TW581921B - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TW581921B
TW581921B TW091134464A TW91134464A TW581921B TW 581921 B TW581921 B TW 581921B TW 091134464 A TW091134464 A TW 091134464A TW 91134464 A TW91134464 A TW 91134464A TW 581921 B TW581921 B TW 581921B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
picture element
openings
alignment
electrode
Prior art date
Application number
TW091134464A
Other languages
Chinese (zh)
Other versions
TW200302383A (en
Inventor
Masumi Kubo
Kiyoshi Ogishima
Takashi Ochi
Keizoh Watanabe
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200302383A publication Critical patent/TW200302383A/en
Application granted granted Critical
Publication of TW581921B publication Critical patent/TW581921B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A first substrate includes, on one side thereof that is closer to a liquid crystal layer, a picture element electrode provided for each picture element region, a switching element, and a bus line. A second substrate includes a counter electrode opposing the picture element electrode. The picture element electrode includes a plurality of openings and a solid portion that includes a plurality of unit solid portions. In each picture element region, the liquid crystal layer takes a vertical alignment in the absence of an applied voltage, and forms a plurality of liquid crystal domains, each of which takes a radially-inclined orientation, in the plurality of openings and the solid portion by inclined electric fields produced at respective edge portions of the plurality of openings of the picture element electrode in response to an applied voltage. In each picture element region, at least one of the plurality of openings of the picture element electrode that is located along the bus line and located between two adjacent ones of the plurality of unit solid portions is superposed on the bus line.

Description

581921 ⑴ 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 發明背景 1 .技術領域 本發明係關於一種液晶顯示裝置,更明確地說,係關於 一種具廣視角特徵且能夠產生高品質顯示的液晶顯示裝 置。 2 .先前技術 近年來,輕薄型的液晶顯示裝置已經被使用於個人電腦 顯示器及P D A (個人數位助理)顯示器中。不過,慣用的扭 轉向列(TN)型及超扭轉向列(STN)型的液晶顯示裝置的視 角都非常窄。目前已經有人著手進行各種技術研發來解決 該項問題。 用以改良TN或STN型的液晶顯示裝置的視角的典型技 術便是於其中加入光補償板。另一種方式則是採用橫向電 場模式,其中係在整個液晶層中施加相對於該基板平面為 水平的電場。近年來,橫向電場模式的液晶顯示裝置已經 成為眾所矚目的焦點,並且被大量製造。還有一種技術則 是採用DAP (垂直排列相變形)模式,其中係以具有負誘電 各向異性的向列型液晶材料作為液晶材料,並且以垂直排 列膜作為排列膜。這係一種ECB (電控雙折射)模式,其中 該透射率係由液晶模組的雙折射來控制。 雖然橫向電場模式係一種改良視角的有效方式,但是與 一般的TN型裝置比較起來,其製程的製造容限值非常的 低,所以無法穩定地製造該裝置。這係因為顯示器亮度或 對比會明顯地受到該等基板間的間隙的影響,或會明顯地 581921 (2) I發明說明績頁 受到偏光板的透光軸(偏光轴)相對於該等液晶模組之配 向軸的偏移的影響。其需要在技術上作進一步的研發,方 能精確地控制該些因素,以便穩定地製造該裝置。 為能夠利用D A P模式的液晶顯示裝置來實現均勻顯示 的目的而不會顯示出不均勻的結果,必須進行排列控制。 舉例來說,藉由摩擦對排列膜表面進行排列處理便能夠進 行排列控制。不過,對垂直排列膜進行摩擦處理時,非常容 易在顯示影像中出現摩擦條紋,因此並不適合大量製造。 先前技術中所提出的另外一種不使用摩擦處理便能進 行排列控制的方式是在電極中形成狹縫(開孔),以便產生 傾斜電場,並且利用該傾斜電場控制該等液晶模組的配向 (例如,日本專利特許公開申請案第6-301036及2000-47217 號)。不過,本案發明人詳讀該些公開申請案之後發現, 在其該些已經揭示的方法中,並未定義相對於該電極之開 孔的該液晶層之區域中的配向,所以該等液晶模組的配向 無法充分地連續,並且難以在每個圖像元素中都達到穩定 配向的目的,因而會造成不均勻的顯示。 有鑑於此,包含部分本案發明人在内的研發機構便提出 另一種方式(日本專利申請案第2000-244648號),其中會在 透過其間的液晶層彼此相對放置的一對基板中的其中一 個基板上,構成具有數個開孔及一實體部的預設電極結構 ,因此,藉由該等開孔的個別邊緣部分處所產生的傾斜電 場,便可在該等開孔及該實體部中構成複數個液晶域,每 個液晶域都係呈現放射狀傾斜配向。 581921 (3) 發明說明績頁 不過,本案發明人發現,僅藉由本專利申請案中所揭示 的電極結構,並無法充分地改良顯示品質。這係因為匯流 排線(本文中,「匯流排線」一詞係用以統稱互連線路) 邊緣附近所產生的電場所施加的配向調整力量不匹配該 開孔邊緣部分所產生的傾斜電場所施加的配向調整力量。 發明内容 本發明可解決先前技術中問題,並且其目的係提供一種 具廣視角特徵且能夠產生高度顯示品質的液晶顯示裝置。 本發明的液晶顯示裝置包括一第一基板、一第二基板、 *^位於該弟·^基板及該弟二基板之間的液晶層,以及用於 顯示的複數個圖像元素區,其中:該第一基板包括位於其 接近該液晶層的一側之上供每個該等複數個圖像元素區 使用的圖像元素電極、一電氣連接至該圖像元素電極的切 換元件,以及一包括電氣連接至該切換元件的閘極匯流排 線及源極匯流排線在内的匯流排線;該第二基板包括一藉 由該液晶層放置在該圖像元素電極對面的反電極;該圖像 元素電極包括複數個開孔,以及一具有複數個單元實體部 的實體部;在每個該等複數個圖像元素區中,該液晶層會 在未施加電壓於該圖像元素電極及該反電極之間時形成 垂直排列,並且當施加電壓於該圖像元素電極及該反電極 之間後,其便會因為該圖像元素電極之該等複數個開孔的 個別邊緣部分處所產生的傾斜電場,而響應於該等複數個 開孔及該實體部中構成複數個液晶域,每個該等複數個液 晶域都係呈現放射狀傾斜配向,而且每個該等複數個液晶 581921 (4) 發明說明續頁 域的配向都可根據所施加的電壓而改變,從而進行顯示; 以及在每個該等複數個圖像元素區中,該圖像元素電極之 該等複數個開孔中至少其中一個開孔(位於該匯流排線中 的開孔及位於該等複數個單元實體部中兩個相鄰的單元 實體部之間的開孔)會與該匯流排線重疊。因此,便可達 成前述的目的。 本發明的另一種液晶顯示裝置包括一第一基板、一第二 基板、一位於該第一基板及該第二基板之間的液晶層,以 及用於顯示的複數個圖像元素區,其中:該第一基板包括 位於其接近該液晶層的一側之上供每個該等複數個圖像 元素區使用的圖像元素電極、一電氣連接至該圖像元素電 極的切換元件,以及一包括電氣連接至該切換元件的閘極 匯流排線及源極匯流排線在内的匯流排線;該第二基板包 括一藉由該液晶層放置在該圖像元素電極對面的反電極 ;該圖像元素電極包括複數個開孔,以及一具有複數個單 元實體部(每個都會被至少部分該等複數個開孔包圍)的 實體部;該液晶層會在未施加電壓於該圖像元素電極及該 反電極之間時形成垂直排列;以及在每個該等複數個圖像 元素區中,該圖像元素電極之該等複數個開孔中至少其中 一個開孔(位於該匯流排線中的開孔及位於該等複數個單 元實體部中兩個相鄰的單元實體部之間的開孔)會與該匯 流排線重疊。因此,便可達成前述的目的。 較佳的係,與該匯流排線重疊的該至少一個開孔至少包 括一位於該閘極匯流排線中的開孔。 581921 (5) I發明說明續頁 位於該閘極匯流排線中之該圖像元素電極的部分該等 複數個開孔會與該匯流排線重疊。 與該匯流排線重疊的該至少一個開孔進一步包括一位 於該源極匯流排線中的開孔。 較佳的係,至少部分該等複數個開孔實質上具有相同的 形狀且實質上具有相同的尺寸,並且會構成具旋轉對稱排 列的至少一個單元晶格。581921 发明 发明, description of the invention (the description of the invention should state: the technical field to which the invention belongs, the prior art, the content, the embodiments, and the simple description of the drawings) BACKGROUND OF THE INVENTION 1. TECHNICAL FIELD The present invention relates to a liquid crystal display device. That is, it relates to a liquid crystal display device with a wide viewing angle characteristic and capable of producing a high-quality display. 2. Prior art In recent years, thin and light liquid crystal display devices have been used in personal computer displays and PDA (Personal Digital Assistant) displays. However, the conventional twisted nematic (TN) type and super twisted nematic (STN) type liquid crystal display devices have very narrow viewing angles. Various technologies have been developed to solve this problem. A typical technique for improving the viewing angle of a TN or STN type liquid crystal display device is to add a light compensation plate thereto. Another method is to use a transverse electric field mode, in which an electric field that is horizontal with respect to the plane of the substrate is applied throughout the liquid crystal layer. In recent years, a liquid crystal display device in a lateral electric field mode has become the focus of much attention and has been mass-produced. Another technique is to use DAP (Vertical Alignment Phase Deformation) mode, in which a nematic liquid crystal material with negative induced anisotropy is used as the liquid crystal material, and a vertical alignment film is used as the alignment film. This is an ECB (electrically controlled birefringence) mode, where the transmittance is controlled by the birefringence of the liquid crystal module. Although the lateral electric field mode is an effective way to improve the viewing angle, compared with the general TN type device, the manufacturing tolerance value of the process is very low, so the device cannot be stably manufactured. This is because the brightness or contrast of the display will be significantly affected by the gap between these substrates, or it may be significantly 581921 (2) I Invention Description The page is affected by the transmission axis (polarization axis) of the polarizing plate with respect to these liquid crystal modes. The effect of the misalignment of the alignment axis. It requires further technological development to accurately control these factors in order to stably manufacture the device. In order to be able to use the liquid crystal display device of the D A P mode to achieve the purpose of uniform display without displaying uneven results, it is necessary to perform alignment control. For example, alignment control can be performed by aligning the surface of the alignment film by rubbing. However, when the rubbing treatment is performed on the vertically aligned film, it is very easy for rubbing streaks to appear in the display image, so it is not suitable for mass production. Another method proposed in the prior art that can perform alignment control without using friction treatment is to form slits (openings) in the electrodes to generate a tilted electric field, and use the tilted electric field to control the alignment of the liquid crystal modules ( (For example, Japanese Patent Laid-open Application Nos. 6-301036 and 2000-47217). However, the inventor of the present case, after reading the published applications, found that in the disclosed methods, the orientation in the region of the liquid crystal layer with respect to the openings of the electrode was not defined. The alignment of the group cannot be sufficiently continuous, and it is difficult to achieve the purpose of stable alignment in each picture element, which will cause uneven display. In view of this, R & D institutions including some of the inventors of this case have proposed another method (Japanese Patent Application No. 2000-244648), in which one of a pair of substrates placed opposite each other through a liquid crystal layer therebetween On the substrate, a preset electrode structure having a plurality of openings and a solid portion is formed. Therefore, the inclined electric field generated at the individual edge portions of the openings can be formed in the openings and the solid portion. A plurality of liquid crystal domains, each of which exhibits a radial oblique alignment. 581921 (3) Summary sheet of the invention However, the inventor of the present invention found that the display quality cannot be sufficiently improved only by the electrode structure disclosed in this patent application. This is because the busbar (herein, the term “busbar” is used to collectively refer to the interconnection line). The alignment adjustment force applied by the electric field generated near the edge does not match the inclined electric field generated by the edge portion of the opening. Applied alignment adjustment force. SUMMARY OF THE INVENTION The present invention can solve the problems in the prior art, and an object thereof is to provide a liquid crystal display device having a wide viewing angle feature and capable of producing a high display quality. The liquid crystal display device of the present invention includes a first substrate, a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a plurality of image element regions for display, wherein: The first substrate includes a picture element electrode located on a side close to the liquid crystal layer for each of the plurality of picture element regions, a switching element electrically connected to the picture element electrode, and a The second busbar including a gate busbar and a source busbar electrically connected to the switching element; the second substrate includes a counter electrode placed opposite to the picture element electrode through the liquid crystal layer; the figure The image element electrode includes a plurality of openings, and a solid portion having a plurality of unit solid portions; in each of the plurality of image element regions, the liquid crystal layer will apply voltage to the image element electrode and the A vertical arrangement is formed between the counter electrodes, and when a voltage is applied between the picture element electrode and the counter electrode, it will be caused by the individual edge portions of the plurality of openings of the picture element electrode. The generated oblique electric field is responsive to the plurality of openings and the plurality of liquid crystal domains formed in the solid part. Each of the plurality of liquid crystal domains exhibits a radial oblique alignment, and each of the plurality of liquid crystals 581921 (4) Description of the invention The orientation of the continuation page fields can be changed according to the applied voltage for display; and in each of the plurality of picture element regions, the plurality of openings of the picture element electrode At least one of the openings (the openings in the busbar and the openings between two adjacent unit solid parts of the plurality of unit solid parts) will overlap the busbar. Therefore, the aforementioned purpose can be achieved. Another liquid crystal display device of the present invention includes a first substrate, a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a plurality of image element regions for display, wherein: The first substrate includes a picture element electrode located on a side close to the liquid crystal layer for each of the plurality of picture element regions, a switching element electrically connected to the picture element electrode, and a The second busbar includes a gate busbar and a source busbar electrically connected to the switching element; the second substrate includes a counter electrode placed on the opposite side of the picture element electrode through the liquid crystal layer; the figure The image element electrode includes a plurality of openings, and a solid portion having a plurality of unit solid portions (each of which is surrounded by at least a part of the plurality of openings); the liquid crystal layer will be applied to the image element electrode without applying a voltage. And the counter-electrode form a vertical arrangement; and in each of the plurality of picture element regions, at least one of the plurality of openings of the picture element electrode (located in Such units located in a plurality of entities portion between two adjacent openings the busbar section line unit entities and aperture) overlap the busbars line. Therefore, the aforementioned purpose can be achieved. Preferably, the at least one opening that overlaps the busbar includes at least one opening in the gate busbar. 581921 (5) I Description of the Invention Continued The plurality of openings of the picture element electrode located in the gate busbar will overlap the busbar. The at least one opening that overlaps the busbar further includes an opening in the source busbar. Preferably, at least some of the plurality of openings have substantially the same shape and substantially the same size, and will form at least one unit lattice with a rotationally symmetrical arrangement.

較佳的係,每個至少部分該等複數個開孔的形狀具旋轉 對稱。 每個至少部分該等複數個開孔可能具一般的圓形形狀。 每個該等複數個單元實體部可能具一般的圓形形狀。 較佳的係,在每個該等複數個圖像元素區中,該圖像元 素電極的複數個開孔的總面積小於該圖像元素電極的實 體部的面積。Preferably, each of the plurality of openings is rotationally symmetrical in shape. Each of these plurality of openings may have a generally circular shape. Each of these plurality of unit solid parts may have a generally circular shape. Preferably, in each of the plurality of picture element regions, a total area of the plurality of openings of the picture element electrode is smaller than an area of a solid portion of the picture element electrode.

該液晶顯示裝置可能進一步包括一位於每個該等複數 個開孔中的突出部,該突出部於第一基板之平面中的剖面 形狀與該等複數個開孔的平面的剖面形狀相同;該突出部 的側面具有一配向調整力量,其相對於該液晶層之液晶模 組的方向與該傾斜電場所造成的配向調整方向相同。 還有另一種液晶顯示裝置,其包括一第一基板、一第二 基板、一位於該第一基板及該第二基板之間的液晶層,以 及用於顯示的複數個圖像元素區,其中:該第一基板包括 位於其接近該液晶層的一侧之上供每個該等複數個圖像 元素區使用的圖像元素電極,一電氣連接至該圖像元素電 -10- 581921 (6) 發明說明續頁 極的切換元件,以及一包括電氣連接至該切換元件的閘極 匯流排線及源極匯流排線在内的匯流排線;該第二基板包 括一藉由該液晶層放置在該圖像元素電極對面的反電極 ;該圖像元素電極包括複數個開孔以及一實體部;在每個 該等複數個圖像元素區中,該液晶層會在未施加電壓於該 圖像元素電極及該反電極之間時形成垂直排列,並且當施 加電壓於該圖像元素電極及該反電極之間後,其便會因為 該圖像元素電極之該等複數個開孔的個別邊緣部分處所 產生的傾斜電場’而響應调整該液晶層的配向,以及在每 個該等複數個圖像元素區中,該閘極匯流排線的邊緣及該 源極匯流排線的邊緣中至少其中一個會被該圖像元素電 極的實體部覆蓋。因此,便可達成前述的目的。 較佳的係,在每個該等複數個圖像元素區中,至少該閘 極匯流排線的邊緣會被該圖像元素電極的實體部覆蓋。 在每個該等複數個圖像元素區中,該閘極匯流排線的邊 緣及該源極匯流排線的邊緣可能都會被該圖像元素電極 的實體部覆蓋。 該圖像元素電極的實體部可能包括複數個單元實體部 :以及在每個該等複數個圖像元素區中,當施加電壓於該 圖像元素電極及該反電極之間後,其便會因為該圖像元素 電極之複數個開孔的個別邊緣部分處所產生的傾斜電場 ,而響應於該等複數個開孔及該實體部中構成複數個液晶 域,每個該等複數個液晶域都係呈現放射狀傾斜配向,而 且每個該等複數個液晶域的配向都可根據所施加的電壓 581921 ⑺ 發明說明續頁 而改變,從而進行顯示。 在每個該等複數個圖像元素區中,該圖像元素電極之該 等複數個開孔中至少其中一個開孔(位於該匯流排線中的 開孔及位於該等複數個單元實體部中兩個相鄰的單元實 體部之間的開孔)會與該匯流排線重疊。 當施加電壓於該圖像元素電極及該反電極之間後,該液 晶層可藉由該傾斜電場在位於該匯流排線中的一部份實 體部中構成一液晶域,該液晶域係呈現放射狀傾斜配向。 現在將說明本發明的功能。 在本發明的液晶顯示裝置中,用以施加電壓於每個圖像 元素區之液晶層上的圖像元素電極包括複數個開孔(沒有 導體膜的電極部分)及一實體部(該等開孔以外的電極部 分,也就是有導體膜的部分)。該實體部包括複數個單元 實體部,每個單元實體部實質上都被該等開孔包圍,而該 實體部一般都係由連續的導體膜所製成。該液晶層在未施 加電壓時形成垂直配向,但是施加電壓之後,其便會因為 該圖像元素電極之該等複數個開孔的個別邊緣部分處所 產生的傾斜電場’而構成複數個液晶域’每個液晶域都係 呈現放射狀傾斜配向。一般來說,該液晶層係由具有負誘 電各向異性的液晶材料所製成,並且該液晶層的配向可由 位於其對面側上的垂直排列膜來控制。 該等液晶域係由對應該圖像元素電極的開孔及該實體 部之區域中的傾斜電場所構成的,而且每個液晶域的配向 都可根據所施加的電壓而改變,從而進行顯示。因為每個 581921 ⑻ 發明說明績頁 液晶域都係呈軸對稱配向,所以幾乎不會有顯示品質的視 角依存性問題,因此可實現寬視角特徵。The liquid crystal display device may further include a protruding portion located in each of the plurality of openings, and a sectional shape of the protruding portion in a plane of the first substrate is the same as a sectional shape of a plane of the plurality of openings; the The side of the protruding portion has an alignment adjustment force, and its direction relative to the liquid crystal module of the liquid crystal layer is the same as the alignment adjustment direction caused by the inclined electric field. There is still another liquid crystal display device, which includes a first substrate, a second substrate, a liquid crystal layer located between the first substrate and the second substrate, and a plurality of image element regions for display, wherein : The first substrate includes a picture element electrode located on a side thereof close to the liquid crystal layer for each of the plurality of picture element regions, and an electrical connection is electrically connected to the picture element electrical-10- 581921 (6 ) DESCRIPTION OF THE INVENTION The switching element of the continuation pole and a busbar including a gate busbar and a source busbar electrically connected to the switching element; the second substrate includes a liquid crystal layer A counter electrode opposite to the picture element electrode; the picture element electrode includes a plurality of openings and a solid part; in each of the plurality of picture element regions, the liquid crystal layer will be A vertical arrangement is formed between the image element electrode and the counter electrode, and when a voltage is applied between the image element electrode and the counter electrode, it will be caused by the individualities of the plurality of openings of the image element electrode. Margin The oblique electric field generated in response to adjusting the alignment of the liquid crystal layer, and in each of the plurality of picture element regions, at least one of an edge of the gate bus line and an edge of the source bus line It will be covered by the solid part of the picture element electrode. Therefore, the aforementioned purpose can be achieved. Preferably, in each of the plurality of picture element regions, at least an edge of the gate bus bar will be covered by a solid portion of the picture element electrode. In each of the plurality of picture element regions, the edge of the gate bus bar and the edge of the source bus line may be covered by the solid part of the picture element electrode. The solid part of the picture element electrode may include a plurality of unit solid parts: and in each of the plurality of picture element regions, when a voltage is applied between the picture element electrode and the counter electrode, it will Because of the inclined electric field generated at the individual edge portions of the plurality of openings of the picture element electrode, in response to the plurality of openings and the plurality of liquid crystal domains formed in the solid portion, each of the plurality of liquid crystal domains is The system has a radial tilt alignment, and the alignment of each of the plurality of liquid crystal domains can be changed according to the applied voltage 581921 ⑺ Description of the continuation sheet of the invention to display. In each of the plurality of picture element regions, at least one of the plurality of openings of the picture element electrode (the opening in the bus bar and the plurality of unit solid parts) (The opening between the solid parts of two adjacent units in the middle) will overlap the bus line. When a voltage is applied between the picture element electrode and the counter electrode, the liquid crystal layer can form a liquid crystal domain in a part of the solid part located in the bus line by the inclined electric field. Radial tilt alignment. The function of the present invention will now be explained. In the liquid crystal display device of the present invention, the picture element electrode for applying a voltage to the liquid crystal layer of each picture element region includes a plurality of openings (electrode portions without a conductive film) and a solid portion (such openings The part of the electrode other than the hole, that is, the part with the conductive film). The solid part includes a plurality of unit solid parts, each of which is substantially surrounded by the openings, and the solid part is generally made of a continuous conductive film. The liquid crystal layer forms a vertical alignment when no voltage is applied, but after the voltage is applied, it will form a plurality of liquid crystal domains due to the inclined electric field 'at the individual edge portions of the plurality of openings of the picture element electrode'. Each liquid crystal domain exhibits a radial oblique alignment. Generally, the liquid crystal layer is made of a liquid crystal material having negative electro-anisotropy, and the alignment of the liquid crystal layer can be controlled by a vertical alignment film on the opposite side thereof. The liquid crystal domains are formed by the openings corresponding to the picture element electrodes and the inclined electric field in the region of the solid part, and the orientation of each liquid crystal domain can be changed according to the applied voltage to display. Because each 581921 发明 invention description page liquid crystal domain is axisymmetrically aligned, there is almost no viewing angle dependence of display quality, and a wide viewing angle feature can be achieved.

再者,對應於開孔的液晶域以及對應於實體部的液晶域 都係由該等開孔的邊緣部分處所產生的傾斜電場所構成 的,所以該些液晶域係以彼此相鄰交錯的圖案而構成的’ 而且其中一液晶域中的液晶模組配向與相鄰液晶域中的 液晶模組配向基本上係互相連續的。所以,形成於該開孔 中的液晶域與形成於該實體部中的另一相鄰液晶域之間 並不會構成向錯線,因此不會破壞顯示品質,而且該等液 晶模組的配向會非常穩定。Furthermore, the liquid crystal domains corresponding to the openings and the liquid crystal domains corresponding to the solid parts are formed by the inclined electric field generated at the edge portions of the openings, so the liquid crystal domains are in a pattern staggered next to each other And the formation of the liquid crystal module alignment in one of the liquid crystal domains and the liquid crystal module alignment in the adjacent liquid crystal domains are basically continuous with each other. Therefore, the liquid crystal domain formed in the opening and another adjacent liquid crystal domain formed in the solid part will not form misalignment lines, so the display quality will not be damaged, and the alignment of the liquid crystal modules Will be very stable.

在本發明的液晶顯示裝置中,該等液晶模組不僅在對應 該圖像元素電極的實體部之區域中呈放射狀傾斜配向,在 對應該其開孔之區域中亦呈放射狀傾斜配向。與上述慣用 的液晶顯示裝置比較起來,此種液晶顯示裝置在該等液晶 模組配向的連續性比較高,同時可實現非常穩定的配向, 因此能夠獲得非常均勾的顯示而不會顯示出不均勾的結 果。明確地說,為實現令人滿意的響應特徵(高響應速度) ,用以控制該等液晶模組配向的傾斜電場必須作用於大量 的液晶模組中。為達此目的,必須形成大量的開孔(邊緣 部分)。在本發明的液晶顯示裝置中,會針對每個開孔形 成一具穩定放射狀傾斜配向的液晶域。所以,即使必須形 成大量的開孔以改良響應特徵,仍然可以避免損及顯示品 質(出現顯示不均勻的結果)。 不過,僅藉由提供如上所述的電極結構,並無法充分地 -13- 581921 (9) 發明說明續頁 改良顯示品質,其係取決於該圖像元素電極之該等開孔與 該匯流排線(一群互連線路)的邊緣之間的位置關係。In the liquid crystal display device of the present invention, the liquid crystal modules are not only radially inclined in the region corresponding to the solid portion of the picture element electrode, but also radially inclined in the region corresponding to the opening. Compared with the above-mentioned conventional liquid crystal display device, such a liquid crystal display device has relatively high continuity in the alignment of the liquid crystal modules, and at the same time, it can achieve a very stable alignment, so it can obtain a very uniform display without displaying unbalance Hooked results. Specifically, in order to achieve satisfactory response characteristics (high response speed), the tilted electric field used to control the alignment of these liquid crystal modules must be applied to a large number of liquid crystal modules. To achieve this, a large number of openings (edge portions) must be formed. In the liquid crystal display device of the present invention, a liquid crystal domain having a stable radial oblique alignment is formed for each opening. Therefore, even if a large number of openings must be formed to improve the response characteristics, it is still possible to avoid damage to the display quality (uneven display results). However, only by providing the electrode structure as described above, -13- 581921 (9) description of the invention can not sufficiently improve the display quality, which depends on the openings of the picture element electrode and the bus bar The positional relationship between the edges of a line (a group of interconnected lines).

因為必須在該液晶顯示裝置的匯流排線上施加用以驅 動該液晶顯示裝置的預設信號(電壓),所以必須在該匯流 排線及該反電極之間產生電場。因此,會在該匯流排線邊 緣附近產生傾斜電場。不過,該傾斜電場所造成的配向調 整力量並不匹配該開孔邊緣部分所產生的傾斜電場所造 成的配向調整力量。所以,如果形成於位於該匯流排線中 的開孔内的液晶域受到該匯流排線邊緣附近所產生傾斜 電場所造成的配向調整力量的作用時,該液晶域的配向便 會受到干擾,因而形成扭曲的放射狀傾斜配向。再者,因 為鄰近的液晶域有維持其配向連續性的傾向,所以該配向 干擾也會影響到鄰近液晶域(也就是,鄰近單元實體部的 液晶域)的配向。因此,每個鄰近單元實體部的液晶域配 向便都會受到干擾。Since a predetermined signal (voltage) for driving the liquid crystal display device must be applied to the bus line of the liquid crystal display device, an electric field must be generated between the bus line and the counter electrode. Therefore, an inclined electric field is generated near the edge of the bus line. However, the alignment adjustment force caused by the inclined electric field does not match the alignment adjustment force caused by the inclined electric field generated by the edge portion of the opening. Therefore, if the liquid crystal domain formed in the opening in the bus line is affected by the alignment adjustment force caused by the inclined electric field generated near the edge of the bus line, the alignment of the liquid crystal domain will be disturbed, so A twisted radial tilt alignment is formed. Furthermore, because adjacent liquid crystal domains tend to maintain their alignment continuity, this alignment interference will also affect the alignment of adjacent liquid crystal domains (ie, liquid crystal domains near the solid part of the cell). Therefore, the alignment of the liquid crystal domain of the solid part of each adjacent cell will be disturbed.

在因為其受干擾的配向而呈現扭曲的放射狀傾斜配向 的液晶域中,其配向相當不穩定而且容易瓦解,因此在施 加電壓之後5其需要很長的時間方能讓此類液晶域的配向 達到穩定狀態。因此,上述的配向干擾將會降低響應速度 (破壞響應特徵)。 再者,圖像元素區中每個液晶域都會達到此扭曲的放射 狀傾斜配向的穩定狀態,其中該配向已經受到干擾,而且 每個圖像元素區中受到干擾的配向都不相同。所以會發生 殘影的現象,其中在輸入影像切換信號之後,前面所顯示 -14- 581921 (ίο) 發明說明績頁In the liquid crystal domain, which exhibits a distorted radial tilted alignment due to its disturbed alignment, its alignment is quite unstable and easily disintegrated. Therefore, it takes a long time after the voltage is applied to allow the alignment of such liquid crystal domains. Reached steady state. Therefore, the above-mentioned alignment interference will reduce the response speed (destroying response characteristics). Furthermore, each liquid crystal domain in the picture element area will reach the stable state of this distorted radial tilt alignment, where the orientation has been disturbed, and the disturbed orientation in each picture element area is different. Therefore, the phenomenon of afterimage will occur, in which after the image switching signal is input, the previously shown -14- 581921 (ίο) invention description page

的影像卻仍然存在。這係因為如果不同圖像元素區中的液 晶層配向都不相同的話,那麼不同圖像元素區中的透射率 也會不同。明確地說,從白色顯示轉換成中間灰階顯示的 圖像元素區與從黑色顯示轉換成中間灰階顯示的圖像元 素區之間的液晶層配向會有顯著的差異,而此等圖像元素 區之間的透射率的差異便很可能導致殘影現象。其原因如 下。在白色顯示中,在開孔邊緣部分處所產生的傾斜電場 會施加非常強的配向調整力量,所以該液晶層的配向非常 穩定。所以,即使轉換成中間灰階顯示之後,該液晶層的 配向仍然非常穩定。相反地,當從黑色顯示轉換成中間灰 階顯示時,因為在開孔邊緣部分處所產生的傾斜電場所造 成的配向調整力量非常微弱,所以該液晶層的配向相當容 易瓦解。The images are still there. This is because if the alignment of the liquid crystal layer in different picture element regions is different, the transmittance in different picture element regions will also be different. Specifically, there is a significant difference in the alignment of the liquid crystal layer between the image element area converted from white display to intermediate grayscale display and the image element area converted from black display to intermediate grayscale display, and these images The difference in transmittance between the element regions is likely to cause an afterimage phenomenon. The reason is as follows. In a white display, the oblique electric field generated at the edge portion of the opening will apply a very strong alignment adjustment force, so the alignment of the liquid crystal layer is very stable. Therefore, the alignment of the liquid crystal layer is very stable even after switching to the intermediate gray scale display. In contrast, when switching from a black display to an intermediate gray scale display, the alignment adjustment force caused by the slanted electric field generated at the edge portion of the opening is very weak, so the alignment of the liquid crystal layer is quite easy to disintegrate.

本發明的液晶顯示裝置係設計成,在每個該等複數個圖 像元素區中,該等複數個開孔中至少其中一個開孔(位於 該匯流排線中的開孔及位於兩個相鄰的單元實體部之間 的開孔)會與該匯流排線(嚴格地說應該是一部份的匯流 排線)重疊。所以,在疊放在該匯流排線上的開孔附近的 匯流排線邊緣便會被該圖像元素區的單元實體部覆蓋。 所以,在疊放在該匯流排線上的開孔附近,該液晶層的 液晶模組會受到該圖像元素區的單元實體部的電氣遮蔽 ,使其不會受到該匯流排線邊緣附近中所產生的傾斜電場 的影響。因此,該液晶層的液晶模組並不會受到該匯流排 線邊緣附近所產生的傾斜電場所造成的配向調整力量的 -15 - 581921 (11) I發明說明續頁 作用,因此其配向僅會由該開孔邊緣部分處所產生的傾斜 電場來調整。所以,在本發明的液晶顯示裝置中,該配向 都不會在形成於疊放在匯流排線上的開孔内的液晶域中 或在形成於該開孔附近的單元實體部内的液晶域中受到 干擾,所以可以避免降低響應速度(破壞響應特徵)以及避 免發生殘影現象。The liquid crystal display device of the present invention is designed such that in each of the plurality of picture element regions, at least one of the plurality of openings (the openings in the busbar and the two The openings between adjacent unit solid parts) will overlap with the busbar (strictly speaking, it should be a part of the busbar). Therefore, the edge of the bus bar near the opening stacked on the bus line will be covered by the unit solid part of the image element area. Therefore, near the openings stacked on the bus line, the liquid crystal module of the liquid crystal layer will be electrically shielded by the unit solid part of the picture element area, so that it will not be affected by the vicinity of the bus line edge. The effect of the generated oblique electric field. Therefore, the liquid crystal module of the liquid crystal layer is not affected by the alignment adjustment force of -15-581921 (11) I caused by the tilting electric field generated near the edge of the bus bar. Therefore, its alignment will only It is adjusted by the oblique electric field generated at the edge portion of the opening. Therefore, in the liquid crystal display device of the present invention, the alignment is not affected in the liquid crystal domain formed in the openings stacked on the bus bar or in the liquid crystal domain in the unit solid part formed near the openings. Interference, so you can avoid reducing the response speed (destroying response characteristics) and avoiding afterimages.

為避免因為該匯流排線邊緣附近中所產生的傾斜電場 而造成配向干擾,最好能夠增加疊放於該匯流排線上的開 孔比例,也就是,增加被該圖像元素區的單元實體部覆蓋 的匯流排線邊緣部分。不過,當該匯流排線係由遮光材料 所製成時,增加此比例將會降低孔徑比。因此,疊放於該 匯流排線上的開孔比例較合宜的係取決於該液晶顯示裝 置的應用,必須考慮到所期望的響應特徵及孔徑比。In order to avoid the alignment interference caused by the inclined electric field generated near the edge of the bus line, it is better to increase the proportion of openings stacked on the bus line, that is, to increase the unit solid part of the image element area Covered busbar edge portion. However, when the bus bar is made of a light-shielding material, increasing this ratio will reduce the aperture ratio. Therefore, the ratio of the openings stacked on the bus line is more suitable depending on the application of the liquid crystal display device, and the expected response characteristics and aperture ratio must be considered.

採用下面的排列便能夠有效地避免降低響應速度以及 避免發生殘影現象:位於兩個相鄰的單元實體部之間且疊 放於該匯流排線上的開孔至少包括位於該閘極匯流排線 中的開口(也就是,該排列中,在位於該匯流排線中及位 於兩個相鄰的單元實體部之間的開孔之中,至少有一個位 於該閘極匯流排線中的開口係疊放於該匯流排線上)。這 係因為施加於該閘極匯流排線上的電壓一般都會高於施 加於該源極匯流排線上的電壓,因此,該閘極匯流排線邊 緣附近所產生的傾斜電場對於該等液晶模組的影響會大 於該源極匯流排線邊緣附近所產生的傾斜電場對於該等 液晶模組的景> 響。 -16- 581921 (12) 發明說明續頁 再者,不僅位於兩個相鄰的單元實體部之間的開孔可疊 放於該匯流排線上,位於該匯流排線中的其它開孔亦可疊 放於該匯流排線上。舉例來說,在圖像元素電極的複數個 開孔中,所有位於閘極匯流排線中的開孔都可疊放於該匯 流排線上。 當然亦可採用替代的排列方式,例如位於兩個相鄰的單 元實體部之間且疊放於該匯流排線上的開孔包括位於該 源極匯流排線中的開孔。 請注意,雖然該匯流排線邊緣附近所產生的傾斜電場不 僅會造成如上所述的響應速度降低及殘影現象,還會造成 對比降低,不過,如下文所述,如果該匯流排線係由遮光 材料所製成的話,便可避免對比降低。 如上所述,在該匯流排線邊緣附近會產生一傾斜電場, 而且不論是否在該圖像元素電極及該反電極之間的液晶 層上施加電壓,都會產生該傾斜電場。所以,在以一般的 黑色模式進行顯示的液晶顯示裝置中,當未施加電壓時, 如果位於該匯流排線邊緣附近中的液晶模組被該傾斜電 場所造成的配向調整力量傾斜的話,便可能發生漏光,因 而會降低對比。明確地說,因為閘極匯流排線大部分的時 間中都係處於非常高的電壓下,以保持切換元件為〇F F狀 態,所以,該閘極匯流排線邊緣附近的漏光程度非常重要。 在本發明的液晶顯示裝置中,在疊放在該匯流排線上的 開孔附近的匯流排線邊緣會被該圖像元素區的單元實體 部覆蓋,因而該液晶層的液晶模組會受到電氣遮蔽,使其 581921 (13) 發明說明績頁The following arrangement can effectively avoid reducing the response speed and avoiding the afterimage phenomenon: the openings located between two adjacent unit solid parts and stacked on the bus line include at least the gate bus line (That is, in the arrangement, among the openings located in the busbar and between two adjacent unit solid parts, at least one opening system in the gate busbar is Stacked on the bus line). This is because the voltage applied to the gate bus line is generally higher than the voltage applied to the source bus line. Therefore, the oblique electric field generated near the edge of the gate bus line affects the liquid crystal modules. The influence will be greater than the oblique electric field generated near the edge of the source busbar for the scenes of these liquid crystal modules. -16- 581921 (12) Description of the invention Continued on the page. Furthermore, not only the openings between two adjacent unit solid parts can be stacked on the bus line, other openings on the bus line can also be Stacked on the bus line. For example, in the plurality of openings of the picture element electrode, all the openings in the gate bus line can be stacked on the bus line. Of course, alternative arrangements can also be used, for example, the openings located between two adjacent unit solid parts and stacked on the bus line include the openings in the source bus line. Please note that although the oblique electric field generated near the edge of the busbar will not only reduce the response speed and afterimage phenomenon described above, but also reduce the contrast, as described below, if the busbar is caused by By using a light-shielding material, the contrast can be avoided. As described above, an oblique electric field is generated near the edge of the bus bar, and the oblique electric field is generated regardless of whether a voltage is applied to the liquid crystal layer between the picture element electrode and the counter electrode. Therefore, in a liquid crystal display device that performs display in a general black mode, when no voltage is applied, if the liquid crystal module located near the edge of the bus bar is tilted by the alignment adjustment force caused by the inclined electric field, it may Light leakage occurs, thereby reducing contrast. Specifically, because the gate busbar is at a very high voltage most of the time to keep the switching element at 0F F, the degree of light leakage near the edge of the gate busbar is very important. In the liquid crystal display device of the present invention, the edge of the bus bar near the openings stacked on the bus line will be covered by the unit solid part of the picture element area, so the liquid crystal module of the liquid crystal layer will be electrically Shade to make 581921 (13) invention fact sheet

不會受到該匯流排線邊緣附近中所產生的傾斜電場的影 響。所以,該液晶層的液晶模組便不會被該傾斜電場所造 成的配向調整力量傾斜。雖然在疊放在該匯流排線上的開 孔中的液晶層的液晶棱組可能會被該匯流排線及該反電 極之間所產生的傾斜電場傾斜,不過如果該匯流排線係由 遮光材料所製成的話,疊放在該匯流排線上的開孔便不會 被光照到。所以,在本發明的液晶顯示裝置中,如果該匯 流排線係由遮光材料所製成的話便可避免發生漏光,從而 可避免降低對比。 再者,如果該匯流排線係由遮光材料所製成的話,便可 抑制顯示平面中的不均勻現象(即對比的局部變動),從而 可改良顯示品質,後面將會作說明。It is not affected by the oblique electric field generated near the edge of the bus bar. Therefore, the liquid crystal module of the liquid crystal layer is not inclined by the alignment adjustment force caused by the inclined electric field. Although the liquid crystal edge group of the liquid crystal layer in the openings stacked on the bus line may be inclined by the inclined electric field generated between the bus line and the counter electrode, if the bus line is made of a light-shielding material If it is made, the openings stacked on the bus line will not be illuminated. Therefore, in the liquid crystal display device of the present invention, if the bus bar is made of a light-shielding material, light leakage can be prevented, and thus a decrease in contrast can be avoided. In addition, if the bus bar is made of a light-shielding material, it can suppress unevenness in the display plane (ie, local variation of contrast), thereby improving display quality, which will be described later.

由於該匯流排線邊緣附近所產生的傾斜電場的關係,可 能會在開孔(顯露出絕緣材料的開孔)中出現殘留電荷,而 且如果位於該匯流排線中的開孔内的液晶模組因為該殘 留電荷的影響而被傾斜的話,便會導致漏光。雖然殘留電 荷的程度會隨著該絕緣材料的表面狀況而改變,但是當印 刷排列膜或射出液晶材料時,該絕緣材料的表面狀況還會 發生變動。所以,在液晶顯示裝置中,顯示平面中的殘留 電荷便會產生變動。如果殘留電荷會在該顯示平面中變化 的話,漏光程度也會在該顯示平面中發生變化,從而導致 對比的局部變動。明確地說,如上所述,因為施加非常高 的電壓於閘極匯流排線中,所以該閘極匯流排線對於是否 會出現不均勾現象的影響特別重要。 -18- 581921 (14) 發明說明續頁 在本發明的液晶顯示裝置中,當該匯流排線係由遮光材 料所製成時,疊放在該匯流排線上的開孔便會被該匯流排 線遮蔽,從而可避免發生上述的不均勾現象,因此能夠改 良顯示品質。Due to the oblique electric field generated near the edge of the bus line, residual charges may appear in the opening (the opening of the insulating material is exposed), and if the liquid crystal module is located in the opening in the bus line If it is tilted due to the effect of this residual charge, light leakage will result. Although the degree of the residual charge varies depending on the surface condition of the insulating material, the surface condition of the insulating material may change when the alignment film is printed or the liquid crystal material is ejected. Therefore, in the liquid crystal display device, the residual charge in the display plane is changed. If the residual charge changes in the display plane, the degree of light leakage will also change in the display plane, resulting in a local change in contrast. Specifically, as described above, because a very high voltage is applied to the gate bus, the gate bus is particularly important for whether or not an uneven hooking phenomenon may occur. -18- 581921 (14) Description of the Invention Continued In the liquid crystal display device of the present invention, when the bus bar is made of a light-shielding material, the openings stacked on the bus line will be used by the bus bar. Line shading can prevent the occurrence of the above-mentioned uneven hooking phenomenon, and thus can improve the display quality.

當至少部分該等複數個開孔實質上具有相同的形狀且 實質上具有相同的尺寸並且構成具旋轉對稱排列的至少 一個單元晶格時,便可針對每個單元晶格,以極高的對稱 性來排列複數個液晶域,從而可改良顯示品質的視角依存 性問題。再者,藉由將整個圖像元素區分割成單元晶格, 便可於整個圖像元素區中穩定該液晶層的配向。舉例來說 ,可以將開孔排列成讓該等開孔的中心構成一正方形晶格 。請注意,當以不透明的元素(例如儲存電容線)分割每個 圖像元素區時,可針對用以顯示的每塊區域來排列單元晶 格。When at least part of the plurality of openings have substantially the same shape and substantially the same size and constitute at least one unit lattice with a rotationally symmetrical arrangement, for each unit lattice, an extremely high symmetry can be achieved. To arrange a plurality of liquid crystal domains to improve the viewing angle dependence of display quality. Furthermore, by dividing the entire image element region into unit lattices, the alignment of the liquid crystal layer can be stabilized in the entire image element region. For example, the openings can be arranged so that the centers of the openings form a square lattice. Note that when dividing each picture element area with opaque elements (such as storage capacitor lines), the cell lattice can be arranged for each area used for display.

當每個至少部分該等複數個開孔(通常是那些構成單元 晶格的開孔)的形狀具旋轉對稱時,便可增加形成於該開 孔中的液晶域的放射狀傾斜配向的穩定度。舉例來說,每 個開孔的形狀(從該基板的法線方向看去)可能是圓形或 是一般的多邊形形狀(例如正方形)。請注意,視圖像元素 的形狀(長寬比)而定,亦可採用不具旋轉對稱的形狀(例 如橢圓形)。再者,當被該等開孔實質包圍的實體部的一 區域(「單元實體部」)的形狀具旋轉對稱時,便可增加形 成於該實體部中的液晶域的放射狀傾斜配向的穩定度。舉 例來說,當該等開孔排列成正方形晶格圖案時,該開孔的 -19- 581921 (15) 發明說明續頁 形狀可能是一般的星形或十字形,而該實體部的 能是一般的圓形、一般的正方形或類似的形狀。 等開孔及被該等開孔實質包圍的實體部有可能 的正方形形狀。 為穩定形成於該電極開孔中之液晶域的放射 向,較佳的係形成於該開孔中的液晶域為一般的 。換言之,可將該開孔的形狀設計成讓形成於該 液晶域為一般的圓形形狀。 當然,為穩定形成於該電極實體部中之液晶域 傾斜配向,較佳的係被該等開孔實質包圍的實體 一般的圓形形狀。形成於該實體部(其係由連續 所製成)中的液晶域係對應被複數個開孔實質包 部的一區域(單元實體部)而形成的。所以,可將 形狀及排列設計成讓該實體部的該區域(單元1 一般的圓形形狀。 不論使用上述的任一種替代方式,較佳的係形 極中的開孔之總面積係小於每個圖像元素區中 的面積。當該實體部的面積增加時,會受到該等 生的電場直接影響的液晶層面積(從該基板的法 去,定義於該液晶層的平面中)也會增加,因而 整個液晶層的電壓而言,可改良其光學特徵(例如 .決定究竟應該使用每個開孔為一般的圓形形 或是應該使用每個實體部為一般的圓形形狀的 佳方式係取決於何種排列能夠產生較大的實體兽 形狀則可 當然,該 都是一般 狀傾斜配 圓形形狀 開孔中的 的放射狀 部區域為 的導體膜 圍的實體 該開孔的 =體部)為 成於該電 該實體部 電極所產 線方向看 就施加於 透射率)。 狀的排列 排列的較 〗面積。更 -20- 581921 (16) 發明說明續頁 佳的排列方式則可藉由該等圖像元素的間距作正確的選 擇。通常,當間距大於約25 μηι時,形成該等開孔的較佳 方式係讓每個實體部為一般的圓形形狀。當間距小於或等 於約25 μηι時,較佳方式則係讓每個開孔為一般的圓形形 狀0When the shape of each of the plurality of openings (usually the openings constituting the unit lattice) is rotationally symmetrical, the stability of the radial tilt alignment of the liquid crystal domain formed in the openings can be increased. . For example, the shape of each opening (viewed from the normal direction of the substrate) may be circular or a general polygonal shape (such as a square). Note that depending on the shape (aspect ratio) of the image element, a shape that is not rotationally symmetric (such as an ellipse) can also be used. Furthermore, when the shape of a region of the solid portion (“unit solid portion”) substantially surrounded by the openings is rotationally symmetrical, the stability of the radial tilt alignment of the liquid crystal domain formed in the solid portion can be increased. degree. For example, when the openings are arranged in a square lattice pattern, the -19-581921 of the openings (15) Invention Description The shape of the continuation page may be a general star or cross shape, and the energy of the solid part can be Generally circular, generally square, or similar shapes. The equal openings and the solid part surrounded by the openings may have a square shape. In order to stabilize the radiation direction of the liquid crystal domain formed in the electrode opening, it is preferable that the liquid crystal domain formed in the opening is general. In other words, the shape of the opening can be designed such that the liquid crystal domain formed in the liquid crystal domain has a generally circular shape. Of course, in order to stabilize the oblique alignment of the liquid crystal domain formed in the solid part of the electrode, it is preferable that the solid is generally rounded by a solid body substantially surrounded by the openings. The liquid crystal domain formed in the solid portion (which is made by continuous) is formed corresponding to a region (unit solid portion) of a substantial enveloping portion with a plurality of openings. Therefore, the shape and arrangement can be designed to make the area of the solid part (the general circular shape of Unit 1). Regardless of the use of any of the above alternative methods, the total area of the openings in the preferred system pole is less than Area of an image element region. When the area of the solid portion increases, the area of the liquid crystal layer (from the method of the substrate, defined in the plane of the liquid crystal layer) directly affected by the generated electric field will also Increase, so that the voltage of the entire liquid crystal layer can improve its optical characteristics (for example, a good way to decide whether each opening should be a general circular shape or each solid part should be a general circular shape It depends on what kind of arrangement can produce a larger solid beast shape. Of course, it is a solid body surrounded by a conductor film in the shape of a generally inclined and circular shaped opening. Part) is applied to transmittance when viewed in the direction of the line produced by the solid part electrode). The area of the arrangement. More -20- 581921 (16) Description of the Invention Continued The best arrangement method can make correct selection by the spacing of these picture elements. Generally, when the pitch is greater than about 25 μm, the preferred way to form such openings is to make each solid portion a generally circular shape. When the distance is less than or equal to about 25 μηι, the best way is to make each opening a general circular shape.

由形成於上述的電極中之開孔邊緣部分處所產生的傾 斜電場所造成的配向調整力量僅在有施加電壓時才會存 在。所以,當未施加電壓時或是電壓非常小的時候,如果 在該液晶面板施壓的話,便無法維持液晶域的放射狀傾斜 配向。為解決此項問題,本發明其中一具體實施例之液晶顯 示裝置會在每個電極開孔内包括一突出部,該突出部的側 面具有一配向調整力量,其相對於該液晶層之液晶模組的 方向與該上述傾斜電場所造成的配向調整方向相同。較佳 的係,該基板平面中該突出部的剖面形狀與該開孔的剖面 形狀相同,並且與上述的開孔形狀一樣都具有旋轉對稱。The alignment adjustment force caused by the inclined electric field generated at the edge portion of the opening formed in the electrode described above exists only when a voltage is applied. Therefore, when no voltage is applied or the voltage is very small, if the liquid crystal panel is pressed, the radial tilt alignment of the liquid crystal domain cannot be maintained. In order to solve this problem, the liquid crystal display device of one specific embodiment of the present invention includes a protruding portion in each electrode opening. The direction of the group is the same as the alignment adjustment direction caused by the above-mentioned inclined electric field. Preferably, the cross-sectional shape of the protruding portion in the plane of the substrate is the same as the cross-sectional shape of the opening, and has the same rotational symmetry as the aforementioned opening shape.

利用本發明的液晶顯示裝置,僅藉由在每個圖像元素電 極中提供開孔,並且將每個圖像元素電極中的開孔以與該 匯流排線的邊緣形成預設位置關係的方式排列,便可實現 穩定的放射狀傾斜配向。明確地說,經過下面的修改,便 能夠以熟知的製造方法來製造本發明的液晶顯示裝置:修 改將導體膜圖案化成圖像元素電極之步驟中的光罩,以便 以預期的排列方式構成具預期形狀的開孔,以及修改圖案 化該匯流排線之步驟中的光罩,以便以預期形狀構成該匯 流排線。 -21 - 581921 (17) 發明說明續頁With the liquid crystal display device of the present invention, only by providing an opening in each picture element electrode, and by forming the opening in each picture element electrode in a predetermined positional relationship with the edge of the bus bar Alignment can achieve stable radial tilt alignment. Specifically, the liquid crystal display device of the present invention can be manufactured by a well-known manufacturing method with the following modifications: the photomask in the step of patterning a conductor film into a picture element electrode is modified so as to form a device with a desired arrangement. An opening of an expected shape, and a mask in a step of patterning the bus line is modified so as to form the bus line in an expected shape. -21-581921 (17) Description of the invention continued

在本發明的另一液晶顯示裝置中,該閘極匯流排線及該 源極匯流排線中至少其中一個的邊緣會被圖像元素電極 的實體部覆蓋。所以,在其邊緣被該圖像元素電極的實體 部覆蓋的匯流排線附近,該液晶層的液晶模組會受到電氣 遮蔽,使其不會受到該匯流排線邊緣附近中所產生的傾斜 電場的影響。因此’該液晶層的液晶模組便不會受到該傾 斜電場所造成的配向調整力量影響。所以,便可避免發生 漏光,從而可避免對比降低。再者,在被圖像元素電極的 實體部覆蓋的邊緣附近的區域會被該圖像元素電極的導 體膜(實體部)覆蓋,所以不大可能發生殘留電荷,因此可 避免發生不均勻的現象。如上所述,在本發明的液晶顯示 裝置中,因為可以避免由於該匯流排線附近所產生的傾斜 電場所造成的漏光現象,因而可避免對比降低,同時可以 避免由於該匯流排線附近的殘留電荷所造成的不均勻現 象,因而可實現高品質的顯示。In another liquid crystal display device of the present invention, an edge of at least one of the gate bus line and the source bus line is covered by a solid portion of a picture element electrode. Therefore, near the bus bar whose edges are covered by the solid part of the picture element electrode, the liquid crystal module of the liquid crystal layer is electrically shielded from the oblique electric field generated in the vicinity of the bus bar edge. Impact. Therefore, the liquid crystal module of the liquid crystal layer is not affected by the alignment adjustment force caused by the inclined electric field. Therefore, light leakage can be avoided, thereby preventing a decrease in contrast. Furthermore, the area near the edge covered by the solid part of the picture element electrode will be covered by the conductive film (solid part) of the picture element electrode, so it is unlikely that residual charges will occur, so that unevenness can be avoided. . As described above, in the liquid crystal display device of the present invention, since a light leakage phenomenon caused by an inclined electric field generated near the bus bar can be avoided, a decrease in contrast can be avoided, and a residue due to the bus bar can be avoided. The non-uniformity caused by the electric charge enables high-quality display.

因為該閘極匯流排線邊緣附近所產生的傾斜電場對於 該等液晶模組的影響會大於該源極匯流排線邊緣附近所 產生的傾斜電場對於該等液晶模組的影響,所以較佳的係 ,至少該閘極匯流排線的邊緣被該圖像元素電極的實體部 覆蓋。再者,為更可靠地避免該匯流排線邊緣附近中所產 生的傾斜電場所造成的影響,較佳的係,該閘極匯流排線 的邊緣及該源極匯流排線的邊緣都被該圖像元素電極的 實體部覆蓋。 在本發明的液晶顯示裝置中,可避免因為該匯流排線邊 -22- 581921 (18) 發明說明續頁 緣附近中所產生的傾斜電場而造成顯示品質下降。所以, 本發明可一種具廣視角特徵及高度顯示品質的液晶顯示 裝置。 本發明適用於主動矩陣式的液晶顯示裝置,亦適用於下 面任何一種裝置中:穿透式液晶顯示裝置、反射式液晶顯 示裝置以及穿透/反射組合式液晶顯示裝置。 實施方式 現在將參照該等附圖來說明本發明的具體實施例。 首先,將說明的是本發明的液晶顯示裝置之電極結構及 其功能。後面將針對使用薄膜電晶體(TFTs)之主動矩陣式 液晶顯示裝置來說明本發明之較佳具體實施例。再者,雖 然係針對穿透式液晶顯示裝置來說明本發明之較佳具體 實施例,不過本發明亦可使用於反射式液晶顯示裝置以及 穿透/反射組合式液晶顯示裝置。 請注意,在本發明中,對應到「圖像元素」(其為最小 的顯示單元)的液晶顯示裝置區域將會稱為「圖像元素區 」。在彩色的液晶顯示裝置中,R、G及B「圖像元素」將 對應到一個「圖像元素」。在主動矩陣式液晶顯示裝置中 ,圖像元素區係由一圖像元素電極以及一位於該圖像元素 電極對面的反電極定義而成。在具黑矩陣的排列中,嚴格 地說,圖像元素區係根據預期的顯示狀態於其上被施加電 壓的每個區域的一部份,其會對應該黑矩陣的開孔。 現在將參考圖1 A及1 B說明根據本發明一具體實施例之 液晶顯示裝置1 0 0之其中一個圖像元素區的結構。在後面 -23 - 581921 (19) 發明說明續頁 的說明中,為簡化起見,會省略彩色濾光片及黑矩陣。再 者,在後面的圖式中,每個具有與液晶顯示裝置1 0 0中相 應元件實質相同功能的元件將會以相同的元件符號來表 示,並且不會於下面作進一步的說明。圖1 A為從該基板 法線方向看去的平面圖,圖1 B則為沿著圖1A之直線 1 B - 1 B ’之剖面圖。圖1 B所示的係於整個液晶層中未施加 電壓時的狀態。 該液晶顯示裝置1 0 0包括一主動矩陣式基板(後面將稱 為「TFT基板」)100a、一反基板(後面將稱為「彩色濾光 片基板」)100b,以及一位於TFT基板100a與反基板100b之 間的液晶層3 0。該液晶層3 0的液晶模組3 0 a為負誘電各向 異性,在未透過垂直排列膜(圖中未顯示,其係作為一垂 直排列層)於整個液晶層3 0中施加電壓時,其會被排列成 垂直該垂直排列膜的表面(如圖1 B所示),該垂直排列膜係 位於每個TFT基板100a及接近該液晶層30的反基板100b的 其中一個表面上。此處的狀態為該液晶層3 0處於垂直排列 。不過,請注意,視垂直排列膜的種類以及所使用的液晶 材料的種類而定,在呈垂直排列的液晶層3 0中的液晶模組 3 0 a可能會與該垂直排列膜的表面(該基板的表面)法線之 間呈現出稍微傾斜的現象。一般來說,垂直排列係定義為 一種該等液晶模組的軸線配向(亦稱為「軸配向」)與該垂 直排列膜的表面形成約8 5 °或更大角度的狀態。 該液晶顯示裝置1 0 0的T F T基板100a包括一透明基板(例 如玻璃基板)1 1以及一位於該透明基板1 1表面中的圖像元 -24- 581921 (20) 發明說明續頁 素電極1 4。該反基板100b包括一透明基板(例如玻璃基板) 2 1以及一位於該透明基板2 1表面中的反電極2 2。每個圖像 元素區的液晶層3 0的配向都會隨著施加於該圖像元素電 極1 4與該反電極2 2 (該兩個電極係透過該液晶層3 0而彼 此相對排列)之間的電壓而改變。利用下面的現象便可製 造出一顯示器:偏光性或穿過該液晶層3 0的光量會隨著該 液晶層30的配向變化而改變。Because the effect of the inclined electric field generated near the edge of the gate bus line on the liquid crystal modules is greater than the effect of the inclined electric field generated near the edge of the source bus line on the liquid crystal modules, it is better That is, at least an edge of the gate bus bar is covered by a solid portion of the picture element electrode. Furthermore, in order to more reliably avoid the influence of the inclined electric field generated in the vicinity of the edge of the busbar, it is better that the edge of the gate busbar and the edge of the source busbar are both The solid part of the picture element electrode is covered. In the liquid crystal display device of the present invention, it is possible to avoid degradation of display quality caused by the oblique electric field generated near the edge of the bus bar edge. Therefore, the present invention can provide a liquid crystal display device with wide viewing angle characteristics and high display quality. The present invention is applicable to an active matrix liquid crystal display device, and also to any of the following devices: a transmissive liquid crystal display device, a reflective liquid crystal display device, and a transmissive / reflective combined liquid crystal display device. DETAILED DESCRIPTION Specific embodiments of the present invention will now be described with reference to the drawings. First, the electrode structure and function of the liquid crystal display device of the present invention will be explained. A preferred embodiment of the present invention will be described later for an active matrix liquid crystal display device using thin film transistors (TFTs). Furthermore, although the preferred embodiment of the present invention is described with reference to a transmissive liquid crystal display device, the present invention can also be applied to a reflective liquid crystal display device and a transmissive / reflective combined liquid crystal display device. Please note that in the present invention, the area of the liquid crystal display device corresponding to the "picture element" (which is the smallest display unit) will be referred to as the "picture element area". In a color liquid crystal display device, R, G, and B "picture elements" will correspond to one "picture element". In an active matrix liquid crystal display device, a picture element region is defined by a picture element electrode and a counter electrode located opposite the picture element electrode. In the arrangement with a black matrix, strictly speaking, the image element region is a part of each region to which a voltage is applied according to an expected display state, which will open holes corresponding to the black matrix. A structure of one picture element region of a liquid crystal display device 100 according to a specific embodiment of the present invention will now be described with reference to FIGS. 1A and 1B. In the following description of -23-581921 (19) Invention Description Continued, the color filter and the black matrix are omitted for simplicity. Moreover, in the following drawings, each element having substantially the same function as the corresponding element in the liquid crystal display device 100 will be represented by the same element symbol, and will not be described further below. Fig. 1A is a plan view seen from the normal direction of the substrate, and Fig. 1B is a cross-sectional view taken along line 1B-1B 'of Fig. 1A. The state shown in Fig. 1B is when no voltage is applied to the entire liquid crystal layer. The liquid crystal display device 100 includes an active matrix substrate (hereinafter referred to as a "TFT substrate") 100a, an inverted substrate (hereinafter referred to as a "color filter substrate") 100b, and a TFT substrate 100a and The liquid crystal layer 30 between the counter substrates 100b. The liquid crystal module 30 a of the liquid crystal layer 30 is negatively induced anisotropy. When a voltage is applied to the entire liquid crystal layer 30 without passing through a vertical alignment film (not shown in the figure, which acts as a vertical alignment layer), It is arranged to be perpendicular to the surface of the vertical alignment film (as shown in FIG. 1B). The vertical alignment film is located on one surface of each TFT substrate 100 a and the opposite substrate 100 b near the liquid crystal layer 30. The state here is that the liquid crystal layer 30 is vertically aligned. However, please note that depending on the type of the vertical alignment film and the type of liquid crystal material used, the liquid crystal module 3 0 a in the vertically aligned liquid crystal layer 30 may be on the surface of the vertical alignment film (the The surface of the substrate) is slightly inclined between the normals. Generally, the vertical alignment is defined as a state in which the axis alignment (also referred to as “axis alignment”) of the liquid crystal modules forms an angle of about 85 ° or more with the surface of the vertical alignment film. The TFT substrate 100a of the liquid crystal display device 100 includes a transparent substrate (such as a glass substrate) 11 and an image element located on the surface of the transparent substrate 11 1-24- 581921 (20) Description of the Invention Continuing Element 1 4. The counter substrate 100b includes a transparent substrate (such as a glass substrate) 2 1 and a counter electrode 22 located on a surface of the transparent substrate 21. The alignment of the liquid crystal layer 30 in each picture element region will be applied between the picture element electrode 14 and the counter electrode 2 2 (the two electrodes are arranged opposite each other through the liquid crystal layer 30). The voltage changes. A display can be manufactured by using the following phenomenon: the polarizing property or the amount of light passing through the liquid crystal layer 30 will change as the alignment of the liquid crystal layer 30 changes.

液晶顯示裝置1 0 0的圖像元素電極1 4包括複數個開孔 14a及一實體部14b。該等開孔14a所指的係由導體膜(例如 ITO膜)所製成的圖像元素電極1 4中已經將該導體膜移除 的部分,而該實體部1 4b所指的則係該導體膜仍然存在的 部分(即該等開孔1 4 a以外的部分)。雖然每個圖像元素電 極中都會形成複數個開孔1 4 a,不過實體部1 4 b基本上係由 單一連續的導體膜所製成的。The picture element electrode 14 of the liquid crystal display device 100 includes a plurality of openings 14a and a solid portion 14b. The openings 14a refer to the portion of the picture element electrode 14 made of a conductive film (such as an ITO film) from which the conductive film has been removed, and the solid portion 14b refers to the portion The part of the conductor film that still exists (ie, the part other than the openings 1 4 a). Although a plurality of openings 1 4 a are formed in each picture element electrode, the solid portion 1 4 b is basically made of a single continuous conductive film.

該等開孔1 4 a經過排列之後,其個別的中心會構成一正 方形晶格,而單元實體部14b’(其係定義成被四個開孔1 4a 實質包圍的實體部1 4 b的一部份,其中該四個開孔1 4 a之個 別的中心係位於構成一早元晶格的四個晶格點處)的形狀 則為一般的圓形形狀。每個開孔1 4 a都為一般的星形形狀 ,其具有四個四分之一弧形的側邊(邊緣)以及一位於該等 四個側邊的中心處的四重旋轉軸。為穩定整個圖像元素區 中的配向,該等單元晶格較佳的係能夠佈滿整個圖像元素 電極1 4直到其周圍為止。明確地說,如圖所示,該圖像元 素電極1 4的周圍部分較佳的係能夠被圖案化成對應半個 -25 - 581921 (21) 發明說明續頁 開孔14a的形狀(該圖像元素電極14在其側邊的周圍部分) ,或是被圖案化成對應四分之一個開孔1 4 a的形狀(該圖像 元素電極1 4在其角落的周圍部分),使得該圖像元素電極 1 4的周圍亦能具備開孔1 4 a。 位於該圖像元素區之中心部分的開孔1 4 a —般都具有相 同的形狀與尺寸。分別位於由該等開孔1 4 a所構成之單元 晶格中的單元實體部1 4b ’的形狀一般為圓形,並且都具有 相同的形狀與尺寸。每個單元實體部14N都會連接至相鄰 的單元實體部14b’中,從而構成實質功能為當作單一連續 導體膜的實體部14b。 當在該圖像元素電極1 4 (其具有如上所述的結構)與該 反電極2 2之間施加電壓之後,便會在每個開孔1 4 a的邊緣 部分產生一傾斜電場,從而產生複數個各具有放射狀傾斜 配向的液晶域。該液晶域係出現在對應該開孔1 4 a的每個 區域中,以及出現在對應一單元晶格中的單元實體部14b’ 的每個區域中。 雖然本文所示的圖像元素電極1 4為正方形形狀,不過圖 像元素電極1 4的形狀並不受限於此。圖像元素電極1 4的一 般形狀可能趨近於矩形形狀(包含正方形及長方形),所以 可以將該等開孔1 4 a以規律的方式排列在正方形晶格圖案 中。即使圖像元素電極1 4的形狀並非是矩形的形狀,只要 以規律的方式(例如此處所示的正方形晶格圖案)來排列 該等開孔1 4 a,讓液晶域形成於該圖像元素區的所有區域 中,便依然可以達到本發明的效果。 -26- 581921 (22) 發明說明續頁 現在將參考圖2 A及圖2 B來說明上述以傾斜電場形成液 晶域的機制。圖2 A及圖2 B所示的各係圖1 B的液晶層3 0被 施加電壓之後的示意圖。圖2A所示的係該等液晶模組30a 的配向根據施加於整個液晶層3 0的電壓而剛開始改變時 的狀態示意圖(初始〇N狀態)。圖2 B所示的係該等液晶模 組3 0 a的配向根據該施加電壓改變後且已經穩定的狀態示 意圖。圖2 A及圖2 B中的曲線E Q代表的是等電位線。After the openings 1 4 a are arranged, their individual centers will form a square lattice, and the unit solid portion 14 b ′ (which is defined as one of the solid portions 1 4 b substantially surrounded by four openings 1 4 a In some cases, the individual centers of the four openings 1 4 a are located at the four lattice points constituting an early element lattice), and the shape is a general circular shape. Each of the openings 1 4 a has a general star shape, which has four quarter-arc side edges (edges) and a quadruple rotation axis located at the center of the four side edges. In order to stabilize the alignment in the entire picture element region, the unit lattice is preferably able to cover the entire picture element electrode 14 until it surrounds it. Specifically, as shown in the figure, the surrounding part of the picture element electrode 14 can be preferably patterned to correspond to a half of the shape of -25-581921 (21) Description of the invention Continuation page opening 14a Element electrode 14 around its side), or patterned into a shape corresponding to a quarter of the opening 14 a (the image element electrode 14 is around its corner) so that the image The element electrode 14 can also be provided with openings 1 4 a around it. The openings 1 4 a located in the central part of the picture element area generally have the same shape and size. The shape of the unit solid portion 14b 'in the unit lattice formed by the openings 14a, respectively, is generally circular, and all have the same shape and size. Each of the unit solid portions 14N is connected to an adjacent unit solid portion 14b ', thereby constituting a solid portion 14b that substantially functions as a single continuous conductive film. When a voltage is applied between the picture element electrode 1 4 (which has the structure as described above) and the counter electrode 22, a sloped electric field is generated at the edge portion of each of the openings 14a, thereby generating A plurality of liquid crystal domains each having a radial oblique alignment. This liquid crystal domain appears in each region corresponding to the openings 14a, and in each region of the cell solid portion 14b 'corresponding to a cell lattice. Although the picture element electrode 14 shown here has a square shape, the shape of the picture element electrode 14 is not limited to this. The general shape of the picture element electrode 14 may approach a rectangular shape (including squares and rectangles), so the openings 14a may be arranged in a square lattice pattern in a regular manner. Even if the shape of the picture element electrode 14 is not a rectangular shape, as long as the openings 1 4 a are arranged in a regular manner (such as the square lattice pattern shown here), the liquid crystal domain is formed in the image. In all regions of the element region, the effect of the present invention can still be achieved. -26- 581921 (22) Description of the invention continuation page Now, the above-mentioned mechanism for forming a liquid crystal domain by an inclined electric field will be described with reference to FIGS. 2A and 2B. Each of the liquid crystal layers 30 shown in FIGS. 1B and 2B shown in FIGS. 2A and 2B is a schematic view after a voltage is applied. The state diagram of the liquid crystal modules 30a shown in FIG. 2A at the beginning of the change according to the voltage applied to the entire liquid crystal layer 30 (initial ON state). The orientation of the liquid crystal module 30a shown in FIG. 2B is changed according to the applied voltage and has been stabilized. The curves EQ in Fig. 2A and Fig. 2B represent isopotential lines.

如圖1A所示,當圖像元素電極14及反電極22具相同電 位時(並未於整個液晶層3 0施加電壓時的狀態),每個圖像 元素區中的液晶模組3 0 a都會被排列成垂直於該等基板1 1 及2 1的表面。As shown in FIG. 1A, when the picture element electrode 14 and the counter electrode 22 have the same potential (the state when a voltage is not applied to the entire liquid crystal layer 30), the liquid crystal module 30a in each picture element region Will be arranged perpendicular to the surfaces of the substrates 1 1 and 2 1.

當在整個液晶層3 0中施加電壓後,便會產生圖2 A中等 電位線E Q (垂直於電力線)所示的電位梯度。該等等電位線 E Q係平行於該液晶層3 0 (其係位於該圖像元素電極1 4之 實體部1 4 b及反電極2 2之間)中的實體部1 4 b及反電極2 2的 表面,並且會在對應該圖像元素電極1 4之開孔1 4a的區域 中往下降。於是便會在開孔1 4 a的邊緣部分E G (開孔1 4 a的 周圍部分及其内部,包含其邊界在内)上方的液晶層3 0中 產生由該等等電位線EQ之傾斜部分所表示的傾斜電場。 會有一力矩作用在具負誘電各向異性的液晶模組3 0a之 上,用以將該等液晶模組3 0a的軸配向引導成平行該等等 電位線E Q (垂直於電力線)。所以,圖2 A中右邊邊緣部份 E G上方的液晶模組3 0 a會朝順時針方向傾斜(旋轉),而左 邊邊緣部份E G上方的液晶模組3 0 a則會朝反時針方向傾 -27 - 581921 (23) 發明說明續頁 斜(旋轉),如圖2 A的箭頭所示。因此,該等邊緣部份EG 上方的液晶模組3 0 a會被配向成平行該等等電位線E Q的 對應部分。 現在將參考圖3 A至圖3 D更詳細地說明該等液晶模組 3 0 a中的配向變化。 當在該液晶層3 0中產生電場之後,便會有一力矩作用在 具負誘電各向異性的液晶模組3 Oa之上,用以將其軸配向 引導成平行等電位線EQ。如圖3 A所示,當產生由垂直於 液晶模組3 0 a的軸配向之等電位線E Q所表示的電場之後 ,促使該等液晶模組3 0 a朝順時針方向傾斜的力矩或促使 該等液晶模組3 0 a朝反時針方向傾斜的力矩具有相等的機 率。所以,對位於該對彼此相對之平行板狀電極之間的液 晶層3 0而言,會有部分的液晶模組3 0 a係受到順時針方向 的力矩作用,以及會有部分的其它液晶模組3 0 a係受到反 時針方向的力矩作用。因此,並無法非常順利地根據施加 於整個液晶層3 0的電壓而轉換成預期的配向。 如圖2 A所示,當在本發明的液晶顯示裝置1 0 0之開孔 1 4 a的邊緣部分E G處產生由傾斜於該等液晶模紐3 0 a的軸 配向之等電位線E Q的一部份所表示的電場之後,該等液 晶模組3 0 a會朝只要最小的旋轉便能使其平行該等電位線 E Q的方向傾斜(圖中所示的範例為反時針方向),如圖3 B 所示。對位於已經產生由垂直於該等液晶模組3 0 a的軸配 向之等電位線EQ所表示的電場區域中的液晶模組30a來 說,其會與位於該等等電位線EQ的傾斜部份中的液晶模 -28 - 581921 (24) 發明說明續頁 組3 0 a朝相同的方向傾斜,因此如圖3 C所示,其配向與位 於該等等電位線E Q的傾斜部份中的液晶模組3 0 a的配向 係連續的(一致)。如圖3 D所示,當電場使得等電位線EQ 形成連續的凹形/凸形圖案時,位於該等電位線E Q的平面 部份中的液晶模組3 0 a會被配向成與由位於該等電位線 E Q的鄰近傾斜部份中的液晶模組3 0 a所定義的配向方向 一致。本文所使用的「位於該等電位線E Q」的語意是指 位於該等電位線E Q所表示的電場中。 該等液晶模組30a的配向變化(從該等等電位線EQ的傾 斜部份中的液晶模組開始)會如上述般的方式進行並達到 穩定的狀態,圖2 B所示的即為其示意圖。位於開孔1 4 a之 中心部分附近的液晶模組3 0 a會實質相等地受到位於該開 孔1 4 a之對面邊緣部分E G處的液晶模組3 0 a之個別配向的 影響,所以會維持其配向垂直於該等等電位線E Q。遠離 開孔1 4 a之中心的液晶模組3 0 a則會因受到位於較近的邊 緣部分E G處的其它液晶模組3 0 a的配向的影響而傾斜,從 而形成一對稱於該開孔1 4 a之中心S A的傾斜配向。在從垂 直該液晶顯示裝置1 0 0之顯示平面的方向(垂直該等基板 1 1及2 1的表面的方向)看去的配向狀態中,該等液晶模組 3 〇 a會具有以該開孔1 4 a的中心為基準的放射狀軸配向(未 顯示)。在本詳細說明中,此種配向將稱作「放射狀傾斜 配向」。再者,該液晶層呈現出以單一軸為基準之放射狀 傾斜配向的區域則稱作「液晶域」。 液晶模組3 0 a呈現放射狀傾斜配向的液晶域亦會形成於 -29- 581921 (25) 發明說明續頁 對應到被該等開孔1 4 a實質包圍的單元實體部1 4 b ’的區域 中。在對應到該單元實體部1 4b ’的區域中的液晶模組3 Oa 會受到位於該開孔1 4a之每個邊緣部分EG處的液晶模組 3 0a的配向的影響,因而呈現出對稱於該單元實體部14bf 之中心SA (對應於由該等開孔14a所形成之單元晶格的中 心)的放射狀傾斜配向。 形成該單元實體部14V内的液晶域中的放射狀傾斜配向 與形成該開孔1 4 a内的放射狀傾斜配向係彼此連續的,並 且都與位於該開孔1 4 a之邊緣部分E G處的液晶模組3 0 a的 配向一致。形成開孔1 4 a内的液晶域中的液晶模組3 0 a會被 配向成朝上開展(朝基板1 0 0 b開展)的錐體形狀,而形成單 元實體部14b’内的液晶域中的液晶模組30a則會被配向成 朝下開展(朝基板100a開展)的錐體形狀。如上所述,形成 該開孔1 4 a内的液晶域中的放射狀傾斜配向與形成該單元 實體部14b’内的液晶域中的放射狀傾斜配向係彼此連續的 。所以,在其間的邊界處並不會構成向錯線(配向缺陷) ,因而可以避免因為出現向錯線而導致顯示品質下降。 為改良所有方位角中的視角依存性(其為一項液晶顯示 裝置的顯示品質),被配向於各種方位角方向中的液晶模 組3 0a之存在機率較佳的係在每個圖像元素區中具有旋轉 對稱性,更佳的係具有軸對稱性。換言之,形成於整個圖 像元素區中的液晶域較佳的係具有旋轉對稱性,更佳的係 具有軸對稱性。不過,請注意,未必要在整個圖像元素區 中都具旋轉對稱性,只要將該液晶層中的每個圖像元素區 -30- 581921 (26) 發明說明續頁When a voltage is applied across the entire liquid crystal layer 30, the potential gradient shown in FIG. 2A, the medium potential line EQ (vertical to the power line), is generated. The isopotential line EQ is parallel to the solid part 1 4 b and the counter electrode 2 in the liquid crystal layer 30 (which is located between the solid part 1 4 b and the counter electrode 22 of the picture element electrode 14). 2 and descends in the area corresponding to the openings 14a of the picture element electrode 14. As a result, a sloped portion of the equipotential line EQ is generated in the liquid crystal layer 30 above the edge portion EG of the opening 14 a (the surrounding portion of the opening 14 a and the interior thereof, including the boundary thereof). The inclined electric field represented. There is a moment acting on the liquid crystal module 30a with negative induced anisotropy to guide the axis of the liquid crystal module 30a to be parallel to the potential line EQ (perpendicular to the power line). Therefore, the liquid crystal module 3 0 a above the right edge portion EG in FIG. 2A will tilt (rotate) clockwise, while the liquid crystal module 3 0 a above the left edge portion EG will tilt counterclockwise. -27-581921 (23) Description of the invention The continuation page is inclined (rotated), as shown by the arrow in Figure 2A. Therefore, the liquid crystal module 30 a above the edge portions EG will be aligned in parallel to the corresponding portions of the equipotential lines E Q. The changes in the alignment in the liquid crystal modules 30a will now be described in more detail with reference to FIGS. 3A to 3D. When an electric field is generated in the liquid crystal layer 30, a moment acts on the liquid crystal module 3 Oa with negative induced anisotropy to guide its axis alignment into parallel equipotential lines EQ. As shown in FIG. 3A, when an electric field indicated by an equipotential line EQ aligned with an axis perpendicular to the liquid crystal module 30a is generated, a moment that causes the liquid crystal modules 30a to tilt in a clockwise direction or The moments in which the liquid crystal modules 30a tilt in the counterclockwise direction have equal probability. Therefore, for the liquid crystal layer 30 located between the pair of parallel plate-shaped electrodes facing each other, a part of the liquid crystal module 30 a is subject to a clockwise moment, and a part of other liquid crystal modules Group 30a is subject to a counterclockwise moment. Therefore, it cannot be converted into the desired alignment very smoothly according to the voltage applied to the entire liquid crystal layer 30. As shown in FIG. 2A, when the edge portion EG of the opening 14a of the liquid crystal display device 100 of the present invention is generated, the equipotential line EQ is After a part of the indicated electric field, the LCD modules 30a will tilt in a direction parallel to the equipotential line EQ with a minimum rotation (the example shown in the figure is counterclockwise), such as Figure 3B. For a liquid crystal module 30a located in an electric field region indicated by an equipotential line EQ aligned with an axis aligned perpendicular to the liquid crystal modules 30a, it will be aligned with the inclined portion of the equipotential line EQ LCD mode -28-581921 (24) Description of the invention Continuation page group 3 0 a is tilted in the same direction, so as shown in Figure 3 C, its orientation is in the inclined part of the equipotential line EQ The alignment system of the LCD module 30a is continuous (uniform). As shown in FIG. 3D, when the electric field causes the equipotential line EQ to form a continuous concave / convex pattern, the liquid crystal module 3 0 a located in the plane portion of the equipotential line EQ will be aligned to the The alignment directions defined by the liquid crystal modules 3 0 a in the adjacent inclined portions of the equipotential lines EQ are the same. The meaning of "located at the equipotential line E Q" as used herein refers to being located in the electric field represented by the equipotential line E Q. The orientation change of the liquid crystal modules 30a (starting from the liquid crystal module in the inclined portion of the isopotential line EQ) will proceed as described above and reach a stable state, as shown in FIG. 2B. schematic diagram. The liquid crystal module 3 0 a located near the center portion of the opening 1 4 a is substantially equally affected by the individual alignment of the liquid crystal module 3 0 a located at the opposite edge portion EG of the opening 14 a. Maintain its alignment perpendicular to the isopotential line EQ. The liquid crystal module 3 0 a which is far away from the center of the hole 1 4 a will be inclined due to the influence of the alignment of other liquid crystal modules 3 0 a located at the near edge portion EG, thereby forming a symmetry with the opening. 1 4 a centered alignment of SA. In an alignment state viewed from the direction perpendicular to the display plane of the liquid crystal display device 100 (the direction perpendicular to the surfaces of the substrates 11 and 21), the liquid crystal modules 3a will have The center of the hole 1 4 a is the radial axis alignment based on the reference (not shown). In this detailed description, such an alignment will be referred to as "radial tilt alignment". Furthermore, a region where the liquid crystal layer exhibits a radial oblique alignment with a single axis as a reference is referred to as a "liquid crystal domain". The liquid crystal domain of the liquid crystal module 3 0 a exhibiting a radial oblique alignment will also be formed at -29- 581921 (25) Description of the invention The continuation page corresponds to the unit solid part 1 4 b 'which is substantially surrounded by the openings 1 4 a Area. The liquid crystal module 3 Oa in the area corresponding to the unit solid part 14b 'is affected by the alignment of the liquid crystal module 30a located at each edge portion EG of the opening 14a, and thus appears symmetrical to The radial SA of the center SA of the unit solid portion 14bf (corresponding to the center of the unit lattice formed by the openings 14a). The radial oblique alignment in the liquid crystal domain forming the unit solid portion 14V and the radial oblique alignment in forming the opening 1 4 a are continuous with each other, and both are located at the edge portion EG of the opening 1 4 a The alignment of the LCD modules 30a is the same. The liquid crystal module 3 0 a in the liquid crystal domain within the opening 14 a is formed to be oriented in a cone shape extending upward (toward the substrate 1 0 b) to form a liquid crystal domain in the unit solid portion 14 b ′. The liquid crystal module 30a in the center is aligned in a cone shape extending downward (toward the substrate 100a). As described above, the radial tilt alignment in the liquid crystal domain forming the opening 14a and the radial tilt alignment in the liquid crystal domain forming the unit solid portion 14b 'are continuous with each other. Therefore, misalignment lines (alignment defects) are not formed at the boundaries therebetween, and thus it is possible to avoid display quality degradation due to misalignment lines. In order to improve the viewing angle dependence in all azimuth angles (which is a display quality of a liquid crystal display device), a liquid crystal module 3 0a that is oriented in various azimuth directions has a better probability of existence in each picture element The region has rotational symmetry, and the better system has axial symmetry. In other words, the better liquid crystal domain formed in the entire image element region has rotational symmetry, and the better system has axial symmetry. However, please note that it is not necessary to have rotational symmetry in the entire picture element area, as long as each picture element area in the liquid crystal layer is -30- 581921 (26) Description of the Invention Continued

變成複數群液晶域的集合,而該等複數群液晶域經過排列 之後使得每一群皆具有旋轉對稱性(或軸對稱性)即可(例 如有複數群液晶域,其中每一群液晶域都被排列成正方形 晶格圖案)。所以,形成於圖像元素區中的開孔1 4 a的排列 並不需要在整個圖像元素區中都具旋轉對稱性,只要該排 列能夠表示成複數群開孔的集合,而該等複數群開孔經過 排列之後使得每一群皆具有旋轉對稱性(或軸對稱性)即 可(例如有複數群開孔,其中每一群開孔都被排列成正方 形晶格圖案)。當然,其同樣適用於被該等開孔1 4a實質包 圍的單元實體部14bf的排列中。再者,因為每個液晶域的 形狀較佳的係具有旋轉對稱性,更佳的係具有軸對稱性, 所以每個開孔1 4a即每個單元實體部14b’的形狀較佳的係 具有旋轉對稱性,更佳的係具有軸對稱性。Becomes a collection of liquid crystal domains of a plurality of groups, and the liquid crystal domains of the plurality of groups are arranged so that each group has rotational symmetry (or axis symmetry). Into a square lattice pattern). Therefore, the arrangement of the openings 1 4 a formed in the image element area does not need to be rotationally symmetric in the entire image element area, as long as the arrangement can be represented as a set of openings of a complex group, and the complex numbers After the group openings are arranged, each group can have rotational symmetry (or axisymmetric) (for example, there are a plurality of group openings, where each group of openings are arranged in a square lattice pattern). Of course, it is also applicable to the arrangement of the unit solid portions 14bf substantially surrounded by the openings 14a. Furthermore, because the better-shaped system of each liquid crystal domain has rotational symmetry and the better system has axial symmetry, each of the openings 14a, that is, the better-shaped system of each unit solid portion 14b 'has Rotation symmetry, the better system has axisymmetric.

請注意,開孔1 4 a之中心部分附近的液晶層3 0中可能並 未施加足夠的電壓,所以開孔1 4 a之中心部分附近的液晶 層3 0並無法用以進行顯示。換言之,即使開孔14a之中心 部分附近的液晶層3 0的放射狀傾斜配向受到某種程度的 干擾(例如,即使中心軸偏離開孔1 4 a的中心),卻不會降 低顯示的品質。所以,只要至少對應單元實體部14b’而形 成的液晶域被排列成具有旋轉對稱性(更佳的係具有軸對 稱性)即可。 如上述參考圖2 A及圖2 B的部分,本發明的液晶顯示裝 置1 0 0的圖像元素電極1 4包括複數個開孔1 4 a,並且會在圖 像元素區内的液晶層3 0中產生由具有傾斜部分之等電位 -31 - 581921 (27) 發明說明續頁 線E Q所表的電場。在該液晶層3 0中具負誘電各向異性 的液晶模組3 Oa (當未施加電壓時,其係呈垂直排列)會隨 著位於當作觸發信號之等電位線EQ的傾斜部份中的液晶 模組3 0 a的配向變化而改變其配向方向。因此,具穩定的 放射狀傾斜配向的液晶域會形成於開孔1 4 a以及實體部 1 4 b中。根據施加於整個液晶層中的電壓,改變該液晶域 中液晶模組的配向便能夠進行顯示。 現在將說明本具體實施例之液晶顯示裝置1 00的圖像元 素電極1 4的開孔1 4 a的形狀(從該基板的法線方向看去)及 排列。 液晶顯TF裝置的顯不*特徵會因為該等液晶模組的配向 (光學各向異性)的關係,而呈現出方位角依存性。為降低 顯示特徵中的方位角依存性,較佳的係以實質相等的機率 將該等液晶模組配向於所有的方位角中。更佳的係能夠以 實質相等的機率將每個圖像元素區中的液晶模組配向於 所有的方位角中。所以,開孔1 4 a較佳的形狀係形成於每 個圖像元素區中的液晶域能夠以實質相等的機率將該圖 像元素區中的液晶模組3 0 a配向於所有的方位角中。更明 確地說,較佳的係,開孔1 4 a的形狀都具有相對於延伸穿 過每個開孔中心的對稱軸(法線方向)的旋轉對稱性(更佳 的係對稱於至少一個二重旋轉軸)。吾人亦希望該等複數 個開孔1 4 a能夠排列成具有旋轉對稱性。再者,較佳的係 ,被該些開孔實質包圍的單元實體部1 4b ’的形狀亦具有旋 轉對稱性。吾人亦希望該等單元實體部1 4b ’能夠排列成具 -32- 581921 (28) 發明說明續頁 有旋轉對稱性。 不過,並不需要將該等開孔1 4a或該等單元實體部14bf 排列成於整個圖像元素區中都具有旋轉對稱性。舉例來說 ,當使用正方形晶格(其對稱於四重旋轉軸)作為最小單元 並且如圖1 A所示般地利用此等正方形晶格構成圖像元素 區時,便能夠在整個圖像元素區中以實質相等的機率將該 液晶模組配向於所有的方位角中。Please note that sufficient voltage may not be applied to the liquid crystal layer 30 near the center portion of the opening 14a, so the liquid crystal layer 30 near the center portion of the opening 14a cannot be used for display. In other words, even if the radial tilt alignment of the liquid crystal layer 30 near the center portion of the opening 14a is disturbed to some extent (for example, even if the central axis is deviated from the center of the hole 14a), the display quality is not degraded. Therefore, it is sufficient that the liquid crystal domain formed at least corresponding to the unit solid portion 14b 'is aligned to have rotational symmetry (more preferably, it has axial symmetry). As described above with reference to FIGS. 2A and 2B, the picture element electrode 14 of the liquid crystal display device 100 of the present invention includes a plurality of openings 1 4a, and the liquid crystal layer 3 in the picture element region 3 The electric field represented by the equipotential -31-581921 (27) with a sloped portion is generated in 0. The liquid crystal module 3 Oa with negative induced anisotropy in the liquid crystal layer 30 (when no voltage is applied, it is arranged vertically) will be located in the inclined part of the equipotential line EQ as a trigger signal. The orientation of the liquid crystal module 30a is changed to change its orientation. Therefore, liquid crystal domains with stable radial tilt alignment are formed in the openings 14a and the solid portions 14b. According to the voltage applied to the entire liquid crystal layer, changing the alignment of the liquid crystal module in the liquid crystal domain enables display. The shape (as viewed from the normal direction of the substrate) and the arrangement of the openings 14a of the image element electrodes 14 of the liquid crystal display device 100 of this embodiment will now be described. The display characteristics of the liquid crystal display TF device will show azimuth dependence due to the alignment (optical anisotropy) of these liquid crystal modules. In order to reduce the azimuth dependency in the display characteristics, it is better to align the liquid crystal modules in all azimuths with substantially equal probability. A better system is able to align the liquid crystal modules in each picture element area in all azimuth angles with substantially equal probability. Therefore, the preferred shape of the opening 1 4 a is that the liquid crystal domain formed in each picture element area can align the liquid crystal module 3 0 a in the picture element area with all azimuth angles with substantially equal probability. in. More specifically, in the preferred system, the shapes of the openings 1 4 a all have rotational symmetry with respect to the axis of symmetry (normal direction) extending through the center of each opening (better systems are symmetrical about at least one Double rotation axis). We also hope that the plurality of openings 1 4 a can be arranged to have rotational symmetry. Furthermore, in a preferred system, the shape of the unit solid portion 14b 'substantially surrounded by the openings also has rotational symmetry. We also hope that the unit physical parts 1 4b ′ can be arranged to have -32- 581921 (28) Description of Invention Continued pages have rotational symmetry. However, it is not necessary to arrange the openings 14a or the unit solid portions 14bf so as to have rotational symmetry in the entire picture element area. For example, when a square lattice (which is symmetrical to the quadruple rotation axis) is used as the smallest unit and the square lattice is used to form the image element area as shown in FIG. The LCD module is aligned in all azimuth angles with substantially equal probability in the region.

現在將參考圖4A至圖4C說明將一般星形的開孔14a(其 具有旋轉對稱性)及一般圓形的單元實體部14b1排列於如 圖1 A所示的正方形晶格中時,該等液晶模組3 0 a的配向。 圖4 A至圖4 C所示的各係從該基板的法線方向看去時該 等液晶模組3 0 a的配向示意圖。在顯示著以該基板的法線 方向看去的液晶模組3 0 a的配向的圖式中(例如圖4 B及4 C) ,橢圓形的液晶模組3 0 a的黑色斑點端表示的係該液晶模 組3 0 a被傾斜成讓該端比另一端更接近其上具有含開孔A general star-shaped opening 14a (which has a rotational symmetry) and a generally circular unit solid portion 14b1 will now be described with reference to FIGS. 4A to 4C in a square lattice as shown in FIG. 1A. Alignment of the LCD module 30a. 4A to 4C are schematic diagrams of the alignment of the liquid crystal modules 30a when viewed from the normal direction of the substrate. In the diagram showing the alignment of the liquid crystal module 3 0 a viewed from the normal direction of the substrate (for example, FIGS. 4B and 4C), the black speckled end of the oval liquid crystal module 3 0 a is shown The LCD module 30a is tilted so that the end is closer to the other end than the other end with an opening.

1 4 a的圖像元素電極1 4的基板。此種表示方式同樣適用於 後面的圖式中。下面將說明圖1 A所示的圖像元素區中的 單一單元晶格(其係由四個開孔1 4 a所構成的)。圖1 B、圖 2 A及圖2B分別對應的是圖4 A至圖4C之個別對角線的剖 面圖,而下面的說明同樣會參考圖1B、圖2A及圖2B。 當圖像元素電極1 4及反電極2 2具相同電位時(即並未於 整個液晶層3 0施加電壓時的狀態),液晶模組3 0 a會呈現如 圖4 A般的垂直排列,其中該等液晶模組3 0 a的配向方向會 被位於每個TFT基板100a及反基板100b較接近於該液晶層 -33- 581921 (29) 發明說明續頁 3 〇的其中一側上方的垂直排列層(未顯示)調整。 當在整個液晶層3 0中施加電場以便產生如圖2 A之等電 位線E Q所表示的電場之後,便會有一力矩作用在具負誘 電各向異性的液晶模組3 Oa之上,用以將其軸配向引導成 平行該等等電位線E Q。如上述的圖3 A及圖3 B所示,對處 於由垂直於其分子軸的等電位線E Q所表示之電場下的液 晶模組3 0 a來說,並未唯一定義出該等液晶模組3 0 a應該朝 哪個方向傾斜(旋轉)(圖3 A),所以並不容易發生配向變化 (傾斜或旋轉)。相反地,對處於由傾斜於其分子軸的等電 位線E Q下的液晶模組3 0 a來說,則唯一定義出傾斜(旋轉) 的方向,所以很容易發生配向變化。所以,如圖4 B所示 ,該等液晶模組30a會從其分子軸傾斜於該等等電位線EQ 之位置處的開孔1 4 a的邊緣部份開始傾斜。然後,週遭的 液晶模組3 0 a便會跟著傾斜以便與該開孔1 4 a的邊緣部份 處的放射狀傾斜液晶模組3 0 a的配向一致,如圖3 C所述。 接著,該等液晶模组3 0 a的軸配向便會呈現如圖4 C所示般 的穩定狀態(放射狀傾斜配向)。 如上所述,當開孔1 4 a的形狀具旋轉對稱性時,當施加 電壓之後,該圖像元素區中的液晶模組3 0a便會從該開孔 1 4 a的邊緣部份開始朝該開孔1 4 a的中心依序地傾斜。因此 便會產生一種配向,其中在該開孔1 4 a中心(來自各邊緣部 分的液晶模組3 0 a的個別的配向調整力量於此處達到平衡 狀態)附近的液晶模組3 0 a會保持與該基板平面成垂直的 排列,而週遭的液晶模組3 0 a則會以該開孔1 4 a中心附近的 -34- 581921 (30) 發明說明續頁 液晶模組30a為基準以放射圖案的方式傾斜,其傾斜程度 會隨著遠離該開孔1 4 a中心而逐漸地增加。 在對應到被四個排列成正方形晶格圖案之一般星形的 開孔1 4 a包圍的一般圓形之單元實體部14N的區域中的液 晶模組3 0 a亦會傾斜,以便與已經被每個開孔1 4 a之邊緣部 分處所產生的傾斜電場傾斜的液晶模組3 0 a的配向一致。1 4 a picture element electrode 1 4 substrate. This representation is also applicable to the following drawings. A single unit lattice (which is composed of four openings 14a) in the picture element region shown in Fig. 1A will be described below. Figures 1B, 2A, and 2B correspond to the cross-sectional views of the individual diagonal lines of Figures 4A to 4C, respectively, and the following description will also refer to Figures 1B, 2A, and 2B. When the picture element electrode 14 and the counter electrode 22 have the same potential (that is, a state when a voltage is not applied to the entire liquid crystal layer 30), the liquid crystal module 30a will present a vertical arrangement as shown in FIG. 4A. Among them, the alignment direction of the liquid crystal modules 30a will be located closer to the liquid crystal layer of each TFT substrate 100a and the counter substrate 100b. Arrange layers (not shown) adjustments. When an electric field is applied in the entire liquid crystal layer 30 to generate an electric field as shown by the equipotential line EQ in FIG. 2A, a moment will be applied to the liquid crystal module 3 Oa with negatively induced anisotropy for Its axis is aligned to be parallel to the equipotential line EQ. As shown in FIG. 3A and FIG. 3B above, for the liquid crystal module 3 0 a under the electric field represented by the equipotential line EQ perpendicular to its molecular axis, these liquid crystal modes are not uniquely defined. The direction in which group 30a should tilt (rotate) (Figure 3A), so the orientation change (tilt or rotation) is not easy to occur. Conversely, for the liquid crystal module 3 0 a which is located at the isopotential line E Q inclined to its molecular axis, the tilt (rotation) direction is uniquely defined, so alignment changes easily occur. Therefore, as shown in FIG. 4B, the liquid crystal modules 30a will be inclined from the edge portion of the opening 14a at the position where the molecular axis is inclined to the equipotential line EQ. Then, the surrounding liquid crystal module 30a will be inclined to match the alignment of the radially inclined liquid crystal module 30a at the edge portion of the opening 14a, as shown in FIG. 3C. Then, the axis alignment of the LCD modules 30a will show a stable state (radial tilt alignment) as shown in FIG. 4C. As described above, when the shape of the opening 1 4 a is rotationally symmetric, the liquid crystal module 3 0a in the picture element region will start from the edge portion of the opening 1 4 a after applying a voltage. The centers of the openings 1 4 a are sequentially inclined. Therefore, an alignment will be generated, in which the liquid crystal module 3 0 a near the center of the opening 1 4 a (the individual alignment adjustment force of the liquid crystal module 3 0 a from each edge portion reaches an equilibrium state here) will Maintain a vertical alignment with the plane of the substrate, and the surrounding LCD module 3 0 a will use -34- 581921 near the center of the opening 1 4 a (30) Description of the invention Continuation of the LCD module 30a as a reference for radiation The pattern is inclined, and the degree of inclination will gradually increase as it moves away from the center of the opening 14a. The liquid crystal module 3 0 a in the area corresponding to the generally circular unit solid portion 14N surrounded by four general star openings 1 4 a arranged in a square lattice pattern will also be tilted so as to match the The alignment of the liquid crystal module 3 0 a tilted by the inclined electric field generated at the edge portion of each opening 14 a is the same.

因此便會產生一種配向,其中在該單元實體部14b’中心(來 自各邊緣部分的液晶模組3 0 a的個別的配向調整力量於此 處達到平衡狀態)附近的液晶模組3 0 a會保持與該基板平 面成垂直的排列,而週遭的液晶模組3 0 a則會以該單元實 體部14b’中心附近的液晶模組30a為基準以放射圖案的方 式傾斜,其傾斜程度會隨著遠離該單元實體部14b’中心而 逐漸地增加。Therefore, an alignment will be generated, in which the liquid crystal module 3 0 a near the center of the unit solid part 14 b ′ (the individual alignment adjustment force of the liquid crystal module 3 0 a from each edge portion reaches an equilibrium state here) will Maintaining an arrangement perpendicular to the substrate plane, the surrounding liquid crystal module 30a will be tilted in a radiation pattern based on the liquid crystal module 30a near the center of the unit solid portion 14b ', and the degree of tilt will follow Increasing away from the center of the unit solid portion 14b '.

如上所述’當液晶域(母個液晶域中的液晶模組3 0 a都係 呈放射狀傾斜配向)在整個圖像元素區中都被排列成正方 形晶格圖案時,個別的軸配向的液晶模組3 0 a的存在機率 便會具有旋轉對稱性,因此便能夠實現高品質的顯示而不 會有任何視角上的不均勾現象。為降低具放射狀傾斜配向 之液晶域的視角依存性,該液晶域較佳的係具有高度的旋 轉對稱性(較佳的係對稱於至少一個二重旋轉軸,更佳的 係對稱於至少一個四重旋轉軸)。再者,為降低整個圖像元 素區中的視角依存性,位於該圖像元素區中的複數個液晶 域較佳的係能夠排列成由複數個各具高度旋轉對稱性(較 佳的係對稱於至少一個二重旋轉軸,更佳的係對稱於至少 -35 - 581921 (31) 發明說明續頁 一個四重旋轉軸)的單元圖案(例如單元晶格圖案)組合而 成的圖案(例如正方形晶格圖案)。As described above, when the liquid crystal domain (the liquid crystal modules 3 0 a in the parent liquid crystal domains are all radially inclined and aligned) is arranged in a square lattice pattern in the entire picture element region, the individual axes are aligned. The existence probability of the liquid crystal module 30a will have rotational symmetry, so that high-quality display can be achieved without any unevenness in viewing angle. In order to reduce the viewing angle dependence of a liquid crystal domain with a radial oblique alignment, the liquid crystal domain preferably has a high degree of rotational symmetry (the better system is symmetrical about at least one double axis of rotation, and the better system is symmetrical about at least one Quadruple rotation axis). Furthermore, in order to reduce the viewing angle dependence in the entire picture element area, a plurality of liquid crystal domains located in the picture element area can be arranged to have a high degree of rotational symmetry (a better system symmetry). A pattern (e.g., a square) composed of unit patterns (e.g., a unit lattice pattern) on at least one double axis of rotation, preferably symmetrical to at least -35-581921 (31) Continued description of a quadruple axis of rotation) Lattice pattern).

對該等液晶模組3 0 a的放射狀傾斜配向來說,具有如圖 5 B或圖5 C所示的反時針或順時針之螺旋圖案的放射狀傾 斜配向都會比圖5 A所示的簡易放射狀傾斜配向還要穩定 。螺旋配向不同於一般的扭轉配向(該等液晶模組3 0 a的配 向方向會隨著該液晶層3 0的厚度而呈現螺旋式變化)。在 螺旋配向中,該等液晶模組3 0 a在一微小區域中的配向方 向實質上並不會隨著該液晶層3 0的厚度而變化。換言之,在 該液晶層3 0的任何厚度之剖面(平行於該層平面的平面) 中的配向都係如圖5 B或圖5 C所示,在該液晶層3 0的厚度 中實質上並不會有扭轉變形。不過,就整個液晶域來說, 則可能會有特定程度的扭轉變形。For the radial tilt alignment of these liquid crystal modules 3 0 a, the radial tilt alignment with a counterclockwise or clockwise spiral pattern as shown in FIG. 5B or FIG. 5C will be more than that shown in FIG. 5A Simple radial tilt alignment is also stable. The spiral alignment is different from the general twist alignment (the alignment direction of the liquid crystal modules 30a will change spirally with the thickness of the liquid crystal layer 30). In the spiral alignment, the alignment direction of the liquid crystal modules 30a in a minute area does not substantially change with the thickness of the liquid crystal layer 30. In other words, the alignment in a cross section (a plane parallel to the plane of the layer) of any thickness of the liquid crystal layer 30 is as shown in FIG. 5B or FIG. 5C, and the thickness of the liquid crystal layer 30 is substantially the same. No twisting. However, for the entire liquid crystal domain, there may be a certain degree of twist deformation.

當使用將對掌性試劑加入具負誘電各向異性之向列液 晶材料中而獲得的材料時,在有施加電壓存在時,該等液 晶模組3 0 a便會分別如圖5 B或圖5 C所示般呈現出以該開 孔1 4a及該單元實體部14b’為基準的反時針或順時針螺旋 圖案的放射狀傾斜配向。而究竟會呈現反時針或順時針螺 旋圖案則係取決於所使用的對掌性試劑種類。因此,藉由 在有施加電壓存在時控制開孔1 4 a中的液晶層3 0,使其變 成螺旋圖案的放射狀傾斜配向,那麼,以垂直於該基板平 面之其它液晶模組3 0 a為基準的放射狀傾斜液晶模組3 0 a 之螺旋圖案的方向便能夠在所有的液晶域中保持恆定,因 此便能夠實現均勾的顯示而不會顯示出不均勻的結果。因 -36- 581921 (32) 發明說明續頁 為在垂直於該基板平面之液晶模組3 0 a附近的螺旋圖案的 方向相當地明確,所以亦能夠改良施加電壓於整個液晶層 3 0之後的響應速度。 再者,當添加對掌性試劑之後,該等液晶模組3 0 a的配 向便會如同一般的扭轉配向般地隨著該液晶層3 0的厚度 而改變其螺旋圖案。在該等液晶模組3 0 a的配向並不會隨 著該液晶層3 0的厚度而改變其螺旋圖案的配向中,被配向 成垂直或平行於該偏光板之偏光軸的液晶模組3 Oa對於入 射光並不會造成相位差,因此穿透過具此種配向之區域的 入射光對於透射率並不會造成任何的影響。相反地,在該 等液晶模組30a的配向會隨著該液晶層30的厚度而改變其 螺旋圖案的配向中,被配向成垂直或平行於該偏光板之偏 光軸的液晶模組3 0 a則會對入射光造成相位差,並且亦會 使用到光學旋轉冪,因此穿透過具此種配向之區域的入射 光對於透射率將會造成影響。因此便能夠獲得一種能夠產 生高亮度顯示的液晶顯示裝置。 圖1 A所示的範例中,每個開孔1 4 a都為一般的星形形狀 ,而每個單元實體部14b’則都為一般的圓形形狀,其中此 等開孔1 4a及此等單元實體部14b’都係排列在一正方形晶 格圖案中。不過,開孔14a的形狀、單元實體部14b’的形狀 以及其排列並不受限於上面範例所示的情形。 圖6 A及圖6 B分別為具有不同形狀之個別的開孔1 4 a及 單元實體部14b’的圖像元素電極14A與14B之平面示意圖。 圖6 A及圖6 B中的圖像元素電極1 4 A與1 4 B的開孔1 4 a及 -37- 581921 (33) 發明說明續頁When a material obtained by adding a palmitic reagent to a nematic liquid crystal material with negatively induced anisotropy is used, in the presence of an applied voltage, the liquid crystal modules 30a will be respectively shown in FIG. 5B or FIG. As shown at 5C, a radial oblique alignment with a counterclockwise or clockwise spiral pattern based on the opening 14a and the unit solid portion 14b 'is shown. Whether it appears counterclockwise or clockwise depends on the type of palming reagent used. Therefore, by controlling the liquid crystal layer 3 0 in the opening 14 a in the presence of an applied voltage so that it becomes a radial inclined alignment of a spiral pattern, then other liquid crystal modules 3 0 a perpendicular to the plane of the substrate As a reference, the direction of the spiral pattern of the radially inclined liquid crystal module 30a can be kept constant in all the liquid crystal domains, so that uniform display can be achieved without displaying uneven results. -36- 581921 (32) Description of the invention The continuation page is quite clear about the direction of the spiral pattern near the liquid crystal module 30a, which is perpendicular to the plane of the substrate, so the voltage applied to the entire liquid crystal layer 30 can also be improved. responding speed. In addition, after adding a palmarity reagent, the alignment of the liquid crystal modules 30 a will change its spiral pattern with the thickness of the liquid crystal layer 30 like a general twist alignment. In the alignment of the liquid crystal modules 30a, which does not change its spiral pattern with the thickness of the liquid crystal layer 30, the liquid crystal module 3 is aligned vertically or parallel to the polarization axis of the polarizing plate Oa does not cause a phase difference to the incident light, so the incident light passing through the area with this alignment will not have any effect on the transmittance. Conversely, in the alignment of the liquid crystal modules 30a which will change its spiral pattern with the thickness of the liquid crystal layer 30, the liquid crystal module 30a which is aligned vertically or parallel to the polarization axis of the polarizing plate A phase difference will be caused to the incident light, and an optical rotation power will also be used, so the incident light passing through the area with this alignment will affect the transmittance. Therefore, a liquid crystal display device capable of producing a high-brightness display can be obtained. In the example shown in FIG. 1A, each of the openings 14a has a general star shape, and each unit solid portion 14b 'has a generally circular shape. Among these openings 1a and 4a The equal cell solid portions 14b 'are all arranged in a square lattice pattern. However, the shape of the openings 14a, the shape of the unit solid portions 14b ', and the arrangement thereof are not limited to those shown in the above example. Figs. 6A and 6B are schematic plan views of picture element electrodes 14A and 14B with individual openings 14a and unit solid portions 14b 'having different shapes, respectively. Picture element electrodes 1 4 A and 1 4 B in FIG. 6 A and FIG. 6 B with openings 1 4 a and -37- 581921 (33) Description of the invention continued page

單元實體部14b’分別為圖1 A中的圖像元素電極的開孔與 單元實體部被稍微扭曲之後的情形。圖像元素電極1 4 A與 1 4 B的開孔1 4 a及單元實體部14N都具有一二重旋轉軸(並 不具有四重旋轉軸),並且經過規律的排列之後會構成長 方形的早元晶格。在圖像元素電極14A與14B中’開孔14a 為被扭曲的星形形狀,而單元實體部14b’則為一般的橢圓 形形狀(被扭曲的圓形形狀)。利用圖像元素電極1 4 A與 1 4B還可以獲得一種具高度顯示品質及預期的視角特徵 的液晶顯示裝置。 再者,亦可分別替換成圖7 A及圖7 B中的圖像元素電極 14C 與 14D。The unit solid portion 14b 'is respectively the opening of the picture element electrode in FIG. 1A and the situation after the unit solid portion is slightly distorted. The openings 1 4 a and 1 4 a of the picture element electrodes 14 a and the unit solid part 14N both have a double rotation axis (not having a quadruple rotation axis), and after regular arrangement, they will form a rectangular shape. Yuan lattice. In the picture element electrodes 14A and 14B, the 'openings 14a have a twisted star shape, and the unit solid portion 14b' has a general elliptical shape (a twisted circular shape). By using the picture element electrodes 1 4 A and 1 4B, a liquid crystal display device with high display quality and desired viewing angle characteristics can also be obtained. Furthermore, the picture element electrodes 14C and 14D in FIG. 7A and FIG. 7B may be replaced respectively.

在圖像元素電極1 4 C與1 4 D中,呈現出一般十字形狀的 開孔1 4a會被排列在正方形晶格圖案中,使得每個單元實 體部14b·都為一般的正方形形狀。當然,圖像元素電極14C 與1 4 D中的圖案亦可能會被變形,而產生長方形的單元晶 格。如上所述,替代之後,藉由規律地排列該等一般矩形 (包含正方形及長方形)的單元實體部14b1,便可以獲得一 種具高度顯示品質及預期的視角特徵的液晶顯示裝置。 不過,開孔1 4 a及/或單元實體部14N的形狀較佳的係為 圓形或橢圓形,而非矩形,如此一來該放射狀傾斜配向方 能更穩定。咸信具有圓形或橢圓形之開孔及/或單元實體 部的放射狀傾斜配向會更穩定,這係因為開孔1 4 a的邊緣 會更為連續(平順),如此該等液晶模組3 0 a的配向方向便 能夠以更連續(平順)的方式進行變化。 -38- 581921 (34) 發明說明續頁 鑒於上述中液晶模組3 0 a的配向方向的連續性,圖8 A及 圖8B所示的圖像元素電極14E與14F亦分別為吾人所希望 的。圖8 A所示的圖像元素電極1 4 E係圖1 A所示的圖像元素 電極1 4 (其中每個開孔1 4 a僅由四個弧形所構成)的變化。 圖8 B所示的圖像元素電極1 4 F係圖7 B所示的圖像元素電 極1 4D (其中開孔1 4a於單元實體部14b’上的每一側邊都係 一弧形)的變化。在圖像元素電極1 4 E與1 4 F中,該等開孔 14a及該等單元實體部14N都具有一四重旋轉軸,並且以正 方形晶格圖案(其具有一四重旋轉軸)進行排列。或者,可 將該開孔1 4a的單元實體部14b’的形狀扭曲成一具有一二 重旋轉軸的形狀,並且可將此等單元實體部14b’排列成長 方形的晶格(其具有一二重旋轉軸),如圖6 A及圖6 B所示。 在上述的範例中,開孔1 4 a為一般的星形形狀或一般的 十字形形狀,而單元實體部14b’則為一般的圓形、一般的 橢圓形、一般的正方形(矩形)以及具有圓角的一般矩形。 或者,可將該等開孔1 4a及該等單元實體部14N之間的負正 關係倒置(後面會將該等開孔14a及該等單元實體部14b’之 間的負正關係倒置簡稱為「倒置」)。舉例來說,圖9所示 的係圖像元素電極1 4 G,其具有將圖1 A中的圖像元素電極 14的開孔14a及單元實體部14b’之間的負正關係倒置之後 所獲得的圖案。具有倒置圖案之圖像元素電極1 4G的功能 實質上與圖1 A中的圖像元素電極1 4相同。當開孔1 4 a及單 元實體部14W都為一般的正方形形狀時(分別如圖1 Ο A及 圖1 Ο B所示的圖像元素電極1 4 Η與1 4 I ),其倒置圖案實質 -39- 581921 (35) 發明說明續頁 上會與原來的圖案相同。 同樣地,當圖1 A的圖案被倒置成圖9的圖案時,最好能 夠形成部分(一般都是半個或四分之一個)的開孔1 4 a,以 便在圖像元素電極1 4的邊緣部分形成具旋轉對稱性的單 元實體部Mb’。採用此種圖案,便能夠在該圖像元素區的 邊緣部分處獲得傾斜電場的效果,就如同該圖像元素區的 中心部分一般,所以便能夠在整個圖像元素區中實現穩定 的放射狀傾斜配向。 接著,將針對圖1 A的圖像元素電極1 4以及圖9的圖像元 素電極14G (其具有將圖像元素電極14的開孔14a及單元實 體部14b’的圖案倒置之後所獲得的圖案)來討論究竟應該 採用兩種倒置圖案中的哪一種。 不論採用何種圖案,每個開孔1 4 a的周長都係相同的。 所以,就產生傾斜電場的功能而言,兩種圖案之間並無任 何差異。不過,兩種圖案之間的單元實體部Mb’的面積比 例(與該圖像元素電極1 4的總面積相比)可能會不相同。換 言之,兩者之間用以產生作用於該液晶層的液晶模組上之 電場的實體部1 4b的面積(有導體膜存在的部分)可能會不 相同。 施加於形成在該開孔1 4 a内的液晶域中的電壓會低於施 加於形成在該實體部1 4b内的另一液晶域中的電壓。因此 ,舉例來說,在正常的黑色模式顯示中,形成在該開孔1 4 a 内的液晶域會比較暗。因此,當該等開孔1 4 a的面積比例 提高時,顯示亮度便會下降。所以,較佳的係該等實體部 -40- 581921 (36) 發明說明續頁 1 4 b白勺面積比例越高越好。 在圖1 A的圖案及圖9的圖案中,何種的實體部1 4b的面 積比例比較高係取決於該單元晶格的間距(尺寸)。In the picture element electrodes 1 4 C and 1 4 D, the openings 14 a showing a general cross shape are arranged in a square lattice pattern, so that each unit body portion 14b · has a general square shape. Of course, the patterns in the picture element electrodes 14C and 14 D may also be deformed, resulting in rectangular unit lattices. As described above, after the replacement, by regularly arranging the unit solid portions 14b1 of these general rectangles (including squares and rectangles), a liquid crystal display device with high display quality and desired viewing angle characteristics can be obtained. However, the shape of the opening 14a and / or the unit solid portion 14N is preferably a circle or an oval, rather than a rectangle, so that the radial oblique alignment can be more stable. Xianxin has round or oval openings and / or radial oblique alignment of the solid part of the unit, which is because the edges of the openings 1 4 a will be more continuous (smooth), so these LCD modules The orientation direction of 3 0 a can be changed in a more continuous (smooth) manner. -38- 581921 (34) Description of the Invention Continued In view of the continuity of the alignment direction of the liquid crystal module 30a in the above, the picture element electrodes 14E and 14F shown in Figs. 8A and 8B are also what we want . The picture element electrode 1 4 shown in FIG. 8A is a variation of the picture element electrode 1 4 shown in FIG. 1A (where each opening 14a consists of only four arcs). The picture element electrode 1 4 F shown in FIG. 8B is the picture element electrode 1 4D shown in FIG. 7B (where each side of the opening 14a in the unit solid portion 14b 'is an arc) The change. In the picture element electrodes 1 4 E and 1 4 F, the openings 14a and the unit solid portions 14N each have a quadruple rotation axis, and are performed in a square lattice pattern (which has a quadruple rotation axis). arrangement. Alternatively, the shape of the unit solid portion 14b ′ of the opening 14a may be twisted into a shape having a double rotation axis, and the unit solid portions 14b ′ may be arranged in a rectangular lattice (which has a double Rotation axis), as shown in Figure 6 A and Figure 6 B. In the above example, the openings 14a are generally star-shaped or generally cross-shaped, while the unit solid portion 14b 'is generally circular, generally oval, generally square (rectangular), and has Rounded general rectangle. Alternatively, the negative and positive relationship between the openings 14a and the unit entity portions 14N may be reversed (the negative and positive relationship between the openings 14a and the unit entity portions 14b 'will be referred to below as simply referred to as "Inverted"). For example, the picture element electrode 1 4 G shown in FIG. 9 has an inverse relationship between the opening 14 a of the picture element electrode 14 and the unit solid portion 14 b ′ in FIG. 1 A after being inverted. The obtained pattern. The function of the picture element electrode 14 with an inverted pattern is substantially the same as that of the picture element electrode 14 in FIG. 1A. When the opening 1 4 a and the unit solid portion 14W are generally square shapes (picture element electrodes 1 4 Η and 1 4 I shown in FIG. 10A and FIG. 10B, respectively), the inverted pattern is substantially -39- 581921 (35) Description of the Invention The continuation sheet will be the same as the original pattern. Similarly, when the pattern of FIG. 1A is inverted to the pattern of FIG. 9, it is better to be able to form a part (generally half or a quarter) of openings 1a, so that the picture element electrode 1 The edge portion of 4 forms a unit solid portion Mb ′ having rotational symmetry. With this pattern, the effect of the oblique electric field can be obtained at the edge portion of the picture element area, just like the center portion of the picture element area, so that a stable radial shape can be achieved throughout the picture element area Tilt alignment. Next, the picture element electrode 14 of FIG. 1A and the picture element electrode 14G of FIG. 9 (which has a pattern obtained by inverting the patterns of the picture element electrode 14's openings 14a and the unit solid portion 14b ' ) To discuss which of the two inverted patterns should be used. Regardless of the pattern used, the perimeter of each opening 14a is the same. Therefore, there is no difference between the two patterns in terms of the function of generating an oblique electric field. However, the area ratio of the unit solid portion Mb '(compared to the total area of the picture element electrode 14) between the two patterns may be different. In other words, the area of the solid portion 14b (the portion where the conductive film is present) used to generate an electric field acting on the liquid crystal module of the liquid crystal layer may be different between the two. The voltage applied to the liquid crystal domain formed in the opening 14a will be lower than the voltage applied to the other liquid crystal domain formed in the solid portion 14b. Therefore, for example, in a normal black mode display, the liquid crystal domain formed in the opening 14 a is relatively dark. Therefore, as the area ratio of the openings 14a increases, the display brightness decreases. Therefore, it is better to refer to these entities -40- 581921 (36) Description of the Invention Continued 1 4 b The higher the area ratio, the better. In the pattern of FIG. 1A and the pattern of FIG. 9, which type of the area ratio of the solid portion 14 b is relatively high depends on the pitch (size) of the unit lattice.

圖1 1 A所示的係圖1 A中的圖案之單元晶格的示意圖,圖 1 1 B所示的係圖9 (以開孔1 4 a作為每個晶格的中心)中的 圖案之單元晶格的示意圖。圖1 1 B中已經將圖9中用以將 相鄰的單元實體部14bf連接在一起的部分(從該圓形部分 朝四個方向延伸的分支部分)省略。該正方形單元晶格其 中一邊的長度(間距)係以「p」表示,而該開孔14a (或該 單元實體部14b’)與該單元晶格的側邊之間的距離(側邊空 間的寬度)係以「s」表示。FIG. 11A is a schematic diagram of a unit lattice of the pattern in FIG. 1A, and FIG. 1B is a diagram of the pattern in FIG. 9 (with an opening 14a as the center of each lattice). Schematic representation of the unit lattice. In FIG. 11B, a portion (a branch portion extending in four directions from this circular portion) for connecting adjacent unit solid portions 14bf in FIG. 9 has been omitted. The length (pitch) of one side of the square unit lattice is represented by "p", and the distance between the opening 14a (or the unit solid portion 14b ') and the side of the unit lattice (the side space of Width) is represented by "s".

本發明已經製造出具不同間距p及側邊空間s的各種圖 像元素電極1 4的樣本,用以檢驗該放射狀傾斜配向的穩定 度。因此,吾人發現如果利用具有圖1 1 A所示圖案(後面 將稱為「正向圖案」)的圖像元素電極1 4的話,側邊空間s必 須約為2.75 μηι以上,方能產生取得放射狀傾斜配向所需要 的傾斜電場。吾人發現如果利用具有圖1 1 Β所示圖案(後面 將稱為「負向圖案」)的圖像元素電極1 4的話,側邊空間s 則必須約為2.25 μιη以上,方能產生取得放射狀傾斜配向所 需要的傾斜電場。對每個圖案來說,檢驗實體部1 4 b的面 積比例的方式係,改變間距p的數值,將側邊空間s固定為 上面的下限值。其結果如下面的表1及圖1 1 C所示。 -41 - 581921 (37) 發明說明續頁 [表1] 間距ρ (μηι) 實體部 正向(圖1 1 Α) 面積比例(%) 負向(圖11Β) 20 41.3 52.9 25 47.8 47.2 30 52.4 43.3 35 55.8 40.4 40 58.4 38.2 45 60.5 36.4 50 62.2 35.0 從表1及圖1 1 C中可以看出,當間距p約為25 μηι或以上時 ,正向圖案(圖1 1Α)具有較高的實體部14b之面積比例;當 間距p小於約25 μηι時,負向圖案(圖1 1 B)則具有較高的實 體部1 4 b之面積比例。所以,就顯示亮度及配向的穩定度 來說,究竟應該採用何種圖案會在約2 5 μηι的臨界間距p 處發生的變化。舉例來說,當在寬度為75 μηι圖像元素電 極1 4的寬度方向中具有三個以下的單元晶格時,最好是使 用圖1 1 Α中的正向圖案;當具有四個以上的單元晶格時, 則最好是使用圖1 1 B中的負向圖案。至於本文所示之外的 圖案,可以相同的方式來選擇正向圖案及負向圖案,以便 取得較大的實體部1 4 b之面積比例。 單元晶格數量的決定方式如下。每個單元晶格的尺寸都 會經過計算,以便將一個以上(整數個)的單元晶格排列在 -42 - 581921 (38) 發明說明續頁 圖像元素電極1 4的览度(水平或垂直)中,並且針對每個已 經計算的單元晶格尺寸計算出該實體部的面積比例。然後 ,從中選出具有最大的實體部面積比例的單元晶格尺寸。 請注意,當單元實體部Mb’的直徑(對正向圖案來說)或開 孔1 4 a的直徑(對負向圖案來說)小於1 5 μπι時,該傾斜電場 所造成的配向調整力量便會降低,因而不容易取得穩定的Samples of various image element electrodes 14 having different pitches p and side spaces s have been manufactured by the present invention to test the stability of the radial tilt alignment. Therefore, I have found that if an image element electrode 14 having a pattern shown in FIG. 1A (hereinafter referred to as a “forward pattern”) is used, the side space s must be about 2.75 μηι or more to generate radiation. The oblique electric field required for the oblique oblique alignment. I have found that if an image element electrode 14 having a pattern shown in FIG. 1 1 B (hereinafter referred to as a “negative pattern”) is used, the side space s must be about 2.25 μm or more in order to obtain a radial shape. The tilted electric field required for tilted alignment. For each pattern, the method of checking the area ratio of the solid part 1 4 b is to change the value of the distance p to fix the side space s to the upper lower limit value. The results are shown in Table 1 below and Fig. 1 1C. -41-581921 (37) Description of the invention continued [Table 1] Pitch ρ (μηι) Solid part positive (Figure 1 A) Area ratio (%) Negative (Figure 11B) 20 41.3 52.9 25 47.8 47.2 30 52.4 43.3 35 55.8 40.4 40 58.4 38.2 45 60.5 36.4 50 62.2 35.0 As can be seen from Table 1 and Figure 1 1C, when the distance p is about 25 μm or more, the forward pattern (Figure 1 1A) has a higher solid part The area ratio of 14b; when the distance p is less than about 25 μηι, the negative pattern (FIG. 1B) has a higher area ratio of the solid portion 14b. Therefore, in terms of display brightness and alignment stability, what pattern should be adopted will change at a critical interval p of about 25 μm. For example, when there are three or less unit lattices in the width direction of the 75 μηι picture element electrode 14 in the width direction, it is best to use the forward pattern in FIG. 1 A; when there are more than four When using a unit lattice, it is best to use the negative pattern in Figure 1 1B. As for the patterns other than those shown here, the positive pattern and the negative pattern can be selected in the same manner so as to obtain a larger area ratio of the solid portion 1 4 b. The number of cell lattices is determined as follows. The size of each unit lattice is calculated in order to arrange more than one (integer) unit lattice at -42-581921 (38) Description of the Invention Continued Picture element electrode 1 4 (horizontal or vertical) And calculate the area ratio of the solid part for each calculated unit lattice size. Then, a unit lattice size having the largest solid portion area ratio is selected therefrom. Please note that when the diameter of the unit solid part Mb '(for the positive pattern) or the diameter of the opening 1 4 a (for the negative pattern) is less than 1 5 μm, the alignment adjustment force caused by the inclined electric field It will decrease, so it ’s not easy to get stable

放射狀傾斜配向。該下限值係針對厚度約為3 μπι的液晶層 3 0而言。當該液晶層3 0的厚度小於約為3 μπι時,即使單元 實體部14bf的直徑及開孔1 4a的直徑小於該下限值,亦能夠 取得穩定的放射狀傾斜配向。當該液晶層3 0的厚度大於約 為3 μπι時,為能夠取得穩定的放射狀傾斜配向,單元實體 部14bf的直徑及開孔14a的直徑的下限值便必須高於上面 所示的下限值。Radial tilt alignment. The lower limit is for the liquid crystal layer 30 having a thickness of about 3 μm. When the thickness of the liquid crystal layer 30 is less than about 3 μm, even if the diameter of the cell solid portion 14bf and the diameter of the openings 14a are smaller than the lower limit value, stable radial tilt alignment can be obtained. When the thickness of the liquid crystal layer 30 is greater than about 3 μm, in order to obtain a stable radial tilt alignment, the lower limit values of the diameter of the unit solid portion 14bf and the diameter of the opening 14a must be higher than the lower limit shown above. Limit.

請注意,稍後將會說明,如果在開孔1 4 a中形成一突出 部的話,將可提高該放射狀傾斜配向的穩定性。不過,上 面所示的情形皆假設並未形成該突出部。 如上所述,藉由提供一種用以施加配向調整力量的電極 結構,在圖像元素區中形成呈現放射狀傾斜配向的液晶域 ,便能夠實現一種具廣視角的顯示器。 不過,本案發明人發現僅藉由提供如上所述的電極結構 ,並無法充分地改良顯示品質,其係取決於該圖像元素電 極14之開孔14a與位於該TFT基板100a上的匯流排線(一群 互連線路)的邊緣之間的位置關係。在本發明的液晶顯示裝 置1 0 0中,該圖像元素電極1 4之開孔1 4 a與該匯流排線的邊 -43 - 581921 (39) 發明說明續頁 緣具有下面所述的位置關係,從而可實現高品質的顯示。 參考圖1 2,現在將說明本具體實施例之液晶顯示裝置 1 0 0的圖像元素電極1 4的開孔1 4 a與匯流排線1 8的邊緣之 間的位置關係。圖1 2為本具體實施例之液晶顯示裝置1 00 之其中一個圖像元素區之平面示意圖。請注意,在後面的 圖式中會將每個圖像元素區位於該TFT基板100a之上的 T F T省略。 如圖12所示,該液晶顯示裝置100的TFT基板100a包括於 接近該液晶層3 0的一側之上供每個圖像元素區使用的圖 像元素電極1 4 ; 一電氣連接至該圖像元素電極1 4用以當作 切換元件的T FT (未顯示);以及匯流排線1 8,其包括電氣 連接至該T F T的閘極匯流排線(掃描線)1 5及源極匯流排線 (信號線)1 6。在該具體實施例中,該匯流排線1 8進一步包 括一用以構成儲存電容器的儲存電容器線路1 7。 在本具體實施例中,如圖1 2所示,至少有一個位於該匯 流排線1 8中的開孔1 4 a會疊放在每個圖像元素區的匯流排 線1 8上。更明確地說,在位於該匯流排線1 8中的開孔1 4 a 之間,位於該閘極匯流排線1 5中且位於兩個相鄰的單元實 體部14b’之間的開孔1 4 a,亦會疊放於該匯流排線1 8 (閘極 匯流排線1 5)上。因此,從TFT基板100a這一邊看去,該閘 極匯流排線1 5的位置會覆蓋位於兩個相鄰的單元實體部 14b’之間的開孔14a。從反基板100b的這一邊看去,插入於 開孔1 4a之間的單元實體部14b’則會覆蓋該閘極匯流排線 1 5的邊緣。此處,該閘極匯流排線1 5係由各朝相鄰的單元 -44- 581921 (40) 發明說明續頁 實體部14W之間的開孔14a延伸的分支部分所構成的,所以 位於相鄰的單元實體部14b’之間的開孔1 4a亦會疊放於該 閘極匯流排線1 5上。 如上所述,在該液晶顯示裝置1 0 0中,至少有一個位於 該匯流排線1 8中的開孔1 4 a會疊放在該匯流排線1 8上,因 而可貫現南品質的顯不。其原因將參考圖13、圖14A、圖 1 4 B、圖1 6 A及圖1 6 B在下面作說明,與位於該匯流排線1 8 中的開孔1 4 a並未疊放在該匯流排線1 8上的情形作比較。 圖13為液晶顯示裝置700之平面示意圖,其中位於該匯 流排線1 8中的開孔1 4 a並未疊放在該匯流排線1 8之上。再 者,圖14A及圖14B所示的係在位於該液晶顯示裝置700 之閘極匯流排線1 5中的開孔1 4 a附近的液晶模組3 0 a之配 向示意圖,其中圖14A為平面圖,而圖14B則為沿著圖14A 之直線1 4B-1 4B’的剖面圖。圖1 6 A及圖1 6 B所示的係在位於 該液晶顯示裝置1 0 0之閘極匯流排線1 5中的開孔1 4 a附近 的液晶模組30a之配向示意圖,其中圖16A為平面圖,而 圖16B則為沿著圖16A之直線16B-16B’的剖面圖。 當驅動該液晶顯示裝置時,必須在位於該TFT基板100a 中的匯流排線1 8上施加用以驅動該液晶顯示裝置的預設 信號(電壓),所以必須在該匯流排線1 8及該反電極2 2之間 產生電場。所以,會在該匯流排線1 8的邊緣附近產生傾斜 電場。不過,該傾斜電場所造成的配向調整力量並不匹配 該開孔1 4 a之邊緣部分所產生的傾斜電場所造成的配向調 整力量。所以,如果形成於位於該匯流排線1 8中的開孔1 4 a -45 - 581921 (41) 發明說明續頁 内的液晶域受到該匯流排線1 8之邊緣附近所產生傾斜電 場所造成的配向調整力量的作用時,該液晶域的配向便會 受到干擾,因而形成扭曲的放射狀傾斜配向。 舉例來說,如圖1 3所示,在液晶顯示裝置7 0 0中,其中 位於該匯流排線1 8中的開孔1 4 a並未疊放在該匯流排線1 8 之上,所以,當施加電壓存在時,在位於該閘極匯流排線 1 5中的開孔1 4 a附近的液晶模組3 0 a便會被配向成下面的 結果。如圖1 4 B所示,當施加電壓存在時,在開孔1 4 a的 邊緣部分處的液晶模組3 0 a會被該開孔1 4 a的邊緣附近處 所產生的傾斜電場朝反時針方向傾斜’而在該閘極匯流排 線1 5的邊緣附近的液晶模組3 0 a則會被該閘極匯流排線1 5 附近所產生的傾斜電場朝順時針方向傾斜。所以,如圖 1 4 A所示,開孔1 4 a中的液晶層3 0會形成一具扭曲的放射 狀傾斜配向(在該圖解的範例中則為一扁平的圓形形狀) 的液晶域。 因為鄰近的液晶域都有維持其配向連續性的傾向,所以 位於該匯流排線1 8中的開孔1 4 a内的液晶域之配向干擾也 會影響到鄰近液晶域(也就是,形成於鄰近單元實體部14bf 中的液晶域)的配向。因此,鄰近的單元實體部14bf中的液 晶域配向亦會受到干擾。 在因為其受干擾的配向而呈現扭曲的放射狀傾斜配向 的液晶域中,其配向相當不穩定而且容易瓦解,因此在施 加電壓之後,其需要很長的時間方能讓此類液晶域的配向 達到穩定狀態。因此,上述的配向干擾將會降低響應速度 -46- 581921 (42) 發明說明續頁 (破壞響應特徵)。Note that it will be explained later that if a protrusion is formed in the opening 14a, the stability of the radial tilt alignment can be improved. However, the cases shown above assume that the protrusions are not formed. As described above, by providing an electrode structure for applying an alignment adjustment force and forming a liquid crystal domain exhibiting a radial oblique alignment in the image element region, a display with a wide viewing angle can be realized. However, the inventors found that the display quality cannot be sufficiently improved only by providing the electrode structure as described above, which depends on the openings 14a of the picture element electrode 14 and the busbars on the TFT substrate 100a. (A group of interconnected lines) the positional relationship between the edges. In the liquid crystal display device 100 of the present invention, the opening 14a of the picture element electrode 14 and the edge of the bus bar -43-581921 (39) Description of the invention The continued margin has the position described below Relationship, which enables high-quality display. Referring to FIG. 12, the positional relationship between the openings 14a of the picture element electrodes 14 of the liquid crystal display device 100 of the present embodiment and the edges of the bus bars 18 will now be described. FIG. 12 is a schematic plan view of one image element region of the liquid crystal display device 100 of the specific embodiment. Note that T F T where each picture element region is located above the TFT substrate 100a is omitted in the following drawings. As shown in FIG. 12, the TFT substrate 100a of the liquid crystal display device 100 includes a picture element electrode 1 4 for each picture element region on a side close to the liquid crystal layer 30; an electrical connection is made to the figure The image element electrode 14 is used as a T FT (not shown) as a switching element; and the bus line 18 includes a gate bus line (scan line) 15 and a source bus line electrically connected to the TFT. Line (signal line) 1 6. In this embodiment, the bus bar 18 further includes a storage capacitor line 17 for forming a storage capacitor. In this specific embodiment, as shown in FIG. 12, at least one opening 14 a in the bus line 18 is stacked on the bus line 18 in each image element area. More specifically, between the openings 14 a in the bus bar 18, the openings in the gate bus 15 and between two adjacent unit solid portions 14 b ′ 1 4 a will also be stacked on the busbar 18 (gate busbar 15). Therefore, when viewed from the side of the TFT substrate 100a, the position of the gate bus bar 15 will cover the opening 14a located between two adjacent unit solid portions 14b '. When viewed from this side of the counter substrate 100b, the unit solid portion 14b 'inserted between the openings 14a will cover the edge of the gate busbar 15. Here, the gate bus line 15 is composed of branch portions extending toward the openings 14a between the solid portions 14W of the continuation page, and is located at the phase. The openings 14a between the adjacent unit solid portions 14b 'will also be stacked on the gate busbar 15. As described above, in the liquid crystal display device 100, at least one of the openings 14a located in the bus bar 18 will be stacked on the bus bar 18, so that a South-quality Significantly. The reason will be described below with reference to Fig. 13, Fig. 14A, Fig. 1 4B, Fig. 16 A, and Fig. 16 B, and the openings 1 4a in the bus bar 18 are not stacked on the Compare the situation on the bus line 18. FIG. 13 is a schematic plan view of the liquid crystal display device 700, wherein the openings 14a in the bus bar 18 are not stacked on the bus bar 18. 14A and FIG. 14B are schematic alignment diagrams of the liquid crystal module 3 0 a located near the openings 1 4 a in the gate bus bar 15 of the liquid crystal display device 700, where FIG. 14A is 14B is a plan view, and FIG. 14B is a cross-sectional view taken along line 1 4B-1 4B ′ of FIG. 14A. FIG. 16A and FIG. 16B are schematic alignment diagrams of the liquid crystal module 30a located near the opening 14a in the gate bus bar 15 of the liquid crystal display device 100, of which FIG. 16A 16B is a plan view, and FIG. 16B is a cross-sectional view taken along line 16B-16B ′ of FIG. 16A. When driving the liquid crystal display device, a preset signal (voltage) for driving the liquid crystal display device must be applied to the bus line 18 located in the TFT substrate 100a, so the bus line 18 and the An electric field is generated between the counter electrodes 22. Therefore, an oblique electric field is generated near the edge of the bus bar 18. However, the alignment adjustment force caused by the inclined electric field does not match the alignment adjustment force caused by the inclined electric field generated by the edge portion of the opening 14a. Therefore, if the openings 1 4 a -45-581921 (41) formed in the bus bar 18 are formed, the liquid crystal domain in the continuation page is caused by the inclined electric field generated near the edge of the bus bar 18 When the effect of the alignment adjustment force is applied, the alignment of the liquid crystal domain is disturbed, thereby forming a distorted radial tilt alignment. For example, as shown in FIG. 13, in the liquid crystal display device 700, the openings 14a in the busbar 18 are not stacked on the busbar 18, so When the applied voltage is present, the liquid crystal module 3 0 a located near the opening 14 a in the gate bus line 15 will be aligned to the following result. As shown in FIG. 14B, when an applied voltage exists, the liquid crystal module 3 0a at the edge portion of the opening 1 4 a will be turned counterclockwise by the inclined electric field generated near the edge of the opening 1 4 a. The direction is inclined, and the liquid crystal module 3 0 a near the edge of the gate bus line 15 is tilted clockwise by the inclined electric field generated near the gate bus line 15. Therefore, as shown in FIG. 14A, the liquid crystal layer 30 in the opening 14a will form a liquid crystal domain with a distorted radial oblique alignment (a flat circular shape in the illustrated example). . Because adjacent liquid crystal domains have a tendency to maintain their alignment continuity, the alignment interference of the liquid crystal domains located in the openings 14a in the bus bar 18 will also affect the adjacent liquid crystal domains (that is, formed in Alignment of the liquid crystal domain in the adjacent cell entity portion 14bf). Therefore, the liquid crystal domain alignment in the adjacent unit solid portion 14bf is also disturbed. In the liquid crystal domain, which has a distorted radial tilted alignment due to its disturbed alignment, its alignment is quite unstable and easily disintegrated. Therefore, it takes a long time for the alignment of such liquid crystal domains after the voltage is applied Reached steady state. Therefore, the above-mentioned alignment interference will reduce the response speed. -46- 581921 (42) Continued description of the invention (destroying response characteristics).

再者,每個圖像元素區中的液晶層3 0都會達到此扭曲的 放射狀傾斜配向的穩定狀態,其中該配向已經受到干擾, 而且每個圖像元素區中受到干擾的配向都不相同。所以會 發生殘影的現象,其中在輸入影像切換信號之後,前面所 顯示的影像卻仍然存在。這係因為如果不同圖像元素區中 的液晶層3 0之配向都不相同的話,那麼不同圖像元素區中 的透射率也會不同。明確地說,從白色顯示轉換成中間灰 階顯示的圖像元素區與從黑色顯示轉換成中間灰階顯示 的圖像元素區之間的液晶層3 0的配向會有顯著的差異,而 此等圖像元素區之間的透射率的差異便很可能導致殘影 現象。其原因如下。在白色顯示中,在開孔14 a之邊緣部 分處所產生的傾斜電場會施加非常強的配向調整力量,所 以該液晶層3 0的配向非常穩定。所以,即使轉換成中間灰 階顯示之後,該液晶層3 0的配向仍然非常穩定。相反地, 當從黑色顯示轉換成中間灰階顯示時,因為在開孔1 4 a邊 緣部分處所產生的傾斜電場所造成的配向調整力量非常 微弱,所以該液晶層3 0的配向相當容易瓦解。 相反地,本發明之液晶顯示裝置1 0 0係設計成至少有一 個位於該匯流排線1 8中的開孔14a (明確地說,位於該閘極 匯流排線1 5中且位於兩個相鄰的單元實體部1 4b ’之間的 開孔1 4 a)會疊放於該匯流排線1 8 (閘極匯流排線1 5 )上,如 圖1 2所示,所以位於疊放於該匯流排線1 8之開孔1 4 a附近 的匯流排線1 8的邊緣便會被該圖像元素電極1 4的單元實 -47- 581921 (43) 發明說明續頁 體部14b’覆蓋。 所以,在疊放在該匯流排線1 8上的開孔1 4a附近,該液 晶層3 0的液晶板組3 0 a會受到該圖像元素區1 4的早元貪體 部1 4b ’的電氣遮蔽,使其不會受到該匯流排線1 8的邊緣附 近中所產生的傾斜電場的影響。因此,該液晶層3 0的液晶 模組3 0 a並不會受到該匯流排線1 8之邊緣附近所產生的傾 斜電場所造成的配向調整力量的作用,因此其配向僅會由 該開孔1 4 a之邊緣部分處所產生的傾斜電場來調整。 所以,在本發明的液晶顯示裝置1 0 0中,該配向都不會 在形成於疊放在匯流排線1 8上的開孔1 4 a内的液晶域中或 在形成於該開孔1 4a附近的單元實體部14b’内的液晶域中 受到干擾,所以可以避免降低響應速度(破壞響應特徵) 以及避免發生殘影現象,從而實現高品質的顯示。 請注意,雖然該匯流排線1 8之邊緣附近所產生的傾斜電 場不僅會造成如上所述的響應速度降低及殘影現象,還會 造成對比降低,不過,如果該匯流排線1 8係由遮光材料所 製成的話,便可避免對比降低。現在將作更詳細的說明。 如上所述,在該匯流排線1 8之邊緣附近會產生一傾斜電 場,而且不論是否在該圖像元素電極1 4及該反電極2 2之間 的液晶層3 0上施加電壓,都會產生該傾斜電場。所以,在 以一般的黑色模式進行顯示的液晶顯示裝置中,當未施加 電壓時,如果位於該匯流排線1 8邊緣附近中的液晶模組 3 0 a被該傾斜電場所造成的配向調整力量傾斜的話,便可 能發生漏光,因而會降低對比。明確地說,因為閘極匯流 -48 - 581921 (44) 發明說明續頁 排線1 5大部分的時間中都係處於非常高的電壓(0 F F電壓) 下,以保持T F T的0 F F狀態,所以,該閘極匯流排線1 5邊 緣附近的漏光程度非常重要。 在本發明的液晶顯示裝置1 0 0中,在疊放在該匯流排線 1 8上的開孔1 4 a附近的匯流排線1 8之邊緣會被該圖像元素 區1 4的單元實體部14b’覆蓋,因而該液晶層3 0的液晶模組 3 0 a會受到電氣遮蔽,使其不會受到該匯流排線1 8之邊緣 附近中所產生的傾斜電場的影響。所以,該液晶層3 0的液 晶模組3 0 a便不會被該傾斜電場所造成的配向調整力量傾 斜。雖然在疊放在該匯流排線1 8上的開孔1 4 a中的液晶層 3 0的液晶模組3 0 a可能會被該匯流排線1 8及該反電極2 2之 間所產生的傾斜電場傾斜,不過如果該匯流排線1 8係由遮 光材料所製成的話,疊放在該匯流排線1 8上的開孔便不會 被光照到。 所以,如果該匯流排線1 8係由遮光材料所製成的話,便 可避免因為發生漏光而造成對比的降低,因而可實現更高 品質的顯不。 再者,如果該匯流排線1 8係由遮光材料所製成的話,便 可抑制顯示平面中的不均勻現象(即對比的局部變動),從 而可改良顯示品質,後面將會作說明。 由於該匯流排線1 8之邊緣附近所產生的傾斜電場的關 係,可能會在開孔1 4a (顯露出絕緣材料的開孔)中出現殘 留電荷,而且如果位於該匯流排線1 8中的開孔1 4 a内的液 晶模組3 0 a因為該殘留電荷的影響而被傾斜的話,便會導 -49- 581921 (45) 發明說明續頁 致漏光。雖然殘留電荷的程度會隨著該絕緣材料的表面狀 況而改變,但是當印刷排列膜或射出液晶材料時,該絕緣 材料的表面狀況還會發生變化。所以,在液晶顯示裝置中 ,顯示平面中的殘留電荷便會產生變動。如果殘留電荷會 在該顯示平面中變化的話,漏光程度也會在該顯示平面中 發生變化,從而導致對比的局部變動。明確地說,如上所 述,因為施加非常高的電壓於閘極匯流排線1 5中,所以該 閘極匯流排線1 5對於是否會出現不均勻現象的影響特別 重要。 在本發明的液晶顯示裝置1 0 0中,當該匯流排線1 8係由 遮光材料所製成時,疊放在該匯流排線1 8上的開孔1 4 a便 會被該匯流排線1 8遮蔽,從而可避免發生上述的不均勻現 象,因此能夠改良顯示品質。 再者,在圖1 3所示之液晶顯示裝置7 0 0内閘極匯流排線 1 5之邊緣附近中,部分區域並未形成該圖像元素電極1 4 之導體膜(實體部1 4 b ),如圖1 5 A (其為沿著圖1 3的直線 15A-15A’的剖面圖)所示;部分區域則有形成該圖像元素電 極1 4之導體膜,如圖15B (其為沿著圖1 3的直線15B-15B% 剖面圖)所示。所以,在並未於該閘極匯流排線1 5之邊緣 附近中形成該導體膜(實體部1 4b)的區域中,雜質離子便 會被該閘極匯流排線1 5所產生的電場吸附至該TFT基板 10 0 a的表面上,如圖1 5 A所示,所以便會因為該等被吸附 的雜質離子(後面將稱為「累積電荷」)而發生配向干擾。 所以,即使該匯流排線1 8係由遮光材料所製成的,還是會 -50- 581921 (46) 發明說明續頁 因為該閘極匯流排線1 5附近的每個開孔部份(圖1 3中虛線 所示的區域L L)中的累積電荷而發生配向干擾,因而會導 致漏光。 相反地,在本發明液晶顯示裝置1 0 0中,在嚴重受到該 閘極匯流排線1 5所造成之電場影響的區域中(即該閘極匯 流排線1 5附近的區域),大部分的區域都會形成該圖像元 素電極14之導體膜(實體部14b),如圖15B所示的區域,因 而可避免發生因為累積電荷所導致的配向干擾,從而可避 免漏光。 再者,該等造成累積電荷的雜質並非均勾地分佈在顯示 平面中,一般都是局部集中在該顯示平面的條紋狀圖案中 。這是因為當液晶材料經由預設間隔排列的複數個射出埠 射出時,該液晶材料在該等射出埠之間的區域中流動的速 度會遠慢於其它區域的速度,所以該等雜質便會局部集中 在此等區域中。 所以,在雜質集中的條紋狀區域(雜質較多的區域)與其 它區域(雜質較少的區域)之間,形成或遺失累積電荷的程 度會不同,因而該條紋狀區域與其它區域之間的漏光程度 亦不相同。因此,在圖1 3所示之液晶顯示裝置7 0 0中,該 條紋狀區域在亮度高於其它區域的位置便會呈現出「黑色 條紋」,在亮度低於其它區域的位置便會呈現出「白色條 紋」,因而造成顯示不均勻的現象。 相反地,在本發明的液晶顯示裝置1 0 0中,可如上述般 地避免因為累積電荷所導致的發生漏光,因而可避免顯示 -51 - 581921 (47) 發明說明績頁 不均勻的現象。Furthermore, the liquid crystal layer 30 in each picture element region will reach the stable state of this distorted radial tilt alignment, where the orientation has been disturbed, and the disturbed orientation in each picture element region is different . Therefore, the phenomenon of afterimage will occur, in which after the image switching signal is input, the image shown above still exists. This is because if the alignment of the liquid crystal layer 30 in different picture element regions is different, the transmittance in different picture element regions will also be different. Specifically, the alignment of the liquid crystal layer 30 between the image element region converted from the white display to the intermediate grayscale display and the image element region converted from the black display to the intermediate grayscale display will have a significant difference, and this The difference in transmittance between iso-image element areas is likely to cause afterimages. The reason is as follows. In the white display, the oblique electric field generated at the edge portion of the opening 14a will exert a very strong alignment adjustment force, so the alignment of the liquid crystal layer 30 is very stable. Therefore, the alignment of the liquid crystal layer 30 is very stable even after switching to the intermediate gray scale display. In contrast, when switching from a black display to a middle grayscale display, the alignment adjustment force caused by the tilted electric field generated at the edge portion of the opening 14a is very weak, so the alignment of the liquid crystal layer 30 is easily broken. In contrast, the liquid crystal display device 100 of the present invention is designed to have at least one opening 14a in the bus bar 18 (specifically, located in the gate bus bar 15 and located in two phases). The openings 1 4 a between adjacent unit solid parts 1 4b ′ will be stacked on the busbar 18 (gate busbar 1 5), as shown in FIG. 12, so it is located on the busbar The edge of the busbar 18 near the opening 14a of the busbar 18 will be covered by the unit element of the picture element electrode 14-47-581921 (43) Description of the invention continued on the body 14b ' . Therefore, in the vicinity of the openings 14a stacked on the bus bar 18, the liquid crystal panel group 30a of the liquid crystal layer 30 will be subjected to the early element body part 1 4b of the image element region 14 Electrical shielding so that it is not affected by the oblique electric field generated in the vicinity of the edge of the bus bar 18. Therefore, the liquid crystal module 30a of the liquid crystal layer 30 is not affected by the alignment adjustment force caused by the inclined electric field generated near the edge of the bus bar 18, so its alignment is only caused by the opening Adjust the tilt electric field generated at the edge part of 1 4 a. Therefore, in the liquid crystal display device 100 of the present invention, the alignment is not in the liquid crystal domain formed in the openings 1 4 a stacked on the bus bars 18 or in the openings 1. The liquid crystal domain in the unit solid portion 14b ′ near 4a is disturbed, so it is possible to avoid reducing the response speed (destroying the response characteristic) and avoiding the afterimage phenomenon, thereby achieving high-quality display. Please note that although the oblique electric field generated near the edge of the busbar 18 will not only cause the reduction of the response speed and the afterimage phenomenon described above, but also the decrease in contrast, if the busbar 18 is caused by By using a light-shielding material, the contrast can be avoided. This will now be explained in more detail. As described above, an oblique electric field is generated near the edge of the bus bar 18, and it is generated regardless of whether a voltage is applied to the liquid crystal layer 30 between the picture element electrode 14 and the counter electrode 22. The inclined electric field. Therefore, in a liquid crystal display device that performs display in a general black mode, when no voltage is applied, if the liquid crystal module 3 0 a located near the edge of the bus bar 18 is caused by the alignment adjustment force caused by the inclined electric field If it is tilted, light leakage may occur, thereby reducing contrast. Specifically, because the gate bus -48-581921 (44) description of the invention, the continuation of the cable 15 is under a very high voltage (0 FF voltage) most of the time to maintain the 0 FF state of the TFT, Therefore, the degree of light leakage near the edge of the gate bus line 15 is very important. In the liquid crystal display device 100 of the present invention, the edge of the bus bar 18 near the opening 14 a stacked on the bus bar 18 will be the unit entity of the image element area 14 The portion 14b 'is covered, so that the liquid crystal module 30a of the liquid crystal layer 30 is electrically shielded from the influence of the oblique electric field generated in the vicinity of the edge of the bus bar 18. Therefore, the liquid crystal module 30a of the liquid crystal layer 30 will not be tilted by the alignment adjustment force caused by the inclined electric field. Although the liquid crystal module 3 0 a of the liquid crystal layer 30 in the opening 14 a stacked on the bus line 18 may be generated between the bus line 18 and the counter electrode 22. The inclined electric field is inclined, but if the busbar 18 is made of a light-shielding material, the openings stacked on the busbar 18 will not be illuminated. Therefore, if the bus bar 18 is made of a light-shielding material, it is possible to avoid a reduction in contrast due to light leakage, and thus a higher quality display can be achieved. Furthermore, if the bus bar 18 is made of a light-shielding material, it can suppress unevenness in the display plane (ie, local variation of contrast), thereby improving the display quality, which will be described later. Due to the inclined electric field generated near the edges of the busbar 18, residual charges may appear in the openings 14a (openings of the insulating material are exposed), and if located in the busbar 18, If the liquid crystal module 3 0 a in the opening 1 4 a is tilted due to the influence of the residual electric charge, it will lead to -49- 581921 (45) Description of the invention and the continuation of the page will cause light leakage. Although the degree of the residual charge varies with the surface condition of the insulating material, the surface condition of the insulating material may change when the alignment film is printed or the liquid crystal material is ejected. Therefore, in a liquid crystal display device, the residual charge in the display plane is changed. If the residual charge changes in the display plane, the degree of light leakage will also change in the display plane, resulting in a local change in contrast. Specifically, as described above, since a very high voltage is applied to the gate busbar 15, the gate busbar 15 is particularly important for the influence of unevenness. In the liquid crystal display device 100 of the present invention, when the bus bar 18 is made of a light-shielding material, the openings 1 4 a stacked on the bus bar 18 will be used by the bus bar. The lines 18 are shielded, so that the above-mentioned unevenness can be avoided, and thus the display quality can be improved. Furthermore, in the vicinity of the edge of the internal gate bus bar 15 of the liquid crystal display device 7 0 shown in FIG. 13, a conductive film (the solid portion 1 4 b of the picture element electrode 1 4) is not formed in some areas. ), As shown in FIG. 15A (which is a cross-sectional view along the line 15A-15A 'along FIG. 13); in some regions, there is a conductor film forming the picture element electrode 14 as shown in FIG. 15B (which is 15B-15B% cross-sectional view along the straight line in Figure 13). Therefore, in a region where the conductor film (solid portion 14b) is not formed near the edge of the gate busbar 15, the impurity ions are adsorbed by the electric field generated by the gate busbar 15 On the surface of the TFT substrate 100a, as shown in FIG. 15A, alignment interference occurs due to the adsorbed impurity ions (hereinafter referred to as "cumulative charge"). Therefore, even if the busbar 18 is made of light-shielding material, it will still be -50- 581921 (46) Description of the Invention Continued because each opening part near the gate busbar 15 (Figure The accumulated charge in the area LL) indicated by the dashed line in FIG. 13 causes alignment interference, thereby causing light leakage. In contrast, in the liquid crystal display device 100 of the present invention, most of the areas that are seriously affected by the electric field caused by the gate busbar 15 (that is, the area near the gate busbar 15) are mostly The conductive film (solid portion 14b) of the picture element electrode 14 is formed in the region of the pixel element, as shown in FIG. 15B. Therefore, alignment interference caused by the accumulated charge can be avoided, and light leakage can be avoided. In addition, the impurities that cause accumulated charges are not evenly distributed in the display plane, but are generally localized in a striped pattern on the display plane. This is because when the liquid crystal material is ejected through a plurality of ejection ports arranged at a predetermined interval, the liquid crystal material flows in the regions between the ejection ports at a much slower speed than other regions, so the impurities will be Partially concentrated in these areas. Therefore, the degree of formation or loss of accumulated charge may be different between the stripe-shaped region (region with more impurities) and other regions (regions with less impurities) where impurities are concentrated. The degree of light leakage is also different. Therefore, in the liquid crystal display device 700 shown in FIG. 13, the stripe-shaped region will show a “black streak” at a position where the brightness is higher than other regions, and at a position where the brightness is lower than other regions, it will appear. "White streaks" cause uneven display. On the contrary, in the liquid crystal display device 100 of the present invention, light leakage due to the accumulated charge can be avoided as described above, and thus the display can be prevented from being uneven.

請注意,雖然上述說明係針對在每個圖像元素區中至少 有其中一個位於該匯流排線1 8中的開孔14a (其係位於該 閘極匯流排線1 5中且位於單元實體部14b’之間)係疊放在 該匯流排線1 8上,不過本發明並不受限於此。不過採用在 每個圖像元素區中至少有其中一個位於該匯流排線1 8中 且位於單元實體部14b'之間的開孔14a係疊放在該匯流排 線1 8上的排列的話,便可避免發生液晶域中的配向干擾, 所以可以避免降低響應速度(破壞響應特徵)以及避免發 生殘影現象。Please note that although the above description is directed to at least one of the openings 14a located in the bus bar 18 in each picture element area (which is located in the gate bus line 15 and is located in the unit entity portion 14b ') are stacked on the bus bar 18, but the present invention is not limited thereto. However, in the case where at least one of the openings 14a in each of the image element regions located in the busbar 18 and between the unit solid portions 14b 'is stacked on the busbar 18, It can avoid the alignment interference in the liquid crystal domain, so it can avoid reducing the response speed (destroying the response characteristics) and avoiding the afterimage phenomenon.

為避免因為該匯流排線1 8之邊緣附近中所產生的傾斜 電場而造成配向干擾,最好能夠增加疊放於該匯流排線1 8 上的開孔1 4 a的比例,也就是,增加被該圖像元素區1 4的 單元實體部14bV覆蓋的匯流排線1 8之邊緣部分。不過,當 該匯流排線1 8係由遮光材料所製成時,增加此比例將會降 低孔徑比。因此,疊放於該匯流排線1 8上的開孔1 4 a之比 例較合宜的係取決於該液晶顯示裝置的應用,必須考慮到 所期望的響應特徵及孔徑比。 當然,不僅位於兩個相鄰的單元實體部14b’之間的開孔 1 4 a可疊放於該匯流排線1 8上,位於該匯流排線1 8中的其 它開孔1 4 a亦可疊放於該匯流排線1 8上。舉例來說,在圖 像元素電極1 4的複數個開孔1 4 a中,所有位於閘極匯流排 線1 5中的開孔1 4 a都可疊放於該匯流排線1 8上,如圖1 7中 的液晶顯示裝置100A。 -52- 581921 (48) 發明說明續頁 在圖1 2所示的液晶顯示裝置1 0 0中,在圖像元素區之角 落處有一部分的開孔1 4 a並未疊放於匯流排線1 8之上(在 閘極匯流排線1 5與源極匯流排線1 6交叉處的附近)。相反 地,在圖1 7所示的液晶顯示裝置100A中,即使在該圖像元 素區之角落處,該閘極匯流排線1 5還是被單元實體部14b’ 覆蓋著,並且所有位於該閘極匯流排線1 5中的開孔1 4 a都 係疊放於該匯流排線1 8之上。In order to avoid the alignment interference caused by the inclined electric field generated near the edge of the busbar 18, it is better to increase the proportion of the openings 14a superimposed on the busbar 18, that is, to increase The edge portion of the bus bar 18 covered by the unit solid portion 14bV of the picture element region 14 is. However, when the bus bar 18 is made of a light-shielding material, increasing this ratio will reduce the aperture ratio. Therefore, the ratio of the openings 14a stacked on the bus bar 18 is more suitable depending on the application of the liquid crystal display device, and the expected response characteristics and aperture ratio must be considered. Of course, not only the openings 1 4 a located between two adjacent unit solid portions 14 b ′ may be stacked on the busbar 18, but also other openings 1 4 a located on the busbar 18. Can be stacked on the busbar 18. For example, in the plurality of openings 1 4 a of the picture element electrode 14, all the openings 1 4 a located in the gate busbar 15 can be stacked on the busbar 18, The liquid crystal display device 100A shown in FIG. 17. -52- 581921 (48) Description of the invention Continuation page In the liquid crystal display device 100 shown in FIG. 12, a part of the opening 1 4 a is located at the corner of the picture element area and is not stacked on the bus bar. Above 18 (near the intersection of gate bus line 15 and source bus line 16). In contrast, in the liquid crystal display device 100A shown in FIG. 17, even at the corner of the picture element area, the gate bus line 15 is covered by the unit solid portion 14b ′, and all are located at the gate. The openings 14 a in the pole busbar 15 are all stacked on the busbar 18.

在圖1 7所示的液晶顯示裝置100A中,該閘極匯流排線1 8 的邊緣有比較大的部分會被圖像元素電極1 4的單元實體 部14bf覆蓋住,所以防止配向干擾的效果更好。不過,請 注意,在開孔1 4 a位於圖像元素區之角落處的部分同樣疊 放於匯流排線1 8之上的排列中,與圖1 2所示的排列比較起 來,在閘極匯流排線1 5與源極匯流排線1 6交叉處的面積比 較大,所以寄生電容可能會比較大。所以,雖然圖1 7所示 的排列對於抑制配向干擾的效果比較好,不過圖1 2所示的 排列在降低寄生電容方面的效果則可能會比較好。當然, 只要至少有其中一個位於該匯流排線1 8中的開孔1 4a (其 係位於該閘極匯流排線1 5中且位於相鄰的單元實體部1.4b1 之間)係疊放在該匯流排線1 8上的話,如圖1 2所示,那麼 便能夠充分地抑制配向干擾並且獲得非常高的顯示品質。 請注意,雖然圖1 2及圖1 7各顯示的情形為該閘極匯流排 線1 5包括一朝開孔1 4 a延伸的分支部分,因此該開孔1 4 a 係疊放於該閘極匯流排線1 5之上,不過本發明並不限於此 。或者,可增加該閘極匯流排線1 5的寬度,讓位於該閘極匯 -53 - 581921 (49) 發明說明續頁 流排線1 5中的開孔1 4 a疊放在該閘極匯流排線1 5之上(使 得該閘極匯流排線1 5的邊緣會被該圖像元素電極1 4的單 元實體部14b'覆蓋),如圖1 8所示的液晶顯示裝置100B中的 情形。不過,請注意,當閘極匯流排線1 5的寬度增加之後 ,該閘極匯流排線1 5與該等單元實體部14V之間的重疊面 積亦會增加,所以與圖1 2及圖1 7所示的排列比較起來,便 會增加閘極汲極寄生電容值。再者,當該匯流排線1 5係 由遮光材料所製成時,與圖1 2及圖1 7所示的排列比較起來 ,其孔徑比也會降低。所以,為降低寄生電容值及改良孔 徑比,圖1 2及圖1 7所示的排列係較佳的排列。 再者,當驅動該液晶顯示裝置1 〇 〇時,施加於該閘極匯 流排線1 5上的電壓一般都會高於施加於該源極匯流排線 1 6上的電壓,因此,該閘極匯流排線1 5之邊緣附近所產生 的傾斜電場對於該等液晶模組的影響會大於該源極匯流 排線1 6之邊緣附近所產生的傾斜電場對於該等液晶模組 的影響。 所以,採用至少有其中一個或是全部位於該閘極匯流排 線中的匯流排線中的開孔1 4 a係疊放在該匯流排線1 8 (閘 極匯流排線1 5 )上的排列的話,如圖1 2及圖1 7所示的液晶 顯示裝置100及100A,便可有效地避免降低響應速度以及 避免發生殘影現象,而不會造成不必要的孔徑比降低。 當然,亦可採用至少有其中一個或是全部位於該源極匯 流排線1 6中的開孔1 4 a係疊放在該匯流排線1 8上的排列, 或是採用全部位於該閘極匯流排線1 5與該源極匯流排線 -54- 581921 (50) 發明說明續頁 1 6中的開孔1 4 a都係疊放在該匯流排線1 8上的排列,如圖 19及圖20所示的液晶顯示裝置100C及100D。在圖19及圖20 所示的液晶顯示裝置100C及100D中,該源極匯流排線1 6包 括各朝開孔1 4 a延伸的分支部分,而且不僅位於閘極匯流 排線1 5中的開孔1 4 a係疊放在該匯流排線1 8上,同時位於 源極匯流排線1 6中的開孔1 4 a亦疊放在該匯流排線1 8上。In the liquid crystal display device 100A shown in FIG. 17, a relatively large portion of the edge of the gate bus bar 18 will be covered by the unit solid portion 14 bf of the picture element electrode 14, so the effect of preventing alignment interference is prevented. better. However, please note that the part of the opening 14a located at the corner of the picture element area is also superimposed on the busbar 18, compared with the arrangement shown in FIG. 12, in the gate The area at the intersection of the bus line 15 and the source bus line 16 is relatively large, so the parasitic capacitance may be relatively large. Therefore, although the arrangement shown in Fig. 17 has a better effect on suppressing the alignment interference, the arrangement shown in Fig. 12 may have a better effect in reducing the parasitic capacitance. Of course, as long as at least one of the openings 14a in the busbar 18 (which is located in the gate busbar 15 and between the adjacent unit solid parts 1.4b1) is stacked, If the bus line 18 is shown in FIG. 12, alignment interference can be sufficiently suppressed and a very high display quality can be obtained. Please note that although the cases shown in FIGS. 12 and 17 each indicate that the gate busbar 15 includes a branch portion extending toward the opening 1 4 a, the opening 1 4 a is stacked on the gate The pole busbar 15 is above, but the present invention is not limited to this. Alternatively, the width of the gate bus bar 15 can be increased to give way to the gate bus bar -53-581921 (49) Description of the invention The openings 1 4 a in the continuation stream line 15 are stacked on the gate Above the pole busbar 15 (so that the edge of the gate busbar 15 will be covered by the unit solid part 14b 'of the picture element electrode 14), as shown in the liquid crystal display device 100B shown in FIG. 18 Situation. However, please note that as the width of the gate busbar 15 increases, the area of overlap between the gate busbar 15 and the unit solid part 14V will also increase. Comparing the arrangement shown in Figure 7 increases the gate-drain parasitic capacitance. Furthermore, when the bus bar 15 is made of a light-shielding material, the aperture ratio is also reduced compared with the arrangement shown in FIG. 12 and FIG. 17. Therefore, in order to reduce the parasitic capacitance value and improve the hole diameter ratio, the arrangement shown in Figs. 12 and 17 is a better arrangement. Furthermore, when the liquid crystal display device 100 is driven, the voltage applied to the gate bus line 15 is generally higher than the voltage applied to the source bus line 16. Therefore, the gate The effect of the inclined electric field generated near the edge of the bus line 15 on the liquid crystal modules is greater than the effect of the inclined electric field generated near the edge of the source bus line 16 on the liquid crystal modules. Therefore, at least one or all of the openings 1 4a in the busbar in the gate busbar are used to be stacked on the busbar 1 8 (gate busbar 15). If arranged, the liquid crystal display devices 100 and 100A shown in FIG. 12 and FIG. 17 can effectively avoid reducing the response speed and avoiding the afterimage phenomenon without causing an unnecessary reduction in the aperture ratio. Of course, it is also possible to adopt an arrangement in which at least one or all of the openings 14 a in the source bus line 16 are stacked on the bus line 18, or all of them are located on the gate electrode. The busbar 15 and the source busbar -54- 581921 (50) Description of the invention The openings 1 4a in the continuation page 16 are stacked on the busbar 18, as shown in Figure 19 And the liquid crystal display devices 100C and 100D shown in FIG. 20. In the liquid crystal display devices 100C and 100D shown in FIG. 19 and FIG. 20, the source busbar 16 includes branch portions each extending toward the opening 14a, and is not only located in the gate busbar 15 The openings 14a are stacked on the busbar 18, and the openings 14a in the source busbar 16 are also stacked on the busbar 18.

再者,必要時,至少有一個或全部位於該儲存電容器線 路1 7中的開孔1 4 a會疊放在該匯流排線1 8上。Furthermore, when necessary, at least one or all of the openings 1 4 a in the storage capacitor line 17 will be stacked on the bus line 18.

請注意,本發明並僅不限於包含圖1 2等所示的圖像元素 電極1 4的液晶顯示裝置,本發明當然可以使用其它包含各 種形狀之圖像元素電極1 4的適當的液晶顯示裝置。亦可就 該圖像元素電極1 4的單元實體部14b’的數量及排列方面作 修改。舉例來說,本發明亦適合使用於每個圖像元素電極 1 4中具有較少單元實體部14b’的液晶顯示裝置,例如,可 使用一種液晶顯示裝置,其中在源極匯流排線1 6所延伸之 方向上的每個圖像元素區中排列著三個單元實體部14b’。 如上所述的液晶顯示裝置1 0 0可採用與先前技術中熟知 的垂直排列式液晶顯示裝置相同的排列方式(不過圖像元 素電極1 4包括開孔1 4 a,而匯流排線1 8則具有預設的形狀) ,並且可以熟知的製造方法來製造。 一般來說,垂直排列層(未顯示)係位於每一個圖像元素 電極1 4及較接近該液晶層3 0的反電極2 2的其中一側上,以 便垂直排列該等具有負誘電各向異性的液晶模組。 該液晶材料可能是一具有負謗電各向異性的向列液晶 -55 - 581921 (51) 發明說明續頁 材料。在該具有負誘電各向異性的向列液晶材料中添加雙 色染料之後便可獲得主客型的液晶顯示裝置。主客型的液 晶顯不裝置並不需要偏光板。 上述說明係針對該匯流排線1 8具有預設的構成形狀(如 圖1 2所示具有分支部分的形狀,或如圖1 8所示具有較大寬 度的形狀)的情形,以便讓該匯流排線1 8的邊緣可被該圖 像元素電極1 4的實體部1 4b (單元實體部14b’)覆蓋。不過, 本發明並不受限於此。或者,可藉由將該圖像元素電極1 4 的單元實體部14b’(或開孔1 4a)以預設的排列方式進行排 列,而不需要改變該匯流排線1 8的形狀,便可讓該匯流排 線1 8的邊緣被該實體部1 4 b覆蓋。 舉例來說,可將該圖像元素電極1 4形成讓一部份的單元 實體部14b’(其形狀約相當於該單元實體部14b’的一半)位 於該閘極匯流排線1 5中,如圖2 1 A及圖2 1 B中的液晶顯示 裝置100E。在液晶顯示裝置100E中,有一部份的單元實體 部14b’係位於該閘極匯流排線1 5中,所以當施加電壓於該 圖像元素電極1 4及該反電極2 2之間後,該液晶層便會在位 於該閘極匯流排線1 5中的一部份實體部14b (—部份單元 實體部14b’)中構成一部份的呈現放射狀傾斜配向的液晶 域。 在液晶顯示裝置1 Ο Ο E中,該閘極匯流排線1 5的邊緣係 被一部份的單元實體部14b’(其形狀約相當於該單元實體 部14b'的一半)覆蓋,而分支部分則將該些單元實體部14N 電氣連接在一起,如圖2 1 A及圖2 1 B所示。因此,該閘極 -56- (52) 發明說明續頁 、、 成排線1 5的邊緣係被該實體部1 4b覆蓋。 說, 所以,舉例來 可以獲得與圖12所示之液晶顯示裝置1 1 U的效果。再 在液晶顯示裝置100Ε中’並不需要利用 κ tj分支部分來構 &讀閘極匯流排線1 5,或是增加該閘極匯卢μ ^ 、 , , <排線1 5的寬度 所以即使該匯流排線1 8係由遮光材料所劁 1表成的,仍然不 6發生不必要的孔徑比降低的現象。 下面表2顯示的係如圖21 A及圖2 1B所示之每個液晶顯 不裝置100E以及如圖22A及圖22B所示之液晶顯示裝置 1 0〇F (其中該閘極匯流排線1 5包括分支部分)的孔徑比 (「AR」)。表2亦顯示出液晶顯不裝置1〇〇£相對於液晶顯示 裝置100F的孔徑比之比例(「AR比例」)。[表2] 13,, 15,, AR AR比例 AR AR比{列 LCD 100F 51.2% 101.2% 57.4% 100.9% LCD 100E 51.8% 58.0% AR 如表2所示,對1 3 15 20' AR比例 100.8% 22'Please note that the present invention is not limited to the liquid crystal display device including the picture element electrodes 14 shown in FIG. 12 and the like, and the present invention can of course use other suitable liquid crystal display devices including the picture element electrodes 14 of various shapes. . The number and arrangement of the unit solid portions 14b 'of the picture element electrode 14 may be modified. For example, the present invention is also suitable for a liquid crystal display device having fewer unit solid portions 14 b ′ in each picture element electrode 14. For example, a liquid crystal display device may be used in which a source bus bar 16 is used. In each picture element region in the extending direction, three unit solid portions 14b 'are arranged. The above-mentioned liquid crystal display device 100 can be arranged in the same manner as the vertical alignment liquid crystal display device well known in the prior art (however, the picture element electrode 14 includes an opening 1 4 a, and the bus bar 18 (With a preset shape), and can be manufactured by well-known manufacturing methods. Generally, the vertical alignment layer (not shown) is located on one side of each of the picture element electrodes 14 and the counter electrode 2 2 which is closer to the liquid crystal layer 30, so that the negatively induced directions are aligned vertically. Heterosexual LCD module. The liquid crystal material may be a nematic liquid crystal with negative electrical anisotropy -55-581921 (51) Description of the Invention Continued material. A host-guest type liquid crystal display device can be obtained by adding a dichroic dye to this nematic liquid crystal material having negative anisotropy. The host-guest liquid crystal display does not require a polarizer. The above description is for the case where the busbar 18 has a preset configuration shape (a shape with branch portions as shown in FIG. 12 or a shape with a larger width as shown in FIG. 18) in order to allow the busbar An edge of the wiring line 18 may be covered by the solid part 14b (unit solid part 14b ') of the picture element electrode 14. However, the present invention is not limited to this. Alternatively, the unit solid part 14b '(or the openings 14a) of the picture element electrode 14 can be arranged in a preset arrangement without changing the shape of the bus bar 18 Let the edge of the bus bar 18 be covered by the solid portion 1 4 b. For example, the picture element electrode 14 may be formed such that a part of the unit solid portion 14b ′ (which has a shape equivalent to about half of the unit solid portion 14b ′) is located in the gate busbar 15, The liquid crystal display device 100E is shown in FIGS. 2A and 2B. In the liquid crystal display device 100E, a part of the unit solid part 14b 'is located in the gate bus line 15, so when a voltage is applied between the picture element electrode 14 and the counter electrode 22, The liquid crystal layer will form a part of the liquid crystal domain showing a radial oblique alignment in a part of the solid part 14b (-part of the unit solid part 14b ') located in the gate bus line 15. In the liquid crystal display device 10 O E, the edge of the gate bus bar 15 is covered by a part of the unit solid portion 14b ′ (the shape of which is approximately equivalent to half of the unit solid portion 14b ′), and branches Some of them are electrically connected to the unit solid parts 14N, as shown in Figure 2 A and Figure 2 1B. Therefore, the gate -56- (52) Invention Description Continued, The edges of the line 15 are covered by the solid portion 14b. That is, for example, an effect similar to that of the liquid crystal display device 1 1 U shown in FIG. 12 can be obtained. In the liquid crystal display device 100E, it is not necessary to use the κ tj branch portion to construct & read the gate busbar 15 or increase the width of the gate bus μ ^,,, < the width of the busbar 15 Therefore, even if the bus bar 18 is made of a light-shielding material, it does not cause an unnecessary decrease in the aperture ratio. Table 2 below shows each of the liquid crystal display devices 100E shown in FIG. 21A and FIG. 2B and the liquid crystal display device 100F shown in FIG. 22A and FIG. 22B (wherein the gate bus line 1 5 Including the branch portion) ("AR"). Table 2 also shows the ratio ("AR ratio") of the liquid crystal display device 100 £ to the aperture ratio of the liquid crystal display device 100F. [Table 2] 13, 15, 15, AR AR ratio AR AR ratio {Column LCD 100F 51.2% 101.2% 57.4% 100.9% LCD 100E 51.8% 58.0% AR As shown in Table 2, for 1 3 15 20 'AR ratio 100.8 % twenty two'

AR 58.3% AR比例 100.9% 及2 2π、的液晶面板來說’ 液晶顯示裝置100Ε的孔徑比改良 Γ 約 1% (0.8%至 1.2%)。請 注意,表2所示的數值當然是釺 、、 對特殊的規格而言,對該 液晶顯示裝置的邵分規格來說 "可能預期會有更高的孔 徑比。 雖然圖2 1 Α及圖2 1 Β·顯示的< φ ^ ^ Α —触、 ’、疼間極匯流排線1 5被該圖 像元素電極1 4的實體邵1 4b覆蓄仏 、 、 , 喪勺情形,不過較佳的係, 該閘極匯流排線1 5及该源極pg、、 ® %排線16中至少有其中一 •57、 581921 (53) I發明說明續頁AR 58.3% AR ratios of 100.9% and 2 2π. For LCD panels, the aperture ratio of the liquid crystal display device 100E is improved by about 1% (0.8% to 1.2%). Please note that the values shown in Table 2 are, of course, 釺 and 对. For special specifications, a higher aperture ratio may be expected for the LCD specifications of the LCD. Although FIG. 2 1 Α and FIG. 2 1 B show < φ ^ ^ Α-touch, ', pain interpolar busbar 15 is overwritten by the physical element 1 4b of the picture element electrode 1 4,,, However, in the best case, at least one of the gate busbar 15 and the source pg, ®% busbar 16, 57, 581921 (53) I Description of invention continued

條的邊緣係被該圖像元素電極1 4的實體部1 4b覆蓋。該單 元實體部14b’亦可以替代的方式排列,使得該閘極匯流排 線1 5的邊緣以及該源極匯流排線1 6的邊緣都被該圖像元 素電極1 4的實體部1 4b覆蓋,如圖2 3所示的液晶顯示裝置 100G。在液晶顯示裝置100G中,有一部份的單元實體部14b1 (其形狀約相當於該單元實體部14b’的一半)係位於該源極 匯流排線1 6中,如圖2 3所示,所以該源極匯流排線1 6的邊 緣亦會被該圖像元素電極1 4的實體部1 4b覆蓋。所以,可 進一步地改良避免發生配向干擾的效果。 如上所述,藉由正確地設定該圖像元素電極1 4的單元實 體部Mb’(或開孔1 4a)的排列方式,便可避免發生配向干擾 而不需要改變該匯流排線1 8的形狀。圖2 4 A及圖2 4 B,以 及圖2 5 A及圖2 5 B所示的分別係根據本發明該具體實施例 之替代液晶顯示裝置100H及1001。The edges of the bars are covered by the solid portions 14 b of the picture element electrodes 14. The unit solid portion 14b ′ may also be arranged in an alternative manner, so that the edges of the gate busbar 15 and the edges of the source busbar 16 are covered by the solid portion 14b of the picture element electrode 14 As shown in FIG. 23, the liquid crystal display device 100G. In the liquid crystal display device 100G, a part of the unit solid portion 14b1 (the shape of which is equivalent to about half of the unit solid portion 14b ') is located in the source busbar 16 as shown in FIG. 23, so The edges of the source busbar 16 will also be covered by the solid portion 14b of the picture element electrode 14. Therefore, the effect of avoiding the occurrence of alignment interference can be further improved. As described above, by correctly setting the arrangement manner of the unit solid part Mb ′ (or the openings 14a) of the picture element electrode 14, alignment interference can be avoided without changing the bus line 18. shape. Figures 2A and 2B, and Figures 2A and 25B respectively represent alternative liquid crystal display devices 100H and 1001 according to this embodiment of the present invention.

在每個液晶顯示裝置100H及1001中,該圖像元素電極14 的每個單元實體部14b’的形狀為一般的星形形狀,其具有 八個側邊(邊緣),而且在其中心具有一四重旋轉軸。再者 ,該開孔1 4 a為一般的菱形形狀。 在液晶顯示裝置100H中,該閘極匯流排線1 5的邊緣係呈 之字形,因此該閘極匯流排線1 5的邊緣會如圖2 4 A及圖 2 4 B般地被該圖像元素電極1 4的實體部1 4 b覆蓋。相反地 ,在液晶顯示裝置1001中,有一部份為一般星形的單元實 體部14b’(其形狀約相當於該單元實體部14b’的一半)係位 於該閘極匯流排線1 5中且位於該源極匯流排線1 6中,所以 -58- 581921 (54) 發明說明續頁 該閘極匯流排線1 5的邊緣以及該源極匯流排線1 6的邊緣 亦會如圖2 5 A及圖2 5 B般地被該圖像元素電極1 4的實體部 14b覆蓋。所以,在液晶顯示裝置1001中能夠避免不必要 的孔徑比降低的情形。 替代較佳具體實施例In each of the liquid crystal display devices 100H and 1001, the shape of each of the unit solid portions 14b ′ of the picture element electrode 14 is a general star shape, which has eight sides (edges), and has a Quadruple rotation axis. Furthermore, the openings 1 4 a have a general diamond shape. In the liquid crystal display device 100H, the edges of the gate busbar 15 are zigzag, so the edges of the gate busbar 15 will be imaged as shown in Fig. 2 4A and Fig. 2 4B. The solid portion 1 4 b of the element electrode 14 is covered. In contrast, in the liquid crystal display device 1001, a part of the unit solid part 14b ′ (which has a shape corresponding to about half of the unit solid part 14b ′) which is generally star-shaped is located in the gate bus bar 15 and It is located in the source busbar 16, so -58- 581921 (54) Description of the invention continued on the edge of the gate busbar 15 and the edge of the source busbar 16 will also be shown in Figure 2 5 A and FIGS. 2 to 5B are covered by the solid portion 14 b of the picture element electrode 14. Therefore, in the liquid crystal display device 1001, it is possible to avoid a situation where an unnecessary aperture ratio is lowered. Alternative to the preferred embodiment

現在將參考圖2 6 A及圖2 6 B說明根據本發明之替代具體 實施例的液晶顯示裝置2 0 0之其中一個圖像元素區的結構 。再者,在後面的圖式中,每個具有與液晶顯示裝置1 0 0 中相應元件實質相同功能的元件將會以相同的元件符號 來表示,並且不會於下面作進一步的說明。圖2 6 A為從該 基板法線方向看去的平面圖,圖2 6 B則為沿著圖2 6 A之直 線26B-26B’之剖面圖。圖26B所示的係於整個液晶層中未 施加電壓時的狀態。The structure of one of the picture element regions of a liquid crystal display device 2000 according to an alternative embodiment of the present invention will now be described with reference to FIGS. 2A and 2B. Furthermore, in the following drawings, each element having substantially the same function as the corresponding element in the liquid crystal display device 100 will be represented by the same element symbol, and will not be described further below. Fig. 26A is a plan view seen from the direction of the normal line of the substrate, and Fig. 2B is a cross-sectional view taken along line 26B-26B 'of Fig. 26A. The state shown in Fig. 26B is a state when no voltage is applied to the entire liquid crystal layer.

如圖2 6 A及圖2 6 B所示,該液晶顯示裝置2 0 0與圖1 A及圖 1B中的液晶顯示裝置100的差別在於,TFT基板200a包括位 於該圖像元素電極1 4的開孔1 4 a中的突出部4 0。在該突出 部4 0的表面中則具有一垂直排列膜(未顯示)。 該突出部4 0沿著該基板1 1平面的剖面一般為星形剖面 ,也就是與開孔1 4 a的形狀相同,如圖2 6 A所示。請注意 ,相鄰的突出部4 0係互相連接的,因此可以一般圓形的圖 案完全包圍每個單元實體部14b’。該突出部40沿著垂直該 基板1 1之平面的剖面一般為梯形形狀,如圖2 6 B所示。明 確地說,其剖面具有一平行該基板平面的頂面4 01,以及 一與該基板平面呈銳角Θ (<90°)傾斜的側面40s。因為具備 -59- 581921 (55) 發明說明續頁 該垂直排列膜(未顯示)以覆蓋該突出部4 0的關係,所以該 突出部4 0的側面4 0 s具有一配向調整力量,其方向與該液 晶層3 0之液晶核:組3 0 a的傾斜電場所造成的配向調整方向 相同,因而可用以穩定該放射狀傾斜配向。 現在將參考圖27A至圖27D、圖28A及圖28B來說明該突 出部4 0的功能。 首先將參考圖2 7 A至圖2 7 D來說明該等液晶模組3 0 a之 配向與具垂直排列冪之表面結構之間的關係。 如圖2 7 A所示,由於該具垂直排列冪之表面(一般為垂直 排列膜的表面)的配向調整力量的關係,水平面中的液晶 模組3 0 a會被排列成垂直該表面。當經由垂直排列的液晶 模組3 0 a施加由垂直該液晶模組3 0 a的軸配向之等電位線 E Q所表示的電場後,促使該液晶模組3 0 a朝順時針方向傾 斜的力矩以及促使該液晶模組3 0 a朝反時針方向傾斜的力 矩便會以相同的機率作用於該液晶模組3 0 a上。所以,對 位於平行板排列中的一對相反電極之間的液晶層3 0而言 ,會有部分的液晶模組3 0 a係受到順時針方向的力矩作用 ,以及會有部分的其它液晶模組3 0 a係受到反時針方向的 力矩作用。因此,並無法非常順利地根據施加於整個液晶 層3 0的電壓而轉換成為其配向。 當經由與一傾斜表面呈垂直排列的液晶模組3 0 a施加由 水平等電位線E Q所表示的電場後,如圖2 7 B所示,該液晶 模組3 0 a便會朝只要較小的旋轉便能使其平行該電位線 E Q的方向傾斜(圖中所示的範例為順時針方向)。接著,如 -60- 581921As shown in FIGS. 2A and 2B, the liquid crystal display device 200 is different from the liquid crystal display device 100 in FIGS. 1A and 1B in that the TFT substrate 200a includes The protrusion 40 in the opening 1 a. A vertical alignment film (not shown) is provided on the surface of the protruding portion 40. The cross-section of the protruding portion 40 along the plane of the substrate 11 is generally a star-shaped cross-section, that is, the shape is the same as that of the opening 14 a, as shown in FIG. 2A. Please note that the adjacent protruding portions 40 are connected to each other, so that each unit solid portion 14b 'can be completely surrounded by a generally circular pattern. A cross section of the protruding portion 40 along a plane perpendicular to the substrate 11 is generally trapezoidal, as shown in FIG. 2 6B. Specifically, the cross section has a top surface 401 parallel to the plane of the substrate, and a side surface 40s inclined at an acute angle θ (< 90 °) from the plane of the substrate. Because it has -59- 581921 (55) description of the invention, the vertical alignment film (not shown) is continued to cover the relationship of the protruding portion 40, so the side 40s of the protruding portion 40 has an alignment adjustment force, and its direction The direction of alignment adjustment caused by the tilted electric field of the liquid crystal core: group 30a of the liquid crystal layer 30 is the same, so it can be used to stabilize the radial tilt alignment. The function of the protruding portion 40 will now be described with reference to Figs. 27A to 27D, Figs. 28A and 28B. First, the relationship between the alignment of the liquid crystal modules 30a and the surface structure with vertical alignment power will be described with reference to FIGS. 27A to 27D. As shown in FIG. 2A, due to the relationship between the alignment adjustment power of the surface with the vertical power (normally the surface of the vertical alignment film), the liquid crystal modules 30a in the horizontal plane will be aligned perpendicular to the surface. When the electric field indicated by the equipotential line EQ perpendicular to the axis alignment of the liquid crystal module 3 0 a is applied through the vertically aligned liquid crystal module 3 0 a, a moment is caused to cause the liquid crystal module 3 0 a to tilt clockwise. And the moment that causes the LCD module 30a to tilt in the counterclockwise direction will act on the LCD module 30a with the same probability. Therefore, for the liquid crystal layer 30 located between a pair of opposite electrodes in a parallel plate arrangement, a part of the liquid crystal module 30 a is subject to a clockwise moment, and a part of other liquid crystal modules Group 30a is subject to a counterclockwise moment. Therefore, the alignment cannot be changed very smoothly in accordance with the voltage applied to the entire liquid crystal layer 30. When an electric field represented by a horizontal equipotential line EQ is applied through a liquid crystal module 3 0 a arranged perpendicular to an inclined surface, as shown in FIG. 2B, the liquid crystal module 3 0 a Rotation can tilt the direction parallel to the potential line EQ (the example shown in the figure is clockwise). Then, like -60- 581921

發明說明續頁 圖2 7 C所示,其它與水平面成垂直排列之相鄰的液晶模組 3 0 a便會與位於該傾斜表面中的液晶模組3 0 a朝相同的方 向(順時針方向)傾斜,因此其配向便會和與該傾斜表面呈 垂直排列的液晶模組3 0 a的配向連續(一致)。Description of the Invention As shown in FIG. 2C on the following page, other adjacent liquid crystal modules 3 0 a arranged perpendicular to the horizontal plane will face the same direction (clockwise) as the liquid crystal module 3 0 a located on the inclined surface. ) Is tilted, so its alignment will be continuous (consistent) with the alignment of the liquid crystal module 3 0 a aligned perpendicular to the inclined surface.

如圖2 7 D所示,對於具有凹形/凸形部且其剖面包含一連 串梯形之表面來說,位於頂面的液晶模組3 0 a及位於底面 的液晶模組3 0 a會被配向成與由位於該表面的傾斜部份中 的其它液晶模組3 0 a所調整的配向方向一致。 在液晶顯示裝置2 0 0中,由該表面結構(突出部)所施加 的配向調整力量的方向會對齊傾斜電場所施加的配向調 整力量的方向,因而可穩定該放射狀傾斜配向。As shown in FIG. 2D, for a surface having a concave / convex portion and a cross-section including a series of trapezoids, the liquid crystal module 3 0 a on the top surface and the liquid crystal module 3 0 a on the bottom surface are aligned. It is aligned with the alignment direction adjusted by other liquid crystal modules 30a in the inclined portion of the surface. In the liquid crystal display device 2000, the direction of the alignment adjustment force applied by the surface structure (protrusion) is aligned with the direction of the alignment adjustment force applied by the tilt electric field, so that the radial tilt alignment can be stabilized.

圖2 8 A及圖2 8 B所示的各係圖2 6 B的液晶層3 0於施加電 壓存在時的狀態示意圖。圖2 8 A所示的係該等液晶模組 3 0 a的配向根據施加於整個液晶層3 0的電壓而剛開始改變 時的狀態示意圖(初始〇N狀態)。圖2 8 B所示的係該等液晶 模組3 0 a的配向根據該施加電壓改變後且已經穩定的狀態 示意圖。圖2 8 A及圖2 8 B中的曲線E Q代表的是等電位線。 如圖26B所示,當圖像元素電極14及反電極22具相同電 位時(也就是,並未於整個液晶層3 0施加電壓時的狀態) ,每個圖像元素區中的液晶模組3 0 a都會被排列成垂直於 該等基板1 1及2 1的表面。與位於該突出部4 0的側面4 0 s中 的垂直排列膜(未顯示)接觸的液晶模組3 0 a便會被排列成 垂直於該側面4 0 s,而位於該側面4 0 s附近的液晶模組3 0 a 側會因為與週遭的液晶模組3 0 a互相作用(其如同彈性連 -61 - 581921 (57) 發明說明續頁 續性般都係其本質)的關係而呈現出如圖所示傾斜配向。 當在整個液晶層3 0中施加電壓後,便會產生圖2 8 A中等 電位線EQ所示的電位梯度。該等等電位線EQ係平行於該 液晶層3 0 (其係位於該圖像元素電極1 4之實體部1 4b及反 電極2 2之間)中的實體部1 4 b及反電極2 2的表面,並且會在 對應該圖像元素電極1 4之開孔1 4 a的區域中往下降,因而 便會在開孔1 4 a的邊緣部分EG (開孔1 4 a的周圍部分及其 内部,包含其邊界在内)上方的該液晶層3 0的每個區域中 產生由該等等電位線EQ之傾斜部分所表示的傾斜電場。 如上所述,由於該傾斜電場的關係,圖2 8 A中右邊邊緣 部份E G上方的液晶模組3 0 a會朝順時針方向傾斜(旋轉), 而左邊邊緣部份E G上方的液晶模組3 0 a則會朝反時針方 向傾斜(旋轉),如圖2 8 A的箭頭所示,以便平行該等等電 位線E Q。因此,該傾斜電場所施加的配向調整力量便會 與位於每個邊緣部分E G的側面4 0 s所施加的配向調整力 量相同。 如上所述,該配向的變化會從位於該等等電位線E Q之 傾斜部份中的液晶模組3 0 a開始,然後達到圖2 8 B所示的 穩定的配向狀態。位於開孔1 4 a之中心部分附近(也就是, 位於該突出部4 0的頂面4 01之中心部分附近)的液晶模組 3 0 a會實質相等地受到位於該開孔1 4 a之對面邊緣部分E G 處的液晶模組3 0 a之個別配向的影響,所以會維持其配向 垂直於該等等電位線E Q。遠離開孔1 4 a之中心(該突出部 4 0的頂面4 0 t)的液晶模組3 0 a則會因受到位於較近的邊緣 -62- 581921 (58) 發明說明續頁 部分E G處的其它液晶模組3 0 a的配向的影響而傾斜,從而 形成一對稱於該開孔1 4 a之中心S A (該突出部4 0的頂面 40t)的傾斜配向。在對應該單元實體部14b’(其係被該等開 孔1 4 a及該等突出部4 0包圍)的區域中也會形成對稱於該 單元實體部14b’之中心SA的傾斜配向。 如上所述,在液晶顯示裝置2 0 0中,會如同在液晶顯示 裝置100中般地對應該等開孔14a及該等單元實體部14b’形 成各具放射狀傾斜配向的液晶域。因為具備該等突出部4 0 以便以一般圓形的圖案完全包圍每個單元實體部14b·,所 以每個液晶域都可以對應被該等突出部4 0包圍的一般圓 形區域而形成。再者,位於該開孔1 4 a中的突出部4 0之侧 面其功能可用以將該開孔1 4 a之邊緣部分E G附近中的液 晶模組3 0 a朝與該傾斜電場所施加的配向調整力量相同的 方向傾斜,因而可穩定該放射狀傾斜配向。 當然,該傾斜電場所施加的配向調整力量僅有在施加電 壓存在時方能產生作用,其強度則係取決於該電場的強度 (該施加電壓的位準)。所以,當該磁場強度很小時(即當 該施加電壓很低時),該傾斜電場所施加的配向調整力量 便非常弱,此時當施壓於該液晶面板時,該放射狀傾斜配 向便可能會因為液晶材料的浮動而瓦解。當該放射狀傾斜 配向瓦解之後便無法還原,除非施加一非常強的電壓,足 以產生一傾斜電場來施加一非常強的配向調整力量。相反 地,不論該施加電壓為何,必定會施加由該突出部4 0之側 面4 0 s所產生的配向調整力量,而且因為先前技術中所熟 -63 - 581921 (59) 發明說明續頁 知的該排列膜的「錯接效應」的關係,其強度會非常地強 。所以,即使液晶材料的產生浮動且該放射狀傾斜配向已 經瓦解,在該突出部4 0的側面4 0 s附近中的液晶模組3 0 a 仍然可維持與該放射狀傾斜配向相同的配向方向。所以, 一但該液晶材料的浮動現象停止之後,便可輕易地還原該 放射狀傾斜配向 因此,該液晶顯示器裝置200除了具有液晶顯示裝置1 00 的優點之外,還具有對抗應力的額外優點。所以,該液晶 顯示器裝置2 0 0適用於經常會遭受應力作用的裝置中,例 如經常被攜帶到各地使用的P C以及P D A。 當該突出部4 0係由透明度極高的誘電材料所製成時,便 可獲得改良液晶域(其係形成於對應開孔1 4 a的區域中)之 顯示效果的優點。當該突出部4 0係由不透明的誘電材料所 製成時,則具有能夠避免因為處於該突出部4 0之側面4 0 s 的傾斜配向中的液晶模組3 0 a的遲滯現象而導致的漏光現 象的優點。舉例來說,究竟應該採用透明的誘電材料或不 透明的誘電材料則可取決於該液晶顯示裝置的應用而定 。不論是在哪種情形中,使用感光樹脂都會具有能夠簡化 為對應該等開孔1 4a之突出部40進行圖案化的步驟的優點 。為獲得足夠的配向調整力量,當該液晶層3 0的厚度約為 3 μιτι時,該突出部40的高度較佳白勺係介於約0.5 μηι及約2 μηι 範圍之間。一般來說,該突出部4 0的高度較佳的係約介於 該液晶層3 0厚度的1 / 6及2 / 3範圍之間。 如上所述,該液晶顯示裝置2 0 0包括位於該圖像元素1 4 -64- 581921 (60) 發明說明續頁 之開孔1 4 a中的突出部4 0,而且該突出部4 0的側面4 0 s會施 加一配向調整力量,其方向與該液晶層3 0之液晶模組3 0 a 的傾斜電場所施加的配向调整力f的方向相同。現在將參 考圖2 9 A至圖2 9 C說明較佳的條件讓該侧面4 0 s所施加的 配向調整力量與該傾斜電場所施加的配向調整力量具有 相同方向。 圖29A至圖29C所示白勺分另|J係液晶顯示裝置200A、200B 及200C之剖面示意圖。圖29A至圖29C對應的係圖28 A。液 晶顯示裝置200A、200B及200C在開孔14a中都具有一突出部 ,不過就作為單一結構的整個突出部4 0與其對應的開孔 14a之間的位置關係方面來說,則不同於液晶顯示裝置200。 在上述的液晶顯示裝置2 0 0中,該作為單一結構的突出 部4 0係形成該開孔1 4 a之中,而且該突出部4 0的底面小於 該開孔1 4 a,如圖2 8 A所示。在圖2 9 A所示的液晶顯示裝置 200A中,該突出部40A的底面會對齊該開孔14a。在圖29B 所示的液晶顯示裝置200B中,突出部40B的底面大於該開 孔1 4 a,因此會覆蓋該開孔1 4 a週遭的一部份實體部(導體 膜)14b。該實體部14b並非形成於該等突出部40、40 A及 4 0 B中任一個的側面4 0 s中。因此,如該等個別圖式所示 ,該等等電位線EQ在實體部14b上方實質上係水平的,並 且會於開孔1 4 a中下降。所以,如同液晶顯示裝置2 0 0的突 出部40般,液晶顯示裝置200A的突出部40 A的側面40s以及 液晶顯示裝置200B的突出部40B的側面40s都會施加配向 調整力量,其方向都會與該傾斜電場所施加的配向調整力 -65 - 581921 (61) 發明說明續頁 量的方向相同,因而可穩定該放射狀傾斜配向。 相反地,在圖29C所示的液晶顯示裝置200C中,突出部 4 0 C的底面大於該開孔1 4 a,因此會有一部份延伸至該開 孔14a上方區域中的實體部14b形成於該突出部40C的側 面40s之中。由於形成於該側面40s中的實體部14b部分的 影響,在該等等電位線EQ中會出現脊狀部分。該等等電 位線E Q中的脊狀部分的梯度與該等等電位線E Q在開孔 1 4 a中下降的其它部分的梯度相反。此意味著產生了一種 傾斜電場,其方向相反於用以將該等液晶模組3 0 a配向成 放射狀傾斜配向的傾斜電場的方向。所以,為使得該側面 4 0 s的配向調整力量具有與該傾斜電場所施加的配向調整 力量相同的方向,該實體部(導體膜)1 4b較佳的係不要形 成於側面4 0 s中。 接著,將參考圖3 0說明該突出部4 0沿著圖2 6 A之直線 30A-30A’之剖面結構。 如上所述,因為會形成圖2 6 A中的突出部4 0以便以一般 圓形的圖案完全包圍每個單元實體部14b’,所以會在該等 突出部40中形成用以連接相鄰的單元實體部14b'的部分 (從該圓形部分開始於四個方向中延伸的分支部分)。所以 ,在沉積該導體膜使其變成該圖像元素電極14的實體部 1 4b的步驟中,極可能會在該突出部40中發生不連續的情 況,或是可能會在該製程的後處理中發生分層的情況。 有鑑於此,在圖3 1 A及圖3 1 B所示的液晶顯示裝置200D 中會形成彼此不相關的突出部4 0 D,讓每個突出部4 0 D都 -66- 581921 (62) 發明說明續頁 被完全包含於開孔1 4 a之中,以便在該基板1 1的平坦表面 中形成欲作為實體部1 4b的導體膜,因而可消除發生不連 續或分層的可能性。雖然該等突出部4 0 D並未以一般圓形 的圖案完全包圍每個單元實體部14b’,但是會形成對應每 個單元實體部14b’的一般圓形液晶域,並且可如上述範例 般地穩定該單元實體部141V的的放射狀傾斜配向。 將於該開孔1 4 a中形成突出部4 0所獲得的放射狀傾斜配 向穩定之後所產生的效果並不僅限於上述的開孔1 4 a的圖 案,其同樣適用於上述之開孔1 4 a的各種圖案中任一種圖 案中,以獲得上述的效果。為使該突出部40能夠產生足以 對抗應力以穩定該配向的效果,該突出部4 0的圖案(從該 基板的法線方向看去的圖案)較佳的係能夠盡可能地覆蓋 該液晶層3 0。所以,舉例來說,與具圓形開孔1 4 a的負向 圖案比較起來,具圓形單元實體部14b’的正向圖案可獲得 較大的突出部40之配向穩定效果。 利用上述的電極結構(開孔係位於圖像元素電極中),可 能無法在對應該開孔的區域中的液晶層上施加足夠的電 壓,並且可能無法獲得足夠的遲滯變化,從而降低發光效 率。有鑑於此,可能會在遠離該液晶層之具有開孔的該圖 像元素電極(上方電極)其中一側上配備誘電層,其額外電 極(下方電極)則係透過該誘電層來提供,因此至少有一部 份係位於該圖像元素電極的開孔的對面(也就是採用雙層 電極)。依照此方式,便可在對應該開孔的區域的液晶層 上施加足夠的電壓,從而改良發光效率及/或響應特徵。 -67- 581921 (63) 發明說明續頁 圖3 2 A至圖3 2 C所示的各係具有圖像元素電極1 5 (雙層 電極)的液晶顯示裝置3 0 0之其中一個圖像元素區之結構 剖面示意圖,其中電極15包括一下方電極12、一上方電極 1 4以及·^位於兩者之間的誘電液晶層1 3。該圖像元素電極 1 5的上方電極1 4實質賞等同於上述的圖像元素電極1 4,並 且包含多個開孔及一實體部,兩者皆可具有上述各種形狀 中的任一種形狀並且可以上述各種圖案中的任一種圖案 來排列。現在將說明該具有雙層結構的圖像元素電極1 5 的功能。 液晶顯示裝置3 0 0的圖像元素電極1 5包括複數個開孔 14a (包括14al及14a2)。圖32A所示的係在未施加電壓時 (0 F F狀態)時,液晶層3 0中的液晶模組3 0 a的配向示意圖。 圖3 2 B所示的係該等液晶模組3 0 a的配向根據施加於整個 液晶層3 0的電壓而剛開始改變時的狀態示意圖(初始ON 狀態)。圖3 2 C所示的係該等液晶模組3 0 a的配向根據該施 加電壓改變後且已經穩定的狀態示意圖。在圖3 2 A至圖 3 2 C中,下方電極1 2 (提供該下方電極1 2必須能夠透過該 誘電層1 3將開孔14al及14a2相反放置)會重疊開孔14al及 14a2,並且在該等開孔14al及14a2之間的區域(上方電極14 所在的區域)中延伸。不過,下方電極1 2的排列方式並不 僅限於此,對於該等開孔14a 1及14a2而言,亦可使用替代 的排列方式讓下方電極1 2的面積二開孔1 4 a的面積,或是讓 下方電極1 2的面積 < 開孔1 4 a的面積。因此,下方電極1 2 的結構並不限於任何特殊的結構,只要該下方電極1 2能夠 -68- 581921 (64) 發明說明續頁 透過該誘電層1 3與至少一部份的開孔1 4 a相對即可。不過 ,當該下方電極1 2位於開孔1 4 a之中時,在從該基板1 1的 法線方向看去的平面中會存在一個區域(間隙區),在該區 域中既沒有下方電極丨2亦沒有上方電極1 4。在該間隙區對 面的區域中可能無法施加足夠的電壓於整個液晶層3 0中 。所以,為穩定該液晶層3 0的配向,較佳的係能夠大幅地 縮短該間隙區的寬度。一般來說,該間隙區的寬度較佳的 係不超過約4 μην。再者,該下方電極1 2 (其位置係透過該 誘電層1 3與該上方電極1 4之導體層的所在區域相對)實質 上對於被施加於整個液晶層3 0中的電場毫無影響。所以, 此類下方電極1 2未必要進行圖案化。 如圖3 2 Α所示,當圖像元素電極1 5及反電極2 2具相同電 位時(並未於整個液晶層3 0施加電壓時的狀態),該圖像元 素區中的液晶模組3 0 a都會被排列成垂直於該等基板1 1.及 2 1的表面。為簡單起見,此處假設圖像元素電極1 5的上方 電極1 4及下方電極1 2係處於相同電位。 當在整個液晶層3 0中施加電壓後,便會產生圖3 2 B中等 電位線E Q所示的電位梯度。在該圖像元素電極1 5的上方 電極1 4及該反電極2 2之間的區域内的液晶層3 0中會產生 由平行該上方電極1 4及該反電極2 2之表面的等電位線E Q 所表示的均勻電位梯度。在該上方電極丨4的開孔14a 1及 14a2上方的液晶層30之區域中則會產生根據該下方電極 1 2及該反電極2 2之間的電位差而產生的的電位梯度。液晶 層3 0中的電位梯度會受到因為誘電層1 3所造成之電.壓降 • 69 · 581921 (65) 發明說明續頁 的影響,所以該液晶層3 0中的等電位線E Q會在對應該等 開孔14a 1及1 4a2的區域中下降(於該等等電位線E Q中造成 複數個「低壓槽」)。因為該下方電極1 2係位於透過誘電 層1 3而與該等開孔1 4a 1及1 4a2相對的區域之中,所以位元 線對於該等開孔14a 1及14a2個別的中心部分附近的液晶層 30也會具有由平行該上方電極14及該反電極22之平面的 等電位線E Q之一部份所表示的電位梯度(該等等電位線 EQ的「低壓槽底部」)。於是便會在每個開孔14al及14a2 的邊緣部分E G (該開孔的周圍部分及其内部,包含其邊界 在内)上方的液晶層3 0中產生由該等等電位線EQ之傾斜 部分所表示的傾斜電場。 1 從圖3 2 B及圖2 A之間的比較可清楚看出,因為該液晶顯 示裝置3 0 0具有下方電極1 2,所以在形成於對應該開孔1 4 a 的區域内的液晶域中的液晶模組上亦會有足夠的電場作 用。 會有一力矩作用在具負誘電各向異性的液晶模組3 0a之 上,用以將該等液晶模組3 0 a的軸配向引導成平行該等等 電位線E Q。所以,圖3 2 B中右邊邊緣部份E G上方的液晶 模組3 0 a會朝順時針方向傾斜(旋轉),而左邊邊緣部份E G 上方的液晶模組3 0 a則會朝反時針方向傾斜(旋轉),如圖 3 2 B的箭頭所示。因此,該等邊緣部份E G上方的液晶模組 3 0 a會被配向成平行該等等電位線E Q的對應部分。 如圖3 2 B所示,當在液晶顯示裝置3 0 0之開孔14a 1及14a2 的邊緣部分E G處產生由傾斜於該等液晶模組3 0 a的軸配 -70 - 581921 (66) 發明說明續頁 向之等電位線E Q的一部份所表示的電場之後,該等液晶 模組3 0 a會朝只要最小的旋轉便能使其平行該等電位線 E Q的方向傾斜(圖中所示的範例為反時針方向),如圖3 B 所示。對位於已經產生由垂直於該等液晶模組3 0 a的軸配 向之等電位線E Q所表示的電場區域中的液晶模組3 0 a來 說,其會與位於該等等電位線E Q的傾斜部份中的液晶模 組3 0 a朝相同的方向傾斜,因此如圖3 C所示,其配向與位 於該等等電位線E Q的傾斜部份中的液晶模組3 0 a的配向 係連續的(一致)。 該等液晶模組3 0 a的配向變化(從該等等電位線E Q的傾 斜部份中的液晶模組開始)會如上述般的方式進行並達到 穩定的狀態,也就是對稱於每個開孔14a 1及14a2之中心S A 的傾斜配向(放射狀傾斜配向),圖3 2 C所示的即為其示意 圖。位於該等兩個相鄰開孔14a 1及14a2之間的上方電極14 之區域中的液晶模組3 0 a亦具有一傾斜配向,其配向與該 等開孔1 4 a丨及1 4 a 2的邊緣部分處的液晶模組3 0 a的配向連 續(一致)。位於開孔1 4 a 1的邊緣部分及開孔1 4 a 2的邊緣部 分之間的液晶模組3 0 a會受到各個邊緣部分處的液晶模組 3 0a的實質相等的影響,因此會保持與位於每個開孔14a 1 及14a2之中心部> 附近的液晶模組30a相同的垂直排列。 因此,位於該等兩個開孔14a 1及14a2之間的上方電極14之 上的液晶層亦會呈現放射狀傾斜配向。請注意,每個開孔 14a 1及14a2中的液晶層的放射狀傾斜配向不同於該等開孔 1 4a 1及14a2之間的液晶層的放射狀傾斜配向。觀察具有圖 -71 - 581921 (67) 發明說明續頁 3 2 C所示之放射狀傾斜配向的每個區域中心處的液晶模 組3 0 a附近的配向發現,位於該等開孔14a 1及14a2區域中的 液晶模組3 0 a會被傾斜成朝該反電極開展的錐體,位於該 等開孔14al及14a2之間的區域中的液晶模組30a則會被傾 斜成朝該上方電極1 4開展的錐體。因為該兩種放射狀傾斜 配向都會形成以便與邊緣部分處的液晶模組3 0 a的傾斜配 向一致,所以該兩種放射狀傾斜配向係彼此連續的。 如上所述,當施加電壓於整個液晶層3 0中時,該等液晶 模組30a便會從位於上方電極14中的該等開孔14a 1及14a2 的個別邊緣部份E G處的上方開始。然後,週遭區域中的 液晶模組3 0 a便會跟著傾斜,以便與該邊緣部份E G處上方 的液晶模組30a的放射狀傾斜配向一致。因此便可形成一 放射狀傾斜配向。所以,欲配備於每個圖像元素區中的開 孔1 4 a的數量增加時,會響應施加電場而開始傾斜的液晶 模組3 0 a的數量亦會增加,因而便可縮短於整個圖像元素 區達成放射狀傾斜配向所需要的時間。因此,藉由增加欲 配備於每個圖像元素區的圖像元素電極1 5中的開孔1 4 a的 數量,便可改良液晶顯示裝置的響應速度。再者,採用包 含上方電極1 4及下方電極1 2的雙層電極作為圖像元素電 極1 5,便可在位於對應該開孔1 4 a的區域内的液晶模組上 施加足夠的電場,從而改良該液晶顯示裝置的響應特徵。 再者,藉由在該反基板上提供一突出部,用以配合該 T F T基板的配向調整結構(如上所述其上具有開孔的電極 結構)將.該等液晶模組配向成放射狀傾斜配向,便能夠進 -72 - 581921 (68) 發明說明續頁 一步地穩定呈現放射狀傾斜配向的液晶域配向。 圖33 A及圖33B所示的係於反基板400b上具有突出部28 之液晶顯示裝置400之示意圖。圖33A為平面圖,而圖33B 貝1J為沿著圖33 A之直線33B-33B’的剖面圖。 該液晶顯示裝置400包括TFT基板100a,其具有其中形成 開孔1 4a的圖像元素電極1 4 ;以及反基板400b,其具有朝 該液晶層3 0突出的突出部2 8。請注意,該T F T基板1 00a並 不僅限於圖中所示的排列方式,其亦可採用上述各種排列 方式中的任何一種。 每個位於反基板400b中的突出部28都具有一側面28s, 其會傾斜於該反基政400b的基板平面(該透明基板1 1的基 板平面),在所示的範例中,突出部2 8係形成於該反電極 22之中。 每個突出部2 8的表面都具有一垂直排列冪(一般是形成 一垂直排列膜(未顯示)以覆蓋該突出部2 8 ),由於其錨接 效應的關係,該等液晶模組3 0 a會被排列成垂直該側面2 8 s ,如圖3 3 B所示。所以,位於該突出部2 8附近的液晶模組 3 0 a會以該突出部2 8為基準呈現出放射狀傾斜配向。因此 ,該突出部2 8可藉由其表面的結構(具有垂直排列冪)將該 等液晶模組3 0 a配向成放射狀傾斜配向。 再者,該突出部2 8係位於與該圖像元素電極1 4的實體部 1 4 b相對的區域中,更明確地說,係位於與該單元實體部 1 4 b ’中心部分相對的位置。利用此種突出部2 8的排列方式 ,因為該突出部2 8所造成的液晶模组傾斜配向便會對齊經 -73 - 581921 (69) 發明說明續頁 由該配向調整結構而形成於對應該圖像元素電極的單元 實體部14W之區域中的液晶域之放射狀傾斜配向的配向方 向。因為不論施加電壓是否存在,該突出部2 8都會施加一 配向調整力量,所以於任何的灰階中都能獲得穩定的放射 狀傾斜配向,並且亦會具有預期的抗應力作用。 如上所述,在液晶顯示裝置4 0 0中,經由該配向調整結 構所形成的放射狀傾斜配向的方向會對齊該突出部2 8所 形成的放射狀傾斜配向的方向,因而當整個液晶層3 0中有 施加電壓存在時(也就是,在該圖像元素電極1 4及該反電 極2 2之間有施加電壓存在)便能夠穩定該放射狀傾斜配向 。圖3 4 A至圖3 4 C所示的便是其示意圖。圖3 4 A所示的係未 施加電壓的狀態;圖34B所示的係在施加電壓之後,配向 剛開始改變時的狀態(初始〇N狀態);以及圖3 4 C所示的則 係電壓施加其間的穩定狀態。 如圖3 4 A所示,即使未施加電壓時,由該突出部2 8所施 加的配向調整力量仍然會作用於其附近的液晶模組3 0 a之 上,因而可形成一放射狀傾斜配向。 當開始施加電壓時,便會(經由該配向調整結構)產生如 圖3 4 B所示之等電位線E Q所示的電場,並且會在對應該開 孔1 4 a的每個區域以及對應該實體部1 4 b的每個區域中形 成液晶模組3 0 a呈現放射狀傾斜配向的液晶域,而且該液 晶層3 0會達到如圖3 4 C所示之穩定狀態。形成於對應該實 體部.1 4 b的區域中的每個液晶域内的液晶模組3 0 a的配向 方向會與被位於相應區域中之突出部2 8所施加的配向調 -74 - 581921 (70) 發明說明續頁 整力量傾斜的液晶模組3 0 a的方向一致。 當施加應力於穩定狀態的液晶顯示裝置4 0 0時,該液晶 層3 0的放射狀傾斜配向會一度瓦解,不過當應力被移除之 後,便可還原該放射狀傾斜配向,這係因為該配向調整結 構的配向調整力量以及作用於該等液晶模組3 0a之上的突 出部2 8的關係。所以,便可避免因為應力而發生的殘影。Each of the liquid crystal layers 30 of FIGS. 2A and 2B shown in FIGS. 28A and 2B is a schematic diagram of a state when a voltage is applied. The state diagram of the liquid crystal modules 30a shown in FIG. 2A at the time when the orientation of the liquid crystal layer 30a is just beginning to change (initial ON state). FIG. 2B is a schematic view showing a state where the alignment of the liquid crystal modules 30 a according to the applied voltage is changed and stabilized. The curves E Q in Fig. 2 A and Fig. 2 B represent isopotential lines. As shown in FIG. 26B, when the picture element electrode 14 and the counter electrode 22 have the same potential (that is, the state when no voltage is applied to the entire liquid crystal layer 30), the liquid crystal module in each picture element region 3 0 a will be arranged perpendicular to the surfaces of the substrates 1 1 and 21. The liquid crystal module 3 0 a which is in contact with the vertical alignment film (not shown) located in the side 40 s of the protruding portion 40 will be arranged perpendicular to the side 40 s and located near the side 40 s. The side of the LCD module 3 0 a will appear because it interacts with the surrounding LCD module 3 0 a (it is like the elastic link -61-581921 (57) invention description is the essence of its continuity) relationship. Tilt the alignment as shown. When a voltage is applied to the entire liquid crystal layer 30, a potential gradient shown by the medium potential line EQ in FIG. 2A is generated. The isopotential line EQ is parallel to the solid part 1 4 b and the counter electrode 2 2 in the liquid crystal layer 30 (which is located between the solid part 14 b of the picture element electrode 14 and the counter electrode 22). Surface, and it will descend in the area corresponding to the opening 14a of the picture element electrode 14, so it will be at the edge portion EG of the opening 14a (the surrounding portion of the opening 14a and its Inside, including the boundary thereof), an inclined electric field represented by the inclined portion of the equipotential line EQ is generated in each region of the liquid crystal layer 30 above. As described above, due to the relationship of the inclined electric field, the liquid crystal module 3 0 a above the right edge portion EG in FIG. 2 A is inclined (rotated) clockwise, and the liquid crystal module above the left edge portion EG 3 0 a will tilt (rotate) counterclockwise, as shown by the arrow in Figure 2 8 A, so as to parallel the isopotential line EQ. Therefore, the alignment adjustment force applied by the inclined electric field is the same as the alignment adjustment force applied by the side 40 s of each edge portion E G. As described above, the change of the alignment starts from the liquid crystal module 30a located in the inclined portion of the isopotential line EQ, and then reaches a stable alignment state shown in FIG. 2B. The liquid crystal module 3 0 a located near the center portion of the opening 1 4 a (that is, near the center portion of the top surface 4 01 of the protruding portion 40) is substantially equally affected by the liquid crystal module 3 0 a located at the opening 1 4 a. The influence of the individual alignment of the liquid crystal module 30a at the opposite edge portion EG will maintain its alignment perpendicular to the isopotential line EQ. The LCD module 3 0 a that is far away from the center of the hole 14 a (the top surface 40 t of the protruding portion 40) will be located nearer the edge because it is located closer to the edge -62- 581921 (58) Description of the Invention Continued Section EG The other liquid crystal modules 30a are tilted due to the influence of the alignment, thereby forming an inclined alignment symmetrical to the center SA of the opening 14a (the top surface 40t of the protrusion 40). An inclined alignment symmetrical to the center SA of the unit solid portion 14b 'is also formed in a region corresponding to the unit solid portion 14b' (which is surrounded by the openings 14a and the protruding portions 40). As described above, in the liquid crystal display device 200, as in the liquid crystal display device 100, liquid crystal domains each having a radial oblique alignment are formed corresponding to the openings 14a and the unit solid portions 14b '. Since the protruding portions 40 are provided so as to completely surround each unit solid portion 14b · in a generally circular pattern, each liquid crystal domain can be formed corresponding to a generally circular region surrounded by the protruding portions 40. Furthermore, the function of the side of the protrusion 40 located in the opening 14a can be used to apply the liquid crystal module 30a in the vicinity of the edge portion EG of the opening 14a toward the inclined electrical field. The alignment adjustment force is tilted in the same direction, so that the radial tilt alignment can be stabilized. Of course, the alignment adjustment force applied by the inclined electric field can only work when the applied voltage exists, and its strength depends on the strength of the electric field (the level of the applied voltage). Therefore, when the magnetic field strength is very small (that is, when the applied voltage is very low), the alignment adjustment force applied by the inclined electric field is very weak. At this time, when pressure is applied to the liquid crystal panel, the radial inclined alignment may become It will collapse due to the floating of the liquid crystal material. When the radial tilt alignment collapses, it cannot be restored unless a very strong voltage is applied to generate a tilted electric field to apply a very strong alignment adjustment force. On the contrary, regardless of the applied voltage, the alignment adjustment force generated by the side 40 s of the protrusion 40 must be applied, and because of the well-known in the prior art -63-581921 (59) The relationship of the "mistaken effect" of the alignment film is extremely strong. Therefore, even if the liquid crystal material floats and the radial tilt alignment has disintegrated, the liquid crystal module 3 0 a in the vicinity of the lateral side 40 s of the protruding portion 40 can still maintain the same alignment direction as the radial tilt alignment. . Therefore, once the floating phenomenon of the liquid crystal material stops, the radial tilt alignment can be easily restored. Therefore, the liquid crystal display device 200 has the additional advantages of resisting stress in addition to the advantages of the liquid crystal display device 100. Therefore, the liquid crystal display device 2000 is suitable for devices that are often subjected to stress, such as PC and PD that are often carried around. When the protruding portion 40 is made of an electrophoretic material with extremely high transparency, the advantage of improving the display effect of the liquid crystal domain formed in the region corresponding to the opening 14a can be obtained. When the protruding portion 40 is made of an opaque electromotive material, it can avoid the hysteresis caused by the liquid crystal module 3 0 a in the oblique alignment of the lateral portion 40 s of the protruding portion 40. Advantages of light leakage. For example, whether a transparent or opaque dielectric material should be used depends on the application of the liquid crystal display device. In either case, the use of a photosensitive resin has the advantage that the steps of patterning the protruding portions 40 corresponding to the openings 14a can be simplified. In order to obtain sufficient alignment adjustment power, when the thickness of the liquid crystal layer 30 is about 3 μm, the height of the protrusion 40 is preferably between about 0.5 μm and about 2 μm. Generally, the height of the protrusion 40 is preferably between about 1/6 and 2/3 of the thickness of the liquid crystal layer 30. As described above, the liquid crystal display device 2 0 0 includes the protruding portion 40 located in the opening 1 4 a of the continuation sheet of the picture element 1 4 -64- 581921 (60), and the protruding portion 40 An alignment adjustment force is applied to the side 40 s in the same direction as the direction of the alignment adjustment force f applied by the inclined electric field of the liquid crystal module 30 a of the liquid crystal layer 30. Now referring to Figs. 29A to 2C, the better conditions will be explained so that the alignment adjustment force applied by the side 40s has the same direction as the alignment adjustment force applied by the inclined electric field. 29A to 29C are schematic cross-sectional views of the J-series liquid crystal display devices 200A, 200B, and 200C. 29A to 29C correspond to FIG. 28A. The liquid crystal display devices 200A, 200B, and 200C all have a protruding portion in the opening 14a, but the positional relationship between the entire protruding portion 40 as a single structure and its corresponding opening 14a is different from the liquid crystal display.装置 200。 The device 200. In the above-mentioned liquid crystal display device 200, the protruding portion 40 as a single structure is formed in the opening 14a, and the bottom surface of the protruding portion 40 is smaller than the opening 14a, as shown in FIG. 2 8 A shown. In the liquid crystal display device 200A shown in FIG. 2A, the bottom surface of the protruding portion 40A is aligned with the opening 14a. In the liquid crystal display device 200B shown in FIG. 29B, the bottom surface of the protruding portion 40B is larger than the opening 14a, so it covers a part of the solid portion (conductor film) 14b around the opening 14a. The solid portion 14b is not formed in the side surface 40s of any one of the protruding portions 40, 40A, and 40B. Therefore, as shown in the individual diagrams, the isopotential line EQ is substantially horizontal above the solid portion 14b and will fall in the opening 14a. Therefore, just like the protruding portion 40 of the liquid crystal display device 200, the side surface 40s of the protruding portion 40A of the liquid crystal display device 200A and the side surface 40s of the protruding portion 40B of the liquid crystal display device 200B will exert an alignment adjustment force, and their directions will be consistent with this. Alignment adjustment force -65-581921 (61) applied by a tilted electric field Description of the invention The direction of the continued pages is the same, so the radial tilted alignment can be stabilized. Conversely, in the liquid crystal display device 200C shown in FIG. 29C, the bottom surface of the protruding portion 40C is larger than the opening 14a, and therefore a solid portion 14b extending partially into the area above the opening 14a is formed in Among the side surfaces 40s of the protruding portion 40C. Due to the influence of the solid portion 14b portion formed in the side surface 40s, a ridge portion appears in the isopotential line EQ. The gradient of the ridge portion in the equipotential potential line E Q is opposite to the gradient of other portions in which the equipotential potential line E Q descends in the opening 14 a. This means that an oblique electric field is generated, the direction of which is opposite to that of the oblique electric field used to orient the liquid crystal modules 30 a into a radial oblique alignment. Therefore, in order for the alignment adjustment force of the side 40 s to have the same direction as the alignment adjustment force applied by the inclined electric field, the solid part (conductor film) 1 4b is preferably not formed in the side 40 s. Next, a cross-sectional structure of the protruding portion 40 along a line 30A-30A 'of FIG. 2A will be described with reference to FIG. As described above, since the protruding portions 40 in FIG. 2A are formed so as to completely surround each unit solid portion 14b ′ in a generally circular pattern, the protruding portions 40 are formed to connect adjacent ones. A portion of the unit solid portion 14 b ′ (a branch portion extending from the circular portion in four directions). Therefore, in the step of depositing the conductor film into the solid portion 14b of the picture element electrode 14, a discontinuity may occur in the protruding portion 40 or may be post-processed in the process Layering occurs in. In view of this, in the liquid crystal display device 200D shown in FIGS. 3A and 3B, projections 4 0 D that are not related to each other are formed, and each projection 4 0 D is -66- 581921 (62) DESCRIPTION OF THE INVENTION The continuation sheet is completely contained in the openings 14a so that a conductor film intended to be the solid portion 14b is formed in the flat surface of the substrate 11, thereby eliminating the possibility of discontinuity or delamination. Although the protruding portions 40D do not completely surround each of the unit solid portions 14b 'in a generally circular pattern, a generally circular liquid crystal domain corresponding to each of the unit solid portions 14b' will be formed, and can be like the above example. The radial tilt alignment of the unit solid part 141V is ground stabilized. The effect of stabilizing the radial inclined alignment obtained by forming the protruding portion 40 in the opening 1 4 a is not limited to the above-mentioned pattern of the opening 1 4 a, and it is also applicable to the opening 1 4 In any of the various patterns of a, the above-mentioned effect can be obtained. In order that the protruding portion 40 can produce an effect sufficient to resist stress to stabilize the alignment, the pattern of the protruding portion 40 (pattern viewed from the normal direction of the substrate) preferably covers the liquid crystal layer as much as possible. 3 0. Therefore, for example, as compared with a negative pattern with circular openings 1 4a, a positive pattern with a circular unit solid portion 14b 'can obtain an alignment stabilization effect of a larger protrusion 40. With the above electrode structure (the openings are located in the picture element electrodes), it may not be possible to apply a sufficient voltage on the liquid crystal layer in the region corresponding to the openings, and it may not be possible to obtain sufficient hysteresis changes, thereby reducing the luminous efficiency. In view of this, it is possible to provide an electromotive layer on one side of the picture element electrode (upper electrode) with openings away from the liquid crystal layer, and the extra electrode (lower electrode) is provided through the electromotive layer, so At least a part is located opposite the opening of the picture element electrode (that is, a double-layer electrode is used). In this way, a sufficient voltage can be applied to the liquid crystal layer in the region corresponding to the opening, thereby improving the luminous efficiency and / or response characteristics. -67- 581921 (63) Description of the invention Continuing the page One of the picture elements of the liquid crystal display device 3 0 0 with picture element electrode 15 (double-layer electrode) shown in each of FIGS. 3 2 A to 3 2 C A schematic cross-sectional view of the structure of the region, wherein the electrode 15 includes a lower electrode 12, an upper electrode 14 and an electrolyzed liquid crystal layer 13 located therebetween. The upper electrode 14 of the picture element electrode 15 is substantially equivalent to the picture element electrode 14 described above, and includes a plurality of openings and a solid portion, both of which can have any of the above-mentioned shapes, and It can be arranged in any of the various patterns mentioned above. The function of the picture element electrode 15 having a double-layered structure will now be explained. The picture element electrode 15 of the liquid crystal display device 300 includes a plurality of openings 14a (including 14a1 and 14a2). The system shown in FIG. 32A is an alignment schematic diagram of the liquid crystal module 30 a in the liquid crystal layer 30 when no voltage is applied (0 F F state). The state diagram (initial ON state) when the alignment of the liquid crystal modules 30a shown in FIG. 3B is just changed according to the voltage applied to the entire liquid crystal layer 30. Fig. 3 2C shows the state of the liquid crystal module 30a after the orientation is changed according to the applied voltage and has been stabilized. In FIGS. 3A to 3C, the lower electrode 12 (providing that the lower electrode 12 must be able to place the openings 14al and 14a2 oppositely through the induction layer 13) will overlap the openings 14al and 14a2, and The area between the openings 14al and 14a2 (the area where the upper electrode 14 is located) extends. However, the arrangement of the lower electrode 12 is not limited to this. For the openings 14a 1 and 14a2, an alternative arrangement can also be used to make the area of the lower electrode 12 2 the area of the opening 14a, or The area of the lower electrode 12 is the area of the opening 1 4 a. Therefore, the structure of the lower electrode 1 2 is not limited to any special structure, as long as the lower electrode 12 can -68- 581921 (64) Description of the invention The continuation page passes through the induction layer 13 and at least part of the openings 1 4 a is enough. However, when the lower electrode 12 is located in the opening 14a, there will be a region (gap region) in the plane viewed from the normal direction of the substrate 11 and there is no lower electrode in this region丨 2 also has no upper electrode 1 4. A sufficient voltage may not be applied to the entire liquid crystal layer 30 in a region opposite to the gap region. Therefore, in order to stabilize the alignment of the liquid crystal layer 30, a preferable system can greatly reduce the width of the gap region. Generally, the width of the gap region is preferably not more than about 4 µην. In addition, the lower electrode 12 (its position is opposite to the area where the conductive layer of the upper electrode 14 is located through the induction layer 13) has substantially no effect on the electric field applied to the entire liquid crystal layer 30. Therefore, such lower electrodes 12 need not be patterned. As shown in FIG. 3A, when the picture element electrode 15 and the counter electrode 22 have the same potential (the state when a voltage is not applied to the entire liquid crystal layer 30), the liquid crystal module in the picture element region 3 0 a will be arranged perpendicular to the surfaces of the substrates 11 and 21. For simplicity, it is assumed here that the upper electrode 14 and the lower electrode 12 of the picture element electrode 15 are at the same potential. When a voltage is applied across the entire liquid crystal layer 30, a potential gradient as shown in the medium potential line EQ in FIG. 3B is generated. In the liquid crystal layer 30 in the area between the picture element electrode 15 and the upper electrode 14 and the counter electrode 22, an equipotential is generated by paralleling the surfaces of the upper electrode 14 and the counter electrode 22 The uniform potential gradient represented by the line EQ. In the region of the liquid crystal layer 30 above the openings 14a 1 and 14a2 of the upper electrode 4, a potential gradient is generated according to the potential difference between the lower electrode 12 and the counter electrode 22. The potential gradient in the liquid crystal layer 30 will be affected by the electricity caused by the induced layer 13. The voltage drop • 69 · 581921 (65) The description of the continuation sheet of the invention, so the equipotential line EQ in the liquid crystal layer 30 will be The areas corresponding to the openings 14a 1 and 1 4a2 are lowered (a plurality of "low-voltage grooves" are caused in the isopotential line EQ). Because the lower electrode 12 is located in a region opposed to the openings 1 4a 1 and 14a2 through the electromotive layer 13, the bit lines are adjacent to the respective central portions of the openings 14a 1 and 14a2. The liquid crystal layer 30 also has a potential gradient represented by a part of the equipotential line EQ parallel to the planes of the upper electrode 14 and the counter electrode 22 (the "low-voltage tank bottom" of the equipotential line EQ). Thus, an inclined portion formed by the equipotential lines EQ will be generated in the liquid crystal layer 30 above the edge portion EG of the openings 14al and 14a2 (the surrounding portion of the opening and the inside thereof, including the boundary thereof). The inclined electric field represented. 1 It can be clearly seen from the comparison between FIG. 3 2 B and FIG. 2 A that the liquid crystal display device 3 0 0 has a lower electrode 12, so the liquid crystal domain is formed in a region corresponding to the opening 1 4 a There will also be sufficient electric field effect on the LCD module. There is a moment acting on the liquid crystal module 30a with negative induced anisotropy to guide the axis of the liquid crystal module 30a to be parallel to the equipotential line EQ. Therefore, the LCD module 3 0 a above the right edge portion EG in FIG. 3 2B will tilt (rotate) clockwise, while the LCD module 3 0 a above the left edge portion EG will rotate counterclockwise. Tilt (rotate) as shown by the arrow in Figure 3 2B. Therefore, the liquid crystal modules 30 a above the edge portions E G are aligned to correspond to the corresponding portions of the equipotential lines E Q. As shown in FIG. 3B, when the edge portions EG of the openings 14a 1 and 14a2 of the liquid crystal display device 3 0 0 are generated by the axis inclined to the liquid crystal module 3 0 a -70-581921 (66) Description of the Invention After the electric field indicated by a part of the equipotential line EQ on the following page, the liquid crystal modules 30a will be inclined in a direction parallel to the equipotential line EQ with a minimum rotation (in the figure) The example shown is counterclockwise), as shown in Figure 3B. For a liquid crystal module 3 0 a located in an electric field region indicated by an equipotential line EQ aligned with an axis perpendicular to the liquid crystal modules 3 0 a, it will The liquid crystal module 3 0 a in the inclined portion is inclined in the same direction, so as shown in FIG. 3C, its alignment is the same as that of the liquid crystal module 3 0 a in the inclined portion of the isopotential line EQ. Continuous (consistent). The orientation change of the liquid crystal modules 30a (starting from the liquid crystal module in the inclined portion of the isopotential line EQ) will proceed as described above and reach a stable state, that is, symmetrical to each opening. The oblique alignment (radial oblique alignment) of the center SA of the holes 14a 1 and 14a2 is shown in FIG. 3 2C. The liquid crystal module 3 0 a located in the region of the upper electrode 14 between the two adjacent openings 14 a 1 and 14 a 2 also has an oblique alignment, which is aligned with the openings 1 4 a 丨 and 1 4 a The alignment of the liquid crystal module 3 0 a at the edge portion of 2 is continuous (uniform). The liquid crystal module 3 0 a located between the edge portion of the opening 1 4 a 1 and the edge portion of the opening 1 4 a 2 is substantially affected by the liquid crystal module 3 0a at each edge portion, and therefore remains The same vertical arrangement as the liquid crystal module 30a located near the center portion > of each of the openings 14a1 and 14a2. Therefore, the liquid crystal layer above the upper electrode 14 between the two openings 14a1 and 14a2 will also exhibit a radial oblique alignment. Please note that the radial tilt alignment of the liquid crystal layer in each of the openings 14a 1 and 14a2 is different from the radial tilt alignment of the liquid crystal layer between the openings 14a 1 and 14a2. Observe the alignment near the liquid crystal module 3 0 a at the center of each region with the radial inclined alignment shown in Figure-71-581921 (67) Description of the Invention continued on 3 2 C, and find that the openings 14a 1 and The liquid crystal module 30a in the region 14a2 will be tilted into a cone toward the counter electrode, and the liquid crystal module 30a in the region between the openings 14al and 14a2 will be tilted to face the upper electrode 1 4 unfolding cone. Since the two radial tilt alignments are formed so as to coincide with the tilt alignment of the liquid crystal module 30a at the edge portion, the two radial tilt alignments are continuous with each other. As described above, when a voltage is applied to the entire liquid crystal layer 30, the liquid crystal modules 30a start from above the individual edge portions E G of the openings 14a 1 and 14a2 in the upper electrode 14. Then, the liquid crystal module 30a in the surrounding area is inclined to follow the radial inclined alignment of the liquid crystal module 30a above the edge portion EG. Therefore, a radial tilt alignment can be formed. Therefore, when the number of openings 1 4 a to be provided in each picture element area increases, the number of liquid crystal modules 30 0 a that will begin to tilt in response to the application of an electric field also increases, which can be shortened to the entire figure. The time required for the image element region to achieve radial tilt alignment. Therefore, by increasing the number of openings 1 4 a in the picture element electrode 15 to be provided in each picture element region, the response speed of the liquid crystal display device can be improved. Furthermore, by using a double-layer electrode including the upper electrode 14 and the lower electrode 12 as the picture element electrode 15, a sufficient electric field can be applied to the liquid crystal module located in the area corresponding to the opening 14 a. Thereby, the response characteristics of the liquid crystal display device are improved. Furthermore, by providing a protruding portion on the counter substrate to match the alignment adjustment structure of the TFT substrate (the electrode structure having openings as described above), the liquid crystal modules are aligned in a radial tilt. Alignment, you can advance -72-581921 (68) Description of the invention The continuation page stabilizes the liquid crystal domain alignment showing radial tilt alignment step by step. FIG. 33A and FIG. 33B are schematic diagrams of a liquid crystal display device 400 having a protruding portion 28 on an opposite substrate 400b. Fig. 33A is a plan view, and Fig. 33B and 1J are cross-sectional views taken along line 33B-33B 'of Fig. 33A. The liquid crystal display device 400 includes a TFT substrate 100a having an image element electrode 14 in which an opening 14a is formed; and a counter substrate 400b having a protruding portion 28 projecting toward the liquid crystal layer 30. Please note that the T F T substrate 100a is not limited to the arrangement shown in the figure, and it can also adopt any of the various arrangements described above. Each of the protrusions 28 in the anti-substrate 400b has a side surface 28s, which is inclined to the substrate plane of the anti-base 400b (the substrate plane of the transparent substrate 11). In the example shown, the protrusion 2 8 series is formed in the counter electrode 22. The surface of each protruding portion 28 has a vertical alignment power (generally a vertical alignment film (not shown) is formed to cover the protruding portion 2 8). Due to the anchoring effect, the liquid crystal modules 3 0 a will be aligned perpendicular to the side 2 8 s, as shown in Figure 3 3B. Therefore, the liquid crystal module 30 a located near the protruding portion 28 will exhibit a radial tilt alignment based on the protruding portion 28. Therefore, the protrusions 28 can align the liquid crystal modules 30 a in a radial oblique orientation by the structure of the surface (having a vertical alignment power). Furthermore, the protruding portion 28 is located in a region opposite to the solid portion 1 4 b of the picture element electrode 14, and more specifically, is located at a position opposite to the central portion of the unit solid portion 1 4 b ′. . With this arrangement of the protrusions 28, the tilt alignment of the liquid crystal module caused by the protrusions 28 will be aligned with the warp-73-581921 (69) Description of the invention The continuation page is formed by the alignment adjustment structure. The alignment direction of the radial oblique alignment of the liquid crystal domain in the region of the unit solid portion 14W of the picture element electrode. Because the projection 28 applies an alignment adjustment force regardless of the presence or absence of the applied voltage, a stable radial tilt alignment can be obtained in any gray scale, and it will also have the expected anti-stress effect. As described above, in the liquid crystal display device 400, the direction of the radial oblique alignment formed by the alignment adjustment structure is aligned with the direction of the radial oblique alignment formed by the protruding portion 28. Therefore, when the entire liquid crystal layer 3 When an applied voltage is present in 0 (that is, an applied voltage is present between the picture element electrode 14 and the counter electrode 22), the radial tilt alignment can be stabilized. Figures 3 4A to 3 4C are schematic diagrams. The system shown in FIG. 3 4A is not applied with voltage; the system shown in FIG. 34B is the state when the alignment has just started to change after the voltage is applied (initial ON state); and the system shown in FIG. 3 4C is applied with voltage Apply a steady state in between. As shown in FIG. 3A, even when no voltage is applied, the alignment adjustment force applied by the protruding portion 28 will still act on the nearby liquid crystal module 30a, so a radial tilted alignment can be formed . When the voltage is applied, the electric field shown by the equipotential line EQ shown in FIG. 3 4 B will be generated (via the alignment adjustment structure), and will be in each area corresponding to the opening 1 4 a and corresponding to A liquid crystal domain in which the liquid crystal module 30 a exhibits a radial oblique alignment is formed in each region of the solid part 14 b, and the liquid crystal layer 30 will reach a stable state as shown in FIG. 3 4C. The alignment direction of the liquid crystal module 3 0 a in each of the liquid crystal domains in the region corresponding to the solid part 1 4 b is aligned with the alignment adjustment applied by the protruding part 2 8 located in the corresponding area -74-581921 ( 70) Description of the invention The continuation of the tilting liquid crystal module 30 a has the same direction. When a stress is applied to the steady state liquid crystal display device 400, the radial tilt alignment of the liquid crystal layer 30 will collapse once, but after the stress is removed, the radial tilt alignment can be restored. This is because The relationship between the alignment adjustment force of the alignment adjustment structure and the protrusions 28 acting on the liquid crystal modules 30a. Therefore, the afterimage caused by the stress can be avoided.

請注意,來自該突出部2 8的配向調整力量不必太強,因 為其僅需要具有穩定該配向調整結構所形成的放射狀傾 斜配向且固定其中央軸位置的效果即可。舉例來說,對於 直徑介於約30 μηι至50 μηι之間的單元實體部14bf而言,只要 形成直徑約15 μτη、高度(厚度)約1 μηι的突出部28便能夠獲 得足夠的配向調整力量。Please note that the alignment adjustment force from the projection 28 need not be too strong, because it only needs to have the effect of stabilizing the radial inclined alignment formed by the alignment adjustment structure and fixing the position of its central axis. For example, for a unit solid part 14bf with a diameter between about 30 μηι and 50 μηι, as long as a protrusion 28 having a diameter of about 15 μτη and a height (thickness) of about 1 μη is formed, sufficient alignment adjustment force can be obtained. .

雖然該突出部2 8的材料並不限於任何特殊的材料,不過 使用誘電材料(例如樹脂)會比較容易形成該突出部2 8。再 者,較佳的係能夠使用會受熱變形的樹脂材料,如此一來 在經過圖案化之後的加熱處理,便可非常輕易地形成具有 如圖3 3 Β所示之微凸剖面的突出部2 8。於沿著該基板平面 的法線方向中具有微凸剖面的突出部2 8在該圖式中具有 一頂點,其可提供固定該放射狀傾斜配向之中心位置的預 期效果。當然,該突出部亦可具有一頂面。 再者,雖然圖3 3 Α中所示的突出部2 8之剖面(沿著該反基 板400b之基板平面)為一般的圓形形狀,不過該突出部28 的剖面形狀並僅限於此,該突出部2 8亦可具有一般的矩形 剖面或是一般的十字形剖面。為降低視角依存性,該突出 -75 - 581921 (71) 發明說明續頁 部2 8較佳的係具有高度旋轉對稱性的剖面形狀。 圖3 5為包含具有一般的十字形剖面之突出部2 8 A的液 晶顯示裝置400A。該液晶顯示裝置400A的結構實質上與圖 3 3 A及圖3 3 B所示的液晶顯示裝置4 0 0的結構相同,不過該 等突出部2 8 A具有一般的十字形剖面。 與具有一般的圓形剖面且面積約略相同的突出部作比 較,該具有一般的十字形剖面的突出部28 A之中可用以在 該等液晶模組3 0 a上施加配向調整力量的傾斜面面積較大 ,並且能夠於該液晶域中較大的面積上施加該配向調整力 量。所以,可以更有效地施加更大的配向調整力量於該等 液晶模組3 0 a之上。因此,包含具有一般的十字形剖面之 突出部2 8 A的液晶顯示裝置4 Ο Ο A具有進一步穩定的配向 ,而且對於施加電壓會具有改良的響應速度。 當然亦可採用於該反基板上具有不同剖面形狀(沿著該 基板平面)的排列方式。舉例來說,可提供具有較大配向 調整力量的突出部(例如具有如圖3 5所示之一般的十字形 剖面之突出部2 8 A ),用以改良極可能會發生不必要之電 場而對該顯示器造成負面影響的區域(例如該匯流排線附 近)中的配向調整力量,同時在其它區域中提供具有不同 剖面形狀的突出部。 圖36及圖37所示的分別係液晶顯示裝置4008及400(:,其 於該反基板400b中具有不同剖面形狀的突出部。 圖36中的液晶顯示裝置400B的TFT基板包括該圖像元素 電極1 4,其中一部份的單元實體部14W (其形狀約相當於 -76- 581921 (72) 發明說明續頁 該單元實體部14b’的一半)係位於該閘極匯流排線1 5中,就 如同圖2 1 A及圖2 1 B中所示的液晶顯示裝置1 Ο Ο E —般。該 液晶顯示裝置400B的反基板在對應位於該閘極匯流排線 1 5中該部份的單元實體部14bf之每個區域中都包括一具有 一般的T形剖面之突出部2 8 B,並且在對應該單元實體部 14b’之每個區域中都包括一具有一般的圓形剖面之突出部 28 ° 該等液晶模組3 0 a被該一般的T形剖面突出部2 8 B傾斜 的方向會對齊位於對應該閘極匯流排線1 5中之該部份的 單元實體部14N (其形狀約相當於該單元實體部14b’的一 半)而形成的一部份液晶域的放射狀傾斜配向的配向方向 。對應該部份的單元實體部14bf (其形狀約相當於該單元 實體部14K的一半)而配備的一般的T形剖面突出部28B能 夠有效地施加較大的配向調整力量於該等液晶模組3 0 a之 上,其原因與位於對應該單元實體部14b1之每個區域中的 一般的十字形剖面之突出部2 8 A相同。 所以,在液晶顯示裝置400B中(其中具有極大之配向調 整力量的突出部2 8 B係位於該閘極匯流排線1 5中),可以有 效地調整位於該閘極匯流排線1 5中的液晶模組3 0 a (其配 向極可能受到干擾)的配向。 圖37中的液晶顯示裝置400C的TFT基板包括該圖像元素 電極1 4,其中一部份的單元實體部14b’(其形狀約相當於 該單元實體部1 4b’的一半)係位於該閘極匯流排線1 5及該 源極匯流排線1 6中,就如同圖2 3中所示的液晶顯示裝置 -77- 581921 (73) 發明說明續頁 100G—般。該液晶顯示裝置400C的反基板在對應位於該閘 極匯流排線1 5及該源極匯流排線1 6中該部份的單元實體 部Mb’之每個區域中都包括一具有一般的T形剖面之突出 部2 8B,並且在對應該單元實體部14bf之每個區域中都包 括一具有一般的圓形剖面之突出部2 8。Although the material of the protruding portion 28 is not limited to any special material, it is relatively easy to form the protruding portion 28 by using an electromotive material (such as resin). Furthermore, a better system can use a resin material that can be deformed by heat. In this way, after the heat treatment after patterning, the protrusion 2 having a slightly convex cross-section as shown in FIG. 3 3 B can be formed very easily. 8. The projection 28 having a slightly convex cross section in a normal direction along the plane of the substrate has a vertex in the drawing, which can provide a desired effect of fixing the center position of the radial inclined alignment. Of course, the protruding portion may also have a top surface. Moreover, although the cross-section of the protruding portion 28 (along the substrate plane of the counter substrate 400b) shown in FIG. 3A is a generally circular shape, the cross-sectional shape of the protruding portion 28 is not limited to this. The protruding portion 28 may have a general rectangular cross-section or a general cross-shaped cross-section. In order to reduce the viewing angle dependence, the protrusion -75-581921 (71) Description of the Invention Continued Section 28 is preferably a cross-sectional shape having a high degree of rotational symmetry. Fig. 35 is a liquid crystal display device 400A including a protruding portion 28A having a general cross-shaped cross section. The structure of the liquid crystal display device 400A is substantially the same as that of the liquid crystal display device 400 shown in Figs. 3A and 3B, but the protruding portions 28A have a general cross-shaped cross section. Compared with the protrusions having a generally circular cross-section and having approximately the same area, among the protrusions 28 A having a general cross-section, an inclined surface that can be used to apply an alignment adjustment force to the liquid crystal modules 30 a The area is large, and the alignment adjustment force can be applied to a larger area in the liquid crystal domain. Therefore, a larger alignment adjustment force can be applied to the liquid crystal modules 30a more effectively. Therefore, the liquid crystal display device 4 OO A including the protruding portion 2 8 A having a general cross-shaped cross section has a more stable alignment, and has an improved response speed to an applied voltage. Of course, an arrangement with different cross-sectional shapes (along the plane of the substrate) on the counter substrate can also be adopted. For example, a protrusion having a large alignment adjustment force (for example, a protrusion 2 8 A having a general cross-shaped cross section as shown in FIG. 3) may be provided to improve an unnecessary electric field which is likely to occur, and Alignment adjustment forces in areas that negatively affect the display, such as near the busbar, while providing protrusions with different cross-sectional shapes in other areas. 36 and 37 are liquid crystal display devices 4008 and 400 (, respectively, which have protrusions having different cross-sectional shapes in the counter substrate 400b. The TFT substrate of the liquid crystal display device 400B in FIG. 36 includes the picture element The electrode 14 is a part of the unit solid part 14W (the shape is approximately -76- 581921 (72) Description of the invention continued on the half of the unit solid part 14b ') is located in the gate busbar 15 , Just like the liquid crystal display device 1 Ο Ο E shown in FIG. 2 A and FIG. 2 1 B. The reverse substrate of the liquid crystal display device 400B is corresponding to the portion of the gate bus line 15 Each region of the unit solid portion 14bf includes a protrusion 2 8B having a general T-shaped cross section, and each region of the unit solid portion 14b 'includes a protrusion having a general circular cross section. The direction in which the liquid crystal modules 3 0 a are inclined by the general T-shaped cross-section protrusion 2 8 B is aligned with the unit solid part 14N (the part corresponding to the gate bus line 15). A shape corresponding to approximately half of the solid portion 14b 'of the unit) Orientation direction of the radial oblique alignment of the liquid crystal domain. The general T-shaped cross-section protruding portion 28B provided corresponding to a part of the unit solid portion 14bf (its shape is equivalent to half of the unit solid portion 14K) can be effectively applied The reason for the large alignment adjustment force on these liquid crystal modules 30a is the same as that of the general cross-shaped protrusion 28A located in each area corresponding to the unit solid portion 14b1. Therefore, in In the liquid crystal display device 400B (the protruding portion 2 8 B having great alignment adjustment power is located in the gate bus line 15), the liquid crystal module located in the gate bus line 15 can be effectively adjusted 3 0 a (the alignment of which is likely to be disturbed). The TFT substrate of the liquid crystal display device 400C in FIG. 37 includes the picture element electrode 14, and a part of the unit solid portion 14 b ′ (its shape is approximately equivalent to One half of the unit physical part 14b ') is located in the gate busbar 15 and the source busbar 16, just like the liquid crystal display device -77- 581921 (73) shown in FIG. 2 3 Description of the invention The anti-substrate of the liquid crystal display device 400C includes a region having a general structure in each region of the unit solid portion Mb ′ corresponding to the portion of the gate busbar 15 and the source busbar 16. The protruding portion 28B of the T-shaped cross section includes a protruding portion 28 having a generally circular cross section in each region corresponding to the unit solid portion 14bf.

在液晶顯示裝置400C中(其中具有極大之配向調整力量 的突出部2 8 B係位於該閘極匯流排線1 5及該源極匯流排 線1 6中),可以有效地調整位於該閘極匯流排線1 5及該源 極匯流排線1 6中的液晶模組3 0 a (其配向極可能受到干擾) 的酉己向。 偏光板及相位板之排列In the liquid crystal display device 400C (where the protruding portion 2 8 B having a great alignment adjustment force is located in the gate busbar 15 and the source busbar 16), the gate electrode can be effectively adjusted. The orientation of the liquid crystal module 30 a (the alignment of which is likely to be disturbed) in the bus line 15 and the source bus line 16. Arrangement of polarizing plate and phase plate

所謂的「垂直排列型液晶顯示裝置」(其包含一液晶層 ,在無施加電壓存在時,該液晶層中之具負誘電各向異性 的液晶模組會呈垂直排列)都能夠以各種的顯示模式來顯 示影像。舉例來說,除了雙折射模式(在此模式中係藉由 電場來控制該液晶層的雙折射,以便顯示影像)之外,垂 直排列型液晶顯示裝置還可使用於光學旋轉模式,或是使 用於光學旋轉模式及雙折射模式之組合顯示模式中。藉由 在上述任一種液晶顯示裝置之該對基板(例如該TFT基板 及該反基板)的外側(遠離該液晶層3 0的一側)上配備一對 偏光板便能夠獲得一雙折射模式的液晶顯示裝置。再者, 必要時亦可配備一相位差補償器(一般為相位板)。更進一 步地說,藉由一般圓形偏光便能夠獲得一高亮度的液晶顯 示裝置。 -78 - 581921 (74) 發明說明續頁 另一替代具體實施例 因為該閘極匯流排線之邊緣附近所產生的傾斜電場而 導致的顯示品質降低不僅會發生於具有配向調整結構(具 有單元實體部及開孔的電極結構)以形成具放射狀傾斜配 向之液晶域的液晶顯示裝置中;還會發生於一般包含在無 施加電壓存在時會呈現垂直排列的垂直排列型液晶層並 且可利用於其中具有開孔的電極結構來調整其配向的液 晶顯示裝置中。 利用本發明可改良一般包含垂直排列型液晶層並且可 利用於其中具有開孔的電極結構來調整其配向的液晶顯 示裝置中的顯示品質。 現在將參考圖3 8 A及圖3 8 B說明根據本發明之另一替代 具體實施例的液晶顯示裝置5 0 0之結構。圖3 8 A為從該基 板法線方向看去的平面圖,圖3 8 B則為沿著圖3 8 A之直線 3 8 B - 3 8 B ’之剖面圖。圖3 8 A及圖3 8 B所示的係已經於整個 液晶層中施加電壓時的狀態。 該液晶顯示裝置5 0 0包括一主動矩陣式基板(後面將稱 為「TFT基板」)500a、一反基板(後面將稱為「彩色濾光 片基板」)500b,以及一位於TFT基板500a與反基板500b之 間的液晶層30。 該液晶層3 0的液晶模組3 0 a為負誘電各向異性,在未透 過該垂直排列膜(圖中未顯示,其係作為一垂直排列層) 於整個液晶層3 0中施加電壓時,其會被排列成垂直該垂直 排列膜的表面,該垂直排列膜係位於每個TFT基板500a及 -79- 581921 (75) 發明說明續頁 接近該液晶層3 0的反基板5 0 0 b的其中一個表面上。 該液晶顯示裝置5 00的TFT基板500a包括一透明基板(例 如玻璃基板)1 1以及一位於該透明基板Π表面中的圖像 元素電極19。該反基板5 00b包括一透明基板(例如玻璃基 板)2 1以及一位於該透明基板2 1表面中的反電極2 2。每個 圖像元素區的液晶層3 0的配向都會隨著施加於該圖像元 素電極1 9與該反電極2 2 (該兩個電極係透過該液晶層3 0 而彼此相對排列)之間的電壓而改變。利用下面的現象便 可製造出一顯示器:偏光性或穿過該液晶層3 0的光量會隨 著該液晶層3 0的配向變化而改變。 該T F T基板5 00a的圖像元素電極1 9包括複數個開孔1 9 a 及一實體部I 9 b。該等開孔1 9 a所指的係由導體膜(例如IT 0 膜)所製成的圖像元素電極1 9中已經將該導體膜移除的部 分,而該實體部1 4 b所指的則係該導體膜仍然存在的部分 (即該等開孔1 9 a以外的部分)。雖然每個圖像元素電極中 都會形成複數個開孔1 9 a,不過實體部1 9 b基本上係由單一 連續的導體膜所製成的。 在本具體實施例中,每個開孔1 9 a都具有一狹縫形狀(也 就是,實質上寬度小於其長度的形狀(寬度係指垂直該長 度之方向中的尺寸))。每個該等開孔1 9 a都會有一側邊朝 與該圖像元素區(該矩陣圖案排列中的行及列方向)的長 邊及短邊成4 5 °的方向中延伸。再者,該側邊於該圖像元 素區上半部中的延伸方向會與其在該圖像元素區下半部 中的延伸方向相差90°。 •80- 581921 (76) 發明說明續頁The so-called "vertical alignment type liquid crystal display device" (which includes a liquid crystal layer, and the liquid crystal modules with negative induced anisotropy in the liquid crystal layer will be vertically aligned when no voltage is applied) can be displayed in various ways. Mode to display images. For example, in addition to the birefringence mode (in this mode, the birefringence of the liquid crystal layer is controlled by an electric field in order to display an image), the vertical alignment type liquid crystal display device can also be used in optical rotation mode, or use In the combined display mode of optical rotation mode and birefringence mode. By providing a pair of polarizing plates on the outside of the pair of substrates (such as the TFT substrate and the counter substrate) (the side away from the liquid crystal layer 30) of any of the above-mentioned liquid crystal display devices, a birefringent mode can be obtained. Liquid crystal display device. Moreover, a phase difference compensator (generally a phase plate) can be provided when necessary. Furthermore, a high-brightness liquid crystal display device can be obtained by general circularly polarized light. -78-581921 (74) Description of the Invention Another alternative embodiment due to the slanting electric field generated near the edge of the gate bus bar, the display quality degradation not only occurs with the alignment adjustment structure (with the unit entity Electrode structure with holes and holes) to form a liquid crystal display device with a radially inclined liquid crystal domain; it also occurs in a vertically aligned liquid crystal layer that generally includes a vertical alignment when no voltage is applied and can be used in The liquid crystal display device has an electrode structure with openings to adjust its alignment. The present invention can improve the display quality in a liquid crystal display device that generally includes a vertical alignment type liquid crystal layer and can use an electrode structure having openings therein to adjust its alignment. The structure of a liquid crystal display device 500 according to another alternative embodiment of the present invention will now be described with reference to FIGS. 3A and 3B. Figure 3 8A is a plan view seen from the direction of the normal of the substrate, and Figure 3 8B is a sectional view taken along the line 3 8 B-3 8 B 'of Figure 3 A. The systems shown in Figs. 38A and 3B are states when a voltage is applied to the entire liquid crystal layer. The liquid crystal display device 500 includes an active matrix substrate (hereinafter referred to as a "TFT substrate") 500a, an inverted substrate (hereinafter referred to as a "color filter substrate") 500b, and a TFT substrate 500a and The liquid crystal layer 30 between the counter substrates 500b. The liquid crystal module 30 a of the liquid crystal layer 30 is negatively induced anisotropy. When a voltage is applied to the entire liquid crystal layer 30 without passing through the vertical alignment film (not shown in the figure, it acts as a vertical alignment layer). It will be arranged vertically to the surface of the vertical alignment film, which is located on each of the TFT substrates 500a and -79- 581921 (75) Description of the invention The continuation sheet is close to the anti-substrate 5 0 0 b of the liquid crystal layer 30 On one of the surfaces. The TFT substrate 500a of the liquid crystal display device 500 includes a transparent substrate (e.g., a glass substrate) 11 and an image element electrode 19 located on the surface of the transparent substrate Π. The counter substrate 500b includes a transparent substrate (e.g., a glass substrate) 21 and a counter electrode 22 located on the surface of the transparent substrate 21. The alignment of the liquid crystal layer 30 in each picture element region will be applied between the picture element electrode 19 and the counter electrode 2 2 (the two electrodes are arranged opposite each other through the liquid crystal layer 30). The voltage. A display can be manufactured by using the following phenomenon: the polarizing property or the amount of light passing through the liquid crystal layer 30 will change as the alignment of the liquid crystal layer 30 changes. The picture element electrode 19 of the T F T substrate 500a includes a plurality of openings 19a and a solid portion I9b. The openings 19a refer to the portion of the picture element electrode 19 made of a conductive film (such as the IT0 film) from which the conductive film has been removed, and the solid portion 14b refers to Is the part where the conductor film still exists (that is, the part other than the openings 19a). Although a plurality of openings 19 a are formed in each picture element electrode, the solid part 19 b is basically made of a single continuous conductive film. In this embodiment, each of the openings 19a has a slit shape (that is, a shape having a width substantially smaller than its length (the width refers to a dimension in a direction perpendicular to the length)). Each of these openings 19a will have one side extending in a direction that is 45 ° to the long and short sides of the picture element area (row and column directions in the matrix pattern arrangement). Furthermore, the direction in which the side extends in the upper half of the picture element area will differ from the direction in which it extends in the lower half of the picture element area by 90 °. • 80- 581921 (76) Description of the invention continued

當施加電壓於該圖像元素電極1 9及該反電極2 2之間時 ,便會在該圖像元素電極1 9的開孔1 9 a的邊緣部分(開孔 1 9 a的周圍部分及其内部,包含其邊界在内)上方的液晶層 3 ϋ中產生由該等等電位線E Q之傾钭部分所表示的傾斜電 場。所以,該等具負誘電各向異性的液晶模組30a (當未施 加電壓時,其係呈垂直排列)便會被傾斜至該開孔1 9 a的邊 緣部分處所產生的傾斜電場的傾斜方向中。因此,當施加 電壓於該圖像元素電極1 9及該反電極2 2之間時,便可以在 該圖像元素電極1 9的每個開孔1 9 a的邊緣部分處所產生的 傾斜電場來調整該液晶層3 0的配向。When a voltage is applied between the picture element electrode 19 and the counter electrode 22, the edge portion of the opening 19a of the picture element electrode 19 (the surrounding portion of the opening 19a and the Inside, the liquid crystal layer 3 上方 above (including its boundary) generates an inclined electric field represented by the inclined portion of the equipotential line EQ. Therefore, the negatively induced anisotropic liquid crystal modules 30a (which are arranged vertically when no voltage is applied) are tilted to the tilt direction of the tilted electric field generated at the edge portion of the opening 19a in. Therefore, when a voltage is applied between the picture element electrode 19 and the counter electrode 22, an inclined electric field generated at an edge portion of each opening 19a of the picture element electrode 19 can be obtained. The alignment of the liquid crystal layer 30 is adjusted.

在該液晶顯不裝置5 0 0 ’該液晶看3 0的配向係由該開孔 1 9 a的邊緣部分處所產生的傾斜電場來調整,所以該圖像 元素區中的液晶模組3 0 a會被配向於四個不同的方位方向 中,各方位彼此之間互為9 0 °的整數倍。換言之,在該液 晶顯示裝置5 0 0中,該圖像元素區具有一多域配向。所以 ,該液晶顯示裝置5 0 0會具有預期的視角特徵。 再者,該液晶顯示裝置5 00的反基板500b在其接近該液 晶層3 0的其中一表面中包含突出部2 9。每個突出部2 9皆具 有一傾斜側面2 9 s,並且從該基板的法線方向看去時會呈 現之字形圖案(或「〉」形圖案)。該傾斜側面2 9 s延伸的方 向會與該開孔1 9 a側面延伸的方向一致,而該突出部2 9實 質上則係位於該兩個開孔1 9a (該兩個開孔1 9 a於其寬度方 向中相鄰排列)的中間。 該突出部2 9的表面具有一垂直排列冪(一般是形成一垂 -81 - 581921 (77) 發明說明續頁 直排列膜(未顯示)以覆蓋該突出部2 9 ),以及由於其錨接 效應的關係,該等液晶模組3 0 a實質上會被排列成垂直該 側面2 9 s。當施加電壓於此種狀態下的液晶層3 0時,該突 出部2 9附近的其它液晶模組3 Oa便會傾斜以便與由於該突 出部2 9之傾斜側面2 9 s的錨接效應而在該傾斜側面2 9 s中 形成的液晶模組3 0 a的傾斜配向一致。In the liquid crystal display device 5 0 0 ', the alignment of the liquid crystal display 30 is adjusted by the inclined electric field generated at the edge portion of the opening 19 a, so the liquid crystal module 3 0 a in the picture element region Will be aligned in four different azimuth directions, each position being an integer multiple of 90 ° with each other. In other words, in the liquid crystal display device 500, the picture element region has a multi-domain alignment. Therefore, the liquid crystal display device 500 has a desired viewing angle characteristic. In addition, the counter substrate 500b of the liquid crystal display device 500 includes a protruding portion 29 on one of its surfaces close to the liquid crystal layer 30. Each protruding portion 29 has an inclined side surface 2 9 s, and a zigzag pattern (or ">" pattern) appears when viewed from the normal direction of the substrate. The direction in which the inclined side surface 2 9 s extends will be consistent with the direction in which the side surface of the opening hole 19 a extends, and the protruding portion 2 9 is substantially located in the two opening holes 1 9a (the two opening holes 1 9 a In the width direction). The surface of the protrusion 2 9 has a vertical alignment power (generally forming a vertical -81-581921 (77) Description of the invention continued on a straight-line film (not shown) to cover the protrusion 2 9), and due to its anchor Due to the effect, the liquid crystal modules 3 0 a are substantially arranged to be perpendicular to the side surface 2 9 s. When a voltage is applied to the liquid crystal layer 30 in this state, the other liquid crystal modules 3 Oa near the protruding portion 29 are inclined so as to be anchored by the inclined side 2 9 s of the protruding portion 29. The liquid crystal modules 30 a formed in the inclined side surfaces 2 9 s have the same inclination orientation.

因為該圖像元素電極1 9的開孔1 9 a的邊緣部分處所產生 的傾斜電場所造成的配向調整方向會對齊該突出部2 9所 造成的配向調整方向,所以該突出部2 9可進一步地穩定該 液晶層的配向,當有施加電壓存在時,便t變成該傾斜電 場所造成的多域配向。 1 該液晶顯示裝置5 00的TFT基板500a包括一電氣連接至 該圖像元素電極1 9用以當作切換元件的T FT (未顯示);以 及匯流排線1 8,其包括電氣連接至該T F T的閘極匯流排線 (掃描線)1 5及源極匯流排線(信號線)1 6。Because the orientation adjustment direction caused by the tilted electric field generated at the edge portion of the opening hole 19 a of the picture element electrode 19 is aligned with the alignment adjustment direction caused by the protruding portion 29, the protruding portion 29 can be further The ground stabilizes the alignment of the liquid crystal layer. When an applied voltage is present, t becomes a multi-domain alignment caused by the inclined electric field. 1 The TFT substrate 500a of the liquid crystal display device 500 includes a T FT (not shown) electrically connected to the picture element electrode 19 as a switching element; and a bus bar 18 including an electrical connection to the Gate bus line (scan line) 15 and source bus line (signal line) 16 of TFT.

在本具體實施例中,會形成該圖像元素電極1 9的開孔 1 9 a,使其不會跨越該閘極匯流排線1 5的邊緣;而該閘極 匯流排線1 5的邊緣卻會被該圖像元素電極1 9的實體部1 9 b 覆蓋,如圖3 8 A所示。所以可實現高品質的顯示。下面將 參考圖3 8 A、圖3 8 B及圖3 9來說明其原因。圖3 9為液晶顯 示裝置8 0 0之平面示意圖,其中有一部份的閘極匯流排線 1 5並未被該圖像元素電極1 9之實體部1 9 b覆蓋。 在該匯流排線1 8之邊緣附近會產生一傾斜電場,而且不 論是否在該圖像元素電極1 9及該反電極2 2之間的液晶層 -82- 581921 (78) 發明說明續頁 3 0上施加電壓,都會產生該傾斜電場。所以,在以一般的 黑色模式進行顯示的液晶顯示裝置中,當未施加電壓時, 如篆位於該匯流排線1 8邊緣附近中的液晶模組3 0 a被該傾 斜電場所造成的配向調整力量傾斜的話,便可能發生漏光 ,因而會降低對比。明確地說,因為閘極匯流排線1 5大部 分的時間中都係處於非常高的電壓(〇F F電壓)下,以保持 T F T的〇F F狀態,所以,該閘極匯流排線1 5邊緣附近的漏 光程度非常重要。 在該液晶顯示裝置8 00中,該圖像元素電極1 9包括開孔 1 9 a,形成該開孔1 9 a後並不會跨越該閘極匯流排線1 5的邊 緣,因此該閘極毆流排線1 5的一部份邊緣並不會被該圖像 元素電極1 9的實體部1 9 b覆蓋,如圖3 9所示。所以,在該 閘極匯流排線1 5未被該實體部i 9 b覆蓋的該部分邊緣附近 (也就是,圖3 9中虛線所示的區域L L ),該等液晶模組3 0 a 都會被該閘極匯流排線1 5邊緣附近中所產生的傾斜電場 傾斜,因而會發生漏光。 再者,由於該匯流排線1 8之邊緣附近所產生的傾斜電場 的關係,可能會在開孔1 9a(顯露出絕緣材料的開孔)中出 現殘留電荷,而且如杲位於該匯流排線1 8中的開孔1 9 a内 的液晶模組3 0 a因為該殘留電荷的影響而被傾斜的話,便 會導致漏光。雖然殘留電荷的程度會隨著該絕緣材料的表 面狀況而改變,但是當印刷排列膜或射出液晶材料時,該 絕緣材料的表面狀況還會發生變化。所以,在液晶顯示裝 置中,顯示平面中的殘留電荷便會產生變動。如果殘留電 -83 - 581921 (79) 發明說明續頁 荷會在該顯示平面中變化的話,漏光程度也會在該顯示平 面中發生變化,從而導致對比的局部變動。明確地說,如 上所述,因為施加非常高的電壓於閘極匯流排線1 5中,所 以該閘極匯流排線1 5對於是否會出現不均句現象的影響 特別重要。 在該液晶顯示裝置8 0 0中,該圖像元素電極1 9包括開孔 1 9 a,形成該開孔丨9 a後並不會跨越該閘極匯流排線1 5的邊 緣,因此該閘極匯流排線丨5的一部份邊緣並不會被該圖像 元素電極1 9的實體部1 9 b覆蓋,如圖3 9所示。所以,會有 一個區域未被該閘極匯流排線1 5之邊緣附近中的圖像元 素電極1 9的導體膜(實體部1 9 b)覆蓋,所以會因為此區中的1 殘留電荷而發生漏光,因此便會造成顯示不均勻的現象。 相反地,在本具體實施例之液晶顯示裝置500中,會形 成該圖像元素電極1 9的開孔1 9 a,使其不會跨越該閘極匯 流排線1 5的邊緣;而該閘極匯流排線1 5的邊緣卻會被該圖 像元素電極1 9的實體部1 9 b覆蓋。所以,該液晶層3 0的液 晶模組3 0 a會受到電氣遮蔽,使其不會受到該匯流排線1 8 邊緣附近中所產生的傾斜電場的影響。因此,該液晶層3 0 的液晶模組3 0 a便不會被該傾斜電場所造成的配向調整力 量傾斜。所以,便可避免發生漏光,從而避免對比降低。 再者,在該液晶顯示裝置5 0 0中,該閘極匯流排線1 5的邊 緣會被該圖像元素電極的實體部1 9 b覆蓋,而該閘極匯流 排線1 5邊緣附近的區域則會被該圖像元素電極1 9的導體 膜(實體部1 9 b)覆蓋,所以不大可能發生殘留電荷,因此 -84 - 581921 (80) 發明說明續頁 可避免發生不均勾的現象。如上所述,在該液晶顯示裝置 5 0 0中,因為可以避免由於該閘極匯流排線1 5附近所產生 的傾斜電場所造成的漏光現象,因而可避免對比降低,同 時可以避免由於該閘極匯流排線1 5附近的殘留電荷所造 成的不均勻現象,因而可實現高品質的顯示。In this specific embodiment, an opening 19a of the picture element electrode 19 will be formed so that it does not cross the edge of the gate busbar 15; and the edge of the gate busbar 15 However, it will be covered by the solid part 19b of the picture element electrode 19, as shown in FIG. 3A. Therefore, high-quality display can be realized. The reason will be described below with reference to FIGS. 38A, 38B, and 39. FIG. 39 is a schematic plan view of the liquid crystal display device 800, and a part of the gate bus bar 15 is not covered by the solid part 19b of the picture element electrode 19. An oblique electric field is generated near the edge of the bus bar 18, and whether or not the liquid crystal layer is between the picture element electrode 19 and the counter electrode 22 -82- 581921 (78) Description of the invention continued page 3 When a voltage is applied to 0, the inclined electric field is generated. Therefore, in a liquid crystal display device that performs display in a general black mode, when no voltage is applied, the LCD module 30a located near the edge of the bus bar 18 is adjusted by the tilted electric field. If the power is tilted, light leakage may occur and the contrast will be reduced. Specifically, because the gate bus line 15 is at a very high voltage (0FF voltage) most of the time to maintain the 0FF state of the TFT, the gate bus line 15 edge The degree of light leakage in the vicinity is very important. In the liquid crystal display device 800, the picture element electrode 19 includes an opening 19a. After the opening 19a is formed, it does not cross the edge of the gate bus bar 15, so the gate A part of the edge of the baffle line 15 is not covered by the solid part 19b of the picture element electrode 19, as shown in FIG. 39. Therefore, near the edge of the portion of the gate bus line 15 that is not covered by the solid portion i 9 b (that is, the area LL shown by the dotted line in FIG. 3), the liquid crystal modules 3 0 a will all It is tilted by an inclined electric field generated in the vicinity of the edge of the gate bus line 15 and light leakage occurs. In addition, due to the relationship of the inclined electric field generated near the edge of the bus bar 18, a residual charge may appear in the opening 19a (the opening of the insulating material is exposed), and if it is located on the bus bar If the liquid crystal module 3 0 a in the opening 19 a in 18 is tilted due to the influence of the residual charge, light leakage will result. Although the degree of the residual charge varies depending on the surface condition of the insulating material, the surface condition of the insulating material also changes when the alignment film is printed or the liquid crystal material is emitted. Therefore, in the liquid crystal display device, the residual charge in the display plane is changed. If the residual electricity -83-581921 (79) Description of the invention continues on the display plane, the charge will also change in the display plane, resulting in local changes in contrast. Specifically, as described above, since a very high voltage is applied to the gate busbar 15, the gate busbar 15 is particularly important for the influence of the uneven sentence phenomenon. In the liquid crystal display device 800, the picture element electrode 19 includes an opening 19a. After the opening 9a is formed, it does not cross the edge of the gate bus bar 15, so the gate A part of the edge of the pole busbar 5 is not covered by the solid part 19 b of the picture element electrode 19, as shown in FIG. 39. Therefore, there will be an area not covered by the conductive film (solid part 19 b) of the picture element electrode 19 in the vicinity of the edge of the gate bus line 15, so it will be caused by the residual charge in this area. Light leakage occurs, which causes uneven display. In contrast, in the liquid crystal display device 500 of this embodiment, an opening 19 a of the picture element electrode 19 is formed so that it does not cross the edge of the gate bus line 15; and the gate The edges of the pole busbars 15 will be covered by the solid part 19b of the picture element electrode 19. Therefore, the liquid crystal module 30a of the liquid crystal layer 30 is electrically shielded from the oblique electric field generated in the vicinity of the edge of the bus bar 18. Therefore, the liquid crystal module 30a of the liquid crystal layer 30 will not be tilted by the alignment adjustment force caused by the inclined electric field. Therefore, light leakage can be avoided, thereby preventing a decrease in contrast. Furthermore, in the liquid crystal display device 500, an edge of the gate busbar 15 will be covered by the solid part 19b of the picture element electrode, and an area near the edge of the gate busbar 15 will be covered. The area will be covered by the conductive film of the picture element electrode 19 (the solid part 19 b), so it is unlikely that residual charge will occur. Therefore, -84-581921 (80) Invention description Continuation page can avoid uneven hooks. phenomenon. As described above, in the liquid crystal display device 500, the light leakage caused by the inclined electric field generated near the gate bus line 15 can be avoided, so that the contrast can be reduced, and the gate due to the The non-uniformity caused by the residual charge near the pole busbars 15 can realize high-quality display.

請注意,雖然本具體實施例已經於上面針對該閘極匯流 排線1 5的邊緣會被該圖像元素電極1 9的實體部1 9b覆蓋的 情形作說明,不過亦可採用如圖40中的液晶顯示裝置500a 般,該源極匯流排線I 6的邊緣會被該圖像元素電極1 9的實 體部1 9 b覆蓋的排列方式。以該圖像元素電極1 9的實體部 1 9 b覆蓋該閘極匯流排線1 5及該源極匯流排線1 6中至少其 中一個的邊緣,便可改良顯示品質。因為該閘極匯流排線 1 5邊緣附近所產生的傾斜電場通常對於該等液晶模組的 影響會大於該源極匯流排線1 6邊緣附近所產生的傾斜電 場對於該等液晶模組的影響,所以較佳的係,至少該閘極 匯流排線1 5的邊緣會被該圖像元素電極1 9的實體部1 9b覆 蓋。再者,為更可靠地避免該匯流排線1 8邊緣附近中所產 生的傾斜電場所造成的影響,較佳的係,該閘極匯流排線 1 5的邊緣及該源極匯流排線1 6的邊緣都被該圖像元素電 極1 9的實體部1 9b覆蓋,如圖4 i中的液晶顯示裝置500b所 示一名殳。 雖然已經以較佳的具體實施例對本發明作說明,但是熟 習本技術的人士將會瞭解可以各種方式對此處所揭示的 發明進行修改,並且可假設出除上面已經明確提出且說明 -85 - 581921 (81) 發明說明續頁 的具體實施例之外的各種具體實施例。因此,本申請案希 望以隨附的申請專利範圍來涵蓋屬於本發明之真實精神 及範疇内的所有修改情形。 圖式簡單說明 圖1 A及圖1 B所示的係根據本發明一具體實施例之液晶 顯示裝置1 0 0之其中一個圖像元素區結構之示意圖,其中 圖1 A為平面圖,而圖1 B則為沿著圖1 A之直線1 B-1 B%剖面 圖。 圖2 A及圖2 B所示的係於施加電壓後該液晶顯示裝置 1 0 0之液晶層3 0的示意圖,其中圖2 A為配向剛開始改變時 的狀態示意圖(初始〇N狀態),而圖2 B則為穩定狀態示意 圖。 圖3 A至圖3 D所示的各係電力線與液晶模組配向之間的 關係示意圖。 圖4 A至圖4 C所示的各係從基板法線方向看去時,根據 本發明之具體實施例的液晶顯示裝置1 0 0中液晶模組的配 向示意圖。 圖5 A至圖5 C所示的係液晶模組的示範性放射狀傾斜配 向示意圖 ΰ 圖6 Α及圖6 Β所示的係使用於根據本發明一具體實施例 之液晶顯示裝置中的其它圖像元素電極之平面示意圖。 圖7 A及圖7 B為使用於根據本發明一具體實施例之液晶 顯示裝置中的另外其它圖像元素電極之平面示意圖。 圖8 A及圖8 B為使用於根據本發明一具體實施例之液晶 -86- 581921 (82) 發明說明續頁 顯示裝置中的另外其它圖像元素電極之平面示意圖。 圖9為使用於根據本發明一具體實施例之液晶顯示裝置 中的另一圖像元素電極之平面示意圖。 圖1 Ο A及圖1 Ο B為使用於根據本發明一具體實施例之液 晶顯示裝置中的另外其它圖像元素電極之平面示意圖。 圖1 1 A所示的係圖1 A中的圖案之單元晶格的示意圖,圖 1 i B所示的係圖9中的圖案之單元晶格的示意圖,而圖1 1 C 則為間距p與實體部面積比例之間的關係圖。 圖1 2為根據本發明一具體實施例之液晶顯示裝置1 00之 其中一個圖像元素區結構之平面示意圖。 圖1 3為液晶顯示裝置7 0 0之其中一1個圖像元素區結構之 平面示意圖,其中位於該匯流排線中的開孔並未疊放在該 匯流排線之上。 圖1 4 A及1 4 B所示的係在位於該液晶顯示裝置7 0 0之閘 極匯流排線中的開孔附近的液晶模組之配向示意圖,其中 圖1 4 A為平面圖,而圖1 4 B則為剖面圖。 圖1 5 A為沿著圖1 3之直線15 A-1 5 A·之剖面圖,圖1 5B則為 沿著圖1 3之直線15B-15B*之剖面圖。 圖1 6 A及圖1 6 B所示的係在位於根據本發明一具體實施 例之液晶顯示裝置1 0 0之閘極匯流排線中的開孔附近的液 晶模組之配向示意圖,其中圖1 6 A為平面圖,而圖1 6 B則 為剖面圖。 圖1 7為根據本發明一具體實施例之液晶顯示裝置1 〇〇A 之其中一個圖像元素區結構之平面示意圖。 -87 - 581921 (83) 發明說明續頁 圖1 8為根據本發明一具體實施例之液晶顯示裝置100B 之其中一個圖像元素區結構之平面示意圖。 圖1 9為根據本發明一具體實施例之液晶顯示裝置100C 之其中一個圖像元素區結構之平面示意圖。 圖2 0為根據本發明一具體實施例之液晶顯示裝置100D 之其中一個圖像元素區結構之平面示意圖。 圖2 1 A為根據本發明一具體實施例之液晶顯示裝置100E 之其中一個圖像元素區結構之平面示意圖,而圖2 1 B則為 圖2 1 A中閘極匯流排線附近部分的放大圖。 圖22A為根據本發明一具體實施例之液晶顯示裝置100F 之其中一個圖像元素區結構之平面示意圖,而圖2 2 B則為 圖2 2 A中閘極匯流排線附近部分的放大圖。 圖2 3為根據本發明一具體實施例之液晶顯示裝置100G 之其中一個圖像元素區結構之平面示意圖。 圖2 4 A為根據本發明一具體實施例之液晶顯示裝置1 00H 之其中一個圖像元素區結構之平面示意圖,而圖2 4 B則為 圖2 4 A中閘極匯流排線附近部分的放大圖。 圖2 5 A為根據本發明一具體實施例之液晶顯示裝置1001 之其中一個圖像元素區結構之平面示意圖,而圖2 5 B則為 圖2 5 A中閘極匯流排線附近部分的放大圖。 圖2 6 A及圖2 6 B所示的係根據本發明替代具體實施例之 液晶顯示裝置2 0 0之其中一個圖像元素區結構之平面示意 圖,其中圖2 6 A為平面圖,而圖2 6 B則為沿著圖2 6 A之直線 26B-26B’白勺剖面圖。 -88 - 581921 (84) 發明說明續頁 圖2 7 A至圖2 7 D所示的係液晶模組3 0 a之配向與具垂直 排列冪之表面結構之間的關係示意圖。 圖2 8 A及圖2 8 B所示的係於施加電壓存在時該液晶顯示 裝置2 0 0之液晶層3 0的示意圖,其中圖2 8 A為配向剛開始 改變時的狀態示意圖(初始〇N狀態),而圖2 8 B則為穩定狀 態示意圖。Please note that although the specific embodiment has been described above with regard to the case where the edge of the gate bus line 15 will be covered by the solid portion 19b of the picture element electrode 19, as shown in FIG. 40, The liquid crystal display device 500a is arranged in such a manner that the edges of the source bus bar I6 are covered by the solid portion 19b of the picture element electrode 19. By covering the edges of at least one of the gate busbar 15 and the source busbar 16 with the solid portion 19b of the picture element electrode 19, the display quality can be improved. Because the inclined electric field generated near the edge of the gate bus line 15 usually affects the liquid crystal modules more than the influence of the inclined electric field generated near the edge of the source bus line 16 on the liquid crystal modules. Therefore, it is preferable that at least the edge of the gate bus bar 15 be covered by the solid portion 19b of the picture element electrode 19. Furthermore, in order to more reliably avoid the influence of the inclined electric field generated in the vicinity of the edges of the busbar 18, it is better to have the edges of the gate busbar 15 and the source busbar 1 The edges of 6 are covered by the solid part 19b of the picture element electrode 19, as shown in the liquid crystal display device 500b in FIG. 4i. Although the present invention has been described in terms of preferred embodiments, those skilled in the art will understand that the invention disclosed herein can be modified in various ways, and it can be assumed that in addition to what has been explicitly mentioned and described above -85-581921 (81) Description of the Invention Various specific embodiments other than the specific embodiments on the following pages. Therefore, this application is intended to cover all modifications that fall within the true spirit and scope of the invention with the scope of the accompanying patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A and FIG. 1B are schematic diagrams of a picture element region structure of a liquid crystal display device 100 according to a specific embodiment of the present invention. FIG. 1A is a plan view, and FIG. 1 B is a cross-sectional view taken along line 1 B-1 B% of FIG. 1A. FIG. 2A and FIG. 2B are schematic diagrams of the liquid crystal layer 30 of the liquid crystal display device 100 after the voltage is applied, and FIG. 2A is a schematic diagram of the state immediately after the orientation is changed (initial ON state). Figure 2B is a schematic diagram of the steady state. 3A to 3D are schematic diagrams showing the relationship between the power lines of various systems and the alignment of the liquid crystal module. 4A to 4C are schematic diagrams of the alignment of the liquid crystal modules in the liquid crystal display device 100 according to a specific embodiment of the present invention when each system is viewed from the normal direction of the substrate. 5A to 5C are schematic diagrams of exemplary radial tilt alignments of the liquid crystal module shown in Figs. 6A and 6B. The other shown in Figs. 6A and 6B is used in a liquid crystal display device according to a specific embodiment of the present invention. Schematic plan view of picture element electrode. 7A and 7B are schematic plan views of other picture element electrodes used in a liquid crystal display device according to a specific embodiment of the present invention. 8A and 8B are schematic plan views of other picture element electrodes used in a liquid crystal display device according to a specific embodiment of the present invention. FIG. 9 is a schematic plan view of another picture element electrode used in a liquid crystal display device according to an embodiment of the present invention. FIG. 10A and FIG. 10B are schematic plan views of still other picture element electrodes used in a liquid crystal display device according to a specific embodiment of the present invention. FIG. 11A is a schematic diagram of the unit lattice of the pattern in FIG. 1A, FIG. 1B is a schematic diagram of the unit lattice of the pattern in FIG. 9, and FIG. 1C is a pitch p The relationship between the area ratio and the solid part. FIG. 12 is a schematic plan view showing a structure of one picture element region of a liquid crystal display device 100 according to a specific embodiment of the present invention. FIG. 13 is a schematic plan view of one of the image element area structures of the liquid crystal display device 700, in which the openings in the busbar are not stacked on the busbar. FIG. 14A and FIG. 14B are schematic alignment diagrams of an LCD module located near an opening in a gate bus bar of the LCD device 700, and FIG. 14A is a plan view, and FIG. 1 4 B is a sectional view. Fig. 15 A is a cross-sectional view taken along line 15 A-1 5 A · in Fig. 13 and Fig. 5B is a cross-sectional view taken along line 15B-15B * in Fig. 13. FIG. 16A and FIG. 16B are schematic diagrams of alignment of a liquid crystal module near an opening in a gate bus bar of a liquid crystal display device 100 according to a specific embodiment of the present invention. 16 A is a plan view, and FIG. 16 B is a cross-sectional view. FIG. 17 is a schematic plan view illustrating a structure of one picture element region of a liquid crystal display device 100A according to a specific embodiment of the present invention. -87-581921 (83) Description of the invention continued Fig. 18 is a schematic plan view of one of the picture element area structures of a liquid crystal display device 100B according to a specific embodiment of the present invention. FIG. 19 is a schematic plan view of a structure of an image element region of a liquid crystal display device 100C according to a specific embodiment of the present invention. FIG. 20 is a schematic plan view of a structure of an image element region of a liquid crystal display device 100D according to a specific embodiment of the present invention. FIG. 2A is a schematic plan view of an image element region structure of a liquid crystal display device 100E according to a specific embodiment of the present invention, and FIG. 2B is an enlarged view of a portion near a gate bus line in FIG. 2A Illustration. FIG. 22A is a schematic plan view of a picture element region structure of a liquid crystal display device 100F according to a specific embodiment of the present invention, and FIG. 2B is an enlarged view of a portion near a gate bus bar in FIG. 2A. FIG. 23 is a schematic plan view of a structure of an image element region of a liquid crystal display device 100G according to a specific embodiment of the present invention. FIG. 24A is a schematic plan view of one of the picture element area structures of a liquid crystal display device 100H according to a specific embodiment of the present invention, and FIG. 2B is a portion near the gate busbar in FIG. 2A Zoom in. FIG. 2A is a schematic plan view of a structure of an image element region of a liquid crystal display device 1001 according to a specific embodiment of the present invention, and FIG. 2B is an enlarged view of a portion near a gate bus line in FIG. 2A Illustration. 2A and 2B are schematic plan views of one of the picture element area structures of a liquid crystal display device 2000 according to an alternative embodiment of the present invention, wherein FIG. 2A is a plan view, and FIG. 2 6B is a sectional view taken along line 26B-26B 'of FIG. 2A. -88-581921 (84) Description of the Invention Continued Figures 7A to 2D show the relationship between the alignment of the liquid crystal module 3 0 a and the surface structure with vertically arranged powers. FIG. 2A and FIG. 2B are schematic diagrams of the liquid crystal layer 30 of the liquid crystal display device 2000 in the presence of an applied voltage, and FIG. 2A is a schematic diagram of the state immediately after the alignment is changed (initial. N state), and Figure 2 8B is a schematic diagram of the steady state.

圖2 9 A至圖2 9 C分別為替代具體實施例之液晶顯示裝置 200A、200B及200C的剖面示意圖,各具體實施例在開孔與 突出部之間具有不同的位置關係。 圖30為沿著圖26A之直線30A-30A%液晶顯示裝置200 之剖面示意圖。 1 圖3 1 A及圖3 1 B所示的係根據本發明替代具體實施例之 液晶顯示裝置200D之其中一個圖像元素區結構之示意圖 ,其中圖3 1 A為平面圖,而圖3 1 B則為沿著圖3 1 A之直線 31B-3 1B'的剖面圖。FIG. 2A to FIG. 2C are schematic cross-sectional views of liquid crystal display devices 200A, 200B, and 200C, which are alternative embodiments, respectively. Each embodiment has different positional relationships between the opening and the protruding portion. FIG. 30 is a schematic cross-sectional view of the 30A-30A% liquid crystal display device 200 along the line of FIG. 26A. 1 FIG. 3 1 A and FIG. 3 1 B are schematic diagrams of one image element region structure of a liquid crystal display device 200D according to an alternative embodiment of the present invention, where FIG. 3 A is a plan view and FIG. It is a cross-sectional view taken along line 31B-3 1B ′ of FIG. 3A.

圖32A至圖32C為具有兩層電極之液晶顯示裝置300之 其中一個圖像元素區之剖面示意圖,其中圖3 2 A所示的係 未施加電壓的狀態,而圖3 2 B所示的則係配向剛開始改變 時的狀態(初始〇N狀態)。 圖33A及圖33B為於反基板上具有一突出部之液晶顯示 裝置400之其中一個圖像元素區之剖面示意圖,其中圖 33A為平面圖,而圖33B則為沿著圖33A之直線33B-33B·的 剖面圖。 圖3 4 A至圖3 4 C為液晶顯示裝置4 0 0之其中一個圖像元 -89 - 581921 (85) 發明說明續頁 素區之剖面示意圖,其中圖3 4 A所示的係未施加電壓的狀 態,圖34B所示的係配向剛開始改變時的狀態(初始〇N狀 態),而圖3 4 C所示的則係穩定狀態。 圖35為於反基板上具有一突出部之另一液晶顯示裝置 400A之其中一個圖像元素區結構之平面示意圖。 圖36為於反基板上具有一突出部之另一液晶顯示裝置 400B之其中一個圖像元素區結構之平面示意圖。 圖37為於反基板上具有一突出部之另一液晶顯示裝置 400C之其中一個圖像元素區結構之平面示意圖。 圖38A及圖38B所示的係根據本發明另一替代具體實施 例之液晶顯示裝置500之其中一個圖像元素區結構之示意 圖,其中圖38A為平面圖,而圖38B則為沿著圖38A之直線 38B-38]^的剖面圖。 圖3 9為液晶顯示裝置800之平面示意圖,其中有一部份 的閘極匯流排線邊緣並未被圖像元素區之實體部覆蓋。 圖40為根據本發明另一替代具體實施例之液晶顯示裝 置500a之其中一個圖像元素區結構之平面示意圖。 圖4 1為根據本發明另一替代具體實施例之液晶顯示裝 置500b之其中一個圖像元素區結構之平面示意圖。 圖式代表符號說明 11,2 1:透明絕緣基板 14, 14A,14B,14C,14D,14E,14F:圖像元素電極 14G,14H,141:圖像元素電極 14a:開孔 -90- 581921 (86) 發明說明續頁32A to 32C are schematic cross-sectional views of one of the picture element regions of a liquid crystal display device 300 having two layers of electrodes, in which a state shown in FIG. 3A is a state where no voltage is applied, and a state shown in FIG. 3B is The state when the alignment is initially changed (initial ON state). 33A and 33B are schematic cross-sectional views of one picture element region of a liquid crystal display device 400 having a protruding portion on a counter substrate, wherein FIG. 33A is a plan view, and FIG. 33B is a line 33B-33B along the line 33A · Sectional view. Figures 3A to 3C are one of the image elements of the liquid crystal display device 400 -89-581921 (85) Description of the schematic cross-section of the continuation prime area, wherein the system shown in Figure 3 4A is not applied The state of the voltage is the state (initial ON state) when the system alignment is just changed as shown in FIG. 34B, and the state shown in FIG. 34C is the stable state. FIG. 35 is a schematic plan view of one of the picture element region structures of another liquid crystal display device 400A having a protrusion on the counter substrate. FIG. 36 is a schematic plan view of one of the picture element region structures of another liquid crystal display device 400B having a protrusion on the counter substrate. FIG. 37 is a schematic plan view showing a structure of one picture element region of another liquid crystal display device 400C having a protrusion on the counter substrate. 38A and 38B are schematic diagrams showing the structure of one picture element region of a liquid crystal display device 500 according to another alternative embodiment of the present invention, in which FIG. 38A is a plan view and FIG. 38B is a view along FIG. 38A. Line 38B-38] ^ cross-sectional view. FIG. 39 is a schematic plan view of the liquid crystal display device 800. A part of the edges of the gate bus lines is not covered by the solid part of the picture element area. FIG. 40 is a schematic plan view showing a structure of one picture element region of a liquid crystal display device 500a according to another alternative embodiment of the present invention. FIG. 41 is a schematic plan view of the structure of one picture element region of a liquid crystal display device 500b according to another alternative embodiment of the present invention. Explanation of Symbols in the Drawings 11, 2 1: Transparent insulating substrates 14, 14A, 14B, 14C, 14D, 14E, 14F: picture element electrodes 14G, 14H, 141: picture element electrodes 14a: openings-90- 581921 ( 86) Invention Description Continued

Mb:實體部(導體膜) 14N:單元實體部 1 9:圖像元素電極 19a:開孔 19b:實體部(導體膜) 22:反電極 30:液晶層 3 0a:液晶模組 40, 40A,40B, 40C,40D:突出部 40s:突出部的惻面 40t:突出部的頂面 100A,200a,500a: TFT基板(主動矩陣式基板) 100A,400b,500b:反基板(彩色濾光片基板) 100,100A, 100B,100C, 100D:液晶顯示裝置 100E, 100F,1006, 100H,1001:液晶顯示裝置 200, 200A,200B,200C,200D:液晶顯示裝置 300, 400, 400A, 400B, 400C:液晶顯示裝置 500, 500a, 500b:液晶顯示裝置Mb: solid part (conductor film) 14N: unit solid part 1 9: picture element electrode 19a: opening 19b: solid part (conductor film) 22: counter electrode 30: liquid crystal layer 3 0a: liquid crystal module 40, 40A, 40B, 40C, 40D: protruding portion 40s: protruding surface 40t: top surface of the protruding portion 100A, 200a, 500a: TFT substrate (active matrix substrate) 100A, 400b, 500b: reverse substrate (color filter substrate ) 100, 100A, 100B, 100C, 100D: liquid crystal display device 100E, 100F, 1006, 100H, 1001: liquid crystal display device 200, 200A, 200B, 200C, 200D: liquid crystal display device 300, 400, 400A, 400B, 400C: Liquid crystal display device 500, 500a, 500b: liquid crystal display device

Claims (1)

581921 拾、申請專利範圍 1. 一種液晶顯示裝置,其包括一第一基板、一第二基板、 一位於該第一基板及該第二基板之間的液晶層,以及用 於顯示的複數個圖像元素區,其中: 該第一基板於其接近該液晶層的一側之上具有一圖 像元素電極,供每個該等複數個圖像元素區來使用;一 電氣連接至該圖像元素電極的切換元件;以及一包括電 氣連接至該切換元件的閘極匯流排線及一源極匯流排 線在内的一匯流排線; 該第二基板包括一藉由該液晶層放置在該圖像元素 I 電極對面的反電極; 該圖像元素電極包含複數個開孔,以及一包含複數個 單元實體部的實體部; 在每個該等複數個圖像元素區中,該液晶層會在未施 加電壓於該圖像元素電極及該反電極之間時形成一垂 直排列,並且當施加電壓於該圖像元素電極及該反電極 之間後,其便會因為該圖像元素電極之該等複數個開孔 的個別邊緣部分處所產生的傾斜電場,而響應於該等複 數個開孔及該實體部中構成複數個液晶域,每個該等複 數個液晶域都係呈現一放射狀傾斜配向,而且每個該等 複數個液晶域的配向都可根據所施加的電壓而改變,從 而進行顯示;以及 在每個該等複數個圖像元素區中,該圖像元素電極之 該等複數個開孔中至少其中一個位於該匯流排線中且 581921 申請專利範圍續頁 位於該等複數個單元實體部中兩個相鄰的單元實體部 之間的開孔會與該匯流排線重疊。 2. 如申請專利範圍第1項之液晶顯示裝置,其中與該匯流 排線重疊的該至少一個開孔至少包括一位於該閘極匯 流排線中的開孔。 3. 如申請專利範圍第2項之液晶顯示裝置,其中位於該閘 極匯流排線中之該圖像元素電極的部分該等複數個開 孔會與該匯流排線重疊。 4. 如申請專利範圍第2項之液晶顯示裝置,其中與該匯流 排線重疊的該至少一個開孔進一步包括一位於該源極 匯流排線中的開孔。 5. 如申請專利範圍第3項之液晶顯示裝置,其中與該匯流 排線重疊的該至少一個開孔進一步包括一位於該源極 匯流排線中的開孔。 6. —種液晶顯示裝置,其包括一第一基板、一第二基板、 一位於該第一基板及該第二基板之間的液晶層,以及用 於顯示的複數個圖像元素區,其中: 該第一基板於其接近該液晶層的一側之上具有一圖 像元素電極,供每個該等複數個圖像元素區來使用;一 電氣連接至該圖像元素電極的切換元件;以及一包括電 氣連接至該切換元件的閘極匯流排線及一源極匯流排 線在内的一匯流排線; 該第二基板包括一藉由該液晶層放置在該圖像元素 電極對面的一反電極; 581921 申請專利範圍續頁 該圖像元素電極包括複數個開孔,以及一包含複數個 單元實體部的實體部,每個該等複數個單元實體部都會 被至少部分該等複數個開孔包圍; 該液晶層會在未施加電壓於該圖像元素電極及該反 電極之間時形成一垂直排列;以及 在每個該等複數個圖像元素區中,該圖像元素電極之 該等複數個開孔中至少其中一個位於該匯流排線中且 位於該等複數個單元實體部中兩個相鄰的單元實體部 之間的開孔會與該匯流排線重疊。 7. 如申請專利範圍第6項之液晶顯示裝置,其中與該匯流 排線重疊的該至少一個開孔至少包括一位於該閘極匯 流排線中的開孔。 8. 如申請專利範圍第7項之液晶顯示裝置,其中位於該閘 極匯流排線中之該圖像元素電極的部分該等複數個開 孔會與該匯流排線重疊。 9. 如申請專利範圍第7項之液晶顯示裝置,其中與該匯流 排線重疊的該至少一個開孔進一步包括一位於該源極 匯流排線中的開孔。 10. 如申請專利範圍第8項之液晶顯示裝置,其中與該匯流 排線重疊的該至少一個開孔進一步包括一位於該源極 匯流排線中的開孔。 11. 一種液晶顯示裝置,其包括一第一基板、一第二基板、 一位於該第一基板及該第二基板之間的液晶層,以及用 於顯示的複數個圖像元素區,其中: 581921 申請專利範圍續頁 該第一基板於其接近該液晶層的一側之上具有一圖 像元素電極,供每個該等複數個圖像元素區來使用;一 電氣連接至該圖像元素電極的切換元件;以及一包括電 氣連接至該切換元件的閘極匯流排線及一源極匯流排 線在内的一匯流排線; 該第二基板包括一藉由該液晶層放置在該圖像元素 電極對面的· 反電極, 該圖像元素電極包括複數個開孔以及一實體部; 在每個該等複數個圖像元素區中,該液晶層會在未施 加電壓於該圖像元素電極及該反電極之間時形成一垂 直排列,並且當施加電壓於該圖像元素電極及該反電極 之間後,其便會因為該圖像元素電極之該等複數個開孔 的個別邊緣部分處所產生的傾斜電場,而響應調整該液 晶層的配向;以及 在每個該等複數個圖像元素區中,該閘極匯流排線的 一邊緣及該源極匯流排線的一邊緣中至少其中一個會 被該圖像元素電極的實體部覆蓋。 12. 如申請專利範圍第1 1項之液晶顯示裝置,其中在每個該 等複數個圖像元素區中,至少該閘極匯流排線的邊緣會 被該圖像元素電極的實體部覆蓋。 13. 如申請專利範圍第1 1項之液晶顯示裝置,其中: 該圖像元素電極的實體部包括複數個單元實體部;以及 在每個該等複數個圖像元素區中,該液晶層會藉由響 應施加電壓於該圖像元素電極及該反電極之間後,於該 581921 申請專利範圍續頁 圖像元素電極之該等複數個開孔的個別邊緣部分處所 產生的傾斜電場而於該等複數個開孔及該實體部中構 成複數個液晶域,每個該等複數個液晶域都係呈現放射 狀傾斜配向,而且每個該等複數個液晶域的配向都可根 據所施加的電壓而改變,從而進行顯示。 14. 如申請專利範圍第1 2項之液晶顯示裝置,其中: 該圖像元素電極的實體部包括複數個單元實體郜;以及 在每個該等複數個圖像元素區中,該液晶層會藉由響 應施加電壓於該圖像元素電極及該反電極之間後,於該 圖像元素電極之該等複數個開孔的個別邊緣部分處所 產生的傾斜電場而於該等複數個開孔及該實體部中構 成複數個液晶域,每個該等複數個液晶域都係呈現一放 射狀傾斜配向,而且每個該等複數個液晶域的配向都可 根據所施加的電壓而改變,從而進行顯示。 15. 如申請專利範圍第1 3項之液晶顯示裝置,其中在每個該 等複數個圖像元素區中,該圖像元素電極之該等複數個 開孔中至少其中一個位於該匯流排線中且位於該等複 數個單元實體部中兩個相鄰的單元實體部之間的開孔 會與該匯流排線重疊。 16. 如申請專利範圍第1 3項之液晶顯示裝置,其中當施加電 壓於該圖像元素電極及該反電極之間後,該液晶層可藉 由該傾斜電場在位於該匯流排線中的一部份實體部中 構成一液晶域,該液晶域係呈現放射狀傾斜配向。581921 Patent application scope 1. A liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a plurality of figures for display An image element region, wherein: the first substrate has an image element electrode on a side close to the liquid crystal layer for each of the plurality of image element regions; an electrical connection to the image element An electrode switching element; and a bus line including a gate bus line and a source bus line electrically connected to the switching element; the second substrate includes a liquid crystal layer placed on the figure through the liquid crystal layer; The counter electrode opposite to the image element I electrode; the image element electrode includes a plurality of openings and a solid portion including a plurality of unit solid portions; in each of the plurality of image element regions, the liquid crystal layer is When no voltage is applied between the picture element electrode and the counter electrode, a vertical arrangement is formed, and when a voltage is applied between the picture element electrode and the counter electrode, it will be caused by the image. The oblique electric field generated at the individual edge portions of the plurality of openings of the prime electrode, and in response to the plurality of openings and the plurality of liquid crystal domains formed in the solid portion, each of the plurality of liquid crystal domains presents A radial oblique alignment, and the alignment of each of the plurality of liquid crystal domains can be changed according to the applied voltage for display; and in each of the plurality of image element regions, the image element electrode At least one of the plurality of openings is located in the busbar and the 581921 patent application continuation page is located between the openings between two adjacent unit solid parts of the plurality of unit solid parts and the confluence The lines overlap. 2. The liquid crystal display device according to item 1 of the patent application, wherein the at least one opening that overlaps the busbar includes at least one opening in the gate busbar. 3. For a liquid crystal display device according to item 2 of the scope of patent application, the plurality of openings in the part of the picture element electrode in the gate bus line will overlap the bus line. 4. The liquid crystal display device according to item 2 of the patent application, wherein the at least one opening that overlaps with the busbar further includes an opening in the source busbar. 5. The liquid crystal display device of claim 3, wherein the at least one opening that overlaps the busbar further includes an opening in the source busbar. 6. A liquid crystal display device comprising a first substrate, a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a plurality of image element regions for display, wherein : The first substrate has a picture element electrode on a side close to the liquid crystal layer for use by each of the plurality of picture element regions; a switching element electrically connected to the picture element electrode; And a bus bar including a gate bus line and a source bus line electrically connected to the switching element; the second substrate includes a second electrode disposed on the opposite side of the picture element electrode through the liquid crystal layer; A counter electrode; 581921 patent application continuation page The picture element electrode includes a plurality of openings, and a solid part including a plurality of unit solid parts, each of the plurality of unit solid parts will be at least partially such a plurality of Surrounded by openings; the liquid crystal layer forms a vertical arrangement when no voltage is applied between the picture element electrode and the counter electrode; and in each of the plurality of picture element regions, the At least one of the plurality of openings, such as an element electrode, is located in the busbar and an opening between two adjacent unit solid sections of the plurality of unit solid sections overlaps the busbar . 7. The liquid crystal display device according to item 6 of the patent application, wherein the at least one opening that overlaps with the busbar includes at least one opening in the gate busbar. 8. For a liquid crystal display device according to item 7 of the scope of patent application, the plurality of openings in a portion of the picture element electrode in the gate busbar will overlap the busbar. 9. The liquid crystal display device according to item 7 of the patent application, wherein the at least one opening that overlaps the busbar further includes an opening in the source busbar. 10. The liquid crystal display device according to item 8 of the patent application, wherein the at least one opening that overlaps with the busbar further includes an opening in the source busbar. 11. A liquid crystal display device, comprising a first substrate, a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a plurality of image element regions for display, wherein: 581921 Scope of patent application continued The first substrate has a picture element electrode on a side close to the liquid crystal layer for use by each of the plurality of picture element regions; an electrical connection to the picture element An electrode switching element; and a bus line including a gate bus line and a source bus line electrically connected to the switching element; the second substrate includes a liquid crystal layer placed on the figure through the liquid crystal layer; A counter electrode opposite to the image element electrode, the image element electrode includes a plurality of openings and a solid portion; in each of the plurality of image element regions, the liquid crystal layer will apply a voltage to the image element A vertical arrangement is formed between the electrode and the counter electrode, and when a voltage is applied between the picture element electrode and the counter electrode, it will be caused by the plurality of openings of the picture element electrode. Oblique electric fields generated at individual edge portions, in response to adjusting the alignment of the liquid crystal layer; and in each of the plurality of picture element regions, an edge of the gate bus line and a source bus line At least one of the edges will be covered by the solid part of the picture element electrode. 12. For the liquid crystal display device according to item 11 of the patent application scope, in each of the plurality of picture element areas, at least the edge of the gate bus bar will be covered by the solid part of the picture element electrode. 13. The liquid crystal display device according to item 11 of the patent application scope, wherein: the solid portion of the picture element electrode includes a plurality of unit solid portions; and in each of the plurality of picture element regions, the liquid crystal layer will The oblique electric field generated at the individual edge portions of the plurality of openings of the plurality of openings of the image element electrode of the 581921 patent application continuation page after applying a voltage between the image element electrode and the counter electrode is applied to the The plurality of openings and the plurality of liquid crystal domains are formed in the solid part. Each of the plurality of liquid crystal domains exhibits a radial inclined alignment, and the alignment of each of the plurality of liquid crystal domains can be based on the applied voltage. Instead, it is displayed. 14. The liquid crystal display device as claimed in claim 12, wherein: the solid portion of the picture element electrode includes a plurality of unit entities; and in each of the plurality of picture element regions, the liquid crystal layer will The oblique electric fields generated at the respective edge portions of the plurality of openings of the image element electrode in response to an applied voltage between the plurality of openings and the counter electrode and A plurality of liquid crystal domains are formed in the solid part, and each of the plurality of liquid crystal domains exhibits a radial inclined alignment, and the alignment of each of the plurality of liquid crystal domains can be changed according to an applied voltage, thereby performing display. 15. The liquid crystal display device according to item 13 of the application, wherein in each of the plurality of picture element regions, at least one of the plurality of openings of the picture element electrode is located on the busbar. The opening between the two adjacent unit solid parts in the plurality of unit solid parts will overlap the bus line. 16. For a liquid crystal display device according to item 13 of the application, wherein when a voltage is applied between the picture element electrode and the counter electrode, the liquid crystal layer can be located in the busbar by the inclined electric field. A part of the solid part constitutes a liquid crystal domain, and the liquid crystal domain exhibits a radial oblique alignment.
TW091134464A 2001-11-30 2002-11-27 Liquid crystal display device TW581921B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001366092 2001-11-30
JP2002282664A JP3998549B2 (en) 2001-11-30 2002-09-27 Liquid crystal display

Publications (2)

Publication Number Publication Date
TW200302383A TW200302383A (en) 2003-08-01
TW581921B true TW581921B (en) 2004-04-01

Family

ID=26624782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091134464A TW581921B (en) 2001-11-30 2002-11-27 Liquid crystal display device

Country Status (4)

Country Link
JP (1) JP3998549B2 (en)
KR (1) KR100449844B1 (en)
CN (1) CN1216314C (en)
TW (1) TW581921B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087306B2 (en) 2003-08-28 2008-05-21 シャープ株式会社 Liquid crystal display
TWI266939B (en) * 2003-09-29 2006-11-21 Sharp Kk Liquid crystal display apparatus
JP3858882B2 (en) 2003-10-21 2006-12-20 セイコーエプソン株式会社 Liquid crystal display device and electronic device
US7385660B2 (en) * 2003-12-08 2008-06-10 Sharp Kabushiki Kaisha Liquid crystal display device for transflector having opening in a first electrode for forming a liquid crystal domain and openings at first and second corners of the domain on a second electrode
US7646459B2 (en) * 2003-12-26 2010-01-12 Sharp Kabushiki Kaisha Liquid crystal display device
TWI326371B (en) * 2004-07-16 2010-06-21 Casio Computer Co Ltd Vertically alignment liquid crystal display device
JP2006091229A (en) * 2004-09-22 2006-04-06 Sharp Corp Liquid crystal display
CN101604087A (en) 2004-09-30 2009-12-16 卡西欧计算机株式会社 Vertical alignment active matrix liquid crystal display device
US8068200B2 (en) * 2004-12-24 2011-11-29 Casio Computer Co., Ltd. Vertical alignment liquid crystal display device in which a pixel electrode has slits which divide the pixel electrode into electrode portions
CN100414415C (en) * 2005-07-05 2008-08-27 中华映管股份有限公司 Liquid crystal displaying panel and pixel structure
JP2007052040A (en) * 2005-08-12 2007-03-01 Sharp Corp Liquid crystal display
JP4745013B2 (en) * 2005-10-07 2011-08-10 三菱電機株式会社 Liquid crystal display
KR20070051037A (en) * 2005-11-14 2007-05-17 삼성전자주식회사 Liquid crystal display
US8068201B2 (en) * 2006-12-18 2011-11-29 Sharp Kabushiki Kaisha Liquid crystal display having particular auxiliary electrode
JP4569836B2 (en) 2007-02-23 2010-10-27 ソニー株式会社 Liquid crystal device
CN102859430B (en) * 2010-04-20 2015-07-08 联合创新技术有限公司 Liquid crystal display panel and liquid crystal display device
JP6001864B2 (en) * 2012-01-17 2016-10-05 スタンレー電気株式会社 Liquid crystal display
KR101502358B1 (en) * 2013-04-24 2015-03-13 삼성디스플레이 주식회사 Liquid crystal display
CN106200882B (en) * 2015-04-30 2019-05-10 原相科技股份有限公司 Sensing element and optical ranging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309264A (en) * 1992-04-30 1994-05-03 International Business Machines Corporation Liquid crystal displays having multi-domain cells
JP3926056B2 (en) * 1999-03-16 2007-06-06 シャープ株式会社 Liquid crystal display
JP3601788B2 (en) * 2000-10-31 2004-12-15 シャープ株式会社 Liquid crystal display
JP2002169159A (en) * 2000-11-27 2002-06-14 Koninkl Philips Electronics Nv Alignment division type vertical alignment liquid crystal display

Also Published As

Publication number Publication date
CN1438530A (en) 2003-08-27
KR100449844B1 (en) 2004-09-24
JP3998549B2 (en) 2007-10-31
TW200302383A (en) 2003-08-01
KR20030044872A (en) 2003-06-09
JP2003228073A (en) 2003-08-15
CN1216314C (en) 2005-08-24

Similar Documents

Publication Publication Date Title
TW581921B (en) Liquid crystal display device
KR100566461B1 (en) Liquid crystal display device
KR100754669B1 (en) Liquid crystal display device
KR100483880B1 (en) Liquid crystal display device and defect repairing method for the same
US6965422B2 (en) Liquid crystal display device
US7375781B2 (en) Liquid crystal display device
US8031280B2 (en) Liquid crystal display device
KR100640185B1 (en) Liquid crystal display device
KR20060047476A (en) Liquid crystal display device
KR100679918B1 (en) Method for fabricating array substrate for Liquid crystal display device with wide viewing angle
KR100507586B1 (en) Liquid crystal display device
US20100207864A1 (en) Liquid crystal display panel and liquid crystal display device
JP2006154362A (en) Liquid crystal display panel
US20120075541A1 (en) Liquid crystal display device
JP2007148203A (en) Liquid crystal display panel
CN100412633C (en) Liquid crystal display device
JP4837269B2 (en) Liquid crystal display
JP2011145717A (en) Liquid crystal display device
JP2011002668A (en) Liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees