壓的狀態。 圖3 A及圖3B概略顯示施加電壓後該液晶顯示裝置1 〇〇之 液晶層30,其中圖3A為方位剛開始改變時的狀態示意圖 (初始〇N狀態),而圖3B則為穩定狀態示意圖。 圖4A至圖4D所示的各係電力線與液晶分子方位之間的 關係示意圖。 圖5A至圖5C概略顯示從基板法線方向檢視液晶顯示裝 且1 0 0時的液晶分子的方位。 圖6A至圖6C概略顯示液晶分子的示範放射狀傾斜方位。 圖7A和圖7B是平面圖,概略說明根據本發明具體實施例 1的其他液晶顯示裝置1〇〇八和1〇〇3。 圖8A和圖8B是平面圖’概格說明報於士 Λ Λ很據本發明具體實施例 1的其他液晶顯示裝置100C和100D。 明具體實施例1的其 圖9是一平面圖,概略說明根據本發 他液晶顯示裝置100Ε。 圖10是一平面圖,概略說明根據本發明具體實施例i的其 他液晶顯示裝置1 0 0 E。 圖u是-平面圖,概略說明比較範例液晶顯示裝置麵。 圖12是-平面圖’概略說明根據本發明具體實施⑷用於 液晶顯示裝置的圖像元件電極。 86289 -65 - 1275886 β Α概略頭示當以列方向對彼此毗鄰的兩個圖像元件 區施加相同的電極電壓時所產生的等位線EQ。 圖13B概略顯示當以列方向對彼此毗鄰的兩個圖像元件 區施加不同的電極電壓時所產生的等位線EQ。 圖MA、圖14B和圖14C說明用於本發明具體實施例丨液晶 择員示裝置的驅動方法。 圖1 5疋一平面圖,概略顯示根據本發明具體實施例1的其 他液晶顯示裝置1 〇OF。 圖16A及圖16B概略顯示根據本發明具體實施例2之液晶 顯示裝置200的一圖像元件區結構,其中圖16八為平面圖, 而圖1 6B則為沿著圖1 6A之線1 6B-16B,的剖面圖。 圖17A至圖17D顯示的係液晶分子3〇a之方位與具垂直對 準力之表面結構之間的關係示意圖。 圖1 8 A及圖1 8B顯7F存在有施加電壓時該液晶顯示裝置 200之液晶層30,其中圖18八為方位剛開始改變時的狀態示 意圖(初始ON狀態),而圖18B則為穩定狀態示意圖。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a wide viewing angle characteristic and capable of producing a high quality display. [Prior Art] In recent years, thin and light liquid crystal display devices have been used in personal computer displays and PDA (Personal Digital Assistant) displays. However, the conventional twisted nematic (TN) type and super twisted nematic (STN) type liquid crystal display devices have very narrow viewing angles. Various technical studies have been initiated to address this issue. A typical technique for improving the viewing angle of a TN or STN type liquid crystal display device is to incorporate an optical compensation plate. Another way is to use a transverse electric field mode in which a horizontal electric field with respect to the plane of the substrate is applied to the entire liquid crystal layer. In recent years, a liquid crystal display device of a transverse electric field mode has become a focus of attention and has been mass-produced. Still another technique employs a DAP (Vertical Alignment Phase Deformation) mode in which a nematic liquid crystal material having a negative dielectric anisotropy is used as a liquid crystal material, and a vertical alignment film is used as an alignment film. This is an ECB (Electrically Controlled Birefringence) mode in which the transmittance is controlled using the birefringence of liquid crystal molecules. Although the transverse electric field mode is an effective way to improve the viewing angle, compared with the conventional TN type device, the manufacturing tolerance of the process is very large, so that the device cannot be stably manufactured. This is because the brightness or ratio of the display is significantly affected by the gap between the substrates, or it is obvious that the transmission axis (polarization axis) of the polarizing plate is offset from the orientation of the liquid crystal molecules by 86289^75886^. influences. It requires further technical development in order to control these factors in order to stably manufacture the device. White, this is enough to use the DAP mode liquid crystal display device to achieve the purpose of uniform display, and does not show the result of unevenness, it is necessary to control the orientation. In order to make the square heart, it is necessary to perform alignment processing by rubbing the surface of the alignment film. However, when the vertical alignment film is subjected to rubbing treatment, non-f tends to cause rubbing streaks in the display image, and thus it is not suitable for mass production. In this case, the inventors of the present invention, along with others, have another method of controlling the orientation and do not require rubbing treatment, in which one set of electrodes facing each other passes through the intermediate liquid crystal. The layer is provided as a two-layer electrode comprising: a lower electrode, an upper electrode including an opening, and a dielectric layer interposed therebetween such that the direction of the orientation is controlled by the oblique electric field generated by the edge portion of the upper electrode opening ( See, for example, Japanese Open Patent Publication No. 2002-55343). In this way, the liquid crystal molecules of each of the image elements can achieve a stable orientation with sufficient azimuthal continuity, thereby improving the viewing angle and achieving high quality display. However, in recent years, in addition to the improvement in viewing angle and display quality, it has been further required to increase the aperture ratio to produce a brighter display. However, in the case where the position control is still performed using a tilting electric field, no special method has been developed in the art to further improve the aperture ratio. SUMMARY OF THE INVENTION The present invention has been devised to overcome the above disadvantages, and the object of the present invention is to provide a liquid crystal display device having a wide viewing angle characteristic, a high display quality _: aperture ratio, and capable of producing a bright display. 86289 1275886 An innovative liquid crystal display device comprises: a first substrate; a second substrate; and a liquid crystal layer positioned between the first substrate and the second substrate, wherein: a plurality of image element areas, by a first electrode, wherein the stomach electrode is located on a side of the first substrate of the liquid crystal layer, the electrode is on the second substrate, and the intermediate liquid crystal layer is opposite to the first electrode; the first electrode includes, in a plurality of figures In each zone of the component region, a plurality of unit entities partially aligned in a direction, whereby the liquid crystal layer adopts vertical alignment when no voltage is applied between the first and second poles. And in a plurality of unit solid portions of the electrode-electrode, a plurality of liquid crystal domains are formed by a tilting electric field generated around the plurality of unit solid portions in response to a voltage applied between the first electrode and the second electrode, Each of the plurality of liquid crystal domains adopts a radial tilting orientation; the plurality of image element regions are aligned into a matrix pattern, the pattern comprising a plurality of columns extending in a second direction, and a plurality of rows, in a first direction extend· And a voltage polarity applied to the liquid crystal layer of the first image element region in the plurality of image element regions is not the same as a voltage polarity applied to the liquid crystal layer of the second image device region in the plurality of image device regions, The plurality of image element regions belong to one row of the row of the same piece of the first image element area in each frame. And "one-image element in a preferred embodiment, the number of meters in each of the plurality of images in the magical cow zone: the length direction is defined by the first direction, and the width direction is determined by the second direction. In a preferred embodiment, the voltage polarity applied to the liquid crystal layer belonging to a plurality of rows of the graph, in each frame, like the n-column of the element region (n is 1 86289 -9 - 1275886· or more Integer) is inverted once. In a preferred embodiment, the polarity of the voltage applied to the first image is different from the polarity of the voltage in the image area of the first image. Each of the graphs is + and the other is the same as the column of the image element area belonging to the phase, 仃, and belongs to the column adjacent to the first image element area. Each of the plurality of unit solid parts has a shape that is symmetrical, for example, each of the plurality of unit solid parts has a generally circular shape, or each of the plurality of unit parts has a Γ The general rectangular shape of the corner of the corner. In addition, each of the multiple unit entities can also be a shape having an acute corner. In a preferred embodiment, the second substrate includes, in a region corresponding to at least a plurality of liquid crystal domains, an adjustment of the orientation adjustment orientation. In the presence of a voltage, the liquid crystal molecules in at least one of the liquid crystal domains are oriented in a radially inclined orientation. In a preferred embodiment, each of the regions corresponding to the plurality of liquid crystal domains has an adjusted orientation structure. In an embodiment, the region adjacent to the center of the at least one liquid crystal domain has an adjusted orientation structure. In a preferred embodiment, the orientation azimuth direction of the azimuth structure is adjusted in at least one liquid crystal domain, and each of the first electrode unit entities The direction of the radial tilt direction formed by the radially inclined electric field generated in the vicinity is aligned. In a preferred embodiment, the adjustment of the azimuth structure exerts a force to adjust the orientation to make the liquid crystal molecules even when there is no applied voltage Can be oriented toward the radial shape of 86289 -10 - 1275886. For example, 'adjust the orientation structure can be from the second substrate to the second! The thickness of the seed layer is defined by the protrusion from the second substrate to the taper. In a preferred embodiment, the first: the out-side surface is smaller than the angle of the second substrate surface 90. The tilting orientation structure may include a horizontal azimuth surface located on the side closer to the two substrates of the day-to-day layer. In the preferred embodiment, 'adjusting the azimuth structure will force the orientation to be adjusted.' In the presence of an applied voltage, a radially inclined orientation, for example, a five-week tens of thousands of structures may include an opening provided by a second electrode. In a preferred embodiment, the first substrate includes a plurality of 5 overlapping open areas; and when the second electrode is applied between the first electrode and the second electrode, the liquid crystal layer forms a plurality of additional liquid crystal domains in a plurality of open regions beside the oblique electric field, and each additional liquid crystal region is presented Radial tilt orientation. In the preferred embodiment, at least some of the plurality of open regions have substantially the same shape and substantially the same size, and are formed to be aligned into a plurality of unit cells, thus having a rotationally symmetrical shape. In a preferred embodiment, at least the plurality of open regions are rotationally symmetric. In the preferred embodiment, at least some of the plurality of open areas have a generally circular shape. In a specific embodiment, the liquid crystal display device further includes a second protrusion Shao' located in a plurality of open regions of the first substrate, wherein the side surface of the protrusion portion is applied to the liquid crystal molecules of the liquid crystal layer and formed by the inclined electric field. The orientation adjustment direction is the same as the adjustment of the orientation force. S6289 -11 - 1275886 In a preferred embodiment, the first substrate further includes a plurality of conversion elements respectively provided to the plurality of image element regions; and the first power cup includes a plurality of image element electrodes respectively provided A plurality of image element regions are provided and converted by the conversion elements, respectively, and the second electrode is at least a counter electrode opposite to the plurality of image element electrodes. 35. Typically, the counter electrode is formed as a single electrode that extends throughout the display area. Private The function of the present invention will now be explained. In the liquid crystal display device of the present invention, a group of electrodes which apply a voltage to the entire liquid crystal layer of the image element region, including a plurality of unit solid portions, are aligned in a pre-direction (hereinafter referred to as "first direction"). The liquid crystal layer adopts vertical alignment when there is no applied voltage, and when there is an applied voltage, a skew electric field generated around a plurality of solid parts of the unit body forms a plurality of liquid crystal domains, each of which has a plurality of liquid crystal domains. Both take a radial tilt orientation. Therefore, the outer shape of the electrode in the group is such that the oblique electric field is generated around a plurality of solid portions of the unit to form a plurality of liquid crystals _, each of which takes a radial tilt orientation in response to the application The voltage between the set of electrodes. Generally, the liquid crystal layer is made of a liquid crystal material having a negative dielectric anisotropy and the orientation of the liquid crystal layer can be controlled by (10) a vertical alignment film on the opposite side thereof. The liquid crystal domains are formed by oblique electric fields corresponding to the physical parts of the cells, and the orientation of each liquid crystal domain can be changed according to the applied voltage to generate a display. Since each of the liquid crystal domains has a radial tilting orientation, and the 疋 axis is symmetrical, there is almost no viewing angle dependency of the display quality, so that a wide viewing angle characteristic can be realized. " 86289 -12 - 1275886 Here, the electrode portion in which the conductive film exists is called the "solid part". The entity that produces the pen % to form a single liquid crystal domain is called the "unit entity part". Each solid portion is typically constructed of a continuous conductive film. In the liquid crystal head device of the present invention, each image element electrode includes a plurality of unit solid portions, which are regarded as secondary image element electrodes, whereby the shape and size of the image element area can be appropriately selected. A plurality of unit solid portions in the quasi-image element region achieve stable radial tilt orientation in the image element region without being limited by the shape and size of the image element region. In addition, a plurality of unit entity parts are aligned in a predetermined universal direction (arranged in a row) in each image element area, and the figure is aligned in two or more columns. The area ratio of the physical part of the element area unit can also be used to improve the aperture ratio. The plurality of image element regions are aligned into a matrix pattern, the pattern comprising a plurality of columns 2 extending in a second direction different from the first direction, and the plurality of rows extending in the first direction; in the liquid crystal display device of the present invention a polarity of a voltage applied to the liquid crystal layer of the first image element region in the plurality of image element regions, different from a voltage polarity applied to the liquid crystal k of the second image element region in the plurality of image element regions, the complex number The image element areas belong to the same area as the image element area in each frame, and belong to the line adjacent to the line to which the first image element area belongs. Therefore, the image elements adjoining each other in the column direction (second direction) are driven by voltages of opposite polarities during the writing of all the image elements (i.e., a frame) of the data. Therefore, compared with the image elements which are not adjacent to each other by the opposite polarity voltage and which are adjacent to each other in the column direction, 86289 -13 - 1275886 can be produced between the image elements adjacent to each other in the column direction. Tilting electric field. Therefore, even when the distance between the electrodes in the column direction = moth-connected image elements is short, a stable radial tilting orientation can be formed, and the aperture ratio is also high. Generally, the shape of the image element region, the length direction is Μ in the first direction (the direction in which the unit is carefully aligned), and the lateral direction is defined in the second direction: when the shape of the image element is king, there is It is possible to effectively improve the aperture. For example, the image element region has a generally rectangular shape with its long sides extending in the first direction and the short sides extending in the second direction. π can suppress the can by suppressing the polarity of the applied voltage of each n column (where 丨 or more) of the image element, that is, for each image element in the row direction (in other words, for each (four) The two-plus-private polarity of the liquid crystal layer in the same row of image element regions is reversed, and image elements adjacent to each other in the column direction are driven by private voltages of opposite polarities in each frame. In particular, when image elements adjacent to each other in the row direction are driven by voltages of opposite polarities, that is, voltage polarities of liquid crystal layers applied to the first image element region of the plurality of image element regions are different from those applied to a private polarity of the three image element regions, wherein the third image element region belongs to the same row as the first image component region in each frame, and belongs to a column adjacent to the column to which the first image component region belongs. It is also possible to generate an oblique electric field having a steep potential gradient between image elements adjacent to each other in the row direction, whereby the distance between the electrodes between the image elements adjacent to each other in the row direction can be shortened, thereby further changing the aperture ratio. Preferably, each of the plurality of unit solid portions has a shape that is rotationally symmetric. When the solid portion of the unit has a rotationally symmetrical shape, the radial tilting orientation of the formed liquid crystal 86289 - 14 - 1275886 domain will also have a rotationally symmetric, symmetrical orientation, thereby improving viewing angle characteristics. The trillion, that is, the axis, when each of the plurality of unit solid portions has a general f-shape, the liquid and the crucible are shaped in a radial oblique orientation, thereby improving the azimuthal stability. * Continuity will increase relative to each other. When each of the plurality of unit solid parts has a shape, the unit body part ratio in the image element area; the shape of the rectangular shape is improved. (that is, the transfer wheel), to the voltage applied to the liquid crystal layer. ^ She can improve azimuthal stability and optical properties even when each of the plurality of unit solid parts has a general-like shape with a general fox-shaped gland. When the number of solid portions of each of the plurality of unit entities has an acute angle, the total length of the electrode side where the oblique electric field is generated is increased, whereby the frequency oscillating % can react to more liquid crystal molecules. Because of speed. It is better to change the response to another substrate (that is, to the substrate having a single/, β flat 7L cross-section), in the region corresponding to at least one of the plurality of liquid crystal domains, including the force-adjusting orientation. Adjusting the orientation structure 'when at least an applied voltage is present' causes at least one liquid crystal molecule in the liquid crystal domain to be tilted toward the radial direction and then 'at least in the presence of an applied voltage, from the unit body partial electrode and from the adjusted orientation structure The orientation force is adjusted to act on the liquid crystal molecules in the liquid crystal domain, thereby stabilizing the radial tilt orientation of the liquid crystal domain, and suppressing the deterioration of display quality due to stress applied on the liquid crystal layer (for example, occurrence of an afterimage phenomenon) . 86289 -15 - 1275886 ,: The fr structure is supplied to each of the plurality of liquid crystal domains. The radial tilting orientation of all liquid crystal domains is I®疋. When adjusting the azimuth structure, it is provided by Zheng Jinyu, taking the radial tilting position of the liquid squatting structure, and the position of the central axis of the regional tilting azimuth in the center of the hard-working U & , the righteous radiation position resistance to stress. (10) Effectively improve the radial frequency slope. When adjusting the azimuth direction adjusted by the azimuth structure, align the direction of the radial shape formed by the inclined electric field generated around each body part, the continuity and stability of the azimuth. Sex will increase, thereby improving the quality and response characteristics. &============================================================================================= The force of the azimuth can stabilize the orientation regardless of the level of the applied voltage. However, it should be noted that the liquid crystal display device of the present invention utilizes a liquid crystal layer 7 of a vertical alignment type in which the liquid crystal molecules are substantially aligned when there is no applied voltage: perpendicular to the substrate, and thus when applied, even if an applied voltage is not present The display quality may deteriorate when the tens of thousands of positions of the tens of thousands of positions are still being applied. However, since the adjustment orientation force of the adjustment orientation structure is considerably weak, the desired effect can be provided 'to be described later' so that even a small structure with respect to the size of the image element is sufficient to stabilize the orientation. With such a small structure, the display quality is deteriorated due to the absence of an applied voltage, and actually becomes insufficient. In some cases, depending on the applied liquid crystal display device (for example, the stress level applied from the outside) or the electrode structure (from the intensity of the directional force with the unit body 86289 16 1275886), the application is equivalent. Strongly adjust the tens of thousands of positions of the azimuth force. In such cases, a photoresist layer may be provided to suppress deterioration of display quality caused by the adjustment of the orientation structure. Various structures can be used to adjust the azimuth structure because the azimuth structure is adjusted and a biasing force that is weaker than the partial electrode of the unit body is applied. Alternatively, the adjusted orientation structure provided on the substrate may be, for example, 'a projection from the second substrate to the liquid crystal layer, or may include a horizontal azimuthal surface on the side closer to the liquid crystal layer substrate. In addition, the orientation structure can be adjusted to provide an opening provided by the electrode. These structures are known to be manufactured by the technology. Generally, a substrate including a partial electrode of a unit body includes a plurality of non-disc electrode overlapping (four) discharge regions (that is, a material film as an electrode is not formed in an open region). The liquid crystal display device of the present invention can use an alignment: a liquid crystal domain having a radially inclined orientation is also formed in the open region. The liquid crystal domains formed in the open region and the liquid crystal domains formed in the solid portions of the cells are formed by inclined electric fields generated by the edge portions of the open regions (that is, 'along the periphery of the solid portion of the cells), and thus these liquid crystals The domains are also mutually connected to each other and the orientation of the liquid crystal molecules is essentially in the liquid crystal domain of the field. Therefore, the boundary between the liquid crystal domain formed in the open region and the liquid crystal domain formed in the solid portion of the cell does not form any disclination line 'so that the display quality is not deteriorated by the disclination line' and the stability of the liquid crystal molecule orientation is also Very high. When the liquid crystal molecules adopt a radial tilt orientation, not only in the region corresponding to the physical part of the electrode unit, but also in the region corresponding to the open region, the stable orientation with a high degree of continuity of the liquid crystal molecules is carefully observed. -17- ^75886, ~7^, will not display unevenness. In particular, in order to achieve the desired response characteristics (that is, high-speed response), controlling the tilt of the orientation of the liquid crystal molecules must be responsive to many liquid crystal molecules, which requires the total area of the open area (the relevant edge portion) The total length of the shares is large enough to be done. When the liquid crystal domain having a stable radial tilting orientation is formed corresponding to the open region, in order to improve the response characteristics, even if the total area of the open area is increased, the deterioration of the display port negative (the occurrence of non-uniform display) can be suppressed. When at least a portion of the plurality of openings have substantially the same shape and have the same size on the scalar and constitute at least one day of the symmetry alignment, the parent cell can be High symmetry to skew a plurality of liquid crystal domains, thereby improving the viewing angle dependence of display quality. When the shape of each of at least some of the plurality of open regions (usually those constituting the unit cells) is rotationally symmetrical, the intensity of the radially inclined orientation of the liquid crystal regions formed in the open region can be increased. For example, the shape of each open zone (as seen from the normal direction of the substrate) is preferably circular or polygonal (e.g., square). Please note that 'the shape of the image element (the aspect ratio of the second aspect can also be a shape that is not rotationally symmetrical (for example, an elliptical shape). The radial tilting direction of the liquid crystal domain in which the % foot is formed in the open area is preferably The liquid crystal domain formed in the open region is generally circular in shape. The shape of the open region can be designed such that the liquid crystal domain formed in the open region has a generally circular shape. When the liquid crystal domain is formed in the open area and the solid portion of the unit, the liquid crystal field can be provided on the other substrate by adjusting the orientation, and the mouth structure is corresponding to the 86289 -18 - 1275886 The radial tilting orientation of the domain. It can be only the liquid formed in the solid part of the unit; -, also, it is possible to obtain a practically sufficient "% of the structural degree" (stress impedance). The point of view, preferably the tone used, the applied orientation force conforms to the shape of the structure's radial tilting orientation. This type of adjustment of the azimuth structure makes::::Shao: added in the open area to form a radial tilt Azimuth adjustment The process of the square structure is simple. Although the structure of the adjustment orientation is better than the ^^(4) part of the mother, but the degree of azimuth is actually sufficient. 'In some cases, the electrode structure is still visible (for example, the number of unit entities) And related settings), only the adjustment of the orientation structure is provided for some of the unit solid parts. This is because the liquid crystal layer formed in the liquid crystal display device of the present invention has a radial tilting orientation, which is continuous in nature. Even, in order to improve the correspondence The impedance of the force, in each open area, is provided with a side surface, and a liquid crystal molecule for the liquid crystal layer is applied with a protrusion in which the orientation power is adjusted in the same direction as the direction of the tilt electric field orientation. Preferably, the protrusion is on the substrate plane. It has the same cross-sectional shape as the shape of the open area and has the same rotational symmetry as the shape of the open area. However, it should be noted that due to the liquid crystal molecules that are adjusted by adjusting the azimuth force of the side surface of the sliding side, the voltage of the applied voltage (these The retardation of the liquid crystal molecules is less likely to change due to the application of the voltage. The display contrast may be lowered. Therefore, The size, height, and number of the determined crying portions do not deteriorate the display quality. The liquid crystal display device of the present invention is, for example, an active matrix device for each image element region including a conversion element such as a TFT. The electrode including the above 86289 -19 - 1275886 kW w opening is an image element electrode connected to the conversion element 'the other electrode is a counter electrode opposite to at least a plurality of image element electrodes. [Embodiment] Reference will now be made to this. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the accompanying drawings. The structure of the liquid crystal display device of the present invention and its function will be described. The liquid crystal display device of the present invention has the display characteristics of f, and thus It is used as an active matrix liquid crystal display device. A preferred embodiment of the present invention will now be described with respect to an active matrix liquid crystal display device using a thin film transistor (TFT). The present invention is not limited to this device, and an active matrix liquid crystal display device of the MIM structure may be used instead. Even when the specific embodiment of the present invention is described for a transmission type liquid crystal display device, the present invention is not PMil to the device, and a reflective hard crystal display device or even a reflective reflective liquid crystal display device which will be described later. Used instead. Note that in the present specification, the area of the liquid crystal display device of the phase "image element" which is the smallest display unit will be referred to as "image element area". : In a color liquid crystal display device, R and GU "image elements" correspond to : "pixels". In the active mode drop type liquid crystal display device, the image element region is formed by the image element electrode and the inverse % electrode located opposite the electrode of the image element. In a passive matrix liquid crystal display device, an image element region is derogated as one of the row electrodes aligned in a stripe pattern and passes through a column electrode which is also aligned in a stripe pattern, perpendicular to the row electrode Area. In the alignment with a black matrix, strictly speaking, the image element region is part of each region to which a voltage is applied according to the intended display state, which will be 86289 -20. 1275886 corresponding to the opening of the black matrix hole. The structure of one of the image element regions PI, P2 and P3 of the liquid crystal display 717 device 1 〇 0 according to the embodiment 1 of the present invention will now be described with reference to Figs. 1A & 1B. In the following description, the color filter and the black matrix will be omitted for the sake of simplicity. Further, in the following drawings, each of the elements having substantially the same functions as the corresponding elements in the liquid crystal display device 1 (10) will be denoted by the same reference numerals and will not be further described below. Fig. 1A is a plan view seen from the normal direction of the substrate, and Fig. 1B is a cross-sectional view taken along line 1B]B of Fig. 1A. Fig. 1B shows a state in which the applied voltage is not present in the entire liquid crystal layer. The liquid crystal display device 100 includes an active matrix substrate (hereinafter referred to as "TFT substrate") i 〇〇 a, a counter substrate (hereinafter referred to as "color slab substrate") i 〇〇 b, and a The liquid crystal layer 30 between the TFT substrate 100a and the counter substrate 1〇〇1). The liquid crystal molecules 3〇a of the liquid crystal layer 30 have a negative dielectric anisotropy' and are aligned perpendicular to the surface of the vertical alignment film (not shown), as shown in Fig. B, 'over the vertical alignment film. When a voltage is applied to the liquid crystal layer 3, a vertical alignment layer is formed on one of the surfaces of the TFT substrate 100a and the counter substrate 丨〇〇b close to the liquid crystal layer 30. This state is described as a vertically aligned liquid crystal layer 30. However, please note that depending on the type of vertical alignment film and the type of liquid crystal material used, liquid crystal molecules 30a in the vertically aligned liquid crystal layer 3 may be aligned with the surface of the vertical alignment film (the substrate) The surface of the surface appears slightly inclined between the normals. Generally, the vertical alignment is defined as the axis of one of the liquid crystal molecules (also referred to as the "axis direction") forming about 85 with the surface of the vertical alignment film. Or a larger angle state. 86289 • 21 - 1275886 The TFT substrate 100a of the liquid crystal display device 100 includes a transparent substrate (for example, a glass substrate) 11 and an image element electrode 14 which is positioned on the surface of the transparent substrate. The counter substrate io〇b includes a transparent substrate (for example, a glass substrate) 21 and a counter electrode 22 on the surface of the transparent substrate 21. The orientation of the liquid crystal layer 3 会 is changed for each image element region in accordance with the voltage applied between the image element electrode 14 and the counter electrode 22, and thus the alignment is transmitted through the liquid crystal layer 3 to the opposite side. The display can be produced by the phenomenon that the polarization of the liquid crystal layer 30 or the amount of light changes with the orientation of the liquid crystal layer 3〇. The TFT substrate 10a includes a plurality of open regions 15 which are not overlapped with the image element electrodes 14 composed of a conductive film (for example, a butadiene film) (the open region 15 has no image element electrodes 丨). The open area 15 is aligned to form a square lattice of its individual centers, and a trace 丨 4a of the image element electrode 14 is substantially surrounded by four open areas 丨5, and the individual centers of the open areas are located to form a unit crystal The fourteen lattice points of the grid. The portion 14a of the image element electrode 14 surrounded by the open area 15 will be referred to as the "single entity". The image element electrode 14 (the portion having the conductive film) Each of the body parts includes a plurality of unit entity parts. In other words, the image element electrode 14 includes a plurality of unit entity parts 14a as secondary image element electrodes. The portion 14a is substantially composed of a single continuous conductive film. The plurality of image element regions are aligned in a matrix pattern. Therefore, the image element regions are aligned in a row direction and a row direction perpendicular to the column direction. Column direction and order universal will be called graph Like the "period alignment direction" of the component (image component area). " 】The direction and the row direction are perpendicular to each other. Even in the specific example 86289 -22- 1275886 example, 'Every image element forest-mouth image The member (image element) has a shape of a generally rounded rectangle including a long side and a short side. Because, 图像, the image element area has different pitches when aligned in the column direction and the row direction (referred to as "(4) (4) Heart... In the image element area, a plurality of unit solid portions 14a of the image element electrode 14 are arranged in a row-arranged direction. In the illustrated example, the unit entity portion Ua is as shown in Fig. 1A. The alignment is in the row direction (1), in which three image element regions pi which are adjacent to each other in the column direction D2 are displayed. In the illustrated example, the unit body portion W has a generally circular shape. 5 each have a generally star-shaped shape with a quadrilateral side (edge) containing a quadruple axis of rotation at the center of the four sides. Each open zone 15 is usually at least contiguous with The open areas 15 are connected. The open areas 15 have substantially the same shape and substantially The same size. The unit solid portion 14a' in the unit cell formed by the open region 15 has a substantially circular shape. The unit solid portion has the same shape and substantially the same shape as the shell. The unit solid portions 14a adjacent to each other in the image element region are joined together to form a solid portion (image element electrode 丨4) which is substantially used as a single conductive film. After the voltage is applied between the 14 (which has the structure as described above) and the anti-private pole 22, it will be in the unit solid area 14 <that is, an oblique electric field is generated around the edge portion of the open region 15, thereby generating a plurality of liquid crystal domains each having a radially inclined orientation. The liquid crystal domains are generated in each of the areas corresponding to the open area 15 and each of the areas corresponding to the unit solid portion 14a. In the specific embodiment of the present invention, 86289 -23 - 1275886 are adjacent to each other in the column direction D2, and the image element 'when the poor material is written to all the image elements (that is, one frame), Driven by the opposite polarity voltage, as shown in Figure 2. Referring to FIG. 2, a polarity voltage is applied to the image element regions P1 and P3 (the image element region is +" 唬 Table 7F) while the liquid crystal layer 30 is applied, and voltages of different (opposite) polarities are applied to the image element region P2 (Fig. The liquid crystal layer 30, which is represented by a "-" symbol in the element area, is said to have a voltage polarity of π π ^, A , ^ applied to the liquid crystal layer 3 of an image element region in each frame. A is applied to the other image element region liquid crystal layer 30, and the other image element region is in a direction perpendicular to the alignment direction (row direction D1) of the unit solid portion 14a (column direction 〇 2 ) adjoining the first image element area. The mechanism for forming the liquid helium region by the oblique electric field will now be described with reference to Fig. 3A and Fig. 3 . The liquid crystal layer 3 of each of the patterns (7) shown in Figs. 3A and 3B is not intended to be subjected to private pressure. Fig. 3A schematically shows a state in which the orientation of the liquid crystal molecules 3〇a is initially changed (initial 〇N state) according to the voltage applied to the liquid crystal layer. Fig. 3B schematically illustrates a state in which the orientation of the liquid crystal molecules 30a is first changed and then stabilized according to the applied voltage. The curve EQ in FIG. 3A and FIG. 3B represents the equipotential line 0 as shown in FIG. 1B, when the image element electrode 丨4 and the counter electrode 22 have the same potential (that is, 疋' is not in the entire liquid crystal layer. 3) The state in which the voltage is applied), the liquid crystal molecules 30a in each of the image element regions are aligned perpendicular to the surfaces of the substrates 11 and 21. When a voltage is applied across the liquid crystal layer 30, a potential gradient as shown by the medium bit line EQ (perpendicular to the power line) of Fig. 3A is generated. The bit line EQ is parallel to the liquid crystal layer 30 (which is located between the solid portion 86289 - 24 - 1275886 (4) of the image element electrode 14 and the counter electrode 22), the body portion ΐ 4 & and the counter electrode The _ surface 'and will be in the open area corresponding to the image element electrode 14. The area is going down. In the liquid crystal layer 3 of the upper portion of the edge portion EG of the open region 15 (the surrounding portion of the open region and its interior including its boundary), the tilt represented by the inclined portion of the bit line EQ is generated. electric field. It should be noted that in the specific embodiment of the present invention, the two image elements which are connected to each other in the column direction D2 are driven by the counter electrode voltage, and thus the equipotential line EQ is in the open area between the image elements! 5 within the drama, so the equipotential line EQ did not continue to pass through this component. The -torque acts on the liquid crystal molecules 3 〇 & with negative dielectric anisotropy to direct the axial direction of the liquid crystal molecules parallel to the bit line EQ (perpendicular to the power line). Therefore, the liquid crystal molecules 3Ga above the right edge portion eg will be tilted (rotated) clockwise, while the liquid crystal cell pool above the left edge portion EG will be tilted (rotated) counterclockwise, as shown in Fig. 3A. The arrow is shown. Therefore, the liquid crystal molecules 3 〇a above the top of the temple and the edge of the temple will be parallel to the corresponding portion of the equipotential line EQ. Reference will now be made to FIG. 4 to please explain the liquid crystals in more detail. The orientation change in the molecule 3〇a. When an electric field is generated in the liquid crystal layer 30, a moment acts on the liquid crystal molecules 3〇a having a negative dielectric anisotropy to guide the axial direction thereof. Parallel to the equipotential line EQ. As shown in Fig. 4A, when an electric field represented by an equipotential line EQ perpendicular to the axial direction of the liquid crystal molecule 3a is generated, a clockwise direction of the temple crystal is caused to occur. The probability of tilting the moment or the moment that causes the molecules of the liquid crystal molecules to tilt in a counterclockwise direction is equal. Therefore, 86289 -25 - 1275886, for the liquid crystal layer located in the pair of parallel 丨's relative to each other, will Some of the liquid crystal molecules 3Ga are subjected to a clockwise force, and some of the other liquid crystal molecules 3 are continuously subjected to a counterclockwise moment. Therefore, it is not smoothly converted into an expected value according to the voltage applied to 30. Party As shown in FIG. 3A, when an open edge portion EG of the liquid crystal display device (10) of the present invention is generated, an equipotential line oblique to the axial direction (inclination electric field) of the liquid crystal molecules is generated. After a part of the indicated electric field, the liquid crystal molecules 30a such as helium will be parallel to each other with a minimum rotation: the direction of the line EQ is inclined (the example shown in the figure is counterclockwise), as shown in Fig. The liquid crystal molecules 3〇a located in the electric field region which has been generated by the equipotential line EQ perpendicular to the axial direction of the liquid crystal molecules, and the inclined portion located at the bit line EQ The liquid crystal molecules 3Qa of the towel are inclined in the same direction. Therefore, as shown in FIG. 4C, the '纟 azimuth and the liquid crystal molecules 3 located in the inclined portion of the bit line EQ are continuous (consistent as shown in FIG. 4D). * When the electric field causes the equipotential line EQ to form a continuous concave/convex pattern, the liquid crystal molecules 3〇a located in the plane portion of the equipotential line EQ are oriented and positioned by the equipotential line EQ The orientation direction defined by the liquid crystal molecules 30a in the adjacent inclined portion The meaning of "located in the equipotential line EQ" as used herein means "in the electric field represented by the equipotential line Eq." The orientation change of the liquid crystal molecules 30a (from the bit line The liquid crystal molecules in the inclined portion start) and proceed to a stable state as described above. The schematic diagram shown in Fig. 3B is a schematic view. The liquid crystal molecules 30a located near the center of the open region 5 will be substantially Equally affected by the individual orientations of the liquid crystal molecules 30a located at the opposite edge of the open region 86289 -26 - 1275886, the H maintains its orientation perpendicular to the bit line Eq. The liquid crystal away from the open region 15 The numerator 30 is inclined by the influence of the other liquid crystal molecules 3 〇a near the edge portion EG, thereby forming a tilt 10,000 position symmetric with respect to the center SA of the open region 15. The direction viewed from the direction perpendicular to the display plane of the liquid crystal display device 100 (the direction perpendicular to the planes of the substrates 11 and 21) is a state in which the axial direction of the liquid crystal molecules is radially directed toward the center of the open region 15 (not shown). In this specification, such an orientation will be referred to as a "radial tilt orientation." Further, the liquid crystal layer 30 exhibits a region in which the radial tilt direction is based on a single axis, and is referred to as a "liquid crystal region". The liquid crystal molecules 30a exhibit a liquid crystal domain of a radially oblique orientation, and are also formed in a region corresponding to the unit solid portion 14a substantially surrounded by the open region 15. The liquid crystal molecules 3〇a located in the region corresponding to the solid portion 14a of the unit, the edge EG of each edge of the open region 15 is affected by the orientation of the liquid crystal molecules 3〇a, thus presenting the center SA of the unit solid portion 14a (corresponding to The center of the unit cell formed by the open region 15). The radial tilting orientation of the liquid crystal domains formed in the unit solid portion 14a, and the radial tilting orientation formed in the open region 15 will be consistent with each other, and both with the liquid crystal at the edge portion of the open region 15 The orientation of the molecules 3 is uniform. The orientation of the liquid crystal molecules 30a of the liquid crystal domain formed in the open region 15 is an upwardly extending taper (toward the substrate 100b), and the liquid crystal domain formed in the unit solid portion 4a The orientation of the liquid crystal molecules 30a is a downwardly extending taper (toward the substrate 100a). As described above, the radial tilting orientation in the liquid crystal domain formed in the open region 15 is formed in the solid portion 14a of the cell. The 86289 -27 - 1275886 in the liquid crystal domain are radially inclined, which are continuous with each other. Therefore, the disclination line (azimuth defect) is not formed at the boundary between them, so that the display quality due to the occurrence of the disclination line can be avoided.凊> Wang Yi, a sufficient voltage may not be applied to the liquid crystal layer 3 in the vicinity of the central portion of the open region 15 so that the liquid crystal layer J near the central portion of the open region 15 cannot be used for display. In other words, even if the radial tilting orientation of the liquid crystal layer 30 in the vicinity of the center of the open area is disturbed to some extent (for example, even if the central axis deviates from the center of the open area 15), the display quality is not lowered. As long as at least the region corresponding to the unit solid portion i4a forms a liquid crystal domain, continuous liquid crystal molecules can be obtained in each image element region and the wide viewing angle characteristics and high display quality can be achieved. The greenness (which is the display quality of the liquid crystal display device), the probability of existence of the liquid crystal molecules 30a in the various azimuthal directions is better, and the rotation symmetry is better in each image element region. The system has axis symmetry. Therefore, it is preferable that the liquid crystal domain is symmetric in rate in each of the image 7C regions. In the present embodiment, the unit solid portion 14a is in a predetermined direction (row direction m). They are arranged in a row and thus have rotational symmetry and equiaxive axis symmetry. Therefore, each liquid crystal domain corresponding to the unit solid portion 14a is also aligned in rotational symmetry and equivalent axis symmetry. 3A and 3B, the image element electrode 14 of the liquid crystal display device 1 of the present invention includes a plurality of unit solid portions, each of which is surrounded by a plurality of open regions 15, and will be in the figure. An electric field represented by an equipotential line having a slanted portion is generated in the liquid crystal layer 30 in the element region. Liquid crystal molecules having a negative dielectric anisotropy in the liquid crystal layer 30 are 〇a 86289 -28- 1275886 (when When there is no (4) voltage applied, it is vertically aligned), and the orientation direction of the liquid crystal molecules 3〇& in the inclined portion of the equipotential line EQ as the trigger signal is changed. A liquid crystal domain having a stable radial tilt orientation is formed in the open region 15 and the unit solid portion (4). The display can be performed according to the voltage applied to the entire liquid crystal layer and the position of the liquid crystal molecules in the liquid crystal domain. The shape of the $-element solid portion 14a of the image element electrode 14 of the present embodiment (as viewed from the substrate normal direction) and the alignment and the m substrate (10) of the liquid crystal display device (10) will be described below. Open area. The display characteristics of the liquid crystal display device exhibit azimuthal dependence depending on the orientation (optical anisotropy) of the liquid crystal molecules. In order to reduce the azimuthal dependence in the dominant features, the 液晶 Μ 、 Μ 轨 轨 的 的 的 的 的 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该More preferably, the liquid crystal molecules in each image element region are located in all azimuths with a substantially equal probability. The liquid crystal domain formed by the unit solid portion 14a in a preferred shape is formed in each of the image element regions, so that each liquid crystal corresponding to the unit meeting portion 14a can be made to have a probability of being male. The liquid crystal molecules in the domain are oriented toward all azimuths: more specifically, the preferred shape of the unit solid part is for the axis of symmetry extending through the center of each unit solid body (normal direction) Rotational symmetry (better symmetry to at least one double axis of rotation). In addition, since only the liquid crystal domain portion corresponding to the open region 15 is included in each of the image regions and is helpful for display, the liquid crystal molecules which are most likely to be contained in the W domain (fragment) set of the image have Substantially equal ^6289 -29 - 1275886 The rate of justice is towards all sides & angles. Preferably, the shape and alignment of the open region 15 enable the liquid crystal domain segments to form a liquid crystal domain in a complementary manner. In particular, it is preferable that the shape of the open area 15 is rotationally symmetrical and the open area 15 can be rotated to have rotational symmetry. Note that since the liquid crystal domains formed in the open region 15 are partially located outside the image element region, the open regions 15 may be difficult to align such that the liquid crystal domain segments together form a liquid crystal domain in a complementary manner. However, as long as liquid crystal molecules of each set of liquid crystal domain segments of different azimuth angles have a probability of rotational symmetry (more preferably axisymmetric), it is sufficient to reduce the azimuthal dependence of display characteristics. A generally star-shaped open area 15 surrounding a generally circular unit solid portion 14a will now be described with reference to Figures 5A through 5C, as shown in Figure A, when aligned in a square grid, 'reading liquid crystal molecules 3 0 The orientation of a. The orientation of the liquid crystal molecules 30a when viewed from the normal direction of the substrate is shown in Figs. 5A to 5C. In the diagram showing the orientation of the liquid crystal molecules 30a in the normal direction of the substrate (for example, %), the black dot end of the elliptical liquid crystal molecule indicates that the liquid crystal cell pool is tilted so that This end is closer to the substrate having the image element electrode 14 thereon than the other end. This representation also applies to the following figures. The single element cell of the image element shown in Fig. 1A (which is composed of four open areas 15) will be described below. The cross-sectional views of the individual diagonals of Figures 5A through 5C correspond to Figures 1B, 3A and 3B, respectively, and the following description will also refer to Figures 1B, 3A and 3B. When the entire liquid image element electrode 14 and the counter electrode 22 have the same potential (that is, the state when no voltage is applied to the crystal layer 30), the squares of the liquid crystal molecules 3〇a are subject to 86289 -30 - 1275886 A vertical alignment layer (not shown) on one side of each TFT substrate 100a and a counter substrate 1 closer to the liquid crystal layer 30 are adjusted to be vertically aligned as shown in FIG. 5A. When an electric field is applied throughout the liquid crystal layer 30 to generate an electric field of tf as shown by the equipotential line EQ of Fig. 3a, a moment acts on the liquid crystal molecules 30a having negative dielectric anisotropy for The axis direction is directed parallel to the equipotential line EQ. As shown in FIG. 4A and FIG. 4B described above, the liquid crystal molecules 3〇a under the electric field indicated by the equipotential line EQ perpendicular to the molecular axis thereof are not uniquely present. a Which direction should be tilted (rotated) (Fig. 4 A) 'So it is not easy to change the orientation (tilt or rotate). On the contrary, the direction of tilt (rotation) is uniquely defined for the liquid crystal molecules 3〇a under the equipotential line EQ inclined to the molecular axis thereof, so that the positional edge is easily generated. Therefore, as shown in Fig. 5B, the liquid crystal molecules 30a are inclined from the edge portion of the open region 15 where the molecular axis of the liquid crystal molecule 30a is inclined at the position of the bit line EQ. Then, the surrounding liquid crystal molecules 3a will be inclined to coincide with the orientation of the liquid crystal molecules 3a which have been inclined at the edge portion of the open region 15, as shown in Fig. 4C. Then, the axial direction of the liquid crystal molecules 3a will exhibit a steady state (radial tilt orientation) as shown in Fig. 5C. As described above, when the shape of the open region 15 has rotational symmetry, the liquid crystal molecules 30a in the image element region start from the edge portion of the open region 15 toward the open region 1 after voltage application. The center of 5 is inclined in sequence. Therefore, an orientation is generated in which the liquid crystal molecules 30a in the vicinity of the center of the open region 15 (the individual orientation adjustment power of the liquid crystal molecules 3a from the edge portions are balanced here) remain with the substrate plane. Vertically aligned, and the liquid crystal molecules 30a around 86289 -31 - 1275886 are tilted in a radial pattern with reference to the liquid crystal molecules 30a near the center of the open region 15. The degree of tilt will be away from the open area. The 1 5 center gradually increases. The liquid crystal molecules 3〇a' corresponding to the generally circular unit solid portion 14a surrounded by the general star open area 15 aligned in a square lattice pattern are also tilted so that the conformity has been opened by each The tilting electric % generated by the edge portion of the region 15 is inclined by the orientation of the liquid crystal molecules 3 〇 a. Therefore, an orientation is generated in which the liquid crystal molecules 30a in the vicinity of the center of the solid portion 14a of the unit (the individual orientation adjustment power of the liquid crystal molecules 30a from the edge portions are balanced here) remain in the plane of the substrate. Vertical alignment, and the surrounding liquid crystal molecules 30a are inclined in a radial pattern with reference to the liquid crystal molecules 30a near the center of the unit solid portion 14a, and the inclination thereof is away from the center of the unit solid portion 14a. Gradually increase. As described above, when the f liquid crystal domains (the liquid crystal molecules 3〇a of each liquid crystal are radially inclined) are aligned in a square lattice pattern, the liquid crystal molecules 3Qa in the individual sleeve directions have rotational symmetry. The probability of sex, so that high-quality display can be achieved without any unevenness in the viewing angle. In order to reduce the dependence of the viewing angle of the liquid crystal domain with a radially inclined orientation, the liquid crystal domain preferably has a high rotational force 疋 ~ %% (preferably symmetrical to at least one double rotating axis, a better system) On the disc & = i "you are on % of at least one quadruple car by). For the team, the radial handle with a counterclockwise or clockwise spiral pattern as shown in Figure 6C will be 86289 -32 - 1275886 than the simple radial tilt position shown in Figure 6A: The 10,000 position is different from the general torsional orientation (the orientation of the liquid crystal molecules will vary spirally with the thickness of the liquid crystal layer 30). The azimuth direction of the liquid crystal molecules 3a in the spiral region in the spiral direction is substantially not changed with the thickness of the liquid crystal layer 30. In other words, in the cross section of the liquid crystal layer 30 of any residence (in a plane parallel to the plane of the layer), the 10,000 position is as shown in FIG. 6B or FIG. 6C, and the thickness along the thickness of the liquid crystal layer 3〇 On ^ any twist (four). However, if the liquid crystal domain is regarded as a whole, there are some degrees of torsional deformation. When a material obtained by adding a palmitic reagent to a nematic liquid crystal material having a negative dielectric anisotropy is used, when the applied voltage is present, the liquid crystal molecules Ma are respectively as shown in FIG. 6B or FIG. 6 (: The radial tilting orientation of the counterclockwise or clockwise spiral pattern based on the open area 15 and the solid portion 14a of the unit is shown. The counterclockwise or clockwise spiral pattern is determined depending on the pair used. The type of palmar reagent. Therefore, the liquid crystal layer 3 in the open region 15 is controlled to have a radial tilt orientation in the spiral pattern when there is an applied voltage, and then the liquid crystal is perpendicular to the plane of the substrate. The direction of the spiral pattern of the radially inclined liquid crystal molecules 3〇a based on the molecules 30a can be kept constant in all the liquid crystal domains, so that uniform display can be realized without showing uneven results. The direction of the spiral pattern in the vicinity of the liquid crystal molecules 3〇a perpendicular to the plane of the substrate is relatively clear, so that the response speed after application of the voltage to the entire liquid crystal layer 3〇 can be improved. 'When a large amount of palmitic reagent is added, the orientation of the liquid crystal molecules 3〇a changes its spiral pattern with the thickness of the liquid crystal layer 3〇 as the general torsion orientation is 86289 -33 - 1275886 degrees. In the orientation in which the orientation of the liquid crystal molecules 30a does not change with the thickness of the liquid crystal layer 30, the liquid crystal molecules 30 a which are oriented perpendicular or parallel to the polarization axis of the polarizing plate are incident. The light does not cause a phase difference, so the incident light that penetrates the region having such an orientation does not have any influence on the transmittance. Conversely, the orientation of the liquid crystal molecules 30a follows the liquid crystal layer 3〇. Of the thickness of the spiral pattern, the liquid crystal molecules 3 that are oriented perpendicular or parallel to the polarization axis of the polarizing plate (there is a phase difference between the incident light, and an optical rotational force is also used, so The incident light passing through the region of such orientation will have an effect on the transmittance, so that the dog can obtain a liquid crystal display device capable of producing a brightness display. In the example of Fig. 1A, 7F, each single The elemental solid portions 14a are generally circular in shape, and each of the open regions 15 has a generally star shape, wherein the unit solid portions 14a and the open regions 15 are disposed in a square lattice. In the pattern, however, the shape of the unit solid portion 14a and the shape and alignment of the open area ^ are not limited to the above examples. Fig. 7A and Fig. 7B are plan views respectively illustrating individual open areas 15 and early solid parts having different shapes. The liquid crystal display device 丨(10) VIII and 1(10)b of the portion 14a. The open area η and the unit solid portion 14 of the liquid crystal display devices 100A and 100B as shown in Figs. 7A and 7 respectively, and the open area of the liquid crystal display device of Fig. 8 respectively And the unit body portion is slightly distorted. The open area 15 and the unit solid portion i4a of the liquid crystal display devices 100A and 100B both have a double rotation axis (does not have a quadruple rotation axis), and after regular alignment , a unit cell that forms a long rectangle. In the liquid crystal display devices 100A and 100B, the opening portion 86289 - 34 - 1275886 is a twisted star shape, and the unit solid portion 14a is a generally elliptical shape (a twisted circular shape). The liquid crystal display devices 1 Ο Ο A and 1 Ο Ο B shown in Figs. 7A and 7B still have two display qualities and expected viewing angle characteristics. Further, both of the liquid crystal display devices 10 (: and 1) shown in FIGS. 8A and 8B still have high display quality and desired viewing angle characteristics. In the liquid crystal display devices 100C and 100D, the generally open-shaped open regions 15 are arranged in a square pattern, and thus each unit solid portion has a generally square shape. Of course, these patterns can be distorted to form a long rectangular unit cell. As described above, a liquid crystal display device having a high display S and a viewing angle characteristic can also be obtained by regularly aligning the unit solid portions 14a of the general rectangular shape (including a square and a rectangle). However, the shape of the open area 15 and/or the unit solid portion 14a is preferably circular or elliptical rather than rectangular, so that the radial tilting orientation is more stable. It is more stable that the radial or oblique opening of the circular or elliptical shape and/or the solid portion of the unit is more stable, because the edge of the open area 丨5 is more continuous (smooth), so that the liquid crystal molecules 3 The azimuth direction of 〇a can be changed in a more continuous (smooth) manner. In view of the continuity of the orientation direction of the liquid crystal molecules 3 〇 a as described above, a liquid crystal display device ι as shown in Fig. 9 is also expected. The liquid crystal display device 100E of Fig. 9 is a modification of the liquid crystal display device 1A of Fig. 8B in which each side of the open region 15 on the unit solid portion 14a is curved. In the liquid crystal display device 1 'the open region 15 and the unit solid portion 14a both have a quadruple rotation axis and are arranged in a square lattice pattern (having a quadruple rotation axis). In addition, the shape of the unit solid portion 14a of the open area 86289 - 35 - 1275886 15 can be twisted into a shape having a double rotation axis, and the unit solid portion 14a can be set to a rectangular lattice (which It has a double rotation axis) as shown in Figs. 7A and 7B. The voltage applied to the liquid crystal region formed in the open region 15 may be lower than the voltage applied to another liquid crystal region formed in the solid portion 14a. Thus, for example, in a normal black mode display, the liquid crystal domains formed in the open area 会 will be darker. Therefore, it is preferable that the area ratio of the unit solid portion 14a in the image element area is a little higher, and the area ratio of the open area 15 is lower - point. In the liquid crystal display device of the present invention, the image element electrode 14 includes a plurality of unit solid portions 14a, whereby a plurality of unit entity portions in the image element region can be appropriately aligned according to the shape and size of the image element region. "a, achieving a stable radial tilting orientation in the image element area without being limited by the shape and size of the image element area. In contrast, if the image element electrode includes only one unit entity part, it is possible It is impossible to achieve a stable radial tilting orientation according to the shape and size of the image element region, etc. If the image element region has a circular or square shape, it is not a problem to include only the image element electrode of the unit solid portion. For example, if the image element region is in a long rectangular shape in which a liquid crystal display device capable of generating a color display and the image element region has a large aspect ratio, the solid portion of the cell needs to have a shape having a large aspect ratio. At this time, it may not be possible to achieve a stable radial tilting 4. For example, when the size of the stomach image element area is large, the unit entity needs to have a Dimensions, in this case, a stable orientation may not be obtained only by the oblique electric field generated around the solid portion of the unit. 86289 - 36 - 1275886 Further, in the liquid crystal display device of the present invention, the complex solution entity portion The portion 14a is aligned in the 駄 direction (arranged-row) in each image element region. For example, as shown in FIG. 1A, the phase 舫 舫 苗 杂 杂 、 、 、 、 、 、 In the case of two rows or more, it is possible to increase the area ratio of the single-opening and careful bribery E-field 14a, and relative to the total area of the image component area (right teaching, I brother effect ratio) Increasing the area ratio of the contribution to the display. Next, the reason will be explained with reference to Fig. 1A. As shown in Fig. 10, the liquid crystal display device 100 includes a closed line drawing line) 4, and the column D2 extends parallel to each other. Also included are source bus bars (signal lines) 42 extending in parallel with each other in the row direction D1. Each gate bus bar (scanning line) 41 is electrically connected to a ft (not shown) provided to each image element region The gate private pole mother source mud line (signal line) 42 is electrically connected In addition, the drain electrode of the TFT is electrically connected to the image element electrode. The liquid crystal display device 1 〇0 E further includes a storage capacitor line 43. In the liquid crystal display device 100E, many units The solid portion 14a is aligned in a row in each image element area, and a portion of the open area 15 surrounding the unit solid area 14& overlaps with the gate bus bar 41 or the source bus bar 42 and the portion is located in the image Outside the component area. Therefore, 'each of the plurality of open areas 15 has at least one part located outside the image element area. When the plurality of unit entities 14 a are aligned in more than two rows, in each figure There will be an open area 15 surrounded by the unit solid portion 14a in the image element area, and such open area 15 is completely within the image element area. For example, in the liquid crystal display device 100 of the comparative example, when the unit solid portion 14a is aligned in two rows or more as shown in FIG. ,, there is a unit entity in each image element region. The open area 15 surrounded by the portion 14a, and such an open area 15 of 86289 - 37 - 1275886 is completely within the image element area. Then, the area ratio of the open area 15 in the image element area is increased, thereby reducing the area ratio of the solid portion of the unit. In contrast, when a plurality of unit entity portions 14a are arranged in a row in each image element area as shown in FIG. 1 , at least a part of each of the plurality of open areas 〖5 is located in the image element. Outside the area, it is therefore possible to reduce the area ratio of the open area 15 in the image element region and increase the area ratio of the unit solid portion 14a, thereby improving the aperture ratio. Now, the information obtained using a liquid crystal display device of a specific specification will be described in more detail how the aperture ratio can be improved. The specifications of the liquid crystal display device are as follows: · The diagonal length of the display area is 15 inches, and the unit has a general square shape including a j-shaped corner (see Figure 9 and Figure). 10)), the width of the gate bus line and the width of the light blocking layer on the source bus bar are both 12 μπι, and the interval between the unit body parts 4a is 8·5 μπι. Hereinafter, the transmittance of the liquid crystal display device when the transmittance of the liquid crystal display device and the unit solid portion 14a are arranged in two rows when the unit solid portions 14a are arranged in a row will be compared. Compared with the transmittance when the unit solid portion 14a is arranged in two columns, the transmittance is improved when the unit solid portion 14a is arranged in a row, and is used for SXGA (12 80 X 1 〇 24 pixels) B temple elevation 6 %, increased by 9〇/〇 for UXGA (1600 X 1200 pixels) and 11% for qxga (2048 X 1536 pixels). Therefore, the effect of improving the aperture ratio by arranging a plurality of unit solid portions 14a in a line in each image element region is particularly remarkable in a high-quality liquid crystal display device. Please note that in the structure in which the image element electrode 14 overlaps with the gate bus line 41 or the source bus 86289 -38 - 1275886 line 42 (shown in FIG. 1A), it is preferable to form the bus bar on the bus bar line. The thickness of the edge film (e.g., an organic insulating film) can be as thick as possible, and the image element electrodes 14 are formed thereon to reduce the influence of these bus bars. See also Fig. 12, s" indicating the length of the gap between the square single-turn lattice formed by the open region 15 and the unit solid portion 14a (hereinafter referred to as "side leaving interval S"). The side spacing S must be equal to or greater than the predetermined length to produce the oblique electric field required to obtain a radial tilting orientation of the % foot. Although the side spacing S is defined in the column direction D2 and the row direction, in the present embodiment, only the image elements along the column direction D2 are connected.  Will be driven by the opposite polarity of the voltage in the frame shown in Figure 2. Therefore, compared with the case where the image elements adjacent to each other along the column direction D2 are not driven by the opposite polarity voltages, sufficient adjustment of the orientation force can be obtained in this manner even if the side interval 3 of the column direction D2 is reduced. . This is because when the image elements adjacent to each other along the column direction D2 are driven by the opposite polarity voltages, a strong oblique electric field of phase s can be generated. The reason will be explained below with reference to Fig. i3A and the figure. Fig. 13A schematically illustrates an equipotential line generated when a liquid crystal layer in two image element regions adjacent to each other is applied to a voltage of +5, v to a column direction d2, and Fig. 13B schematically illustrates when a voltage of +5 v is applied thereto. An equipotential line EQ generated when a liquid crystal layer in one of the two image element regions adjacent to each other in the column direction D2 is simultaneously applied with a V voltage to a liquid crystal layer in another region of the two image element regions . As shown in Fig. 13 A, when the same polarity voltage is applied to the two adjacent images 86289 - 39 - 1275886: the liquid crystal layer in the region, the electric field generated will cause the equipotential lines to form a continuous central recess. / Central raised pattern. As shown in Fig. 1 3B, when the voltage of the opposite polarity is applied to the liquid crystal layers of the two image elements, the equipotential lines representing the electric fields generated by the two image element regions are not called. Continuous, but sharply falling in the open area 15. Therefore, in the edge portion of the open region 15, that is, around the unit solid portion Ha, a potential gradient of the steep mountain is formed, and thus the electric power of the generated oblique electric field is larger than that shown in Fig. 13 A. As described above, when image elements adjacent to each other along the column direction D2 are driven by opposite polarity voltages, τ obtains sufficient adjustment of the orientation force even if the side interval S of the column direction D2 is reduced. Therefore, even when the distance between the two image element electrodes 14 adjacent to each other in the column direction D2 is reduced, a sufficiently stable radial tilt direction can be formed to increase the aperture ratio. Other experiments are also performed using the liquid crystal display device having the above-described specifications (the diagonal length of the display region of the liquid crystal display device is 15 inches, and the single-turn solid portion 14a has a general portion including the curved corner portion. The shape of the square, the width of the gate bus line and the width of the light blocking layer on the source bus bar are both 12 μπι, and the interval between the solid portions 14a of the unit is 8 5). To be sure, it is the case that the image elements adjacent to each other in the column direction D2 are driven by the opposite polarity voltages and they are not driven by the opposite polarity voltages. In the case where the image elements adjacent to each other in the column direction D2 are not driven by the opposite polarity voltages, the minimum distance between the image element electrodes 14 required to achieve a stable radial tilt orientation is 8·5 μίη, that is, equal to each The distance between the unit solid portions 14a in the image element area. Compared with the case where the image elements adjacent to each other in the direction D2 of 86289 - 40 - 1275886 are subjected to the opposite polarity voltage (four), the distance between the image element electrodes 14 which are connected to each other in the column direction D2 is reduced to 3 μm.彳 to obtain a stable radial tilt orientation. In this embodiment, although the image elements adjacent to each other in the row direction D1 are not driven by voltages of opposite polarities, as shown in FIG. 14a (so-called "source line inversion driving configuration"), When the image elements adjacent to each other in the column direction D2 are driven by voltages of opposite polarities, the aperture ratio can still be sufficiently improved. However, in order to obtain other advantageous results such as the effect of suppressing flicker, when the image elements adjacent to each other in the column direction 〇 2 are driven with opposite polarity voltages, every n columns (where !! is an integer of 丨 or more) is taken. The image elements (that is, every n image elements on the row D1) reverse the polarity of the applied voltage. In other words, in each of the frames, it is preferable to apply the voltage polarity of the liquid crystal layer in the image element region of the same row, and each n column is inverted once. For example, as shown in Fig. 14A, the polarity of the applied voltage is inverted once every two image elements of the column, that is, every two image elements in the row direction m (so-called "2H dot inversion driving arrangement"). Further, as shown in Fig. 14C, the polarity of the applied voltage is inverted once on each of the image elements of the column, that is, each image element in the row direction D1 (so-called "dot inversion drive configuration"). If the image elements adjacent to each other in the column direction D2 are driven by the voltage of the counter electrode, the image elements adjacent to each other in the row direction D1 are also driven by the voltage of the counter electrode 'as shown in FIG. 14C, the row direction d can be shortened. 1 is the spacing between the image element electrodes 14 adjacent to each other, thereby further improving the aperture ratio. Now, the relationship between the shape of the unit solid portion 14a and the % 疋 4 of the radial tilt directions 86289 - 41 - 1275886, and the relationship between the shape of the I element solid portion i4a and the transmittance value will be described. A study revealed by the inventor of the present invention found that when the interval of the unit solid portion injury 14a (#j retention interval S) remains fixed, if the shape of the unit solid portion (4) is closer to a circle or an ellipse (4) At the time, the azimuth stability is higher. This is because when the shape of the unit solid portion 14a is closer to a circular shape or a (four) shape, the continuity of the orientation direction of the liquid crystal molecules 3a in the radial oblique orientation is higher. It has also been found that the closer the shape of the unit solid portion 14a is to a rectangle, for example, the higher the transmittance of a square or long rectangle. This is because when the value of the side leaving interval s remains relatively constant, if the shape of the unit solid portion i4a is closer to a rectangle, the area ratio of the solid portion increases, thereby increasing the direct influence of the electric field generated by the electrode. The area of the liquid crystal layer (defined by the plane perpendicular to the normal to the substrate normal), thus increasing the effective aperture ratio. Therefore, the shape of the unit solid portion 14a can be determined according to the expected azimuthal stability and the expected transmittance. For example, when the unit solid portion 4a has a generally square shape including a generally curved corner portion, as shown in Fig. 9 and Fig. ,, it is possible to achieve azimuth % characterization and relatively high transmission of the phase field return. rate. Of course, a similar effect can be obtained when the unit entity portion 14a has a generally rectangular shape including a generally curved corner portion. It should be noted that, due to limitations in the manufacturing process, strictly speaking, the angular portion of the unit solid portion 14a formed by the conductive film may not be curved, but may be changed to a blunt polygonal shape (by plural a shape of more than 90°, and the corner portion may have a slight 86289 -42 - 1275886 twisted arc (for example, a part of an ellipse) or a twisted polygon instead of a quarter An arc or a regular polygon (for example, a part of a regular polygon). In addition, the corner portion can be a combined curve and an obtuse shape. The a capsule "usually melon shape" used herein may mean any of these shapes. It should be noted that due to similar process related reasons, the shape of the generally circular unit solid portion 14a as shown in Fig. 1A may be a polygonal or twisted shape ' instead of a strict circular shape. The shape of the unit solid portion 14a may be the shape in the liquid crystal display device 100F shown in Fig. 15 in consideration of the response speed. In the liquid crystal display device 100F shown in Fig. 15, the shape of the unit solid portion of the image element electrode 14 is a twisted square with an acute angle. It should be noted that the angle of the corner with an acute angle as used herein means that the angle is less than 9 〇. Horns or rounded corners. When the unit solid portion 14a has an acute corner portion, as shown in Fig. 15, the total length of the edge portion where the oblique electric field is generated is increased, so that the tilting electric field can be applied. On more liquid crystal molecules 3〇a. Therefore, in response to the electric field, the number of liquid crystal molecules 3()a which are initially tilted increases, thereby reducing the amount of time required to form a radial tilt direction over the entire image element region. Therefore, the response speed at which the voltage is applied to the liquid crystal layer 30 is improved. Further, when the unit solid portion 14a has a shape including an acute angle, the existence ratio of the liquid crystal molecules 30a toward each specific azimuth direction is compared with the case where the shape of the unit solid portion 14a is a generally circular or generally rectangular shape. Will increase (or decrease). In other words, in the liquid crystal molecule 3 (^ toward the specific azimuth = the probability of existence of the direction, the high direction @ can be adopted. Therefore, when the liquid crystal display device has a linear polarized light incident on the liquid crystal layer 3, the liquid crystal display device unit entity 86289 -43 - 1275886 When the acute angle 隅 angle is used in the portion 14a, it is possible to reduce the existence probability of the liquid crystal molecules 3 〇 & vertical or horizontal toward the polar axis of the polarizing plate, that is, the liquid crystal molecules 30 a which do not provide a phase difference to the incident light. Therefore, it is possible to improve the light transmittance and achieve a brighter display. The alignment of the liquid crystal display device of the specific embodiment 1 as described above can employ the same pair of vertical alignment type liquid crystal display devices known in the art. a quasi-mode, and can be produced by a known manufacturing method, except for the following two points. First, the image element electrode 14 includes a plurality of unit solid portions 14a arranged in a row in one of two periodic alignment directions, An image element in which image elements are periodically aligned with each other in a periodic alignment direction is driven by an opposite electrode voltage. Generally, as a vertical A vertical alignment film (not shown) of the layer is located on the side of each of the image element electrodes 14 and the counter electrode 22 closer to the liquid crystal layer 3's so as to vertically align the negative dielectric anisotropy Liquid crystal molecule. The liquid crystal material may be a nematic liquid crystal material having negative dielectric anisotropy. After adding a two-color dye to the nematic liquid crystal material having negative dielectric anisotropy, a host-type liquid crystal display can be obtained. The present invention does not require a polarizing plate. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A structure of one of image element regions of a liquid crystal display device 200 according to a second embodiment of the present invention will now be described with reference to Figs. 16A and 16B. Furthermore, in the following figures, each element having substantially the same function as the corresponding element in the liquid crystal display device 100 will be denoted by the same element symbol, and 86289 -44 - !275886 will not be further processed below. Fig. 16A is a plan view seen from the normal direction of the substrate, and Fig. 16B is a cross-sectional view taken along line 16B-16B of Fig. 16A. Fig. 1B is not attached to the entire liquid crystal layer. There is a state when a voltage is applied. As shown in FIGS. 16A and 16B, the liquid crystal display device 2 is different from the liquid crystal display device 1 in the specific embodiment shown in FIG. 8 and FIG. 1B, in which The substrate 200a includes a protruding portion in the open area 15 of the image element electrode 14. A vertical alignment film (not shown) is provided on the surface of the crying 40. The large exit 40 is generally along the π plane of the substrate. The star profile, that is, the shape of the open zone 15, is as shown in Fig. 16A. Please note that the adjacent large exits 40 are interconnected, so that a generally circular pattern completely surrounds each single solid. Part 14a. The projection 4 is generally trapezoidal in cross section perpendicular to the plane of the substrate j^, as shown in Fig. 16B. Specifically, the cross-section mask has a top surface 4〇t parallel to the plane of the substrate, and an acute angle with the plane of the substrate ( < 90. ) The inclined side surface 4 〇 s. Since the vertical alignment film (not shown) is provided to cover the relationship of the protruding portion 40, the side surface 40s of the protruding portion 4 has an azimuth adjusting force whose direction is inclined with respect to the liquid crystal molecules 30a of the liquid crystal layer 3 The orientation of the orientation caused by the electric field is the same, and thus can be used to stabilize the radial tilting orientation. The function of the protruding node 40 will now be described with reference to Figs. 17A to 17D, 18A and 18β. First, the relationship between the orientation of the liquid crystal molecules 30a and the surface structure having the vertical alignment force will be described with reference to Figs. 17A to 17D. As shown in Fig. 17A, the Panyu eight 30a in the 1 series 'horizontal plane' of the orientation adjustment force of the surface with the vertical alignment force (generally the vertical 86289 - 45 - 1275886 alignment film surface) is aligned Vertically the surface. After the vertical alignment of the liquid crystal is applied, the vertical alignment of the liquid crystal is applied by an electric field perpendicular to the equipotential line EQ of the liquid crystal molecule 3〇a 卞h night 曰 knife spoon axis universal The liquid crystal molecules 3〇a| weep, the moment of the universal tilting of the clockwise direction, and the moment of the liquid crystal molecules 30a toward the counterclockwise direction JI, will act on the liquid crystal molecules 3〇a with the same probability. Therefore, for the liquid crystal acoustic corona layer 30 between the pair of counter electrodes in the parallel plate pair +, a part of the liquid crystal y knife 30a is subjected to a clockwise force, a knife moment, and Some of the other liquid crystal molecules 30a are subjected to a counterclockwise, |, returning moment. Therefore, it cannot be converted very smoothly according to the voltage applied to the entire day 30 of the day. When the electric field represented by the horizontal equipotential line EQ is applied via the center of the liquid crystal molecules aligned perpendicularly to the inclined surface, as shown in Fig. 17β, the liquid crystal molecules 30a are paralleled as long as they are rotated by a small amount. The direction of the potential line is tilted (the example shown in the figure is clockwise). Next, as shown in FIG. i7c, other adjacent liquid crystal molecules 3〇a which are vertically aligned with the horizontal plane are inclined in the same direction (clockwise and universal) as the liquid crystal molecules 3〇a located in the inclined surface. Therefore, the orientation is continuous (consistent) with the orientation of the liquid crystal molecules 30a which are vertically aligned with the inclined surface. As shown in FIG. 17D, for a surface having a concave/convex portion and a cross section including a series of trapezoids, the liquid crystal molecules 3a on the top surface and the liquid crystal molecules 30a located on the bottom surface are oriented and located on the surface. The orientation direction of the other liquid crystal molecules 30a in the inclined portion is adjusted to be uniform. In the liquid crystal display device of the specific embodiment, The surface structure (protruding 86289 - 46 - 1275886 η η η π π π π π π π π π π π π π π π π π π π π π π π π π π π π FIG. 1A is a schematic view showing a state in which the liquid crystal layer 3 of the respective layers of FIG. 16A is applied in the presence of a voltage. FIG. 18A schematically shows that the liquid crystal molecules 3 (the orientation is just beginning to change (initial state) according to the pressure applied to the liquid crystal layer. Fig. 18 is a schematic view showing a state in which the orientation of the liquid crystal molecules 30a is first changed and then stabilized according to the applied voltage. The curve EQk in Figs. 18A and 18B is an equipotential line. As shown in Fig. 16B, when the image When the element electrode 14 and the counter electrode 22 have the same potential (that is, the state when no voltage is applied to the entire liquid crystal layer 3), the liquid crystal molecules 3〇a in each image element region are aligned to be vertical. On the surface of the substrates 11 and 21, the liquid crystal molecules 3 which are in contact with the vertical alignment film (not shown) located in the side surface 4〇 of the protrusion 4〇 are aligned to be perpendicular to the Side surface 40S, and located on the side surface 4〇s attached The near side of the liquid crystal molecule 3〇a side exhibits a tilted orientation as shown in the figure because it interacts with the surrounding liquid crystal molecules 30a (which is the essence of the elastic continuity). The field is in the positive liquid crystal layer 3 〇 After the voltage is applied, the potential gradient of the medium position and the spring EQ is not shown in Fig. 18. The bit line eq is parallel to the liquid crystal layer 3 (which is the entity of the image element electrode 14). The solid portion of the portion I and the counter electrode 22 and the surface of the counter electrode 22, and will fall in the region corresponding to the open region 15 of the image element package fe 1 , and thus will be at the edge of the open area 5 A portion of the liquid crystal layer 3 上方 above the EG (the surrounding portion of the open region 15 and its interior including its boundary) produces an oblique electric field represented by the oblique pitch of the bit line EQ. -47 - 1275886 As described above, due to the oblique electric field, the liquid crystal molecules 30a above the right edge portion EG in Fig. 18A are inclined (rotated) in the clockwise direction, and the liquid crystal molecules 30& Will tilt in a counterclockwise direction ( Turned, as shown by the arrow in Fig. 18.8A, so as to be parallel to the bit line Eq. Therefore, the azimuth adjustment force applied by the inclined electric field is applied to the orientation applied to the side surface 40s of each edge portion EG. The adjustment force is the same. As described above, the change in the orientation starts from the liquid crystal molecules 30a located in the inclined portion of the bit line, and then reaches the stable azimuthal state shown in Fig. 18B. The liquid crystal molecules 3 〇a near the central portion of 5 (i.e., near the central portion of the top surface 40t of the sense portion 40) are substantially equally received by the opposite edge portion of the open region 15 (: The influence of the individual orientation of the liquid crystal molecules 30a at } is maintained such that its orientation is perpendicular to the bit line EQ. The liquid crystal molecules 30a far from the center of the open region 15 (the top surface 4〇t of the protrusion 4〇) are inclined by the orientation of other liquid helium molecules 30 a located at the closer edge portion EG. Thus, a slanted orientation symmetrical to the center SA of the open area 15 (the top surface 40t of the protrusion 40) is formed. In the region corresponding to the unit solid portion 14a of the open region 15 and the projections 40, a tilted orientation symmetrical to the center SA of the unit solid portion i4a is also formed. As described above, in the liquid crystal display device 20 of the specific embodiment 2, as in the liquid crystal display device 1 of the specific embodiment 1, it is equivalent to open and owe [1 and the like] The portion of the portion 14a also forms a liquid crystal domain with a radially inclined orientation. Since the projection 40 can completely surround each of the unit solid portions 14a in a generally circular pattern, each liquid crystal field will be 86289 - 48 - 127588. 6 is formed in a region corresponding to a generally circular shape surrounded by the projections 40. Further, the side surface of the protrusion provided in the open area U is used to incline the liquid crystal molecules m near the edge portion EG of the open region (10) in the same direction as the adjustment force applied by the tilting electric field, thereby stabilizing the radial tilting orientation. . Of course, the azimuth adjustment force applied by the tilting electric field can only be acted upon in the presence of an applied voltage, the strength of which depends on the strength of the electric field (the level of the applied voltage). Therefore, when the electric field strength is small (that is, when the applied voltage is low), the azimuth adjustment force applied by the tilting electric field is very weak, and when the liquid crystal panel is pressed, the radial tilting position may be It will collapse due to the floating of the liquid crystal material. When the radial tilting orientation collapses, it cannot be reduced unless a very strong voltage is applied, enough to produce a tilted electric field to apply - a very strong azimuth adjustment force. Conversely, regardless of the applied voltage, I, Jin Fen > 4丄, , 疋 疋 疋 加 加 加 加 加 加 加 加 加 加 加 孩 孩 孩 孩 孩 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 The "alignment effect" @ relationship of the alignment film is very strong. Therefore, even if the liquid crystal material is floated and the radial tilting direction has collapsed, the liquid crystal molecules 3a in the vicinity of the side surface 40s of the child protrusion 40 can maintain the same azimuth direction as the radial tilt direction. Therefore, once the floating phenomenon of the liquid crystal material is stopped, the radial tilting orientation can be easily restored. Therefore, the liquid crystal display device 2 of the second embodiment has the advantages of the liquid crystal display device 100 of the specific embodiment i. In addition, Cai is very (4) resistant to: the group; therefore, the liquid crystal display device 200 can be applied to devices that are often subjected to stress, such as, for example, often carrying out PC:* pDA. 86289 -49 - 1275886 I / Tianda Shao 40 is made of a dielectric material with high transparency. The advantage obtained is that it can be modified (4) to contribute to the liquid crystal domain formed in the region of the open region 15 . The advantage of the protrusion 40 being made of an opaque dielectric material is that the retardation of the liquid crystal molecules 3 〇a of the tilted orientation of the side surface 40s of the protrusion 40 can be avoided. The resulting light leakage may depend on the use of a transparent dielectric material or an opaque dielectric material, such as the application of a liquid crystal display device. In either case, the use of the photosensitive resin has the advantage that it can be simplified to correspond to the step of patterning the protrusions of the open areas 15. In order to obtain sufficient orientation adjustment force, when the thickness of the liquid crystal layer 30 is about 3, the height of the protrusion portion is preferably about 0. 5, to between about 2 _ range. In general, the height of the protrusions 40 is preferably between about 1/6 to about the thickness of the liquid crystal layer. As described above, the liquid crystal display device 200 includes the crying gate 4 located in the open region 15 of the image element electrode 14, and the side surface of the protruding portion 4〇 is inclined to the liquid crystal molecule 3〇a of the liquid crystal layer 30. Apply the same direction of adjustment to the same direction to apply force to adjust the orientation. Preferred conditions for biasing the side surface 40s of the orientation in the same direction as the adjustment orientation force applied by the tilting electric field will now be described with reference to Figs. Fig. A is a schematic cross-sectional view showing the liquid crystal display devices 2 〇 、 a, 2 (10) b and 200 C, respectively, shown in Fig. 19C. 19A to 19A correspond to the drawing "A. The liquid crystal display devices 200A, 2 are referred to in the open area" 5, and have the "protrusion portion" as the entire protruding portion 4Q of the single-structure and the corresponding open area 15 thereof. In terms of the positional relationship between the two, it is different from the liquid crystal display device. 86289 - 50 - 1275886 In the liquid crystal display device 2 described above, the protruding portion 40 as a single structure is formed in the open area, and The bottom surface of the protrusion 4 is smaller than the open area "" as shown. In the liquid crystal display device 200A shown in Fig. 19A, the bottom surface of the protruding portion 40A and the open area are called. In the liquid crystal display device shown in Fig. 9β, the bottom surface of the protrusion portion is larger than the open area. Therefore, it will cover the part of the solid surrounded by the open area 15 (a part of the conductive axis. The solid part is not in the shape of the protrusion 4Q, the side surface 40s of the surgery and the willow. Therefore, as such individual figures As shown in the formula, the bit line is called a line that is substantially flat above the solid portion, and is lowered in the open area 所以. Therefore, like the protrusion of the liquid crystal display device 2, the liquid crystal display device leg The side surface 4〇s of the protruding portion and the side surface 4〇s of the protruding portion of the liquid crystal display device 2 exert an azimuth adjusting force, and the direction thereof is the same as the direction of the azimuth adjusting force applied by the inclined electric field, so that the foot can be satisfied. In contrast, in the liquid crystal display device 200C shown in FIG. 19C, the bottom surface of the protruding portion is larger than the open area 15, and thus there is a portion extending to the upper portion of the open area 15 The portion is formed in the side surface 40s of the protruding portion. Due to the influence of a portion of the solid portion formed in the side surface 4qs, a ridge portion may appear in the bit line EQ. The ridge pattern of the equipotential line is printed. Partially relative to The ridge portion of the other portion of the equipotential line EQ that falls into the open region 15 has an inclination. This indicates that the direction of the oblique electric field that has been generated is opposite to the direction of the oblique electric field that causes the liquid crystal molecules to face the radially inclined orientation. In order to make the orientation adjustment force of the child's side surface 40s have the same direction as the 10,000-kill force applied by the inclined electric field, the solid portion (conductive film) is preferably not 86289 - 51 - 1275886 to be formed on the side surface 4 0 s Next, the cross-sectional structure of the protruding portion 4〇 along the straight line 20A-20A of Fig. 16A will be described with reference to Fig. 20. The protruding portion 40 formed as shown in Fig. 16A can be completely surrounded by a generally circular pattern. Each unit solid portion 14a, as described above, thus forms a portion for connecting the solid portion of the adjacent unit on the projection 40 as shown in FIG. 2A (the branch portion is from the circular portion) The four directions extend. Therefore, in the step of depositing the conductive film as a physical portion of the image element electrode 14, there is a high possibility that a discontinuity problem occurs on the protrusion 40 or a post-processing occurs in the manufacturing process. Layer problem. In view of this, in the liquid crystal display device 2A shown in FIGS. 21A and 21B, protrusions 40D which are not related to each other are formed, so that each of the protrusions 4D is completely contained in the open area 15, In order to form a conductive film to be a solid portion in the flat surface of the substrate, the possibility of occurrence of discontinuity or delamination can be eliminated. Although the protrusions 40D are not completely surrounded by a generally circular pattern, The unit solid portion 14a, but forming a generally circular liquid crystal domain corresponding to each unit entity bruise 14a, and stabilizing the radial tilting orientation of the unit solid portion 14a as in the above example. The effect produced by the stable radial azimuth obtained by forming the protruding portion 4〇 is not limited to the above-described pattern of the open region 15 and is equally applicable to the various patterns of the open region 15 described in detail in Example 1. Any of the patterns to achieve the above effects. In order to apply sufficient force to the protrusion 4 to obtain a stable orientation against stress, it is preferable that the pattern of the protrusion 40 (the pattern seen from the normal direction of the substrate) covers as much as possible from 86289 - 52 - 1275886 ^ The liquid crystal layer 30 region. Therefore, the projection 4 can obtain a more stable orientation if, for example, the positive image having the circular unit solid portion 14a is utilized, and the negative image having the circular open region 15 is utilized. DETAILED DESCRIPTION OF THE INVENTION A liquid crystal display device according to a third embodiment of the present invention is different from the liquid crystal display device 1 of the specific embodiment shown in Figs. 8 and 1B. The reverse substrate in the former includes a structure for adjusting the orientation. 22A to 22E schematically illustrate that the counter substrate having the adjusted orientation structure redundancy 300b has the same function as that of the liquid crystal display device described above, and will be denoted by the same reference numerals and will not be further described. The orientation structure 28 as shown in Figs. 22 to 22 can be used to tilt the liquid crystal molecules 30a of the liquid crystal layer 30 in a radially inclined orientation. It should be noted that the orientation structure 28 as shown in Figs. 22a to 22D and as shown in Fig. 22E is different in terms of the direction in which the liquid crystal molecules 30a will be inclined. The direction in which the liquid crystal molecules are tilted by adjusting the orientation structure 28 as shown in FIGS. 22A to 22D may correspond to the unit solid portion 14a corresponding to the image element electrode 14 (see, for example, FIGS. 1A and 1B). The azimuth directions of the radial 0 and oblique directions of the respective liquid crystal domains formed in the region are aligned. In contrast, the direction in which the liquid crystal molecules are tilted by the trimming orientation structure 28 as shown will correspond to the area corresponding to the open area 15 of the image element electrode 14 (see, for example, Fig. 1A and Fig. ib). The azimuthal directions of the radial tilt directions of the respective liquid crystal domains formed are aligned. The adjustment orientation structure 28 shown in Fig. 22A is composed of the opening 22a of the counter electrode 22 and the image element electrode with respect to the opening 22a (not shown in Fig. 22A; see 86289 - 53 - 1275886 see 'for example, Fig. 14') The unit entity portion 14a is constructed. A vertical alignment boat (not shown) is provided by one side of the counter substrate 3〇〇b which is closer to the liquid crystal layer 3〇. The tens of thousands of structures 28 only apply the force to adjust the orientation when the applied voltage is present. Since the adjustment azimuth structure 28 is only used to apply a force to adjust the orientation to the liquid helium molecule in each liquid crystal domain of the radial tilting direction formed by the ten-butadiene substrate, the 100a® pole structure, the size of the opening 22a is smaller than The scaffold open area 15 provided by the TFT substrate i〇〇a is also smaller than the unit solid portion 1* & surrounded by the open area 15 (see, for example, FIG. 1A). For example, a sufficient effect can be obtained by using an area that is less than or equal to the open area " or a single pass of the 14a-half. When the opening 22 of the counter electrode 22 is provided and the center of the unit solid portion 14a of the image element electrode 14. When the components are opposed, the orientation continuity of the liquid crystal molecules is increased, and the position of the central axis of the radial tilt orientation can be corrected. As described above, when the structure in which the orientation is applied only when the applied voltage is applied is used as the adjustment of the azimuth structure, all the liquid crystal molecules 30a on the liquid crystal layer 3〇 are vertically aligned in the absence of the applied voltage. quasi. Therefore, when the general black mode is used, substantially no light leakage occurs in the black display _, thereby achieving display with the expected contrast ratio. However, when there is no applied voltage, the force for adjusting the orientation is not applied, so that the radial tilt direction is not formed. In addition, when a low voltage is applied, there is only a weak adjustment of the azimuth force, so when applied to the liquid crystal panel, a residual image may be seen after a large stress. Each of the adjustment azimuth structures 28 of Figs. 22B to 22D exerts a force for adjusting the orientation regardless of the presence or absence of an applied voltage, so that a stable radial tilting orientation can be obtained at any of the displayed gray scales and can withstand high stress. 86289 - 54 - 1275886 / First, the adjustment orientation structure 28 as shown in Fig. 22B includes a projection 2 located above the counter electrode 22 and protruding into the liquid crystal layer 3''. Although the protruding portion 22b is not particularly limited in material, the protruding portion 22b can be easily provided using, for example, a dielectric material such as a resin. A vertical alignment film (not shown) is provided by a certain side of the counter substrate 300b closer to the liquid crystal layer 30. The projection 22's surface structure allows the liquid crystal molecules 3a to be oriented in a radially inclined orientation (using a vertical alignment force). It is preferable to use a resin material which is thermally deformed, so that the protrusion 22b having the micro-convex cross section as shown in Fig. 22B can be formed very easily by the heat treatment after patterning. The projection 22b or the projection having a micro-convex section including a apex (e.g., a portion of the sphere) can provide the desired effect of correcting the central position of the radial tilt orientation. The trimming orientation structure 28 shown in FIG. 2C is provided as a surface having a horizontal alignment force facing the liquid crystal layer 30, wherein the liquid crystal layer is on the counter electrode (that is, at a counter electrode 22 closer to the substrate 21). An opening (or a recessed portion) in the dielectric layer 23 formed under one side) is provided in the opening. The vertical alignment film 24 is provided to cover the side closer to the counter substrate 3_ of the liquid crystal layer 30. When the area is left, the area corresponds to the uncovered opening, so that the surface in the opening 23a is regarded as a horizontal pair. Quasi-surface use. On the other hand, the horizontal alignment film 25 can be provided only by the opening 23 & The horizontal alignment film in Fig. 2D can be provided, for example, by providing the entire surface of the vertical alignment substrate 3?b at a time, and then selectively irradiating the vertical alignment film 24 of the opening 23a with ultraviolet light. In one part, the horizontal azimuth force required to reduce the vertical alignment force of the azimuth structure 28 does not need to be as high as the resulting dip, the first tilt angle and the alignment for the N-type liquid crystal display device 86289 -55 - 1275886 The film is as small. For example, 45. Or a pre-tilt angle of the following is sufficient. As shown in Figs. 22C and 22D, on the horizontal azimuth surface of the opening 23a, the liquid crystal molecules 30a are excited to be level with the substrate surface. Therefore, the orientation formed by the liquid crystal molecules is continuous with the orientation of the peripheral crystal molecules 30a vertically aligned on the vertical alignment film 24, whereby the radial tilt orientation as shown in the figure is obtained. The radially tilted orientation can only be provided by selectively providing a horizontally oriented surface (e.g., electrode surface or horizontal alignment film) on the plane of the counter electrode 22 and not providing a recessed portion on the plane of the counter electrode 22 (this portion Obtained by the formation of an opening in the dielectric layer 23. However, the radial tilt orientation can be made more stable by utilizing the surface structure of the recessed portion. Preferably, for example, a protective layer of a color filter layer or a color filter layer is used as the dielectric layer 23 to form a concave portion closer to the surface of the counter substrate 300b of the liquid crystal layer 30 because it does not incorporate any Kansai into the process. In the structure shown in Figs. 22C and 22D, the light efficiency is not reduced at all because no region is applied to the entire liquid crystal layer 30 through the projection 22b, as shown in the structure of Fig. 22A, as shown in Fig. 22E. In the adjusted orientation structure 28, a recessed portion is formed on the side closer to the counter substrate 3'b of the liquid crystal layer 30 using the opening 23a of the dielectric layer 23, as in the adjustment orientation 28 shown in Fig. 22D. The structure is the same, and the horizontal alignment film 26 is formed only at the bottom of the concave portion. If the horizontal alignment film 26 is not formed, the surface of the counter electrode 22 can be exposed as shown in Fig. 22C. The liquid crystal display device 300 having the adjusted orientation structure as described above is shown in Fig. 23 A and Fig. 2 3 B. Fig. 2 3 is a plan view, and Fig. 2 3 B is a cross-sectional view taken along line 23B-23B' of Fig. 2 j A . 86289 - 56 - 1275886 The liquid crystal display device 300 includes a TFT substrate 10a having an image element electrode 14 including a unit paste portion 14a and an open region 15 and a counter substrate 300b having an adjusted orientation structure 28 . The structure of the TFT substrate 1a is not limited to the structure described herein, but may be any other structure as described above. Further, when the structure in which the orientation is applied even if there is no applied voltage (Fig. 22D and Fig. 22E) is used as the structure 2δ for adjusting the orientation, the adjusted orientation structure 28 as shown in Figs. 22A to 22D can be Replace with the structure shown in Fig. 22A. Among the adjusted orientation gentlemen 28 provided by the counter substrate 30'b of the liquid crystal display device 300, the adjusted orientation structure 28 provided near the center of the region of the unit solid portion of the image element electrode 14 belongs to FIG. 22β to The structure of one of Fig. 22D, and the adjustment orientation structure 28 provided near the center of the region of the open region 15 of the image element electrode 14 is the structure shown in Fig. 22. With such an arrangement, when an applied voltage exists on the entire liquid crystal layer 30, that is, when an applied voltage exists between the image element electrode 4 and the counter electrode 2, the unit physical portion of the image element electrode 14 The direction of the radial tilting direction formed by 14a coincides with the direction of the radial tilting direction formed by the adjusted azimuth structure 28, thereby stabilizing the radial tilting orientation. The sound map thereof is shown in Figs. 24A to 24C. The state shown in Fig. 24A is that no voltage is applied, and the state shown in Fig. 24B is the state immediately after the application of the voltage, the initial orientation (initial 〇N state); and the voltage application period shown in Fig. 24C. Steady state. As shown in Fig. 24A, if the applied voltage is not present, the orientation adjustment force applied by the adjustment orientation 86289 - 57 - 1275886 structure (as shown in Fig. 22B to Fig. 22D) 28 still acts on the liquid crystal molecules 30a in the vicinity thereof. Above, a radial tilting orientation can thus be formed. When the application of the voltage is started, an electric field represented by the equipotential line Eq as shown in Fig. 24B is generated (by the electrode structure of the TFT substrate 1a), and will be in each region corresponding to the open region 15 as well A liquid crystal domain in which the liquid crystal molecules 30a are formed in a radially inclined orientation in each of the regions corresponding to the solid portion 丨4a, and the liquid crystal layer 30 reaches a stable state as shown in Fig. 24C. The tilting direction of the liquid crystal molecules 30a in each of the liquid crystal domains coincides with the direction in which the liquid crystal molecules 3a are inclined by the adjustment of the orientation force applied by the adjustment structure 28 provided in the corresponding region. When the liquid crystal display device 3 is stressed in a stable state, the radial tilting orientation of the liquid crystal layer 3〇 is once disintegrated, but after the stress is removed, the radial tilting orientation can be restored, because the unit is The orientation adjustment force of the solid portion 14& and the morphing structure 28 acts on the liquid crystal molecules 3a and 4a. Therefore, it is possible to avoid image sticking due to stress. When the adjustment azimuth force from the adjustment azimuth structure 28 is too strong, a delay occurs even if there is no applied voltage due to the radial tilting orientation, so that the contrast is reduced. However, the adjustment center from the adjustment azimuth structure 28 is not so strong because it is only necessary to stabilize the radial tilting direction formed by the solid portion of the unit and correct the position of the central axis. Therefore, it is sufficient to adjust the orientation force which does not cause such a degree of delay to deteriorate the display. For example, when the protrusion 2213 as shown in FIG. 22B is used, each of the protrusions 86289 1275886 22b may have a diameter of about 15 μm, a height (thickness) of about hem, and the diameter of the unit body portion 14a may be From about 30 μm to about 35 μΐΉ, you can get enough adjustment of the orientation force and suppress the problem of lowering the contrast due to the delay of the actual level. 25A and 25B illustrate another liquid crystal display device 400 including an adjusted orientation structure. The liquid crystal display device 400 does not have an adjustment orientation structure in a region with respect to the open region 15 of the TFT substrate i〇〇a. The formation of the adjusted orientation structure 28 shown in Fig. 22E, which should be formed in the region relative to the open region 15, increases the difficulty of the manufacturing process. Therefore, in order to increase productivity, it is preferable to use only one of the orientation structures 28 shown in Figs. 22A to 22D. In particular, the adjustment orientation structure 28 of Fig. 22B is preferably used because it can be produced in a simple process. Even if the adjustment orientation structure is not provided in the region corresponding to the open region 15 as in the liquid crystal display device 400, substantially the same radial tilt orientation as the liquid crystal display device 300 can be obtained, as shown in FIGS. 26a to 26C. It is shown and its stress resistance is also enforceable. An example of a liquid crystal display device having an adjusted orientation structure is shown in Figs. 27A, 27B, and 27C. 27A, 27B and 27C are cross-sectional views schematically showing a liquid crystal display device 5 having an adjusted orientation structure. The state shown in Fig. 27A is that no voltage is applied; the state shown in Fig. 27B is the state immediately after the application of the voltage (the initial ON state); and the voltage application period shown in Fig. 27C. stable state. The liquid crystal display device 500 includes a projection 40 as shown in Figs. 86289 - 59 - 1275886 16B in the open region 15 of the TFT substrate 200a. The liquid crystal display device 500 further includes a projection 22b as shown in Fig. 22B as an adjustment orientation structure 2 provided near the center of the region of the unit solid portion 14a of the image element electrode 丨4. In the liquid crystal display device 500, the radial tilting orientation is stabilized by the adjusted azimuth force applied by the side surface 4〇s of the protruding portion 4〇 and the withering k-force applied to the surface of the protruding portion 22b. Since the adjustment of the orientation force exerted by the surface structures of the protruding portion 4 and the protruding portion 22b as described above enables the radial tilting orientation to be stabilized regardless of whether or not a voltage is applied, the liquid crystal display device 500 will have Expected stress resistance. In the case where the protruding portion 22b protruding from the counter electrode 22 to the liquid crystal layer 3'''' as shown in Fig. 22B is used as the adjustment azimuth structure 28, the thickness of the liquid crystal layer 3'' can be defined by the crying portion 22b. In other words, the projection 22b can serve as a spacer for controlling the cell gap (the thickness of the liquid crystal layer 30). Fig. 28A and Fig. 28B illustrate a liquid crystal display device 600 having a projection 22b which also serves as a spacer. Fig. 28A is a plan view seen from the normal direction of the substrate. Fig. 28B is a cross-sectional view taken along line 28Β_2δ of Fig. 28A. As shown in Figs. 28A and 28B, in the liquid crystal display device 6A, the thickness of the liquid crystal layer 3 is provided by the vicinity of the center of the region as the unit body portion 14a of the image element electrode 14 as the adjustment orientation structure 28 is adjusted. The advantage of the alignment defined by the projections 22b is that there is no need to separately provide a liner to define the thickness of the liquid crystal layer 30, thus simplifying the manufacturing process. In the illustrated example, the projection 22b has a truncated conical shape including the side surface 22b 1 as shown in Fig. 28B, wherein the side surface is inclined at an acute angle of less than 90 与 from the substrate surface of the substrate 2丨. When the side surface 221}1 is inclined at an angle of less than 86289 - 60 - 1275886 with the substrate surface, the side surface 22b1 of the protruding portion 22b has an adjusted orientation force direction applied to the inclined electric field of the liquid crystal molecules 30a for the liquid crystal layer 3? Uniform adjustment of the azimuth force can therefore be used to stabilize the radial tilting orientation. As is schematically illustrated in Figs. 29A to 29C, with the liquid crystal display device 600 having the projection 22b as a lining, a radial tilting orientation can be obtained as in the liquid crystal display devices 300 and 400. Although the projection 22b has the side surface 22b 1 inclined at an angle of less than 90° to the substrate surface in the example of Fig. 28B, the projection 22b may additionally have a 90 with the substrate surface. An angle or a slope 22bl that is inclined by more than 9 turns. In order to characterize the % of the radial inclination, it is preferable that the inclination angle of the side surface 22b 1 does not substantially exceed 90, and more preferably, the inclination angle can be less than 9 。. . That is, the tilt angle is more than 9 inches. As long as the angle is close to 90. (As long as the angle does not substantially exceed 9 〇.), the liquid crystal molecules 30a adjacent to the surface 22b of the side surface 22b of the crying 22b are still inclined in a direction parallel to the substrate, and thus are aligned with the tilt direction of the liquid crystal molecules at the edge portion. The radial tilting orientation, and only slightly distorted but 疋, if the angle of inclination of the side surface 22b1 of the protruding weir 22b substantially exceeds 90. As shown in FIG. 30, the side surface 221)1 of the protruding portion 22b will have a directional tilting force in the opposite direction of the adjustment of the orientation force applied to the liquid crystal molecules 3 of the liquid crystal layer 30, and thus the radial tilt The orientation may be unstable. The protrusion 22b also used as a spacer is not limited to the protrusion having a truncated cone shape as shown in Figs. 28A and 28B. For example, the protrusion may have a shape as shown in Fig. 3! The shape, such that the section 'on the plane perpendicular to the plane of the substrate, will present an elliptical-part (that is, a shape resembling a sphere-part of an ellipse). In the projection shown in FIG. In the middle, when the angle of the surface of the surface of the surface of the liquid crystal layer is changed along the thickness of the liquid crystal layer, the side angle of the surface of the surface of the liquid crystal layer is changed. Therefore, the protrusion having such a shape can be applied to the protrusion which is a stable radial tilting orientation. The upper and lower substrates (TFT substrate and counter substrate) are in contact with each other, and also define the thickness of the liquid crystal layer 30. Pad used The above-mentioned protrusion 22b can be formed on the upper substrate or the lower substrate in the process of manufacturing the night crystal display device. The tens of thousands and the lower substrate are attached to each other, whether it is on the upper or lower substrate. Formed, the projections 221) will all be in contact with the two substrates and used as a lining and adjustment orientation structure. Not all of the projections 22b provided in the region relative to the unit solid portion 14a are used as a lining. The occurrence of light leakage can be suppressed by forming the projections 22b which are lower in height than the other projections 22b which are 槪塾. Figures 32, 33 and 34 illustrate other liquid crystal display devices 600A, 600B and 600C, respectively, including an adjusted orientation structure. Each of the liquid crystal display devices 600A, 600B, and 600C shown in Figs. 32, 33, and 34 is included as a projection 22b as an adjustment orientation structure in a region with respect to the unit solid portion 14a of the image element electrode 14. In the liquid crystal display device 600A of Fig. 32, each unit solid portion 14a located on the storage capacitor line ^ is slightly smaller than the other unit entity portions. In the liquid crystal display device 600B of Fig. 33, each unit entity portion 14a located on the storage capacitor line 43 is slightly larger than the other unit entity parts. The plurality of unit solid portions 14&, image elements of the image element electrode 14 need not have the same size. Since the liquid crystal field formed in the early slab portion 14a on the opaque element causes the storage capacitor line 43 to not contribute to the display in the transmissive liquid crystal display device, it is not a liquid crystal display device. There is no need to form a stable radial tilting orientation in the unit paste body on the opaque element: W, and the shape and/or size of the (4) part of the unit may be different from the other unit solid parts (4). For example, in the liquid crystal display device 6_ of Fig. 34, each of the unit solid portions on the storage capacitor line 43 has a shape like a barrel (a general rectangle having a general fox-shaped corner portion) while The other unit solid portion 14a has a generally star shape. Although some examples of the unit body portion !4a on the storage capacitor line 43 are shown above, the ratio of the surface seven used to display π can be increased with respect to the total area of the image element area and by using the bit opaque element. The area on the top allows storage to be combined. The spring 43 is as close as possible to the alignment of the open area} 5 to improve the brightness. A polarizing plate and a phase plate have a so-called "vertical alignment type liquid crystal display device" (which includes a liquid crystal layer, and when there is no applied voltage, liquid crystal molecules having a negative dielectric anisotropy in the liquid crystal layer) Vertical alignment) can display images in various display modes. For example, in the birefringence mode (in this mode, the birefringence of the liquid crystal layer is controlled by an electric field to display an image), the vertical alignment type liquid crystal display device can also be used in an optical rotation mode, or Used in a combination display mode of optical rotation mode and birefringence mode. By providing a pair of polarizing plates on the outer side of the substrate (for example, the side of the TFT substrate and the counter substrate) on the substrate (for example, the side of the TFT substrate and the counter substrate) | A liquid crystal display device with a refraction mode. In addition, if necessary, 86289 -63 - 1275886 can be equipped with a phase difference compensator (usually a phase plate). Further, a high-intensity liquid crystal display device can be obtained by generally circularly polarizing. According to the present invention, a liquid crystal domain having a radially inclined and oblique orientation can be stably formed with a high degree of continuity. Therefore, the display quality of the conventional liquid crystal display device having a wide viewing angle characteristic can be further improved. Further, in each image element region, a plurality of unit solid portions are arranged in a row in the direction of the first member foot, so that the area ratio of the unit body portion in the image element region can be increased, thereby improving the aperture ratio. Further, the second pre-foot direction, which is different from the first predetermined direction in which the unit is aligned, is adjacent to each other, and the image elements adjacent to each other in this direction are driven by a voltage opposite to the polarity of each frame. Therefore, it is possible to generate an oblique electric field having a steep potential gradient between image elements adjacent to each other in the second predetermined direction. Because of the *, even with a short internal electrode distance and high aperture ratio alignment, it is possible to form a stable radial tilt orientation. As described above, the liquid crystal display device of the present invention has a wide viewing angle characteristic, a high display quality, and a high aperture ratio, and is capable of producing a ± bright display. Although the present invention has been described in terms of a preferred embodiment, it will be understood by those skilled in the art that the invention may be modified in various ways and may be Various specific embodiments other than the specific embodiments. Therefore, this " covers the genus 2 with the scope of the attached patent application;: «All modifications within the scope. ^ Spirit and Pick [Simplified Schematic Description] 86289 - 64 - 1275886 FIG. 1A and FIG. 1B schematically show an image element area structure of a liquid crystal display device 100 according to Embodiment 1 of the present invention, in which FIG. Eight is a plan view, and Fig. 1B is a cross-sectional view taken along line 1B_1B of Fig. Fig. 2 is a view schematically showing a state in which different electrode voltages are applied to the image element regions adjacent to each other in the column direction of the liquid crystal display device 1. 3A and FIG. 3B schematically show the liquid crystal layer 30 of the liquid crystal display device 1 after voltage application, wherein FIG. 3A is a schematic diagram showing a state immediately after the orientation is changed (initial 〇N state), and FIG. 3B is a steady state diagram. . 4A to 4D are schematic diagrams showing the relationship between the power lines of the respective lines and the orientation of the liquid crystal molecules. Fig. 5A to Fig. 5C schematically show the orientation of liquid crystal molecules when the liquid crystal display device is viewed from the normal direction of the substrate and is 100 Å. 6A to 6C schematically show exemplary radial tilt directions of liquid crystal molecules. 7A and 7B are plan views schematically showing other liquid crystal display devices 1 and 8 and 3 according to a first embodiment of the present invention. 8A and 8B are plan views of other liquid crystal display devices 100C and 100D according to a specific embodiment 1 of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Fig. 9 is a plan view schematically showing a liquid crystal display device 100 according to the present invention. Figure 10 is a plan view schematically showing another liquid crystal display device 100E according to a specific embodiment i of the present invention. Figure u is a plan view schematically showing a surface of a comparative example liquid crystal display device. Fig. 12 is a plan view showing an image element electrode for a liquid crystal display device according to a specific embodiment (4) of the present invention. 86289 -65 - 1275886 The β Α outline shows the equipotential line EQ generated when the same electrode voltage is applied to the two image element regions adjacent to each other in the column direction. Fig. 13B schematically shows the equipotential line EQ which is generated when different electrode voltages are applied to the two image element regions adjacent to each other in the column direction. Fig. MA, Fig. 14B and Fig. 14C illustrate a driving method for a liquid crystal selecting device of a specific embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view schematically showing another liquid crystal display device 1 〇OF according to a first embodiment of the present invention. 16A and FIG. 16B schematically show an image element region structure of a liquid crystal display device 200 according to a second embodiment of the present invention, wherein FIG. 16 is a plan view, and FIG. 16B is a line 16 6B along the line of FIG. Section 16B, section. Fig. 17A to Fig. 17D are diagrams showing the relationship between the orientation of the liquid crystal molecules 3〇a and the surface structure having a vertical alignment force. FIG. 18A and FIG. 1BB show that there is a liquid crystal layer 30 of the liquid crystal display device 200 when a voltage is applied, wherein FIG. 18 is a state diagram (initial ON state) when the orientation is initially changed, and FIG. 18B is stable. State diagram.

圖19A芏圖19C分別為具體實施例2之液晶顯示裝置2〇〇A 、200B及200C的剖面示意圖,各圖在開孔與突出部之間具 有不同的位置關係。 圖20為沿著圖16A之線20A-20A,的液晶顯示裝置200之 剖面示意圖。 圖21 A及圖21B概略顯示液晶顯示裝置2〇〇D的一圖像元 件區結構,其中圖2 1A為平面圖,而圖2丨B則為沿著圖2 i a 之線2 1 B - 2 1B ’的剖面圖。 86289 -66 - 12758^6 圖22A至圖22E概略說明包括調整方位結構28的反基板 300b ° 圖23A及圖23B概略顯示根據本發明具體實施例3之液晶 顯示裝置300的一圖像元件區結構,其中圖23A為平面圖, 而圖23B則為沿著圖23A之線23B-23B’的剖面圖。 圖24A至圖24C為液晶顯示裝置300之其中一個圖像元件 區之剖面示意圖,其中圖24 A所示的係未存在有施加電壓的 狀態,圖24B所示的係方位剛開始改變時的狀態(初始〇N狀 態),而圖24C所示的則係穩定狀態。 圖25A及圖25B概略顯示根據本發明具體實施例3之另一 液晶顯示裝置400的一圖像元件區結構,其中圖25A為平面 圖,而圖25B則為沿著圖25A之線25B-25B%剖面圖。 圖26A至圖26C為液晶顯示裝置400之其中一個圖像元件 區之剖面示意圖,其中圖2 6 A所示的係未存在有施加電壓的 狀態,圖26B所示的係方位剛開始改變時的狀態(初始〇N狀 態),而圖26C所示的則係穩定狀態。 圖27A至圖27C為根據本發明具體實施例3的另一液晶顯 示裝置500之其中一個圖像元件區之剖面示意圖,其中圖 27A所示的係未存在有施加電壓的狀態,圖27B所示的係方 位剛開始改變時的狀態(初始ON狀態),而圖27C所示的則係 穩定狀態。 圖28A及圖28B概略顯示包括一作為襯墊使用的突出部 的液晶顯示裝置600,其中圖28A為平面圖,而圖28B則為 沿著圖28A之線28B-28B’的剖面圖。 86289 -67 - 1275886 圖29A至圖29C為液晶顯示裝置600之其中—個圖像元件 區之剖面示意圖,其中圖2 9 A所示的係未存在有施加電壓的 狀態,圖29B所示的係方位剛開始改變時的狀態(初始〇N狀 態)’而圖29C所示的則係穩定狀態。 圖30為一剖面圖,概略說明具有一侧表面的突出立 傾斜角相對於基板實質上超過9〇。。 ’、 圖31為-剖面圖,概略說明當作襯塾使用不同的突出部。 圖32是-平面圖,概略說明根據本發明具體實施例3的其 他液晶顯示裝置6〇〇A。 具體貫施例3的其 具體貫施例3的其 圖33是一平面圖,概略說明根據本發明 他液晶顯示裝置600B。 圖34是一平面圖,概略說明根據本發明 他液晶顯示裝置600C。 【圖式代表符號說明】 11 基板 14 圖像元件電極 15 開放區域 21 玻璃基板 22 反電極 23 介電層 24 垂直對準膜 25 水平對準膜 26 水平對準膜 28 調整方位的結 86289 -68 - 1275886 30 液晶層 40 突出部 41 閘匯流排線 42 來源匯流排線 43 儲存電容線 100 液晶顯示裝置 200 液晶顯不裝置 300 液晶顯示裝置 400 液晶顯示裝置 500 液晶顯示裝置 600 液晶顯示裝置 1000 液晶顯不裝置 100A 液晶顯示裝置 100a TFT基板 100B 液晶顯示裝置 100b 反基板 100C 液晶顯示裝置 100D 液晶顯不裝置 100E 液晶顯示裝置 100F 液晶顯示裝置 14a 單元實體部份 200a TFT基板 200A 液晶顯不裝置 200B 液晶顯示裝置19A and 19C are schematic cross-sectional views showing liquid crystal display devices 2A, 200B, and 200C of the second embodiment, each of which has a different positional relationship between the opening and the projection. Figure 20 is a cross-sectional view showing the liquid crystal display device 200 taken along line 20A-20A of Figure 16A. 21A and FIG. 21B schematically show an image element region structure of the liquid crystal display device 2A, wherein FIG. 21A is a plan view, and FIG. 2B is a line 2 1 B - 2 1B along the line of FIG. 'The section view. 86289 - 66 - 12758^6 FIG. 22A to FIG. 22E schematically illustrate an anti-substrate 300b including an adjustment orientation structure 28. FIG. 23A and FIG. 23B schematically show an image element region structure of a liquid crystal display device 300 according to Embodiment 3 of the present invention. 23A is a plan view, and FIG. 23B is a cross-sectional view along line 23B-23B' of FIG. 23A. 24A to 24C are schematic cross-sectional views showing one of the image element regions of the liquid crystal display device 300, in which the state shown in Fig. 24A is not present, and the state in which the orientation shown in Fig. 24B is just beginning to change. (Initial 〇N state), and shown in Fig. 24C is a steady state. 25A and 25B are diagrams schematically showing an image element region structure of another liquid crystal display device 400 according to a third embodiment of the present invention, wherein FIG. 25A is a plan view, and FIG. 25B is a line 25B-25B along the line of FIG. 25A. Sectional view. 26A to 26C are schematic cross-sectional views showing one of the image element regions of the liquid crystal display device 400, wherein the state shown in Fig. 26A is not in a state where an applied voltage is present, and the orientation shown in Fig. 26B is just beginning to change. The state (initial 〇N state), and the state shown in Fig. 26C is steady state. 27A to 27C are schematic cross-sectional views showing one of image element regions of another liquid crystal display device 500 according to a third embodiment of the present invention, wherein the state shown in Fig. 27A is not in a state where an applied voltage is present, as shown in Fig. 27B. The state of the system is initially changed (initial ON state), and the state shown in Fig. 27C is steady state. Fig. 28A and Fig. 28B schematically show a liquid crystal display device 600 including a projection used as a spacer, wherein Fig. 28A is a plan view, and Fig. 28B is a cross-sectional view taken along line 28B-28B' of Fig. 28A. 86289 - 67 - 1275886 FIG. 29A to FIG. 29C are schematic cross-sectional views of one of the image element regions of the liquid crystal display device 600, wherein the system shown in FIG. 29A has no applied voltage, and the system shown in FIG. 29B The state at which the orientation is initially changed (initial 〇N state)' and the state shown in Fig. 29C are steady state. Figure 30 is a cross-sectional view schematically showing that the projecting vertical inclination angle having one side surface is substantially more than 9 Å with respect to the substrate. . Fig. 31 is a cross-sectional view schematically showing the use of different projections as a lining. Figure 32 is a plan view schematically showing another liquid crystal display device 6A according to a third embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 3 is a plan view schematically showing a liquid crystal display device 600B according to the present invention. Figure 34 is a plan view schematically showing a liquid crystal display device 600C according to the present invention. [Description of symbolic representation] 11 substrate 14 image element electrode 15 open area 21 glass substrate 22 counter electrode 23 dielectric layer 24 vertical alignment film 25 horizontal alignment film 26 horizontal alignment film 28 adjustment orientation junction 86289-68 - 1275886 30 Liquid crystal layer 40 Projection 41 Gate bus bar 42 Source bus bar 43 Storage capacitor line 100 Liquid crystal display device 200 Liquid crystal display device 300 Liquid crystal display device 400 Liquid crystal display device 500 Liquid crystal display device 600 Liquid crystal display device 1000 Liquid crystal display 100A liquid crystal display device 100a TFT substrate 100B liquid crystal display device 100b counter substrate 100C liquid crystal display device 100D liquid crystal display device 100E liquid crystal display device 100F liquid crystal display device 14a unit physical portion 200a TFT substrate 200A liquid crystal display device 200B liquid crystal display device

86289 -69 - 1275886 200C 液晶顯不裝置 200D 液晶顯不裝置 22a 開口 22b 突出部 23a 開口 300b 反基板 30a 液晶分子 40A 突出部 40B 突出部 40C 突出部 40D 突出部 40s 侧表面 40t 頂面 600A 液晶顯示裝置 600B 液晶顯示裝置 600C 液晶顯示裝置 D1 行方向 D2 歹1J方向 PI 元件區域 P2 元件區域 P3 元件區域 EQ 等位線 EG 邊緣部分 SA 中心 IB 線 IB’ 線 86289 -70 -86289 -69 - 1275886 200C Liquid crystal display device 200D Liquid crystal display device 22a Opening 22b Projection portion 23a Opening 300b Counter substrate 30a Liquid crystal molecule 40A Projection portion 40B Projection portion 40C Projection portion 40D Projection portion 40s Side surface 40t Top surface 600A Liquid crystal display device 600B liquid crystal display device 600C liquid crystal display device D1 row direction D2 歹1J direction PI element region P2 component region P3 component region EQ equipotential line EG edge portion SA center IB line IB' line 86289 -70 -

Claims (1)

I2758S6 拾、申請專利範圍: 1 · 一種液晶顯示裝置,包括: 一第一基板; 一第二基板;以及 一液晶層,位於該第—基板和該第二基板之間,其 複數個圖像元件區,各由位在接近該液晶層的第一基 板某-側上的第一電極以及位在第二基板上透過居間 的液晶層與該第一電極相對的第二電極所定義; 该弟-電極包括,在該複數個圖像元件區的每一區内 複數個以第-万向設置的單元實體部份,藉此該液晶 層在該第一電極和該第二電極之間未存在有施加電壓 争採取垂直對率’並藉由在複數個單元實體部份周圍產 生的傾斜電場而在第一電極的複數個單元實體部份中 形成複數個液晶域,以回應在第—電極和第三電極之間 施加的電壓’該複數個液晶域之每一個都採取放射狀傾 斜方位; 该稷數個圖像元件區被設置成一矩陣圖案,該圖案包 括以不同㈣第-方向的第二方向延伸的複數個列,以 及以該第一方向延伸的複數個行;以及 施加在該複數個圖像元件區中第一圖像元件區液晶 2上的私壓極性,不同於施加在該複數個圖像元件區中 =一圖像TL件區液晶層上的電壓極性,該第二圖像元件 區在每-圖框中與第_圖像元件區屬於同—列,並屬於 86289.DOC 1275886 鄰近第一圖像元件區所屬行的一行。 2.如申請專利範圍第1項之液晶鞀亍举罢 一 從日曰肩不裝置,其中複數個圖 像兀件區中每一區的形狀,其長 、 衣度万向由罘一万向足義 ’而寬度方向由第二方向定義。 3 ·如申請專利範圍第1項之、冷曰% 一# 固矛又,夜日日頭不裝置,其中施加在屬 於複數個圖像元件區豆中一 ^ Τ 仃的複數個圖像元件區中 的液晶層的電壓極性,在矣一 在母圖框中,每η列(其中η、! 或以上的整數)反轉一次。 4·如"青專利|S圍第!項之液晶顯示裝置,其中施加在第 -圖像兀件區液晶層上的電壓極性,不同於施加在第三 圖像兀件區的電壓極性,第三圖像元件區在每—圖框中 人第圖像元件區屬於相同的行,且屬於鄰近第一圖像 元件區所屬列的一列。 5. 如申請專利範園第1項之液晶顯示裝置,其中每一個複 數個單元實體部份的形狀都具有旋轉對稱。 6. 如申^專利範圍第W之液晶顯示裝置,其中每-個複 數個早7G實體部份都具有一般圓形的形狀。 申明專利範圍第5項之液晶顯示裝置,其中每-個複 數個早7L貫體部份都具有帶有一般弧形隅角部份的一 般矩形的形狀。 々申叫專利範圍第5J貝之液晶顯示裝置,其中每一個複 數個單元實體部份都具有帶有銳角隅角的形狀。 9.如申請專利範圍第1項之液晶顯帝装置’其中該第二基 86289.DOC 1275886 板包括,在對應到至少複數個液晶域之_的區域中,一 施加調整方位力的調整方位結構,至少在存在有施加電 壓時’用於使至少—液晶域中的液晶分予朝向放射狀傾 斜的方位。 10.如申請專利範圍第9項之液晶顯示裝置,其中鄰近至少 一液晶域中心的區域中提供有調整方位結構。 Π.如申請專利範圍第9項之液晶顯示裝置,其中調整方位 結構施加調整方位的力,用於使液晶分子即使在未存在 有施加電壓時仍能朝向放射狀傾斜方位。 12·如申請專利範圍第n項之液晶顯示裝置,其中該調整方 位結構是從第二基板突出至液晶層的一第一突出部。 13.如申明專利|巳圍第12項之液晶顯示裝置,其中該液晶層 的厚度由從第二基板突出至液晶層的第一突出部所定 義。 14·如申請專利範圍第1項之液晶顯示裝置,其中·· 該第一基板包括複數個不與第一電極重疊的開放區 ;以及 田在第私極和第二電極間施加一電壓時,液晶層在 傾斜電場旁的複數個開放區中形成複數個額外的液晶 戍每一個頜外的液晶域都採取放射狀傾斜方位。 浚申叫專利範圍第14項之液晶顯示裝置,其中至少一些 複放個開放區實質上具有相同的形狀和實質上相同的 大小’因此形成對準為具有旋轉對稱的複數個單元晶 格0 86289 1275886 1 6.如申請專利範圍第1 5項之液晶顯示裝置,其中至少一些 複數個開放區的每一個的形狀都具有旋轉對稱。 17.如申請專利範圍第15項之液晶顯示裝置,其中至少一些 複數個開放區的每一個都具有一般圓形的形狀。 18·如申請專利範圍第14項之液晶顯示裝置,進一步包括一 第一哭出邵,位於第一基板的每一個複數個開放區内, 其中該突出部的侧表面,針對液晶層的液晶分子施加與 傾斜電場旁的方位調整方向相同的調整方位力。 1 9.如申請專利範圍第1項之液晶顯示裝置,其中: 該第一基板進一步包括複數個轉換元件,分別提供給 複數個圖像元件區;以及 該第一電極包括複數個圖像元件電極,分別提供給複 數個圖像元件區,並分別由轉換元件轉換,且該第二電 極至少是一與複數個圖像元件電極相反的反電極。 86289I2758S6 pick-up, patent application scope: 1 · A liquid crystal display device, comprising: a first substrate; a second substrate; and a liquid crystal layer between the first substrate and the second substrate, the plurality of image elements a region, each of which is defined by a first electrode located on a certain side of the first substrate adjacent to the liquid crystal layer and a second electrode positioned on the second substrate opposite to the first electrode through the intermediate liquid crystal layer; The electrode includes a plurality of unit entities disposed in a unidirectional direction in each of the plurality of image element regions, whereby the liquid crystal layer does not exist between the first electrode and the second electrode Applying a voltage to take a vertical pairing rate' and forming a plurality of liquid crystal domains in a plurality of unit solid portions of the first electrode by an oblique electric field generated around a plurality of unit solid portions in response to the first electrode and the first a voltage applied between the three electrodes' each of the plurality of liquid crystal domains adopts a radial tilt orientation; the plurality of image element regions are arranged in a matrix pattern including different (four) first-square a plurality of columns extending in a second direction, and a plurality of rows extending in the first direction; and a private voltage polarity applied to the liquid crystal 2 of the first image element region in the plurality of image element regions, different from Applying a voltage polarity on the liquid crystal layer of the image TL region in the plurality of image element regions, the second image device region being in the same column as the _image component region in each frame, and It belongs to 86289.DOC 1275886 is adjacent to a row of the row to which the first image element area belongs. 2. If the liquid crystal 鼗亍 鼗亍 申请 申请 申请 申请 申请 申请 申请 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍 鼗亍The meaning of the foot is 'the width direction is defined by the second direction. 3 ·If the patent application scope is the first item, the cold-stained%-one fixed-spray, and the night sun is not installed, which is applied to a plurality of image element areas belonging to a plurality of image element areas. The voltage polarity of the liquid crystal layer in the middle is inverted every n columns (where n, ! or above) in the parent frame. 4. The liquid crystal display device of the present invention, wherein the polarity of the voltage applied to the liquid crystal layer of the first image element is different from the polarity of the voltage applied to the third image element region. The third image element area belongs to the same row in each of the human image element areas, and belongs to a column adjacent to the column to which the first image element area belongs. 5. The liquid crystal display device of claim 1, wherein each of the plurality of unit solid portions has a shape of rotational symmetry. 6. The liquid crystal display device of claim W, wherein each of the plurality of early 7G solid portions has a generally circular shape. The liquid crystal display device of claim 5, wherein each of the plurality of early 7L portions has a generally rectangular shape with a generally curved corner portion.液晶 々 々 々 专利 专利 专利 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 液晶 液晶 液晶 液晶9. The liquid crystal display device of claim 1, wherein the second base 86289.DOC 1275886 plate includes an adjusted orientation structure for applying an adjusted orientation force in a region corresponding to at least a plurality of liquid crystal domains. At least in the presence of an applied voltage, 'used to cause at least the liquid crystal in the liquid crystal domain to be oriented obliquely toward the radial direction. 10. The liquid crystal display device of claim 9, wherein the adjusted orientation structure is provided in a region adjacent to at least a center of the liquid crystal domain. The liquid crystal display device of claim 9, wherein the adjustment of the orientation structure exerts a force for adjusting the orientation for causing the liquid crystal molecules to be oriented in a radial tilt direction even when no applied voltage is present. 12. The liquid crystal display device of claim n, wherein the adjustment structure is a first protrusion protruding from the second substrate to the liquid crystal layer. 13. The liquid crystal display device of claim 12, wherein the thickness of the liquid crystal layer is defined by a first protrusion protruding from the second substrate to the liquid crystal layer. 14. The liquid crystal display device of claim 1, wherein the first substrate comprises a plurality of open regions that do not overlap with the first electrode; and when a voltage is applied between the first private electrode and the second electrode, The liquid crystal layer forms a plurality of additional liquid crystals in a plurality of open regions beside the oblique electric field. Each of the liquid crystal domains outside the jaw takes a radial tilting orientation. The liquid crystal display device of claim 14, wherein at least some of the open areas have substantially the same shape and substantially the same size 'thus forming a plurality of unit cells aligned with rotational symmetry 0 86289 The liquid crystal display device of claim 15, wherein each of the at least some of the plurality of open regions has a shape of rotational symmetry. 17. The liquid crystal display device of claim 15, wherein at least some of the plurality of open regions each have a generally circular shape. 18. The liquid crystal display device of claim 14, further comprising a first crying, located in each of the plurality of open regions of the first substrate, wherein a side surface of the protrusion, liquid crystal molecules for the liquid crystal layer The same orientation force is applied as the direction of the azimuth adjustment next to the oblique electric field. The liquid crystal display device of claim 1, wherein: the first substrate further comprises a plurality of conversion elements respectively provided to the plurality of image element regions; and the first electrode comprises a plurality of image element electrodes And respectively provided to the plurality of image element regions, and respectively converted by the conversion elements, and the second electrode is at least a counter electrode opposite to the plurality of image element electrodes. 86289
TW092117124A 2002-06-24 2003-06-24 Liquid crystal display device TWI275886B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183427A JP4030362B2 (en) 2002-06-24 2002-06-24 Liquid crystal display

Publications (2)

Publication Number Publication Date
TW200410026A TW200410026A (en) 2004-06-16
TWI275886B true TWI275886B (en) 2007-03-11

Family

ID=31179651

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092117124A TWI275886B (en) 2002-06-24 2003-06-24 Liquid crystal display device

Country Status (4)

Country Link
JP (1) JP4030362B2 (en)
KR (1) KR100507586B1 (en)
CN (1) CN1239951C (en)
TW (1) TWI275886B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091229A (en) * 2004-09-22 2006-04-06 Sharp Corp Liquid crystal display
JP4604645B2 (en) * 2004-10-22 2011-01-05 セイコーエプソン株式会社 Liquid crystal display device and electronic device
JP2007133054A (en) * 2005-11-09 2007-05-31 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device
KR101430610B1 (en) * 2006-09-18 2014-09-23 삼성디스플레이 주식회사 Liquid crystal display panel and method for manufacturing the same.
JP2011215480A (en) * 2010-04-01 2011-10-27 Stanley Electric Co Ltd Liquid crystal display device
KR102132778B1 (en) * 2013-10-25 2020-07-13 삼성디스플레이 주식회사 Liquid crystal display device
KR102129569B1 (en) * 2013-11-26 2020-07-03 삼성디스플레이 주식회사 Liquid crystal display device
CN114815357A (en) * 2018-06-22 2022-07-29 群创光电股份有限公司 Electronic modulation device

Also Published As

Publication number Publication date
TW200410026A (en) 2004-06-16
JP4030362B2 (en) 2008-01-09
KR100507586B1 (en) 2005-08-10
CN1239951C (en) 2006-02-01
CN1477428A (en) 2004-02-25
JP2004029241A (en) 2004-01-29
KR20040000344A (en) 2004-01-03

Similar Documents

Publication Publication Date Title
TWI258617B (en) Liquid crystal display device
TWI232330B (en) Liquid crystal display device
US7292300B2 (en) Liquid crystal display with radially-inclined liquid crystal in unit solid portions arranged in a single direction
JP3601786B2 (en) Liquid crystal display
US7379137B2 (en) Liquid crystal display device
TWI307425B (en) Liquid crystal display device
US7791676B2 (en) Liquid crystal display device
TW581921B (en) Liquid crystal display device
TWI275886B (en) Liquid crystal display device
JP2006091229A (en) Liquid crystal display
JP4347144B2 (en) Liquid crystal display
JP4111929B2 (en) Liquid crystal display
JP3931987B2 (en) Liquid crystal display
JP4651337B2 (en) Liquid crystal display device
JP4255429B2 (en) Liquid crystal display
JP5096601B2 (en) Liquid crystal display
JP4215562B2 (en) Liquid crystal display
JP4703145B2 (en) Liquid crystal display
JP4837269B2 (en) Liquid crystal display
JP2005018098A (en) Liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees