TWI273596B - MRAM arrays and methods for writing and reading magnetic memory device - Google Patents

MRAM arrays and methods for writing and reading magnetic memory device Download PDF

Info

Publication number
TWI273596B
TWI273596B TW94113450A TW94113450A TWI273596B TW I273596 B TWI273596 B TW I273596B TW 94113450 A TW94113450 A TW 94113450A TW 94113450 A TW94113450 A TW 94113450A TW I273596 B TWI273596 B TW I273596B
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic memory
line
rti
memory unit
Prior art date
Application number
TW94113450A
Other languages
Chinese (zh)
Other versions
TW200638420A (en
Inventor
Wen-Chin Lin
Denny Tang
Li-Shyue Lai
Chao-Hsiung Wang
Fang-Shi Lai
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW200638420A publication Critical patent/TW200638420A/en
Application granted granted Critical
Publication of TWI273596B publication Critical patent/TWI273596B/en

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

A non-destructive technique and related array for writing and reading magnetic memory cells, including sampling a first signal of a selected read line corresponding to select memory cells, applying a magnetic field to the selected memory cells, sampling a second signal of the selected read line, and comparing the first and second signals to determine a logic state of the selected memory cells.

Description

1273596 / 九、發明說明: < 【發明所屬之技術領域】 4 本發明係有關於含有磁穿隧接面(magnetic tunnel junction,MTJ)f己憶單 元之磁阻性隨機存取記憶體(magnetoresistive random access memory, η MRAM),特別是關於可降低漏電流之mram陣列以及複數之磁穿隧接面 單元的讀取寫入電路。 【先前技術】 磁穿隨接面之記憶裝置包括三個基本疊層:自由鐵磁性層(free1273596 / IX. Description of the invention: < [Technical field of invention] 4 The present invention relates to a magnetoresistive random access memory (magnetoresistive) containing a magnetic tunnel junction (MTJ) Random access memory, η MRAM), in particular, a read write circuit for a mram array that can reduce leakage current and a plurality of magnetic tunnel junction cells. [Prior Art] The memory device of the magnetic wear-through surface includes three basic layers: a free ferromagnetic layer (free

ferromagnetic layer)、絕緣性穿隨障壁(insulating tunneling barrier)、固定鐵磁 性層(pinned ferromagnetic layer)。自由鐵磁性層之磁矩於外加磁場中可自由 旋轉。固定鐵磁性層可包括一鐵磁性層以及將該鐵磁性層的磁矩固定之反 鐵磁性層。因此該固定鐵磁性層之磁矩的方向是固定的。介於固定鐵磁性 層與自由鐵磁性層間之穿隧障壁是由非常薄之絕緣層所形成。A ferromagnetic layer), an insulating tunneling barrier, and a pinned ferromagnetic layer. The magnetic moment of the free ferromagnetic layer is free to rotate in the applied magnetic field. The fixed ferromagnetic layer may include a ferromagnetic layer and an antiferromagnetic layer that fixes the magnetic moment of the ferromagnetic layer. Therefore, the direction of the magnetic moment of the fixed ferromagnetic layer is fixed. The tunnel barrier between the fixed ferromagnetic layer and the free ferromagnetic layer is formed by a very thin insulating layer.

磁穿隧接面記憶元件的電性質可由電阻表示。電阻值之大小由自由袭 磁性層與固定鐵磁性層之磁矩方向決定。當磁矩為相反方向時,磁穿隧達 面記憶70件之電阻值為最高,而當磁矩為相同方向時,磁穿隧接面記憶^ 件之電阻值為最低。亦即,_隧接面記憶鱗憑藉自由鐵磁性層與固々 鐵磁性層之相對方向可儲存_位元之資訊。換句話說,於任何時間下磁^ 賴面記憶元件之姆魏方向财_穩定減。該_敎磁矩方j 稱為、「平行」與「非平行」狀態,可分別表示邏輯「Q」與邏輯「丨」之值 …為了寫域辦隧接面記憶元件或改_元狀雜,可施加一外名 ^場,其強度足夠轉變自由鐵磁性層之磁矩方向。為了侦測磁穿隨接面言 Ltg件之狀心可知加’取電流於其上。由於磁阻會依據磁穿隨接面气 憶耕之雜㈣動,可於觀憶元件兩端施加龍㈣測磁穿啦 面讀、7G狀邏敗態。_包含了減之辦囉面記憶元件-0503-A31218TWF 1273596 =常藉著施加感測電流於選定之磁穿_面元件上 _之二元資料。於讀㈣叙觀场設置_元件 散。此外亦可運用開關元件以防止寫入干擾。 電抓抓 諸如電晶贼二鋪之_元件經t用來_勘^電路中的漏電 流,該等職流通常麵於磁穿_面元件進行讀取時發生。料,該 ===行寫人動作時_人干擾。舉_,部分無干擾編 备電路之权§十在母-磁性穿隨結元件或記憶單元上運用兩個電晶體。缺 而,由於該等開關元件於磁穿随接面單元中佔據大量面積,此種型 路設計餅低元件密度㈣density)。糾尚梭每-織單元中獅單一 電晶體或二極體以控制讀取電流並防止漏電流之設計,但此等設計之 MRAM元件密度亦不足以符合今日之市場需求。 DX ° 於吳國第6,606,263號專利中,Tang揭示陣列之無干擾編程電 路。第1圖顯示Tang所揭露之2T1R之單元卿的結構。為了將 資料寫入記憶單it 14A,選擇_树财與側,編程線以上之寫入 電流Iw將產生磁場,以改變記憶元件14A之自由鐵磁性層的磁矩方向。當 選擇開關元件ioc時,讀取電流Ir流經位元、線12、記憶元件14B、編程線 15B、以及開關元件i〇C。因此可藉位元線12上的電壓而得知儲存於記憶 元件14B之資料。雖然第丨圖之記憶單元結構有效地消除寫入干擾,但第 1圖中之MRAM的元件密度很低。 於美國第5,640,343號專利巾,Gallaghe;^示-運用磁穿隨接面元件作 為圮憶單元之MRAM陣列。第2圖顯示Gallagher之電路200,其在每記惨 單元中運用一開關元件以控制感測電流並阻擋漏電流。藉著施加電流込通 過位元線22A、以及施加電流Iw通過字元線24A,可寫入選定之記憶單元 20A。另外’單獨由電流]^或1冒所產生之磁場小於改變記憶單元狀態所需 之磁場,因此只有電流IB或Iw所通過的記憶單元20B(在此稱之為半選取記 憶單元)不會被寫入。然而結合了電流IB*IW所產生的磁場,其強度已足以 0503-A31218TWF 6 1273596 ; 賴選取之雜單元2GA的記憶織。 =貝取動作中’藉著降低字元線篇上的電壓、並提升位元線道上 ★的電[可於延疋之記憶單元20A上產生-順向偏壓。此外,未受選取之 •位凡線24B與子70線22B仍然保持在待命電壓,因此半選取記憶單元之字 瓜線與位元線之間的屡降為〇,因此不會導通。藉著侧受選取之記憶單元 20A的電阻值,可獲取儲存於該記憶單元中的㈣。根據自選取之位元線 經由該受觀雜單元流至選取之字元_制電流大小,可崎到選取 之記憶單元的電阻值。 “於美國第6,317,375號專利巾,pemer揭示了讀取交叉點記憶單元陣列 鲁之ί法與裝置,其中使用兩階段讀取方法並以特定電壓配置以降低 、·4包&第3圖為父叉點陣列3〇〇,其中包括複數之磁穿隧接面記憶單元 31又叉點陣列3〇〇包括時線32(稱為字元線換㈤列線项稱為位元線), :位το線33與字凡線32垂直並兩者相交叉。磁穿隧接面記憶元件y位 於字4 32與位元㈣之蚊點。記憶單元31為於字元線%與位元線 33間串聯之磁穿隧接面元件。 、第4Α圖與第4Β圖為流經第3圖中交叉點陣列之等效電阻的感測電流 與漏電流之路徑。第4Α _穌記鮮元陣狀等效電阻。馨之記憶單元 鲁以電阻42Α表示,未受選取之記憶單元以電阻、优與彻表示。電 阻42B表不沿著選取之位元線的未選取記憶單元,電阻從表示沿著選取 之字το線的未選取記憶單元,而電阻㈣表示其餘之_取記憶單元。舉 例來說,若所有記憶單元Μ之標稱電阻值約為R而陣列包含η行與m列, 則電阻42B之大小約為R/(n]),電阻42C之大小約為…㈣),而電阻伽 之大小約為R^n-lXm-^ 〇 、藉由施加電壓乂8至交錯處之位元線,並將交錯處之字元線接地,可選 取電阻42A。如此則感測電流is流過電阻42A。然而電阻42B、42C與42D 亦_於電壓义與地電壓之間。為了於讀取動作時減輕漏電流效應,可將 0503-A31218TWF 7 1273596 工作電壓Vb = Vs施加於未受選擇之位元線。若% = ,漏電流便不會流 經電阻42B與42D,而有一漏電流S3經電阻52C流入地電壓,因此不會干 擾感測電流Is。 此外,亦可藉著施加工作電壓Vb = Vs於未選擇之字元線上,以減輕漏The electrical properties of the magnetic tunneling junction memory element can be represented by resistance. The magnitude of the resistance is determined by the direction of the magnetic moment of the free-strength magnetic layer and the fixed ferromagnetic layer. When the magnetic moment is in the opposite direction, the resistance value of 70 pieces of magnetic tunneling surface memory is the highest, and when the magnetic moment is the same direction, the resistance value of the magnetic tunneling interface memory is the lowest. That is, the _ tunnel junction memory scale can store the information of the _ bit by virtue of the opposite direction of the free ferromagnetic layer and the solid ferromagnetic layer. In other words, at any time, the magnetic field of the magnetic memory element is stable. The _ 敎 magnetic moment square j is called "parallel" and "non-parallel" state, which can respectively represent the value of the logical "Q" and the logical "丨"... In order to write the domain tunnel junction memory element or change the _ meta-like A field name can be applied, the intensity of which is sufficient to change the direction of the magnetic moment of the free ferromagnetic layer. In order to detect the magnetic penetration of the Ltg piece, it is known that the current is applied to it. Since the magnetic reluctance will be based on the magnetic wear-following surface of the gas-recovery (four) movement, the dragon can be applied to both ends of the observation element, and the magnetic reading is performed, and the 7G-like logic is lost. _ contains the reduced face memory element -0503-A31218TWF 1273596 = often by applying a sense current on the selected magnetic _ surface element _ binary data. Read (4) View field settings _ components scattered. Switching elements can also be used to prevent write disturbances. Electric grabs such as the electric crystal thief two shop _ components through t used in the _ survey circuit leakage current, these jobs usually occur when the magnetic _ surface components are read. Material, the === line when the person moves _ people interfere. _, part of the non-interfering programming circuit § 10 on the mother-magnetic wear-synthesis component or memory unit using two transistors. Inadequately, since the switching elements occupy a large area in the magnetic wear-fed surface unit, the design of the circuit has a low component density (four) density. The design of the MRAM component density of these designs is not sufficient to meet today's market demand. DX ° in Wu Guosian Patent No. 6,606,263, Tang discloses an array-free interference-free programming circuit. Figure 1 shows the structure of the unit of 2T1R revealed by Tang. In order to write the data to the memory list 14A, the _tree and the side are selected, and the write current Iw above the programming line will generate a magnetic field to change the direction of the magnetic moment of the free ferromagnetic layer of the memory element 14A. When the switching element ioc is selected, the read current Ir flows through the bit, the line 12, the memory element 14B, the programming line 15B, and the switching element i 〇 C. Therefore, the data stored in the memory element 14B can be known by the voltage on the bit line 12. Although the memory cell structure of the first figure effectively eliminates write disturb, the MRAM of Figure 1 has a very low component density. In U.S. Patent No. 5,640,343, Gallaghe, the use of a magnetic wear-receiving surface element as an MRAM array for a memory unit. Figure 2 shows Gallagher's circuit 200, which uses a switching element in each cell to control the sense current and block the leakage current. The selected memory unit 20A can be written by applying a current 込 through the bit line 22A and applying a current Iw through the word line 24A. In addition, the magnetic field generated by 'current alone' or 1 is less than the magnetic field required to change the state of the memory cell, so only the memory cell 20B through which the current IB or Iw passes (herein referred to as a semi-selected memory cell) will not be Write. However, the magnetic field generated by the current IB*IW is combined with the strength of 0503-A31218TWF 6 1273596; the memory of the selected hybrid unit 2GA. = By taking the action 'by lowering the voltage on the word line and boosting the power on the bit line ★ [the forward bias can be generated on the delayed memory unit 20A. In addition, the unselected bit line 24B and the sub 70 line 22B remain at the standby voltage, so the repeated drop between the word line and the bit line of the half-selected memory unit is 〇, and therefore does not turn on. By the resistance value of the selected memory unit 20A, (4) stored in the memory unit can be obtained. According to the current level of the selected bit line flowing to the selected character cell, the resistance value of the selected memory cell can be reached. "In U.S. Patent No. 6,317,375, Pemer discloses a method and apparatus for reading a cross-point memory cell array using a two-stage read method and a specific voltage configuration to reduce, 4 packets & The parent fork point array 3 〇〇 includes a plurality of magnetic tunneling junction memory units 31 and a cross point array 3 〇〇 including a time line 32 (referred to as a word line replacement (5) column line item called a bit line), : The bit το line 33 is perpendicular to the word line 32 and intersects with each other. The magnetic tunneling interface memory element y is located at the mosquito point of the word 4 32 and the bit (4). The memory unit 31 is the word line % and the bit line 33 The magnetic tunneling junction element is connected in series. The 4th and 4th diagrams are the path of the sensing current and the leakage current flowing through the equivalent resistance of the array of intersections in Fig. 3. 4th _ _ _ _ _ _ _ _ Equivalent resistance. The memory unit of Xin is represented by resistor 42Α, and the unselected memory unit is represented by resistance, excellent and complete. Resistor 42B does not select the unselected memory unit along the selected bit line, and the resistance is from the indicated edge. The unselected memory unit of the selected word το line, and the resistance (four) indicates the rest of the memory list For example, if all memory cells have a nominal resistance value of about R and the array includes n rows and m columns, the size of the resistor 42B is about R/(n)), and the size of the resistor 42C is about... (4) ), and the magnitude of the resistance gamma is about R^n-lXm-^, by applying a voltage 乂8 to the bit line at the stagger, and grounding the word line at the interleaving, the resistor 42A can be selected. The current is flowing through the resistor 42A. However, the resistors 42B, 42C and 42D are also between the voltage sense and the ground voltage. To mitigate the leakage current effect during the read operation, the 0503-A31218TWF 7 1273596 operating voltage Vb = Vs can be applied. In the unselected bit line, if % = , the leakage current will not flow through the resistors 42B and 42D, and a leakage current S3 flows into the ground voltage through the resistor 52C, so it does not interfere with the sensing current Is. To mitigate leakage by applying a working voltage Vb = Vs to the unselected word line

電流效應’如第4B圖所示。此時漏電流便不會流過電阻42B。流經電阻42C 與42D之漏電流S3與S4不會流入地電壓,因此不會干擾感測電流Is。因 此施加電壓於矩陣中未選取之字元線與位元線可減輕或消除感測電流之誤 差。因此可獲得可靠的感測電流與選取之記憶單元的電阻值。由於每一記 憶單元中皆未包含電晶體,pemer所揭露之電路提供了高元件密度之 藝MRAM。然而pemer所揭示之讀取方法需要銷耗大量電源,其電路亦非常 複雜,因為於進行讀取程序時必須於未選取的字元線與位元線上施加額外 的偏壓。 於美國第6,421,271號專利中,Gogl揭示一 MRAM500,繪於第5圖, 其包括位元線50、以及字元線51A、51B,其中字元線51A、5m與該位元 線50之方向約呈垂直並相距一段距離。磁穿隨接面記憶元件5以位於位 兀線50與字元線51A之間,而磁穿隨接面記憶元件55_58位於位元線% 與,元線51B之間。記憶單元51_54未連接至位元線%的另一端點連接至 _電晶體Trl之源極或汲極,而記憶單元55-58未連接至位元線%的另一端 點連接至電晶體Tr2之源極或汲極。電晶體Trl之閘極連接至字元線51八, 而電晶體ΤΓ2之閘極連接至字元線51B。電晶體Trl與Tr2之另一源及或汲 極則接地。 〆 於進行讀取動作時,會施加約lv至2V之預定電麼至位元線%之上。 ==物麟 ,術讀地嶋目_閉。假設 子瓜線51A ¥通,則電晶體Trl導通。此時若磁穿随接面記憶元件於 低電阻狀態(兩鐵磁性層之磁矩方向平行),而磁穿隨接面記憶元件 54位於高電阻狀態(兩鐵磁性層之磁矩方向不平行),則可於字元線MA上The current effect is shown in Figure 4B. At this time, the leakage current does not flow through the resistor 42B. The leakage currents S3 and S4 flowing through the resistors 42C and 42D do not flow into the ground voltage, and thus do not interfere with the sense current Is. Therefore, applying a voltage to the unselected word line and bit line in the matrix can alleviate or eliminate the error of the sense current. Therefore, a reliable sensing current and a resistance value of the selected memory unit can be obtained. Since the transistor is not included in each of the memory cells, the circuit disclosed by pemer provides a high component density MRAM. However, the reading method disclosed by pemer requires a large amount of power to be consumed, and the circuit is also very complicated because an additional bias voltage must be applied to the unselected word lines and bit lines when performing the reading process. In US Patent No. 6,421,271, Gogl discloses an MRAM 500, depicted in Figure 5, which includes a bit line 50, and word lines 51A, 51B, wherein the word lines 51A, 5m and the bit line 50 The directions are approximately vertical and at a distance. The magnetic wear-receiving surface memory element 5 is located between the bit line 50 and the word line 51A, and the magnetic-penetration interface memory element 55_58 is located between the bit line % and the element line 51B. The other end of the memory cell 51_54 not connected to the bit line % is connected to the source or the drain of the _ transistor Tr1, and the other end of the memory cell 55-58 not connected to the bit line % is connected to the transistor Tr2. Source or bungee. The gate of the transistor Tr1 is connected to the word line 51, and the gate of the transistor ΤΓ2 is connected to the word line 51B. The other source and or the drain of the transistors Tr1 and Tr2 are grounded.时 When performing a read operation, a predetermined power of about lv to 2V is applied to the bit line %. == Wu Lin, the reading of the eye _ closed. Assuming that the sub-guar line 51A is on, the transistor Tr1 is turned on. At this time, if the magnetic wear-and-match surface memory element is in a low resistance state (the magnetic moment directions of the two ferromagnetic layers are parallel), and the magnetic wear-fed surface memory element 54 is in a high resistance state (the magnetic moment directions of the two ferromagnetic layers are not parallel) ), then on the word line MA

0503-A31218TWF 8 1273596 ]獲彳·該彳5號不同於所有記鮮元皆處於高電阻狀態時之信號。為 〗了確定記憶單元5!·54中何_於低電阻狀態,便·自我參照之感測方法 ._碗瞻_ing SCheme)。然職讀取方法被稱為「破賴讀取」 .(—ve⑽Φ,於錄行完畢後尚需進行資料回復程序。於破壞性讀取 之後必顧度將原先貝料寫人受讀取之記憶單元中,此等程序必須消耗額 外的時間與電源。 【發明内容】 此處揭示MRAM陣列以及所運用之非破壞性讀取與寫入磁穿隨接面0503-A31218TWF 8 1273596] The signal is different from that when all the fresh elements are in a high resistance state. For the purpose of determining the memory unit 5!·54 in the low resistance state, then the self-referencing sensing method._ Bowling _ing SCheme). The reading method of the job is called “breaking reading”. (—ve(10)Φ, the data recovery procedure is still needed after the recording is completed. After the destructive reading, the original beetle writer must be read. In the memory unit, such programs must consume additional time and power. [Disclosed herein] The MRAM array and the non-destructive read and write magnetic wear interface are disclosed herein.

記憶元件之方法。於-實施型態中,該讀取記憶單元之非破壞性方法包括 對於對應於該記憶單元之受選取讀取線進行取樣赠得第—健,施加暫 時性磁場雜纖單元,躲受馨之讀取線進行轉崎得第二信號, 比較第-鱗二健以制該記憶單元之糖㈣。接著可胁所侧到 的該磁粮接面元狀電賊變化,酬於杨磁場前後齡於磁穿随接 面元件之資料。 —於另:實施型態了,讀取磁性記憶單元之方法包括提供一磁穿随記憶 元件’該磁牙随讀、元件包括自由鐵磁性層、固定鐵磁性層、以及介於自 由鐵磁性層與固定鐵雖層之間祕緣穿轉壁。於此實施鶴中,自由 鐵磁性層之磁矩可自由變動,固定鐵磁性層之磁矩固定不變。於是,該磁 穿隨接面記憶元件之電阻可為第—穩定電阻或第二穩定電阻,而當有:強 度超過低限磁場之外部磁場施加_顧接面輯元件時,磁穿隨接面記 憶元件之電阻便會觀。該方法亦包括觀—自我參照侧計晝,以比較 於擺動磁場施加前後兩信號(可為霞或電流)之差異,其中該擺動磁場可將 自由鐵磁性層之磁矩旋轉—不超過9G度之肢。於比較該第_信號與第二 信號之後,可以辨別儲存於磁穿穗接面記憶元件中的資料。 此外,於另-實施鶴中,嫩观_電路包括用贈讀取資料程序The method of memory components. In the implementation mode, the non-destructive method of reading the memory unit includes sampling the selected read line corresponding to the memory unit to give the first health, applying a temporary magnetic field fiber unit, and avoiding the sweet The reading line is used to perform the second signal, and the first scale is compared to the sugar of the memory unit (4). Then, the magnetic grain connected to the face-to-face electric thief can be changed, and the data of the magnetic wear-following component is used before and after the Yang magnetic field. - In another embodiment, the method of reading a magnetic memory unit includes providing a magnetic through-memory device. The magnetic tooth is read, the component includes a free ferromagnetic layer, a fixed ferromagnetic layer, and a free ferromagnetic layer. The secret edge between the layer and the fixed iron is worn through the wall. In this implementation, the magnetic moment of the free ferromagnetic layer can be freely changed, and the magnetic moment of the fixed ferromagnetic layer is fixed. Therefore, the resistance of the magnetic wear-fed surface memory component may be a first stable resistance or a second stable resistance, and when there is an external magnetic field application whose intensity exceeds a low magnetic field, the magnetic wear-through surface The resistance of the memory component will be apparent. The method also includes a view-self-referencing side meter to compare the difference between the two signals (which may be a sway or a current) before and after the application of the oscillating magnetic field, wherein the oscillating magnetic field can rotate the magnetic moment of the free ferromagnetic layer - no more than 9G degrees The limbs. After comparing the _th signal and the second signal, the data stored in the magnetic piercing junction memory element can be discerned. In addition, in the implementation of the other - the crane, the tender view _ circuit includes a gift reading program

0503-A31218TWF 9 1273596 r ' 中提供選取信號之資料線,以及用以於資料讀取程序中施加電壓之位元 V 線。此外,該陣列亦包括開關元件,該開關元件之閘極耦接至資料線,耦 i 接至位元線之第—端點,以及第二端點,其中當接收到選取信號時該開關 , 元件會被導通。該陣列亦包括耦接介於第二端點與字元線之間的複數之磁 穿隧接面記憶元件,其中每一磁穿隨接面記憶元件包括自由鐵磁性層、固 定鐵磁性層、以及介於自由鐵磁性層與固定鐵磁性層之間的絕緣穿隧障 壁,其中自由鐵磁性層之磁矩可自由變動,固定鐵磁性層之磁矩固定不變, 而該磁穿隧接面記憶元件之f阻可為第—穩定電阻或第二穩定電阻。 於該實施型態中,該陣列i包括複數之編程線個別對應騎一磁穿隨 _接面記憶元件,用以提供第二寫入磁場與擺動磁場,其中該第一寫入磁場 與該第二寫入磁場之合併磁場超過低限磁場,該低限磁場為轉換該磁穿隨 接面記憶it件之電阻所需,其帽應於該磁穿隧接面記憶元件之編程線於 資料寫人私序中產生第—寫人磁場。該編程線提供小於低限磁場之擺動磁 場以改變磁穿面記憶元件之自由鐵磁性層的磁矩,而對應於該磁穿隨 接面記憶元狀於資料讀妹序巾提供足__磁場。更包括—感測電 路以於未施加擺動磁場前侧經過該磁穿隨接面記憶元件的第一信號,並 於施加擺動磁場後_經過該磁穿隨接面記憶元件的第二信號,^比較 馨第-信號與第二信號辨別齡於該磁穿隧接面記憶元件中的資料,其中該 磁穿隧接面元件對應於提供該擺動磁場之編程線。 ’、人 於另-實施型態下,MRAM陣列電路包括資料線,用以提供第一寫入 磁場之字元線,跨越字元線之位元線。此外尚包括一開關元件其問極福接 至:祕線,第-端_接至字元線,以及第二端點,其中該關於接收到 選取信號時賴。複數之磁穿_面記憶元_接介於該第二端麟該位 元線之間,每-磁穿隨接面記憶元件包括自由鐵磁性層、固錢磁性声、 以及介於自_磁性層無定鐵磁性層之間的絕緣穿隨障壁,其中自由鐵 磁性層之磁矩可自由變動,固定鐵磁性層之磁矩固定不變,而該磁穿隨接0503-A31218TWF 9 1273596 r ' provides the data line of the selected signal and the bit line V used to apply the voltage in the data reading program. In addition, the array also includes a switching element, the gate of the switching element is coupled to the data line, the coupling is connected to the first end of the bit line, and the second end, wherein the switch is received when the selection signal is received, The component will be turned on. The array also includes a plurality of magnetic tunneling junction memory elements coupled between the second end point and the word line, wherein each of the magnetically worn interface memory elements includes a free ferromagnetic layer, a fixed ferromagnetic layer, And an insulating tunneling barrier between the free ferromagnetic layer and the fixed ferromagnetic layer, wherein the magnetic moment of the free ferromagnetic layer is freely variable, and the magnetic moment of the fixed ferromagnetic layer is fixed, and the magnetic tunneling junction The f resistance of the memory element may be a first stable resistance or a second stable resistance. In this embodiment, the array i includes a plurality of programming lines, each of which corresponds to a magnetic wear-through interface memory element, for providing a second write magnetic field and a wobble magnetic field, wherein the first write magnetic field and the first The combined magnetic field of the write magnetic field exceeds the low limit magnetic field, and the low limit magnetic field is required to convert the resistance of the magnetic wear-through surface memory member, and the cap should be written on the programming line of the magnetic tunneling interface memory element. The first-written human magnetic field is generated in the human private sequence. The programming line provides a oscillating magnetic field that is smaller than the low-limit magnetic field to change the magnetic moment of the free ferromagnetic layer of the magnetic-through surface memory element, and the magnetic field corresponding to the magnetic-wearing interface is provided in the data reading device . Further comprising: a sensing circuit for passing the first signal of the magnetic wear-through surface memory element on the front side without applying the swing magnetic field, and after the application of the swing magnetic field, passing the second signal of the magnetic-wearing interface memory element, The comparison of the singular-signal and the second signal distinguishes data in the magnetic tunneling junction memory element, wherein the magnetic tunneling interface element corresponds to a programming line that provides the oscillating magnetic field. In the other embodiment, the MRAM array circuit includes a data line for providing a word line of the first write magnetic field and a bit line spanning the word line. In addition, a switching element is also included, which is connected to the secret line, the first end to the word line, and the second end point, wherein the receiving signal is received. The magnetic flux-through surface memory element _ is interposed between the bit line of the second end lining, and the magnetic memory-connecting surface memory element includes a free ferromagnetic layer, a solid magnetic sound, and a self-magnetic The insulation between the layers of the amorphous ferromagnetic layer follows the barrier, wherein the magnetic moment of the free ferromagnetic layer can be freely changed, and the magnetic moment of the fixed ferromagnetic layer is fixed, and the magnetic wear is followed.

0503-A31218TWF 10 1273596 r :元件之電阻可為第一穩定電阻或第二穩定電阻。鱗列電路更包括 =數之編程線個別對應於每一磁穿隧接面記憶元件,用以提供第二寫入磁 ' %,其中該第一寫入磁場與該第二寫入磁場之合併磁場超過低限磁 ,將軸轉接祕憶元狀電阻健變,其帽聽該辦嶋面記憶元 件之編程線於資料寫入程序中產生第二寫入磁場。 " 【實施方式】 工&下述將提出許多實施例或範_達成本發養各式實施情形下的不同 力月b為了簡化本發明,下述將描述組件或配置之特定範例。這些範例僅 籲:以舉例說明,而並非對本發明之限定。此外,本發明將於各式範例中重 f述及數字與字母;這是為了綱並簡化範例,而該等數字與字母並非用 來^轉式貫施贼其組態之間關係。另外下述會述及第—特徵物形成 於第二特徵物之上觸形,這可包括第—特徵物與第二特徵物直接接觸的 貫施情況,亦可包括有其他特徵物生成並穿插於第—特徵物與第二特徵物 之間,以致於第一特徵物與第二特徵物不直接接觸之實施情況。 $考第6圖,此為根據本發明實施例之積體電路_㈤方塊圖。積體 電路_包括記憶單元陣列61〇,其經由介面⑽铸列邏輯電路_所控 _ 車顺輯電路62G可包括各式賴電路,例如行贿碼器、感測放大 器,而介面630可包括一至數條位元線、閘極線(_此吻、數位線(娜 U⑽)、控制線(control lines)、字元線、及其他連接雜 邏輯電路之軌線路。職於此處此等職祕娜躲元線或字元 線,而於本發明之不同應闕面中亦可能使用不同之通訊線路。該積體電 路更包括諸如計數器、計時器、處之其他邏輯電路64〇、以及諸如緩衝 器、驅動電路之輸入/輪出電路650 〇0503-A31218TWF 10 1273596 r : The resistance of the component can be the first stable resistance or the second stable resistance. The scale circuit further includes a number of programming lines individually corresponding to each of the magnetic tunneling junction memory elements for providing a second write magnetic '%, wherein the first write magnetic field and the second write magnetic field are combined When the magnetic field exceeds the low magnetic limit, the shaft is transferred to the secret memory, and the programming line of the cap listening to the memory element generates a second write magnetic field in the data writing program. <Embodiment> [Embodiment] The following will present a number of embodiments or variants of the various implementations of the present invention. In order to simplify the present invention, specific examples of components or configurations will be described below. These examples are intended to be illustrative only and not limiting of the invention. In addition, the present invention will recite numbers and letters in various examples; this is for the purpose of simplifying the examples, and the numbers and letters are not intended to be used in connection with the configuration of the thief. In addition, the following describes that the first feature is formed on the second feature, which may include a direct contact between the first feature and the second feature, and may include other features generated and interspersed. Between the first feature and the second feature, such that the first feature is not in direct contact with the second feature. $Test Fig. 6, which is a block diagram of an integrated circuit _(5) according to an embodiment of the present invention. The integrated circuit _ includes a memory cell array 61A, which is controlled by the interface (10), and the control circuit 62G can include various circuits, such as a cipher, a sense amplifier, and the interface 630 can include a A number of bit lines, gate lines (_ this kiss, digital line (Na U (10)), control lines (control lines), word lines, and other rail circuits connected to the logic circuit. Numerous lines or word lines may be used, and different communication lines may be used in different aspects of the present invention. The integrated circuit further includes other logic circuits such as counters, timers, and the like, and buffers such as buffers. Input/round circuit 650 of the driver circuit

$考第7图此為第6圖之吕己憶單元陣列⑽所包含的複數之磁阻性 P«#^^m(magnetic random access memory,MRAM)^ 700^ MRAM$考图7 This is the complex magnetoresistance P«#^^m(magnetic random access memory, MRAM)^ 700^ MRAM included in the cell array (10) of Figure 6

0503-A31218TWF 11 1273596 r * 單兀700的結構不需要完全相同,但為了說明之故,此處將各mram單元 之結構視為包括一至數個磁穿隧接面元件71()以及一至數個開關元件720。 ^ 磁牙隧接面兀件71〇之各式實施型態將於下述作進一步之討論,而開關元 • 件之例子則包括金氧半導體(MOS)電晶體、MOS二極體、及雙極性電晶體。 兄憶單το 7GG可儲存1、2、3、4或更多個位元。此外,本發明可應用於不 同阻值變化率(MR rati〇)之單一或雙重接面之磁穿隧接面元件,後者可包含 4種磁阻變化值。不同的阻值變化率可增進感測至少4種磁阻變化值之能 力’以及讓單一元件中儲存至少兩位元。 MRAM單元700包括3個端點,分別為第一端點73〇、第二端點74〇、 _第三端點750。舉例來說,第一端點73〇可連接至一至數條位元線,且於讀 取動作時輪出電壓至該等位元線上。第二端點被接至一至數條字元線, 該子元線此啟動記憶單元7〇〇之讀寫動作。第三端點75〇類似於控制線, 例如閘極線或數位線,且該端點能產生電流以提供磁場,以便改變該磁穿 隧接©(MTI)元件之狀態、。我們必須了解位搞、字元線、控繼及其他訊 號線的配置可隨不同的電路設計而異,而此處僅為說明之用而提供一範例。 參考第8圖,此處所示為本發明實施例之記憶單元陣列8⑻的部分電 路圖。記憶單元陣列800包括字元線WbW2,位元線ΒμΒ4,導線A1_A4 _與A1'A4,,讀取線R1、汜,開關元件llOa-llOh,磁穿隧接面堆疊 120a-120d、125a-125d、130a]30d、135a-135d。每個磁穿隧接面堆疊 1^120d、125a-125d、130a-130d、135a-135d 可為諸如記憶單元(U)等記 憶單元。當然,記憶單元陣列_尚可包括除了第8圖中所示以外的更多 記憶單元。 每一磁穿隨接面堆疊l2〇a_12〇d、125a_125d、請a]规、n5a_i35d可 包括鄰接於編程線之自由層、鄰肢自由層之穿晴(論㈣yet 1_、^接於穿轉縣之蚊層、以及位於末端之字元線。然而在其他 貝把m ’自由層與固定層之位置可能會互換。每—磁穿随接面堆疊0503-A31218TWF 11 1273596 r * The structure of the single 兀700 does not need to be identical, but for the sake of explanation, the structure of each mram unit is here considered to include one to several magnetic tunneling junction elements 71() and one to several Switching element 720. ^ Various implementations of the magnetic tunnel interface element 71 will be further discussed below, and examples of switching elements include MOS transistors, MOS diodes, and Polar transistor. The brother recalls that το 7GG can store 1, 2, 3, 4 or more bits. Furthermore, the present invention is applicable to a single or double junction magnetic tunneling junction element of different resistance change rates (MR rati〇), which may include four magnetoresistance change values. Different resistance change rates increase the ability to sense at least 4 magnetoresistance changes and store at least two bits in a single component. The MRAM unit 700 includes three endpoints, a first endpoint 73〇, a second endpoint 74〇, and a third endpoint 750. For example, the first endpoint 73 can be connected to one to several bit lines and the voltage is applied to the bit line during the read operation. The second endpoint is connected to one to several word lines, which initiates the read and write operations of the memory unit 7 . The third terminal 75 is similar to a control line, such as a gate line or a digit line, and the terminal can generate a current to provide a magnetic field to change the state of the magnetic tunneling (MTI) component. We must understand that the configuration of bit, word line, control, and other signal lines can vary from circuit to circuit, and is provided here for illustrative purposes only. Referring to Fig. 8, there is shown a partial circuit diagram of a memory cell array 8 (8) according to an embodiment of the present invention. The memory cell array 800 includes word lines WbW2, bit lines ΒμΒ4, wires A1_A4_ and A1'A4, read lines R1, 汜, switching elements 110a-110h, magnetic tunnel junction stacks 120a-120d, 125a-125d , 130a] 30d, 135a-135d. Each of the magnetic tunneling plane stacks 1^120d, 125a-125d, 130a-130d, 135a-135d may be a memory unit such as a memory unit (U). Of course, the memory cell array_ may still include more memory cells than those shown in Fig. 8. Each of the magnetic wear-fed surface stacks l2〇a_12〇d, 125a_125d, please a], n5a_i35d may include a free layer adjacent to the programming line, and a free layer of the adjacent limbs (on (4) yet 1_, ^ connected to the county The mosquito layer and the word line at the end. However, in other shells, the position of the m 'free layer and the fixed layer may be interchanged.

0503-A31218TWF 12 1273596 才 120a-12()d、125a_125d、130a_13〇d、135a-135d 亦有一長軸(此處稱之為易磁 ' 化軸,6&37&也)與一短軸(此處稱之為難磁化軸,}1批(1^3)。 〜 每一固定層可能包括鐵磁性材質,其中之磁極與磁矩之方向固定。舉 例來說,於鄰接或鄰近固定層之處可包括一反鐵磁性層或反鐵磁性互換層 w (anti-ferromagnetic exchange layer)。於一實施型態中,固定層包括 NiFe、0503-A31218TWF 12 1273596 Only 120a-12()d, 125a_125d, 130a_13〇d, 135a-135d also have a long axis (herein referred to as an easy-magnetization axis, 6&37& also) and a short axis (this) Called the hard magnetization axis, 1 batch (1^3). ~ Each fixed layer may include a ferromagnetic material in which the magnetic poles are fixed in the direction of the magnetic moment. For example, adjacent or adjacent to the fixed layer Including an antiferromagnetic layer or an antiferromagnetic exchange layer (in an embodiment), the fixed layer includes NiFe,

NiFeCo、CoFe、Fe、Co、Ni、上列材質之合金或化合物、以及/或其他鐵磁 性材質。固定層亦可包括複數之疊層。舉例來說,固定層可包括穿插於二 至數層鐵磁性層間的Ru製分隔層(spacer layer)。因此每一固定層可為或包 括複合反鐵磁性層(synthetic anti-ferromagnetic layer)。固定層可由化學氣象 ❿沉積法(CVD)、電漿輔助化學氣相沉積(pECVD)、原子層沈積(at〇mk layer deposition ’ ALD)、物理氣相沈積(PVD)、電化學沉積(eiectr〇-chemical deposition)、分子操作(molecular manipulation)、及/或其他製程所形成。 穿隨障壁可包括 SiOx、SiNx、SiOxNy、AlOx、TaOx、TiOx、AllSbc、 以及/或其他非導體材質。於一實施型態中,穿隧障壁可經由CVD、PECVD、 ALD、PVD、電化學沉積、分子操作、及/或其他製程所形成。自由層之材 質與製程大致類似於固定層。舉例來說,自由層可包括NiFe、NiFeC〇、 CoFe、Fe、Co、Ni、上述材質之合金或化合物、及/或其他鐵磁性材質,而 $自由層亦可經由CVD、PECVD、ALD、PVD、電化學沉積、分子操作、及 /或其他製程而形成。然而,自由層可能並不與反鐵磁性材質相連,因此自 由層之磁矩方向可以轉變。舉例來說,自由層之磁矩可指往超過一個以上 之方向。於一實施型態中,自由層可包括複數之疊層,例如穿插於2至數 個鐵磁性層間之如製分隔層。因此自由層可為或包括複合反鐵磁性層。 子元線Wl、W2,位元線B1-B4 ’導線A1-A4與A1 ’-A4’,讀取線R1、 R2皆可為導電線路,包括導體主體㈣化conductor)以及批覆層(ciadding layer)。導體主體可經由CVD、pecvd、ALD、PVD、電化學沉積、分子 操作、及/或其他製程而形成,而其中可包括Cu、Al、Ag、Au、W、該等 0503-A31218TWF 13 1273596 之口金/化口物、或其他材質。導體主體亦可包括由Ti、Ta、TiN、丁aN、 、或/、他材貝組成之擴散阻障層(barrier layer)。批覆層之組成及製 .造方式大致可類似於自由層。舉例來說,批覆層可包括NiFeCo, CoFe, Fe, Co, Ni, alloys or compounds of the above materials, and/or other ferromagnetic materials. The pinned layer can also include a plurality of laminates. For example, the pinned layer may include a Ru spacer layer interposed between two or more layers of ferromagnetic layers. Thus each fixed layer can be or include a synthetic anti-ferromagnetic layer. The fixed layer can be chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (pECVD), atomic layer deposition (ALD), physical vapor deposition (PVD), electrochemical deposition (eiectr〇). -chemical deposition), molecular manipulation, and/or other processes. The wear barrier may include SiOx, SiNx, SiOxNy, AlOx, TaOx, TiOx, AllSbc, and/or other non-conductor materials. In one embodiment, the tunneling barrier can be formed by CVD, PECVD, ALD, PVD, electrochemical deposition, molecular manipulation, and/or other processes. The material and process of the free layer are roughly similar to the fixed layer. For example, the free layer may include NiFe, NiFeC〇, CoFe, Fe, Co, Ni, alloys or compounds of the above materials, and/or other ferromagnetic materials, and the free layer may also pass CVD, PECVD, ALD, PVD. Formed by electrochemical deposition, molecular manipulation, and/or other processes. However, the free layer may not be connected to the antiferromagnetic material, so the direction of the magnetic moment of the free layer can be changed. For example, the magnetic moment of the free layer can refer to more than one direction. In one embodiment, the free layer may comprise a plurality of layers, such as a spacer layer interposed between two to several ferromagnetic layers. Thus the free layer can be or comprise a composite antiferromagnetic layer. Sub-line W1, W2, bit line B1-B4 'wire A1-A4 and A1 '-A4', read line R1, R2 can be conductive lines, including conductor body (four) conductor and ciadding layer ). The conductor body may be formed by CVD, pecvd, ALD, PVD, electrochemical deposition, molecular manipulation, and/or other processes, and may include Cu, Al, Ag, Au, W, the gold of the 0503-A31218TWF 13 1273596 / Chemical, or other materials. The conductor body may also include a diffusion barrier layer composed of Ti, Ta, TiN, D-A, or/, and other materials. The composition and system of the cladding layer can be roughly similar to the free layer. For example, the overlay can include

NiFe、NiFeCo、 • C〇祕其合金或化合物、或其他鐵磁性材質,並可經由CVD、 + ALD PVD、魏學沉積、分子操作、及/或其他製程而形成。 t冑人至記鮮元時,受馨之㈣線與字元線交錯紅磁場強度已 足夠改Μ定之記憶單元的狀態。舉例來說,於對記憶單抓丨)進行寫入 動叙實施情況中,可選取字元線·,並施加寫入電流Μ於導線Μ之 上化加寫入電抓Iw2於位元線⑴上,而其他線路則可接地。而欲對某一 _記憶單元進行讀取時,例如纖單元(u),㈣馨字元線谓,並施加讀 取p νιΆ胃取線R1之上。接著便可由讀取線ri上取樣讀取電流如。 於讀取動作進行時,讀取電流Irl於讀取線則上可保持一段時間。可於導 線AU激發-調整電流^,並對於讀取線幻之讀取電流μ進行取樣。 可啸原始讀取電流]η及經調整之讀取電流Μ,以確定記憶單元㈤)之 邏輯狀態。之後可消除調整電流Iadj。 參考第9圖,此處為第8圖中之記憶單元陣列_之實施例的部分截 面圖。記憶單元陣列800可包括基材105、以及形成於基材中的一至數個開 _關元件UOa-llOh。舉例來說,第9圖中的記憶單元陣列_之部分包括開 關元件110a、ll〇b ’其中開關元件110a、騰為電晶體,其包括形成於基 ,105中的源極 '沒極115,以及於基材之上的間極117。雖然第9圖中二 顯示,間極117如第8圖愤可直接或間接麵接至字元線w卜於部分實施 型態中,可運用二極體取代開關元件11〇a_11〇h之電晶體。 貝 基材105之材質可包括石夕、坤化鎵、氮化鎵、張力石夕晶、石夕化錯、碳 =石夕、碳化物、鑽石、及/或其他材質。於一實施型態中,基材1〇5包括矽 ^mM(SOl ^ silicon-on-insulator)*# , 〇n sapphire)^ 材、應變絕緣鍺(silicon germanium on inSUlator)基材、或其他包括於絕緣層 0503-A31218TWF 14 1273596 •上磊晶之半導體層的基材。基材105亦可包括全空乏之矽絕緣層基材,其 匕δ居度在511111至約2⑽nm之範圍的作用層(active layer)。基材105亦可 , 包括空氣間隙(air §叩),例如形成於空氣隙上覆矽(silicon on nothing,SON) 結構中之空氣間隙。 記憶單元陣列800顯示於第9圖中的部分亦包括位元線Bl、B2,導線 A1-A4 ’以及讀取線R1。第9圖亦較清楚地繪出如何運用寫入線19〇以編 程磁穿隧接面堆疊120a-124d,其過程中可能一併運用到導線A1_A4。記憶 單元陣列800亦可包括·内連線140,用以將該等磁穿隧接面堆疊uoa—uod 並聯後接至讀取線R1 ;内連線150,用以將寫入線19〇連接至開關元件 籲110a、ll〇b之源/沒極區域115 ;以及内連線16〇,用以將位元線別、B2 連接至開關元件ll〇a、ll〇b之源/汲極區域ι15。 内連線140、150、160可伸展穿越一至數個介電層以連接至開關元件 110a-110h,位元線 B1-B4,讀取線 Ri、R2,導線 A1_A4、A1,_A4,,字元 線Wl、W2 ’寫入線190,或其他記憶單元陣列8〇〇中的特徵物。舉例來說, 内連線150、160可將寫入線190經由開關元件i1〇a、11〇b連接至位元線 Bl、B2 ’其中寫入線190可鄰接於磁穿隧堆疊,以便讓位元線 Bl、B2間之電流可編程該等磁穿隨接面堆疊uoa-uod。内連線140、150、 0 160之材質可包括銅、鎢、金、鋁、奈米碳管電晶體(Carb〇n Nan〇_Tube, ^^^、碳簇㈣出⑽^^代此^耐火金屬〜或其他材質’而其可經由^^、 PECVD、ALD、PVD或其他製程而形成。介電層可包括二氧化矽、BLACK DIAMOND(Applies Material之產品)、或其他材質,並可經由cvd、 PECVD、ALD、PVD、旋轉式塗布(spin-on coating)、或其他製程所形成。 如同上述’於寫入g己憶單元(1,1)之實施情況下,可選取字元線Wi以導 通電晶體110a、110b,以便讓施加於位元線B1上的寫入電流Iw2可流至 寫入線190上(於此動作中,位元線B2可接地)。此時可施加寫入電流lwl 至導線A1之上,因而寫入線携與導線A1上之電流產生的磁場強度已足 0503-A31218TWF 15 1273596 :以編程記憶單元(u)。由於導線A1_A4可與寫入線19〇併用,以改變磁穿 随接面隹且120a-120d之狀恶,此處之導線A1_A4亦可被稱為寫入線。寫 . 入線A1_A4與寫入線190亦可被稱為編程線。 . 參考第1〇圖’此處為第9圖中之記憶單元陣列_之部分平面圖。每 -導線A1-A4大致可垂直於寫入線19〇。每一磁穿隨接面堆疊飾_聰 可有-大致平行於寫人線19G的難磁化軸,以及—纽平行於與其相對應 的導線A1-A4之易磁化軸。磁穿隨接面堆疊售]观之排列方向可大致 平行於難魏軸,如第1G K巾卿。磁細接輯疊之難魏軸的方向垂 直於固定層之磁矩。 _ β *考第8-10圖,記憶單元陣列_可包括複數之堆疊組17〇。每一堆 璺組170可包括Ν個並聯的磁穿隧接面堆疊。舉例來說,第9及第1〇圖中 之堆疊組170包括4個磁穿隧接面堆疊12〇a]2〇d,此時Ν = 4。然而,ν 可為大於本發騎舉·實施鶴之任意整數。#進行讀料,讀取電流 之值可反映所選取之堆疊組17〇中的並聯電阻值。於是可消除任何漏電流 (口諸如傳統形態之交叉點記憶陣列中的漏電流)。於是,第㈣圖中的記憶 早兀陣列_的元件密度可與傳統之交叉點記鮮元陣列_樣高,但卻可 避免交叉點記憶單元陣列中的漏電流問題。 φ 轉第11目’此搞示為根據本發明實補的棘記鐘之非破壞性 方法1100的流程圖。方法1100包括步驟21〇,此時選取一至數條字元線或 位元線以選定-記憶單元。剩餘之線路則可接地。於步驟22(),偵測並保持 -讀取電流Ir卜於步驟23〇中,施加一調整電流至鄰近於步驟,中所讀 取之記憶單元的編絲或冑人線上,目此於該記料元的難魏軸之方向 產生-磁場。於步驟240中,於調整電流^施加時,對電流M進行_。 接著於步驟250中比較電流ΐΓΐ與Ir2所侧到之值,以辨別被讀取之記憶 單元的狀態。 第11圖中的向量205說明沿著受讀取之記憶單元之難磁化軸的磁場可NiFe, NiFeCo, • C is an alloy or compound thereof, or other ferromagnetic material, and can be formed by CVD, + ALD PVD, Wei Xue deposition, molecular manipulation, and/or other processes. When t胄 people remember the fresh elements, the red magnetic field strength of the (4) line and the word line is enough to change the state of the memory unit. For example, in the case of performing a write operation on a memory single capture, a word line can be selected, and a write current is applied to the top of the wire, and the write current is captured by the Iw2 on the bit line (1). Up, while other lines can be grounded. To read a certain _memory unit, for example, the fiber unit (u), (4) the sinusoid line, and apply the read p νιΆ stomach above the line R1. The read current can then be sampled from the read line ri. When the reading operation is performed, the reading current Irl can be maintained for a while on the reading line. The current can be excited-adjusted on the wire AU and the read current μ of the read line is sampled. The current reading current η and the adjusted read current 可 can be tempered to determine the logic state of the memory cell (5). The adjustment current Iadj can then be eliminated. Referring to Fig. 9, here is a partial cross-sectional view of the embodiment of the memory cell array_ in Fig. 8. The memory cell array 800 can include a substrate 105, and one or more open/close elements UOa-llOh formed in the substrate. For example, the portion of the memory cell array _ in FIG. 9 includes switching elements 110a, 11b', wherein the switching element 110a, which is a transistor, includes a source 'no pole 115 formed in the base, 105, And an interpole 117 above the substrate. Although the second figure in Fig. 9 shows that the interpole 117 can be directly or indirectly connected to the word line w as shown in the eighth figure, the diode can be used instead of the switching element 11〇a_11〇h. Crystal. The material of the base material 105 may include Shi Xi, Kun Rong, gallium nitride, tension stone, crystal, stone, stone, diamond, diamond, and/or other materials. In one embodiment, the substrate 1〇5 comprises 矽^mM(SOl^ silicon-on-insulator)*#, 〇n sapphire), a silicon germanium on inSUlator substrate, or other In the insulating layer 0503-A31218TWF 14 1273596 • The substrate of the upper epitaxial semiconductor layer. Substrate 105 may also comprise a fully depleted tantalum insulating substrate having an active layer of 511δ in the range of 511111 to about 2 (10) nm. The substrate 105 can also include an air gap, such as an air gap formed in a silicon on nothing (SON) structure. The portion of the memory cell array 800 shown in Fig. 9 also includes bit lines B1, B2, wires A1-A4' and read line R1. Figure 9 also more clearly illustrates how the write line 19 can be used to program the tunnels 120a-124d, which may be applied to the conductor A1_A4 in the process. The memory cell array 800 can also include an interconnecting line 140 for connecting the magnetic tunneling junction stacks uoa-uod in parallel to the read line R1, and the interconnecting line 150 for connecting the write lines 19〇. a source/no-polar region 115 to the switching element 110a, 11b; and an interconnect 16 〇 for connecting the bit line, B2 to the source/drain region of the switching elements 11a, 11b Ip15. The interconnects 140, 150, 160 can extend across one to several dielectric layers to connect to switching elements 110a-110h, bit lines B1-B4, read lines Ri, R2, wires A1_A4, A1, _A4, characters Lines W1, W2' are written to line 190, or features in other memory cell arrays 8'. For example, the interconnects 150, 160 can connect the write line 190 to the bit lines B1, B2' via the switching elements i1a, 11b, where the write line 190 can be adjacent to the magnetic tunneling stack, so that The current between the bit lines B1 and B2 is programmable to stack the uoa-uod of the magnetic wear-fed surfaces. The material of the interconnecting wires 140, 150, and 0 160 may include copper, tungsten, gold, aluminum, and carbon nanotube transistors (Carb〇n Nan〇_Tube, ^^^, carbon cluster (four) out (10)^^ generation^ Refractory metal ~ or other material 'which may be formed by ^ ^, PECVD, ALD, PVD or other processes. The dielectric layer may include ruthenium dioxide, BLACK DIAMOND (product of Applies Material), or other materials, and may be Cvd, PECVD, ALD, PVD, spin-on coating, or other processes are formed. As in the above-mentioned implementation of the write-on unit (1, 1), the word line Wi can be selected. The conductive crystals 110a, 110b are electrically connected so that the write current Iw2 applied to the bit line B1 can flow to the write line 190 (in this operation, the bit line B2 can be grounded). The current lwl is above the wire A1, so the magnetic field generated by the current flowing on the wire A1 is sufficient to be 0503-A31218TWF 15 1273596: to program the memory cell (u). Since the wire A1_A4 can be used together with the write line 19 In order to change the magnetic wear-through surface and 120a-120d, the wire A1_A4 here may also be referred to as a write line. The incoming line A1_A4 and the write line 190 may also be referred to as a programming line. Refer to Figure 1 for a partial plan view of the memory cell array _ in Figure 9. Each of the wires A1-A4 may be substantially perpendicular to the write. The access line is 19 〇. Each of the magnetic wear-and-match surface stacking _ can have a substantially hard axis that is parallel to the write line 19G, and the line is parallel to the easy magnetization axis of the corresponding wire A1-A4. The arrangement direction of the wearable surface can be roughly parallel to the difficult Wei axis, such as the 1G K. The magnetic axis is perpendicular to the magnetic moment of the fixed layer. _ β *考第8-10, the memory cell array _ may include a plurality of stacked groups 17 〇. Each stack 170 may include a plurality of parallel magnetic tunnel junction stacks. For example, in the 9th and 1st drawings The stacking group 170 includes four magnetic tunneling junction stacks 12〇a]2〇d, at which time Ν = 4. However, ν may be any integer greater than the current riding and implementation crane. #Reading, reading The value of the current reflects the value of the parallel resistance in the selected stack 17〇, thus eliminating any leakage current (such as in a conventional form of cross-point memory array) The leakage current). Therefore, the component density of the early memory array in the fourth picture can be as high as the conventional cross-point array, but the leakage current problem in the intersection memory cell array can be avoided. Turning to Item 11 is illustrated as a flow diagram of a non-destructive method 1100 of a ratchet clock in accordance with the present invention. Method 1100 includes step 21, in which one or more word lines or bit lines are selected for selection. - Memory unit. The remaining lines can be grounded. In step 22 (), detecting and maintaining - reading current Ir in step 23, applying an adjustment current to the braided or smashed line of the memory unit read in the step, The magnetic field is generated by the direction of the hard axis of the recording element. In step 240, when the current is applied, the current M is _. Next, in step 250, the values of current ΐΓΐ and Ir2 are compared to identify the state of the memory cell being read. The vector 205 in Figure 11 illustrates the magnetic field along the hard-to-magnetize axis of the memory cell being read.

0503-A31218TWF 16 1273596 •調整自由層之磁矩方向。於步驟260中,若第二電流Ir2之值超過第一電流 Irl,則所讀取之磁穿隧接面記憶元件的自由鐵磁性層之原本的磁矩方向為 4 與固定鐵磁性層之磁矩反方向。因而原來的自由層與固定層之磁矩方向不 • 平行,因此所讀取之磁穿隧接面位元為不平行,如步驟27〇所示。若第一 電流Irl之值超過第二電流Ir2,則所讀取之磁穿隧接面記憶元件的自由鐵 磁性層之原本的磁矩方向為與固定鐵磁性層之磁矩同方向。因而原來的自 由層與固定層之磁矩方向相同,因此所讀取之磁穿_面位元為平行,如 步驟275所示。於步驟280中,可以消除調整電流“。於一實施型態中, 調整電流Iadj可以將自由層之磁矩修正一銳角角度,例如45度,而不改變 • 其狀態。 第I2圖顯示第8圖之記憶單元陣列咖的另一樣態,此處稱之為記憶 單元陣列議。第㈣之記憶單元_ 12⑻大致相似於第8圖之記鮮 元陣列800。然而第8圖之堆疊組17〇已於f 12圖重緣為簡化之型式。每 一堆疊組170包括N個磁穿隧接面堆疊120,該等磁穿隨接面堆疊12〇並 聯至其對應之讀取線R1、R2。數字N可為大於】之整數。 且 位於堆疊組170中的每個磁穿隧接面堆疊12〇可串接於一寫入線,例 如第9與第1〇圖中之寫入線190。舉例來說,於堆疊組17〇中連接該等磁 鲁穿隧接面堆4 120之寫入線190可能連接至每個磁穿隨接面堆4⑽之固 定層或自由層之鄰近處。然而每個磁穿隧接面堆疊12〇可能僅是接近但與 相對應之寫入線ΑΙ-Αη、ΑΓ-Αη,相隔絕,其中於每個堆疊组17〇中寫入線 Al-An之編號η與磁穿隧接面堆疊12〇之編號η相同。每個堆疊組可 視為三端點之it件,其中-端點連接至相對應之讀取線幻、犯,而另一端 點經由開關元件11〇連接至位元線(例如Bl_),而另_端點經由另一開 關元件110連接至另一位元線(例如B2或m)。開關元件i 1〇可為 : 至數個電晶體、二極體、或元件。 ^ 括 第13圖為第8圖中之記憶單元陣列_的另一實施例之部分電路圖, 0503-A31218TWF 17 1273596 _·此處以記憶單元陣列·表示。記憶單元陣列·大致類似於記憶單元 ;陣列議。舉例來說’記憶單元陣列·包括位元線m、B2,字元線^、 I W2,導線乂如以’餐然而記憶單元陣列觸亦包括反向位元細,、 B2’及反向字元線wi,、W2,。 —記憶_ _可包括堆疊組17G,其中每一堆疊組之_端點經由開關 70件連接至位7G線或反向位元線、其另_端點經由另_關元件連接至同 -位元線歧向侃線、㈣—端輯接錄猶献向㈣線輯中之 另-條線路。舉例來說,記憶單元陣列謂中的記憶單元施可包括一 堆疊組170,其-端點經由開關元件m〇a連接至位元線m,其中開關元 春件1遍之閘極連接至字元線w卜記憶單元簡中之堆疊组m的另一 端點可經由-開關元件13肠連接至位元線m,其中開關元件13滿之間 極可連接至反向字元線W1,。記憶單元13G5中之堆疊組17G的另一端點可 連接至反向位元線Bl’。 於對記憶單7G 1305進行寫入動作之實施情況中,可選取反向字元線 W1,,並可於導線A1上施加一寫入電流Μ。接著可施加另一寫入電流w 至位兀線B1上,其他線路則可接地。於讀取記憶單元13〇5之實施情況中, 可廷取子元線w卜並施加讀取電壓Vr至位元線B1上。其他線路則可接 _地。接著於位το線B1上便可保持一讀取電流M,並偵測其值。此外尚可 於導線A1上激發-調整電流Iadj,然後對位元線m上之調整後的讀取電流 Ir2進行偵測。接著比較讀取電流Irl與fr2之值以辨別記憶單元13仍之狀 態。然後消除調整電流Iadj。 第14圖顯示帛8圖中之記憶單元陣列8〇〇的另一實施例之部分電路 圖,此處以記憶單元陣列moo表示。記憶單元陣列14〇〇大致類似於記憶 單元陣列800。舉例來說,記憶單元陣列謂包括位元線B1_B4,字元線 W卜W2 ’導線Α1-Αη,ΑΓ-Αη’。然而記憶單元陣歹,j 14〇〇亦包括反向位元 線ΒΓ-Β4’,反向字元線Wl’、W2,,以及導線Α1,,-Αη,,。0503-A31218TWF 16 1273596 • Adjust the direction of the magnetic moment of the free layer. In step 260, if the value of the second current Ir2 exceeds the first current Irl, the original magnetic moment direction of the free ferromagnetic layer of the magnetic tunneling interface memory element is 4 and the magnetic of the fixed ferromagnetic layer. The opposite direction of the moment. Therefore, the direction of the magnetic moment of the original free layer and the fixed layer is not parallel, so the read magnetic tunneling plane bits are not parallel, as shown in step 27〇. If the value of the first current Irl exceeds the second current Ir2, the original magnetic moment direction of the free ferromagnetic layer of the magnetic tunneling interface memory element read is in the same direction as the magnetic moment of the fixed ferromagnetic layer. Therefore, the original free layer and the fixed layer have the same magnetic moment direction, so the read magnetic through-plane bits are parallel, as shown in step 275. In step 280, the adjustment current "can be eliminated." In an embodiment, the adjustment current Iadj can correct the magnetic moment of the free layer by an acute angle, such as 45 degrees, without changing its state. Figure I2 shows the eighth Another aspect of the memory cell array of the figure is referred to herein as a memory cell array. The memory cell _ 12 (8) of the fourth (fourth) is substantially similar to the memory array 800 of Figure 8. However, the stacked group of Figure 8 is The simplification is shown in Figure 12. Each stack 170 includes N magnetic tunnel junction stacks 120 that are connected in parallel to their corresponding read lines R1, R2. The number N can be an integer greater than 。. Each of the magnetic tunneling plane stacks 12 位于 in the stacked group 170 can be serially connected to a write line, such as the write line 190 in the ninth and first figures. For example, the write lines 190 connecting the magnetic tunnel-through stacks 4 120 in the stack 17 可能 may be connected adjacent to the fixed or free layers of each of the magnetic-through-side stacks 4 (10). Each of the magnetic tunneling junction stacks 12〇 may be only close to but corresponding to the write lines Α-Αη, ΑΓ - Αη, phase-separated, wherein the number η of the write line A1-An in each stack group 17 is the same as the number η of the magnetic tunnel junction stack 12 。. Each stack group can be regarded as a three-terminal one piece Wherein the -end is connected to the corresponding read line, and the other end is connected to the bit line (eg, Bl_) via the switching element 11〇, and the other end is connected to the other via the other switching element 110 One bit line (for example, B2 or m). The switching element i 1〇 can be: to a plurality of transistors, diodes, or elements. ^ Figure 13 is another memory cell array of Figure 8 Part of the circuit diagram of the embodiment, 0503-A31218TWF 17 1273596 _·here represented by memory cell array · memory cell array · roughly similar to memory cell; array discussion. For example, 'memory cell array · including bit lines m, B2, The word line ^, I W2, the wire such as "meal but the memory cell array touch also includes the reverse bit fine, B2' and the reverse word line wi,, W2, - memory _ _ may include the stacking group 17G, wherein the _end of each stack is connected to the 7G line or the reverse bit line via the switch 70, and the other end The point is connected to the same-bit line by the other_off element, and (4)-the end is recorded to the other line in the (four) line series. For example, the memory unit array is called the memory unit A stacking group 170 may be included, the terminal end of which is connected to the bit line m via the switching element m〇a, wherein the gate of the switching element is connected to the word line of the word line w and the other of the stacked group m of the memory unit An end point may be connected to the bit line m via the intestine element 13, wherein the switching element 13 is substantially connectable to the reverse word line W1. The other end of the stacked group 17G in the memory unit 13G5 may be connected to Reverse bit line Bl'. In the implementation of the write operation of the memory bank 7G 1305, the reverse word line W1 can be selected, and a write current Μ can be applied to the wire A1. Then another write current w can be applied to the bit line B1, and the other lines can be grounded. In the implementation of the read memory unit 13A5, the sub-element line w can be taken and the read voltage Vr applied to the bit line B1. Other lines can be connected to the ground. Then, a read current M is maintained on the bit το line B1, and the value is detected. In addition, the current Iadj can be excited-adjusted on the wire A1, and then the adjusted read current Ir2 on the bit line m is detected. Next, the values of the read currents Irl and fr2 are compared to discriminate that the memory unit 13 is still in a state. Then the adjustment current Iadj is eliminated. Fig. 14 is a partial circuit diagram showing another embodiment of the memory cell array 8A in Fig. 8, which is shown here by the memory cell array moo. The memory cell array 14 is substantially similar to the memory cell array 800. For example, the memory cell array includes a bit line B1_B4, and the word line W is W2' wire Α1-Αη, ΑΓ-Αη'. However, the memory cell array, j 14 〇〇 also includes the inverted bit line ΒΓ-Β4', the reverse word line W1', W2, and the line Α1,, -Αη,,.

0503-A31218TWF 18 1273596 :m==rn4GG亦包含堆疊組17G,其中每—堆4組之,連接 、、’ 3 線射之—,其另—端點軸_ 元 ,或反向位元線中的另_條,而另―端點軸另—·元件連接至另外$ .兀線献f位碰。舉例來說,記憶單元P車列14GG _的記鮮元14〇5可 己括堆a:組170,其-端點連接至反向位元線B1,。記憶單元祕中之 堆疊組170的另—端點可經由一開關元件⑷〇a連接至位元線B1,直中開 關兀件⑷〇a之閘極可連接至反向字元線wi,。記憶單元祕中之堆疊組 170的另-端點可經由另一開關元件14·連接至位元線B2 ,其中開關元 件1410b之閘極可連接至反向字元線^,。記憶單元陣列1彻中之另一記 _,單元1407可包括一堆疊組17〇,其一端點連接至反向位元線拉,。記憶 單το 1407中之堆疊、组170的另一端點可經由一開關元件剛c連接至位元 線B2,其中開關元件隱之閘極可連接至字元線%卜記憶單元雨中 之堆疊組no的另-端點可經由另一開關元件⑷〇d連接至位元線B3,其 中開關元件1410d之閘極可連接至字元線W1。 於對記憶單元1405進行寫入動作之實施情況中,可選取反向字元線 wi’,並可於導線A1Jl施加一寫入電流Iwl。接著可施加另一寫入電流 至位το線B1上,其他線路則可接地。於讀取記憶單元應之實施情況中, _可選取反向字元、線W1,,並施加讀取電壓Vr至反向位元線β1,上。其他線 路則可接地。接著於反向位元線B1,上便可保持—讀取電流Μ,並侧其 值。此外尚可於導線A1上激發-調整電流Iadj,然後對反向位元線β1,上之 調整後的讀取電流Μ進行偵測。接著比較讀取電流與M之值以辨別 舌己憶單元1405之狀態。然後消除調整電流I峋。 第15圖顯示第14 中之記憶|元陣列14〇〇的另一實施例之部分電路 ,,此處以記憶單元陣列1500表示。記憶單元陣列15〇〇大致類似於記憶 單元陣列1400。舉例來說,記憶單元陣列1400包括位元線Bi_b4、B1,_B4,, 字元線 Wl、W2、Wl,、W2,,導線 Al-An、AKAn,、A1,,_An”。 0503-A31218TWF 19 1273596 門關15GG亦包含堆疊組17G,射每-靴组之-端點經由 :反二-ΪΓΓ線、反向位元線其中之―,其另—端點連接至位元線 ΐΐίΓΓ—條,而另—端點經由另—開關元件連接至另外的位 勺二^ 糊纽,記鮮元_ _巾的《單元1505可 ^中Μ ’其—端點經由簡元件151Ga連接至反向位元線B1,, 雄ΙΓ 10a之閘極可連接至反向字元線wi,。記憶單元娜中之 =7G的另-顧可連接至位元線B1。記鮮元娜巾之堆疊组⑽ 1510b一_件151Gb連接錄元線B2,射開關元件 =〇b之閘極可連接至反向字元線W1,。記憶單元陣列驗中之另一記憶 早凡!5〇7可包括一堆疊組17〇,其一端點經由開關元件臟連接至反向 位瓜線B2,’其中開關元件職之閘極可連接至字元、請。記憶單元蘭 中之堆疊組no的另-端點可連接至位元線B2。記憶單元面巾之堆疊 組no的另-端點可經由另一開關元件151〇d連接至位元線B3,其中開關 元件15HM之閘極可連接至字元線W1。 ,於對記憶單元1505進行寫入動作之實施情況中,可選取反向字元線 wi’,並可於導線A1上施加一寫入電流Μ。接著可施加另一寫入電流⑽ 至位兀線B1上,其他線路則可接地。於讀取記憶單元15〇5之實施倩況中, 響可選取反向字元線W1,,並施加讀取電壓Vr至反向位元線m,上。其他線 路則可躺。接騎反向位元線B1,上便可__讀取電流W,並侧其 值。此外尚可於導線A1上激發一調整電流^,然後對反向位元線βι,上之 調整後的讀取電流Μ進行侧。接著比較讀取電流w與之值以辨別 吕己憶單元1505之狀態。然後消除調整電流j峋。 第16圖為第η圖中的記憶單元_刚之另—實施例的部分電路 圖’此彪冉之為記憶單元陣列1600。記憶單元陣列16〇〇大致相似於記憶單 元陣列1400。舉例來說,記憶單元陣列16〇〇包括位元線m、B2,字元線 Wl、W2、Wl,、W2,,以及導線 Al-An、Al,-An,。0503-A31218TWF 18 1273596: m==rn4GG also includes stacking group 17G, where each - stack of 4 groups, connected, '3 line shot', its other - endpoint axis _ element, or reverse bit line The other _, while the other end of the axis - the component is connected to another $. 兀 line to f position. For example, the memory unit 14A of the memory unit P train 14g can include a stack a: a group 170 whose end point is connected to the reverse bit line B1. The other end of the stacking unit 170 can be connected to the bit line B1 via a switching element (4) 〇a, and the gate of the neutral switching element (4) 〇a can be connected to the reverse word line wi. The other end point of the stacking unit 170 of the memory unit can be connected to the bit line B2 via another switching element 14·, wherein the gate of the switching element 1410b can be connected to the reverse word line ^. Another memory cell array 1 can include a stacking group 17〇 with an end point connected to the reverse bit line pull. The stack in the memory cell το 1407, the other end of the group 170 can be connected to the bit line B2 via a switching element, wherein the gate of the switching element can be connected to the word line %b. The other end point can be connected to the bit line B3 via another switching element (4) 〇d, wherein the gate of the switching element 1410d can be connected to the word line W1. In the implementation of the write operation to the memory unit 1405, the reverse word line wi' may be selected and a write current Iw1 may be applied to the wire A1J1. Then another write current can be applied to bit το line B1, and other lines can be grounded. In the implementation of the read memory cell, _ may select the reverse word, line W1, and apply the read voltage Vr to the reverse bit line β1. Other lines can be grounded. Then, on the reverse bit line B1, it is possible to hold - the current Μ and its value. In addition, the current Iadj can be excited-adjusted on the wire A1, and then the adjusted read current 上 is detected on the reverse bit line β1. The values of the read current and M are then compared to identify the state of the cell 1405. Then the adjustment current I峋 is eliminated. Fig. 15 shows a partial circuit of another embodiment of the memory|element array 14A of the 14th, which is represented here by the memory cell array 1500. The memory cell array 15 is substantially similar to the memory cell array 1400. For example, memory cell array 1400 includes bit lines Bi_b4, B1, _B4, word lines W1, W2, W1, W2, and lines Al-An, AKAn, A1, _An". 0503-A31218TWF 19 1273596 The door closing 15GG also includes a stacking group 17G, which is connected to the end point of the arm-to-boot group via an anti-two-twist line and an inverted bit line, and the other end point is connected to the bit line ΐΐίΓΓ-bar. The other end point is connected to another bit spoon via the other switch element, and the unit 1505 can be connected to the reverse bit via the simple element 151Ga. Line B1,, the gate of the male 10a can be connected to the reverse character line wi. The other of the memory unit Nazhong = 7G can be connected to the bit line B1. The stack of fresh Yuan Na towel (10) 1510b One piece of 151Gb is connected to the recording element line B2, and the gate of the radiation switching element=〇b can be connected to the reverse word line W1. Another memory of the memory unit array is detected earlier! 5〇7 can include a stacking group 17〇, one end of which is connected to the reverse bit line B2 via the switching element, 'where the gate of the switching element can be connected to the character, please. Memory unit The other end point of the stack group no in the blue may be connected to the bit line B2. The other end point of the stack group no of the memory unit face towel may be connected to the bit line B3 via another switching element 151〇d, wherein the switching element The gate of 15HM can be connected to the word line W1. In the implementation of the writing operation to the memory unit 1505, the reverse word line wi' can be selected, and a write current 施加 can be applied to the wire A1. Then another write current (10) can be applied to the bit line B1, and other lines can be grounded. In the implementation of the read memory unit 15〇5, the reverse word line W1 can be selected and applied. Take the voltage Vr to the reverse bit line m, above. Other lines can lie down. When riding the reverse bit line B1, the current W can be read __ and its value can be side-by-side. Excitation of an adjustment current ^, and then on the reverse bit line βι, the adjusted read current Μ side. Then compare the read current w with the value to distinguish the state of the Lv memory unit 1505. Then eliminate the adjustment current j峋. Fig. 16 is a partial circuit diagram of the memory cell in the nth diagram _ just another embodiment. The memory cell array 1600. The memory cell array 16 is substantially similar to the memory cell array 1400. For example, the memory cell array 16A includes bit lines m, B2, and word lines W1, W2, W1, and W2. ,, and the wires Al-An, Al, -An,.

0503-A31218TWF 20 1273596 記憶麵亦包姆料17G,射每—堆私n :關::連!至位元線,其另-端點連接至字元線或w 條。經由另-開關元件連接至字元線或反向字元線中的另一 舉-,義早70陣列麵中的數個開件可為二極體而非電晶體。 二二,義、早兀陣列1600中的記憶單元1605可包括―堆疊組170,1 ,其中開_職可為或 線W1, 冰早兀祕中之堆疊組17G㈣-端點可連接至反向字元 連單元祕中之堆她17G㈣-端點可經由另—開關元件 子几線wi,其中開關凡件16鳩為電晶體,其閘極可連接至 位7G線B1。 乂可單兀祕進彳了寫人動作之實施情況巾,可選取位元線B1, 亚A1上施加一寫入電流Iw卜接著可施加另一寫入電流㈣至字 上,其他線關可接地。於讀取記憶單元祕之實施情況中,可 :子瓜線W1與W1,接地,並將所有其他字元線上的電墨增加至。接 =施加—讀取 %於位元線m上,其他線關接地。接著便可於位元 、、’ 彻寺D貝取電机Irl,並偵測其值。此外尚可於導線A1上激發一調 整電流!adj,做對位元線B1上之調整彳細取紐M進行侧。接著比 較_電舰與Ir2之值以辨別記憶單元祕之狀態。然後消除調整電流 !adj ° 第圖為第16圖中的έ己憶單元陣列16〇〇之另一實施例的部分電路 圖,此處歡為記鮮元陣列17GG。記憶單元_ 纽她於記憶單 元陣列函。舉例來說,記憶單元陣列17⑻包括位元細、B2,字元線 W1 W2 W1 W2 ’以及導線八^如、Ar-如,。記憶單元陣列⑻亦 包3堆s:組HG’其中每—堆疊組之—端點經由關元件連接至字元線或反 向字元線中的-條,其另_端點連接至位元線或反向位元線中的一條,而 另H二由$開關元件連接至位元線或反向位元線中的另一條。記憶0503-A31218TWF 20 1273596 The memory surface is also covered with 17G, each shot - private n: off:: even! to the bit line, the other end point is connected to the word line or w. Via the other-switching element connected to the word line or the other of the reverse word lines, the number of openings in the array face of the Sense 70 can be a diode rather than a transistor. 22, the memory unit 1605 in the array 1600 can include a "stack group 170,1, wherein the open position can be or line W1, and the stack group 17G (four)-end point in the ice can be connected to the reverse The character is connected to the heap of the unit. Her 17G (four)-end point can be connected via the other-switching element sub-wi, where the switch member 16 is a transistor and its gate can be connected to the bit 7G line B1. You can choose the implementation of the person's action, you can choose the bit line B1, apply a write current Iw on the sub-A1, then apply another write current (four) to the word, other lines can be Ground. In the implementation of the memory unit, the sub-clause lines W1 and W1, ground, and the ink on all other word lines are added. Connect = Apply - Read % on bit line m and the other lines are off ground. Then, the motor Irl can be taken in the bit, , and the temple D, and the value is detected. In addition, an adjustment current can be excited on the wire A1! adj, and the adjustment on the bit line B1 is performed on the side of the line M. Then compare the value of _ electric ship and Ir2 to distinguish the state of the memory unit. Then, the adjustment current is eliminated. !adj ° The figure is a partial circuit diagram of another embodiment of the cell array 16A in Fig. 16, which is here a fresh element array 17GG. Memory unit _ New her in the memory unit array function. For example, memory cell array 17 (8) includes bit thin, B2, word line W1 W2 W1 W2 ', and conductors such as Ar-. The memory cell array (8) also includes 3 stacks s: group HG' where each - stack group - the endpoint is connected to the - in the word line or the reverse word line via the off element, and the other end is connected to the bit One of the line or reverse bit lines, and the other H is connected by the $switch element to the other of the bit line or the inverted bit line. memory

0503-A31218TWF 21 1273596 單元陣列·中的數個開關树可為二極體而非電晶體。 舉例來說,記憶單元陣列1700中的記憶單元17 170,其一端點經由開關元件1710c連 隹宜、、且 可為或包括二減⑽巾物概件1施 元線m。記憶單元17。5中之料17。= 17°的另—端點可連接至位 m〇d連接至反向位元線B1,,^ ^―端點可經由另—開關元件 接至反向字元線w。 關轉麵為電晶體,其閘極可連 並了17G5進行寫场作之實贿Μ,可選取位元線m, = 上施加—寫入電流1W1。接著可施加另—寫入電編至字 :wi上,其他線路則可接地。於讀取記鮮元簡之實施情況中,將 所有的反向字讀例如W1,與W2,)·,财無字元細如w 與W2)上的輕增加至Vdd。接著施加—讀取籠力於位元線則上,1 他包括字元線W1之線關接地。接著便可於位元線Bi上保持—讀取· IH,並伽其值。此外尚可於導線A1上激發—調整電流^,紐對位元 線B1上之調整後的讀取電流M進行偵測。接著比較讀取電流加與於之 值以辨別㊉鮮it 17G5之狀態。然制除調整電流τ㈣。 第18圖為第17圖中之記憶單元陣列17〇〇的另一實施例之部分電路 _圖’此處稱之為記憶單元陣列18〇〇。記憶單元陣列麵大致類似於記憶單 凡陣列1700。舉例來說,記憶單元陣列18〇〇包括位元線m、Β2,字元線 W卜W2 ’導線Α1-Αη,ΑΓ-Αη’。然而,記憶單元陣列18〇〇亦包括位元線 Β3、Β4,反向字元線 wl,_〇、W1,_e、號,_〇、W2,_e、導線 αι,,▲”。因此 記憶單元陣列1800中的每條字元線(例如W1)可以對應於兩條反向字元線 (例如Wl’-o、Wl’-e)。舉例來說,與字元線W1相連之奇數號碼的記憶單 疋可以連接至反向字元線Wl,-0,而與字元線W1相連之偶數號碼的記憶單 元了以連接至反向子元線Wl’-e。然而,連接至一字元線之該等記憶單元不 需均等地連接至相對應之不同反向位元線,因此第18圖中所示的均等分佈0503-A31218TWF 21 1273596 Several switch trees in a cell array can be diodes rather than transistors. For example, the memory unit 17 170 in the memory cell array 1700 has an end point that is connected via the switching element 1710c, and may or may include a minus (10) towel profile 1 element line m. The material 17 in the memory unit 17.5. The other end point of = 17° can be connected to the bit m〇d is connected to the reverse bit line B1, and the end point can be connected to the reverse word line w via the other switching element. The turn-off surface is a transistor, and the gate can be connected to the 17G5 for writing the field for a bribe. The bit line m can be selected, and the write-write current is 1W1. Then another write-on-write can be applied to the word :wi, and other lines can be grounded. In the implementation of reading the simple element, all the reverse words are read, for example, W1, and W2, and the light without words (such as w and W2) is increased to Vdd. Then apply - read the cage force on the bit line, 1 and the line including the word line W1 is grounded. Then, it is possible to hold - read · IH on the bit line Bi and gamma it. In addition, the current can be sensed on the wire A1, and the adjusted read current M on the line B1 is detected. Then compare the read current plus the value to distinguish the state of Shixianit 17G5. However, the adjustment current τ (four) is eliminated. Fig. 18 is a partial circuit diagram of another embodiment of the memory cell array 17A in Fig. 17, which is referred to herein as a memory cell array 18A. The memory cell array face is roughly similar to the memory array 1700. For example, the memory cell array 18A includes bit lines m, Β2, and word lines Wb'' wires Α1-Αη, ΑΓ-Αη'. However, the memory cell array 18A also includes bit lines Β3, Β4, reverse word lines wl, _〇, W1, _e, number, _〇, W2, _e, wires αι, ▲". Each word line (e.g., W1) in array 1800 may correspond to two reverse word lines (e.g., Wl '-o, Wl'-e). For example, an odd number connected to word line W1 The memory unit can be connected to the reverse word line W1,-0, and the even number of memory cells connected to the word line W1 are connected to the reverse sub-line W1'-e. However, connected to a character The memory cells of the line do not need to be equally connected to the corresponding different reverse bit lines, so the equal distribution shown in Figure 18

0503-A31218TWF 22 1273596 ,形(各條反向位元線均與5G%之記憶單元減接)是不必要的。此外,每條 子7L線尚可有超過兩條之相對應的反向位元線(例如wi,·丨、wi,_2、wi,_3)。 記憶單元陣列麵,亦包括堆疊组17〇,其中每一堆疊組之一端點經由 :關7L件連接至字兀線歧向字元線巾的-條,其另—端點連接至位元 ,另H工由另一開關元件連接至另一條位元線。記憶單元陣列1800 中的數個開關元件可為二極體而非電晶體。 舉例來說’記憶單元陣列觸中的記憶單元祕可包括一堆疊組 其端點經由開關元件181〇a連接至字元線wi,其中開關元件 1810a0503-A31218TWF 22 1273596, the shape (each reverse bit line is reduced with 5G% of memory cells) is not necessary. In addition, each sub 7L line may have more than two corresponding reverse bit lines (eg, wi, 丨, wi, _2, wi, _3). The memory cell array surface also includes a stacked group 17〇, wherein one end of each stacked group is connected to the strip of the word line to the word line via the off 7L piece, and the other end point is connected to the bit element. Another H is connected by another switching element to another bit line. The plurality of switching elements in the memory cell array 1800 can be diodes rather than transistors. For example, the memory unit touched by the memory cell array may include a stacked group whose end point is connected to the word line wi via the switching element 181A, wherein the switching element 1810a

:包括-極體。記憶單元18G5中之堆疊组i7G的另—端點可連接至位 =B1 ’而其又另一端點可經由另—開關元件·b連接至位元線拉其 ^關元件祕為電晶體,其閘極可連接至反向字元_,_。。記憶單元 ^觸中的另—記憶單元18Q7t包括—堆疊組i7Q,其—端點經由開關 户m _連接至子元線W1,其中關元件⑻〇e可為或包括二極體。記 思早το⑽7 +之堆疊組η〇的另一端點可連接至位元線Μ,而其又另一 ΪΓΓ經由另—關元件麵連接至位元線Β3,其中關元件麵為 電曰曰體’其閘極可連接至反向字元線Wl,_e。 ;、、?己隐單元18〇5進行寫入動作之實施情況中,可選取位元線則,: Includes - polar body. The other end of the stack group i7G in the memory unit 18G5 can be connected to the bit = B1 ' and the other end point can be connected to the bit line via the other - switching element · b to pull the component into a transistor, which The gate can be connected to the reverse character _, _. . The memory unit ^Q in the memory unit 18Q7t includes a stacking group i7Q, which is connected to the sub-element W1 via the switch m_, wherein the off element (8) 〇e can be or include a diode. The other end of the stacking group η〇 of the remembering το(10)7+ can be connected to the bit line Μ, and the other side is connected to the bit line Β3 via the other-off element surface, wherein the closing element surface is an electric body 'The gate can be connected to the reverse word line Wl, _e. ;,,? In the implementation of the write operation of the hidden unit 18〇5, the bit line can be selected.

、一’:於導線A1上施加_寫人電流Iwl。接著可施加另一寫人電流—至字 ^古W1上,其他線路則可接地。於讀取記憶單元之實施情況中,將 ^的^向字元線(例如W1,_。、W1,_e、W2,_。、w2,_e)接地,並將所有其 :子凡線(例如W1與W2)上的電壓增加至。接著施加一讀取電壓% ώΛ^Β1上’其他包括字元線W1之線路則接地。接著便可於位元線 ^持-讀取電流Irl,並偵測其值。此外尚可於導線Μ上激發一調整 外’’、、俩位赠B1上之機後的讀取電流1!"2進行細。接著比較 貝〜’IL Irl與lr2之值以辨別記憶單元⑽5之狀態。然後消除調整電流 0503-A31218TWF 23 1273596 图L圖為第17圖中之3己憶單元陣列17GG的另—實施例之部分電路 =再之為記憶單元陣列1900。記憶單元陣列1900大致類似於記情單 儿陣列跡舉例來說,記憶單元陣列簡包括位元 $ w卜 Wl,、W2、W2,,_ ΔΊ Λ 子兀線 ^線A;UAn,Α1,-Αη,。然而,記憶單元陣列簡 亦包括位几線Β3、Β4,以及導線A1 ”▲,,。 ΗΜ^Γ"] 1900 170 5 IΓ1 ? 1900中·彳端齡由另—削1%件連接至另—條位元線。記鮮元陣列 後個開關讀可為二極體而非電晶體。該等開關元件中的部分可 月b相連接。 舉例來祝,記憶單元陣列1900中的記憶單元娜可包括一堆属組 =,其-端點經由_元件職連接至字元線wi,其_元件19且版 可^或包括二歸。記鮮元娜中之堆.m的另—辆可連接至位 =B1 ’而其又另一端點可經由另—開關元件⑼%連接至位元線B2,直 中開關元件麵為電晶體,其_連接至開關元件職之料,_ ^驗於,元件隱與堆疊組⑺中之磁穿隧接面堆疊相連端點之 H憶早7L陣列测中的另—記憶單元簡可包括—堆疊组17〇, 其一端點經由開關元件職連接至字元線W1,其中開關元件·可為 =包括2極體。記憶單元簡中之堆疊組_另一端點可連接至位元線 一,而/、又另-端點可經由另-開關元件1910d連接至位元線B3,其中開 關讀1910d為電晶體,其間極連接至開關元件職之端點,其中該端 點位於開關元件丨赃與堆疊組17G中之磁穿面堆疊相連端點之另一 端。 於對記憶單元娜進行寫入動作之實施情況中,可選取反向字元線 W1,並可於導線A1上施加一寫入電流Iw卜接著可施加另—寫入電流_ 至位70線m上’其他線路射接地。於讀取記憶單元⑽5之實施情況中,, a ': a write current Iwl is applied to the wire A1. Then another write current can be applied - up to the word ^W1, and other lines can be grounded. In the implementation of the read memory unit, the ^ word line (eg, W1, _., W1, _e, W2, _, w2, _e) is grounded, and all of them are: The voltage on W1 and W2) is increased to. Then, a read voltage % ώΛ ^ Β 1 is applied to the other line including the word line W1 to be grounded. Then, the current Irl can be read and read on the bit line, and the value is detected. In addition, the read current 1!"2 after the machine is activated on the lead 激发, and the two are given the B1 on the machine. Next, compare the values of BET ~ 'IL Irl and lr2 to distinguish the state of the memory cell (10) 5. Then, the adjustment current is eliminated. 0503-A31218TWF 23 1273596 FIG. L is a partial circuit of another embodiment of the hexadecimal cell array 17GG in FIG. 17 = again a memory cell array 1900. The memory cell array 1900 is generally similar to the singular array trace. For example, the memory cell array includes bits $w, W1, W2, W2, _ ΔΊ Λ 兀 ^ line ^ line A; UAn, Α 1, - Αη,. However, the memory cell array also includes a few lines Β3, Β4, and a wire A1 "▲,,. ΗΜ^Γ"] 1900 170 5 IΓ1 ? 1900 彳 彳 end age is connected by another - 1% piece to another - A bit line. The next switch reading of the fresh element array can be a diode instead of a transistor. Some of the switching elements can be connected to the moon b. For example, the memory cell in the memory cell array 1900 can be Including a bunch of groups =, its - the endpoint is connected to the word line wi via the _ component, its _ element 19 and the version can or include the second return. The other unit can be connected to the pile of the m. In place = B1 ' and the other end point can be connected to the bit line B2 via another switching element (9)%, the surface of the switching element is a transistor, and the _ is connected to the material of the switching element, _ ^ The component is hidden from the stack of magnetic tunneling planes in the stacking group (7). The other memory unit in the HN early 7L array measurement may include a stacking group 17〇, one end of which is connected to the character via the switching component Line W1, in which the switching element can be = including a 2-pole body. The stacked group in the memory unit is _ the other end point can be connected to the bit Line one, and /, another end point may be connected to bit line B3 via another switching element 1910d, wherein switch read 1910d is a transistor with a pole connected to the end of the switching element, wherein the end point is at the switch The component 丨赃 is connected to the other end of the end point of the magnetic wear surface stack in the stack group 17G. In the implementation of the write operation to the memory cell Na, the reverse word line W1 can be selected and applied on the wire A1. A write current Iw can then apply another write current _ to the line 70 on line m. 'Other lines are grounded. In the implementation of the read memory unit (10) 5,

0503-A31218TWF 24 1273596 .=位70, B1與B2接地,並將所有其他位元線上的電壓增加至·。接著 施加一讀取電壓Vr访eπ 地。接其他字元軸反向字元線則接 . 接者便了於反向子元線W1,上保持一讀取電流w,並侧其值。此外 .、:可'‘線A1上&發-調整電流ladj ’織對反向字元線W1,上之調整後 的讀取電流W進行偵測。接著比較讀取電流M與M 辨 元娜之狀態。然後消除調整電流Iadj。 L'早 上述實施例提供各種型態之罐趟陣列,其包括複數之堆疊組以及複 數之導線。每—堆疊組包括並聯的N個磁穿随接面堆疊,巧N為大於} 的整數。每—磁穿隨接面堆疊包含—難磁化軸,該難磁化軸之方向大致與 籲該N個磁穿随接面堆疊之排列方向相平行。該等複數之導線皆與其所對應 之或所有N個磁穿随接面堆疊不相電減,而該等導線之延伸方向大致垂 直於該f磁穿隧接面堆疊之難磁化軸。此等MRAM陣列之實施例可包括複 數之堆$組,其巾該等堆疊組除了包括上述之磁穿随接面堆疊以外,尚包 括電搞接至該鱗_面堆疊之兩個_元件。該兩綱關元射之一個 或全部可為電晶體或二極體。然而,於下述實施例中所述之陣列對 於複數之磁穿隧接面堆疊僅運用到一個開關元件。 第20圖為依據本發明實施例之磁穿隧接面記憶元件之陣列〇的電 _路示意圖。MRAM陣列2000包括資料線m、D2,位元線m、B2,字元 線调、W2。磁穿隧接面記憶元件61A、61B、61C、6m並聯於字元線 Wi與節點63之間。每一磁穿隨接面記憶元件包括自由鐵磁性層2〇2〇 '固 定鐵磁性層2040、以及介於自由鐵磁性層2〇2〇與固定鐵磁性層2〇4〇之間 的絕緣穿隧障壁2030。自由鐵磁性層2020之磁矩方向可自由變動,固定鐵 磁性層2040之磁矩方向固定,而絕緣穿隧障壁2〇3〇為極薄之絕緣層。 開關元件65之NMOS電晶體連接介於位元線B1與節點63之間,該 NMOS電晶體受資料線忉上之選取信號之控制。於第2〇圖之實施型態中, 該4個磁穿隧接面元件61A至61D皆連接至節點63。除了一節點配置⑽ 0503-A31218TWF 25 1273596 磁穿隨接面元件以外’亦可一節點配置2個或3個磁穿隨接面記憶元件。 編程線A!、A2、A3、A4分別位於相對應之磁穿隨接面記憶元件6ia、6ib、0503-A31218TWF 24 1273596 .= Bit 70, B1 and B2 are grounded and the voltage on all other bit lines is increased to ·. Then, a read voltage Vr is applied to access eπ ground. The other character axis reverse character line is connected. The receiver maintains a read current w on the reverse sub-element W1 and sets its value. In addition, the 'reading current W can be detected on the reverse word line W1 on the line A1 & send-adjust current ladj'. Then compare the states of the read currents M and M. Then the adjustment current Iadj is eliminated. L' Early The above embodiments provide various types of can arrays comprising a plurality of stacked groups and a plurality of wires. Each-stacking group includes N magnetic-piercing non-connecting surface stacks in parallel, and N is an integer greater than}. Each of the magnetic wear-receiving surface stacks includes a hard-to-magnetize axis whose direction is substantially parallel to the direction in which the N magnetic-piercing surface stacks are stacked. The plurality of wires are electrically non-positively subtracted from their corresponding or all of the N magnetic-piercing splicing surface stacks, and the extending directions of the wires are substantially perpendicular to the hard-to-magnetization axis of the f-magnetic tunneling junction stack. Embodiments of such MRAM arrays can include a plurality of stacks of panels, the stacks of which include, in addition to the above-described stack of magnetic wear-and-match surfaces, two electrical components that are electrically coupled to the scale-surface stack. One or both of the two elements may be a transistor or a diode. However, the array described in the following embodiments applies only one switching element to the plurality of magnetic tunnel junction stacks. Figure 20 is a schematic diagram of an electrical circuit of an array of magnetic tunneling junction memory elements in accordance with an embodiment of the present invention. The MRAM array 2000 includes data lines m, D2, bit lines m, B2, word line modulation, W2. The magnetic tunneling junction memory elements 61A, 61B, 61C, 6m are connected in parallel between the word line Wi and the node 63. Each of the magnetic wear-fed memory elements includes a free ferromagnetic layer 2〇2〇' fixed ferromagnetic layer 2040, and an insulating through between the free ferromagnetic layer 2〇2〇 and the fixed ferromagnetic layer 2〇4〇 Tunnel barrier 2030. The direction of the magnetic moment of the free ferromagnetic layer 2020 can be freely changed, the direction of the magnetic moment of the fixed ferromagnetic layer 2040 is fixed, and the insulating tunneling barrier 2 〇 3 〇 is an extremely thin insulating layer. The NMOS transistor of switching element 65 is connected between bit line B1 and node 63, which is controlled by the selected signal on the data line. In the embodiment of FIG. 2, the four magnetic tunneling junction elements 61A to 61D are all connected to the node 63. In addition to a one-node configuration (10) 0503-A31218TWF 25 1273596 magnetic wear-through surface elements can also be configured with one or three magnetic wear-through surface memory elements in one node. The programming lines A!, A2, A3, and A4 are respectively located in the corresponding magnetic wear-and-match surface memory elements 6ia, 6ib,

為了寫入或改變磁穿随接面記憶元件61A之狀態,必須施加一外部磁 場’該磁場大小足崎全轉換磁穿隨面記航件6iA中之自由鐵磁性層 的穩態磁矩方向。第21酬示第2G财之電路2_的部分截面圖。第22 關不第20圖中之電路2_的部分平面圖。於第21圖中之電路形成於基 材70之上。為了㈣料寫人至磁穿隨接面記憶元件6u,選取字元線-以I編程線A卜於是施加第—寫人電流Iwl於選取之字元線㈣之上,並 施加第二寫人電流Iw2於選取之編程線A1之上。第_寫人電流μ於所選 取之字元線W1附近產生第—寫人磁場。第二寫人電流—於所選取之編 程線A1附近產生第二寫入磁場。、结果由電流Iwl與⑽產生之第一與第二 寫入磁場於磁f隧接面記憶元件ό1Α處形成一合併磁場。此外,第以圖之 MRAM陣列電路提供於基材70上形成應施層之範例。此方法可純實 施數次以形成多層結構之MRAM。舉例來說,第21圖之2個電路陣^ 可於基材70之上疊加。因此晶片之記憶容量可增加為近二倍。 曰 自由鐵磁性層之穩定磁矩方向平行於易磁化軸並垂直於難磁化轴。於 第22圖中,難磁化軸垂直於編程線A1之延伸方向。於另—實施型能中,、 難磁化軸與編程線A1延伸方向之夾角約為45度,如第23圖巾的電ς'屬 所示。第一及第二寫入磁場之合併磁場,其強度已超過一低限磁場,該低 限磁場足以轉換被寫人之磁穿隧接面記憶元件中的自由_性層^穩^ 矩方向。於是被選取之磁穿隧接面記憶元件61Α中儲在 — " %巾J 一疋數位資料。 第20_23圖中所示之MRAM陣列實施例的讀取程序可參考第η圖中 的過程。首先,於步驟210中選取對應於受讀取之磁穿隨接面圮憔元件^八 的位元線Β1,並施加讀取電壓Vread於其上。此時再選取對廡於^綠取之磁 0503-A31218TWF 26 1273596 -冑隨接面記憶元件61A的資料線D1,而對應於受讀取之磁賴接面記憶元 2、61A的字元線W1接地。於是開關元件65被導通,而第一讀取電流w • μ過位tl線Β卜關讀65、錢該等並聯之臂麟面纖元件,最後 流至接地的字元線W1。 羲 接著,於步驟22〇,保持第-讀取電流Irl並藉感測電路2〇1〇取樣該 讀Μ。接著於步驟23G中,於編程線A1上施加一調整電流^以產 生一「擺動」磁場(wiggle magnetic fleld,其方向為沿著磁穿隨接面元件之 難磁化軸方向),以便暫時改變對應於編程線A1之受讀取磁雜接面記憶 =件61A的自由鐵磁性層之磁矩方向。該擺動磁場小於低限磁場,因此磁 • f賴®記憶元件61A之磁矩方向不會永久性改變。此外,該擺動磁場沿 著難磁化軸有-非零分量,因而受讀取之磁穿_面記憶元件的鐵磁性自 由層之磁矩方向會暫時性地轉變一介於〇至如度之角度。接著施加第二讀 取電流Ir2,其流經位元線m、開關元件65、該等並聯之磁穿隨接面記憶 :件,最後流至接地之字元線W卜於步驟24〇中,於擺動磁場仍存在時, 藉感測電路2010保持並取樣第二讀取電流Ir2。必須注意的是,於所有此 處揭示的實施例中,根據電路設計與應用方式,用以產生擺動磁場而施加 之調整信號(電流或電壓)可能可以永久性地改變受選取記憶單元之磁矩方 _向,而非僅提供替性的改變。於此等實施型態中,記憶單元之讀取(及寫 入)可視為「破壞性」,而必須運用額外的步驟以將受讀取之 吕己憶單元恢復至原先磁矩的狀態。 感測電路2010之後於步驟250中對第一與第二讀取電流士丨、b2進行 比較。於步驟260中,若發現第二讀取電流Ir2超過第一讀取電流虹丨,則 受讀取之磁穿隧接面記憶元件的自由鐵磁性層於被擺動電流轉變前之磁矩 方向為與固定鐵磁性層之磁矩方向不相平行。於是,原本自由鐵磁性層之 磁矩方向是不平行於固定鐵磁性層,因此所讀取之磁穿隧接面記憶元^的 原本狀態為不平行的,如步驟270所示。若於施加擺動電流〗吨時發現第一In order to write or change the state of the magnetic wear-receiving surface memory element 61A, an external magnetic field must be applied. This magnetic field size is the steady-state magnetic moment direction of the free ferromagnetic layer in the full-transfer magnetic wear-through surface-tracking member 6iA. The 21st part shows a partial cross-sectional view of the 2G financial circuit 2_. Section 22 is not a partial plan view of circuit 2_ in Figure 20. The circuit in Fig. 21 is formed on the substrate 70. In order to (4) write the person to the magnetic wear interface memory element 6u, select the word line - the I programming line A then apply the first write current Iwl on the selected word line (4), and apply the second writer The current Iw2 is above the selected programming line A1. The first _ writeer current μ produces a first-write human magnetic field near the selected character line W1. Second write current - produces a second write magnetic field near the selected programming line A1. As a result, the first and second write magnetic fields generated by the currents Iw1 and (10) form a combined magnetic field at the magnetic f-tunnel surface memory element ό1Α. In addition, the illustrated MRAM array circuit is provided on the substrate 70 to form an example of the layer to be applied. This method can be implemented purely several times to form a multi-layer structure of MRAM. For example, the two circuit arrays of Fig. 21 can be superimposed on the substrate 70. Therefore, the memory capacity of the chip can be increased by nearly two times.稳定 The direction of the stable magnetic moment of the free ferromagnetic layer is parallel to the axis of easy magnetization and perpendicular to the axis of hard magnetization. In Fig. 22, the hard magnetization axis is perpendicular to the extending direction of the program line A1. In another embodiment, the angle between the hard magnetization axis and the direction in which the programming line A1 extends is about 45 degrees, as shown in the Figure 23 of the Figure 236. The combined magnetic field of the first and second write magnetic fields has an intensity exceeding a low limit magnetic field sufficient to convert the direction of the free-form layer in the magnetic tunneling interface memory element of the written person. Then, the selected magnetic tunneling junction memory element 61 is stored in the "% towel J. The reading procedure of the MRAM array embodiment shown in Fig. 20_23 can refer to the process in the nth figure. First, in step 210, a bit line 对应1 corresponding to the magnetic flux-following surface element VIII to be read is selected, and a read voltage Vread is applied thereto. At this time, the data line D1 of the magnetic memory 0503-A31218TWF 26 1273596 - 胄 胄 面 memory element 61A is selected, and the word line corresponding to the read magnetic memory surface memory element 2, 61A is selected. W1 is grounded. Then, the switching element 65 is turned on, and the first read current w • μ is over the tl line, and the parallel arm arm element is finally turned to the grounded word line W1.羲 Next, in step 22, the first read current Irl is held and the read Μ is sampled by the sensing circuit 2〇1〇. Next, in step 23G, an adjustment current ^ is applied to the programming line A1 to generate a "wobble magnetic field" (the direction is along the direction of the hard magnetization axis of the magnetic wear-fitting surface element) to temporarily change the correspondence. The direction of the magnetic moment of the free ferromagnetic layer of the read magnetic miscellaneous surface of the programming line A1 = 61A. The oscillating magnetic field is smaller than the low-limit magnetic field, so the magnetic moment direction of the magnetic ray memory element 61A does not change permanently. In addition, the oscillating magnetic field has a non-zero component along the hard magnetization axis, so that the direction of the magnetic moment of the ferromagnetic free layer of the read magnetic flux-through memory element temporarily changes from an angle of 〇 to 如. Then, a second read current Ir2 is applied, which flows through the bit line m, the switching element 65, the parallel magnetic flux-passing surface memory, and finally flows to the grounded word line W in step 24, When the swinging magnetic field still exists, the sensing circuit 2010 holds and samples the second read current Ir2. It must be noted that in all of the embodiments disclosed herein, the adjustment signal (current or voltage) applied to generate the wobble magnetic field may permanently change the magnetic moment of the selected memory cell, depending on the circuit design and application. Party _ direction, rather than just providing alternative changes. In these implementations, the reading (and writing) of the memory unit can be considered "destructive" and additional steps must be taken to restore the read unit to the original magnetic moment. The sensing circuit 2010 then compares the first and second read currents, b, b2, in step 250. In step 260, if the second read current Ir2 is found to exceed the first read current rainbow, the direction of the magnetic moment of the free ferromagnetic layer of the read magnetic tunneling interface memory element before the swing current is converted is The direction of the magnetic moment of the fixed ferromagnetic layer is not parallel. Therefore, the direction of the magnetic moment of the original free ferromagnetic layer is not parallel to the fixed ferromagnetic layer, so that the original state of the magnetic tunneling surface memory element read is non-parallel, as shown in step 270. If the oscillating current is applied, the first is found.

0503-A31218TWF 27 1273596 \ 2取電流irl超過第二讀取電流Ir2,則受讀取之轉隨接面記憶元件的自 鐵磁性層於被擺動電流轉變前之祕方向為與@定鐵雜層之磁矩方向 . 相平2。於是,原本自由鐵磁性層之磁矩方向是平行於固定i磁性層,因 . 此所eW取之磁穿随接面記憶元件的原本狀態為平行的,如步驟275所示。 =此等實關巾在施加擺動磁場讀況下受棘之辦轉面記憶元$的 電阻值(Rpresent)可以下式(1)表示: ^present = H ~~ (1 COS Θ) ⑴ 介其中rl為當自由鐵磁性層與固定鐵磁性層之磁矩方向相互平行時,磁 牙隨接面記憶70件之低電阻值;而^為當自由鐵磁性層與固定鐵磁性層之 罾雜方向不平㈣,磁穿賴面記憶元狀高餘值、Θ為由所施力曰口的 擺動磁場而產生的角度變化。 接著’於步驟28〇中,消除調整電流Iadj,於是去除了擺動磁場。由於 擺動磁場小於轉換磁穿隨接面記憶元件之穩定電阻的低限磁場,自由鐵磁 性層之磁場方向贿至原絲施加鶴磁場之狀態。於是在去除擺動磁場 之後1讀取之磁穿_面錄元㈣姐雌施加鶴萄之前的電阻 值相日此並不%要於_取程序之後另行將原先的資料寫人受讀取之 記憶單元中,因為此並非「破壞性」讀取。 籲-帛24圖為依據本發明實施例之僅運用單一開關元件的磁穿随接面記憶 元件之陣列24〇〇的電路不意圖。陣列〇包括資料線, 位7G線Bl、B2 ’字元線W2。磁穿隧接面記憶元件71A、71B、、 7iD並聯於位元線B1與節點73之間。每一磁穿隨接面記憶元件包括自由 鐵磁性層2420、固定鐵磁性層綱、以及介於自由鐵雜層纖與固定 鐵磁性層2440之間的絕緣穿隨障壁243〇。自由鐵磁性層242〇之磁矩方向 可自由變動,儀鐵磁性層244〇之磁矩方向眺,而絕緣穿随障壁綱 為極薄之絕緣層。 ' 開關元件2450之NM〇s電晶體連接介於字元線wi與節點乃之間,0503-A31218TWF 27 1273596 \ 2 Take the current irl over the second read current Ir2, then the direction of the self-ferromagnetic layer of the read-to-connect memory device before the transition of the oscillating current is the same as the @定铁分层The direction of the magnetic moment. Level 2. Thus, the direction of the magnetic moment of the original free ferromagnetic layer is parallel to the fixed i magnetic layer, because the original state of the magnetic wear-fed memory element is parallel, as shown in step 275. = The resistance value (Rpresent) of the memory pocket of the real-purpose wipes under the application of the oscillating magnetic field can be expressed by the following formula (1): ^present = H ~~ (1 COS Θ) (1) Rl is a low resistance value of 70 pieces of magnetic teeth accompanying surface when the magnetic moment directions of the free ferromagnetic layer and the fixed ferromagnetic layer are parallel to each other; and ^ is the noisy direction of the free ferromagnetic layer and the fixed ferromagnetic layer Inequality (4), the magnetic perforation surface memory elementary high residual value, Θ is the angular change caused by the swinging magnetic field of the applied force. Then, in step 28, the adjustment current Iadj is removed, and the wobble magnetic field is removed. Since the oscillating magnetic field is smaller than the low-limit magnetic field of the stabilizing resistance of the magnetic flux-transforming surface memory element, the magnetic field of the free ferromagnetic layer is bribed to the state where the original magnetic field is applied by the crane. Therefore, after removing the oscillating magnetic field, the reading of the magnetic _ surface recording element (4) before the application of the stagnation of the sputum is not necessary. In the unit, this is not a "destructive" read. The Fig. 24 is a circuit diagram of an array 24 of magnetic flux-fed surface memory elements using only a single switching element in accordance with an embodiment of the present invention. The array 〇 includes a data line, a bit 7G line B1, and a B2 ′ word line W2. The magnetic tunneling junction memory elements 71A, 71B, and 7iD are connected in parallel between the bit line B1 and the node 73. Each of the magnetic wear-fed memory elements includes a free ferromagnetic layer 2420, a fixed ferromagnetic layer, and an insulating through barrier 243 between the free ferrosilicon and the fixed ferromagnetic layer 2440. The direction of the magnetic moment of the free ferromagnetic layer 242 can be freely changed, the direction of the magnetic moment of the ferromagnetic layer 244 is 眺, and the insulating wear is extremely thin with the barrier layer. The NM〇s transistor connection of the switching element 2450 is between the word line wi and the node.

0503-A31218TWF 28 1273596 . 該NMOS電晶體受資料、線D1上之選取信號之控制。於第24圖之實施型態 中,該4個磁穿隧接面元件71A至WD皆連接至節點?3。除了 —節點配= ,4個磁穿面元件以外,亦可—節點配置2個或3個磁穿_面記憶元 . 件。編程線Μ、A2、A3、A4分別位於相對應之磁穿隨接面記憶元件7ia、 71B、71C、71D的附近。此外,感測電路241〇於執行讀取動作時對流經位 元線B1與B2上的電流進行偵測。 纟了將資㈣人至磁f麟面記憶元件71A,必縣科元線谓以 及編程線A卜於是施加第一寫入電流Iwl於選取之字元線调之上,並施 加第二寫入電流Iw2於選取L編程線A1之上。第一寫入電流ΙΜ於所選取 籲之字元線W1附近產生第-寫入磁場。第二寫入電流Iw2於所選取之編程 線A1附近產生第二寫入磁場。結果由電流Iwl與〗^^產生之第一與第二寫 入磁場於«隧接面記憶元件71A處職_合併磁場,該合併磁場^度 足以將磁穿隧接面記憶元件71A中的自由鐵磁性層之穩定磁矩方向完全轉 變。(參考第22圖) 自由鐵雜狀歡魏方解行於㈣化軸麵直於難磁化轴。於 部分實施雜巾,難魏麵直__A1之延伸方向。於其他實施型態 中,難磁化軸與編程線A1延伸方向之夹角可為45度。第一及第二寫人磁 鲁場之合併磁場,其強度已超過一低限磁場,該低限磁場強度足以轉換被寫 入之磁穿随接面記憶元件中的自由鐵磁性層之穩定磁矩方向。於是被選取 之磁穿隧接面記憶元件71A中儲存了二元數位資料。 第24圖中所示之MRAM陣列實施例的讀取程序仍舊遵循第u圖中所 述的步驟。f先’選取誠於受讀取之磁穿随接面纖元件7认的位元線 B卜並施加讀取電壓Vread於其上(步驟训)。接著再選取對應於受讀取之磁 穿1¾接面記憶元件71A的資料線以,而對應於受讀取之磁穿隧接面記憶元 件71A的字元線W1接地。於是開關元件綱被導通,而第一讀取電流 流過位元線Β卜該等並聯之磁穿隨接面記憶元件、以及開關元件綱,最0503-A31218TWF 28 1273596. The NMOS transistor is controlled by the selected signal on the data line D1. In the embodiment of Fig. 24, the four magnetic tunneling junction elements 71A to WD are all connected to the node? 3. In addition to - node matching =, 4 magnetic wear-through components, can also be configured - 2 or 3 magnetic wear-through memory elements. The programming lines A, A2, A3, and A4 are respectively located in the vicinity of the corresponding magnetic wear-and-match surface memory elements 7ia, 71B, 71C, 71D. In addition, the sensing circuit 241 detects current flowing through the bit lines B1 and B2 when performing a read operation. In order to apply the first write current Iw1 to the selected character line and apply the second write The current Iw2 is above the selected L programming line A1. The first write current 产生 produces a first-write magnetic field near the selected word line W1. The second write current Iw2 produces a second write magnetic field near the selected programming line A1. As a result, the first and second write magnetic fields generated by the currents Iw1 and 〖^^ are at the interface of the tunneling surface memory element 71A, and the combined magnetic field is sufficient to free the magnetic tunneling interface memory element 71A. The direction of the stable magnetic moment of the ferromagnetic layer is completely changed. (Refer to Figure 22) The free iron-like shape of the Weifang is solved in (4) the axis of the axis is perpendicular to the axis of hard magnetization. In some implementation of the rags, it is difficult to extend the direction of the __A1. In other embodiments, the angle between the hard magnetization axis and the direction in which the programming line A1 extends may be 45 degrees. The combined magnetic field of the first and second written magnetic field has a strength exceeding a low-limit magnetic field, and the low-limit magnetic field strength is sufficient to convert the stable magnetic force of the free ferromagnetic layer in the magnetic-wearing interface memory element to be written Moment direction. The binary data stored in the selected tunneling interface memory element 71A is then stored. The reading procedure of the MRAM array embodiment shown in Figure 24 still follows the steps described in Figure u. f first selects the bit line B which is believed to be read by the magnetic wear-fed surface element 7 and applies the read voltage Vread thereto (step training). Next, the data line corresponding to the read magnetic via lands 116A is selected, and the word line W1 corresponding to the read magnetic tunnel junction memory element 71A is grounded. Then the switching element is turned on, and the first read current flows through the bit line, and the parallel magnetic flux-engaging surface memory element and the switching element are the most

0503-A31218TWF 29 1273596 丨後流至接地的字元線w卜接著保持第一讀取電流Irl並藉感測電路震 取樣該讀取電流Irl(步驟22G)。接著於絲線A1上施加—膽電流^以 ,產生-獅磁場,以便暫時改變對應於編程線乂之受讀取磁穿隧接面記憶 •元件71A _由鐵磁性層之磁矩方向(步驟23〇)。此處之擺動磁場強度小於 低限磁場之強度。此外,該擺動磁場沿著難磁化轴有一非零分量,因而受 讀取之磁親接面記憶元件的鐵雜自由層之磁矩方向會暫時性地轉變一 介於0至90度之角度。 接著·^二讀取糕Μ,其流雜元線m、轉並聯之磁穿隨接面 記憶元件、開關元件2450,最後流至接地之字元線谓。接著,於擺動磁 _場仍存在日守’藉感測電路241〇保持並取樣第二讀取電流步驟施)。接 著感測電路24H)對第-與第二讀取電流.Ir2進行比較(步驟25〇)。於步 驟260巾,若發現第二讀取電、流Ir2超過第一讀取電、流fri,則受讀取之磁 牙隧接面6己|思元件81A於被擺動電流轉變前,原本的自由鐵磁性層之磁矩 方向為與固定鐵磁性層之磁矩方向不相平行(步驟27〇)。若發現第一讀取電 流Irl超過第二讀取電流Ir2,則受讀取之磁穿隧接面記憶元件81A於被擺 動電流轉變前,原本的自由鐵磁性層之磁矩方向為與固定鐵磁性層之磁矩 方向相平行(步驟275)。由於第二讀取電流Ir2可反映節點63與字元線W1 鲁之間的整體電阻值,而該整體電阻值已由於磁穿隧接面記憶元件受擺動磁 場之影響而改變,因此儲存於受讀取之磁穿隧接面記憶元件的資料可藉由 比較第一讀取電流Irl與第二讀取電流Ir2之值而獲得。 接著去除擺動磁%(步驟280)。由於擺動磁場小於轉換磁穿隧接面記憶 元件71A之穩定電阻的低限磁場,自由鐵磁性層之磁場方向回復至原先未 施加擺動磁場之狀態。於是在去除擺動磁場之後,受讀取之磁穿隧接面記 憶元件71A的電阻值與施加擺動磁場之前的電阻值相同。所以此時並不需 要於讀取程序之後另行將原先的資料寫入受讀取之記憶單元中。0503-A31218TWF 29 1273596 The word line w after flowing to the ground is then held by the first read current Irl and sampled by the sensing circuit to sample the read current Irl (step 22G). Then, a biliary current is applied to the wire A1 to generate a lion magnetic field to temporarily change the direction of the magnetic moment of the ferromagnetic layer of the read magnetic tunneling interface memory element 71A corresponding to the programming line (step 23). 〇). Here the swing magnetic field strength is less than the strength of the low limit magnetic field. Moreover, the wobble magnetic field has a non-zero component along the hard magnetization axis, and thus the direction of the magnetic moment of the iron free layer of the magnetically abutting memory element being read temporarily transitions from an angle of 0 to 90 degrees. Then, the second reading of the cake, the flow line m, the magnetic parallel connection of the memory element, the switching element 2450, and finally to the grounded word line. Then, there is still a stalk in the oscillating magnetic field, and the sensing circuit 241 〇 holds and samples the second reading current step. The first and second read currents .Ir2 are then compared by the sensing circuit 24H) (step 25A). In step 260, if the second read power and the current Ir2 are found to exceed the first read power and the flow fri, the read magnetic tooth tunneling surface 6 has been converted to the swing current, and the original The direction of the magnetic moment of the free ferromagnetic layer is not parallel to the direction of the magnetic moment of the fixed ferromagnetic layer (step 27A). If it is found that the first read current Irl exceeds the second read current Ir2, the magnetic moment direction of the original free ferromagnetic layer is the fixed iron before the read magnetic tunneling interface memory element 81A is transformed by the swing current. The magnetic moment directions of the magnetic layers are parallel (step 275). Since the second read current Ir2 can reflect the overall resistance value between the node 63 and the word line W1 Lu, and the overall resistance value has changed due to the influence of the swinging magnetic field on the magnetic tunneling interface memory element, it is stored in the received The data of the read magnetic tunneling interface memory element can be obtained by comparing the values of the first read current Irl and the second read current Ir2. The swing magnetic % is then removed (step 280). Since the wobble magnetic field is smaller than the low-limit magnetic field of the stabilizing resistance of the switching magnetic tunneling interface memory element 71A, the magnetic field direction of the free ferromagnetic layer returns to the state where the wobble magnetic field was not originally applied. Then, after the wobble magnetic field is removed, the resistance value of the magnetic tunneling interface memory element 71A to be read is the same as the resistance value before the application of the wobble magnetic field. Therefore, it is not necessary to separately write the original data into the memory unit to be read after reading the program.

第25圖為依據本發明實施例之僅運用單一開關元件的磁穿隧接面記憶 0503-A31218TWF 30 1273596 兀件之陣列2500的電路示意圖。mram陣列25〇〇包括資料線Db D2, 位元線B1、B2,字元線w卜W2。磁穿隧接面記憶元件81A、81B並聯於 • 節點82與節點83之間,而磁穿隧接面記憶元件81C、81D並聯於節點82 • 與位70線B1之間。此處之並聯的磁穿隧接面記憶元件組成一磁穿隧接面記 憶元件組,而數個磁穿隧接面記憶元件組以並聯方式連接。舉例來說,磁 穿隧接面記憶元件81入與813組成第一磁穿隧接面記憶元件組,而磁穿隧 接面記憶元件81C與81D組成第二磁穿隧接面記憶元件組,該第一磁穿隧 接面記憶元件組與第二磁穿隧接面記憶元件組相串聯。 於另一實施型態中,磁穿隧接面記憶元件81A與81B串聯後形成第一 修磁f隧接面記憶元件組,❿磁穿隧接面記憶元件S1C與S1D串聯後形成第 二磁穿隧接面記憶元件組,而第一磁穿隧接面記憶元件組與第二磁穿隧接 面記憶元件組相並聯,如第26圖之陣列26〇〇所示。然而於此種不 同之貫施型態下,其他之信號線路之連接方式仍舊與第25圖中所示相同, 例如貧料線D1、位元線Β1、字元線w卜編程線Α1〜Α4。 於第25圖之實施型態中,磁穿隧接面記憶元件8丨a與81]3配置於節點 83之下’而磁穿隧接面記憶元件81C與81D配置於節點82之下。雖然本 貫施例中每一磁穿隧接面記憶元件組僅包括二個磁穿隧接面記憶元件,但 •每一磁穿隧接面記憶元件組亦可包括二個以上之磁穿隧接面記憶元件。每 一磁穿隨接面記憶元件包括自由鐵磁性層2520、固定鐵磁性層2540、以及 介於自由鐵磁性層2520與固定鐵磁性層2540之間的絕緣穿隧障壁253〇。 自由鐵磁性層2520之磁矩方向可自由變動,固定鐵磁性層254〇之磁矩方 向固定,而絕緣穿隧障壁253〇為極薄之絕緣層。開關元件255〇之_〇8 電晶體連接介於字元線W1與節點83之間,該NMOS電晶體受資料線!^ 上之選取信號之控制。編程線Al、A2、A3、A4分別位於相對應之磁穿隧 接面。己k、元件81A、81B、81C、81D的附近。此外,感測電路2510可對流' 經位元線B1與B2上的電流進行偵測。Figure 25 is a circuit diagram of an array 2500 of magnetic tunneling junction memory 0503-A31218TWF 30 1273596 using only a single switching element in accordance with an embodiment of the present invention. The mram array 25A includes a data line Db D2, bit lines B1, B2, and a word line w. The magnetic tunneling junction memory elements 81A, 81B are connected in parallel between the node 82 and the node 83, while the magnetic tunneling interface memory elements 81C, 81D are connected in parallel between the node 82 and the bit 70 line B1. Here, the parallel magnetic tunneling junction memory elements form a magnetic tunneling junction memory component group, and the plurality of magnetic tunneling junction memory component groups are connected in parallel. For example, the magnetic tunneling interface memory element 81 and the 813 form a first magnetic tunneling junction memory element group, and the magnetic tunneling interface memory elements 81C and 81D form a second magnetic tunneling junction memory element group. The first magnetic tunneling junction memory element group is in series with the second magnetic tunneling junction memory element group. In another embodiment, the magnetic tunneling interface memory elements 81A and 81B are connected in series to form a first magnetically modified f-tunnel surface memory element group, and the magnetic tunneling interface memory elements S1C and S1D are connected in series to form a second magnetic field. The tunneling interface memory element group is tunneled, and the first magnetic tunneling surface memory element group is connected in parallel with the second magnetic tunneling surface memory element group, as shown in the array 26 of FIG. However, in this different mode, the connection mode of other signal lines is still the same as that shown in Fig. 25, for example, the lean line D1, the bit line Β1, the word line w, the programming line Α1~Α4 . In the embodiment of Fig. 25, the magnetic tunneling interface memory elements 8a and 81]3 are disposed below the node 83 and the magnetic tunneling interface memory elements 81C and 81D are disposed below the node 82. Although each of the magnetic tunneling interface memory element groups includes only two magnetic tunneling interface memory elements in the present embodiment, each magnetic tunneling interface memory element group may also include more than two magnetic tunneling. Junction memory element. Each of the magnetically worn compliant surface memory elements includes a free ferromagnetic layer 2520, a fixed ferromagnetic layer 2540, and an insulating tunneling barrier 253 介于 between the free ferromagnetic layer 2520 and the fixed ferromagnetic layer 2540. The direction of the magnetic moment of the free ferromagnetic layer 2520 is freely variable, the direction of the magnetic moment of the fixed ferromagnetic layer 254 is fixed, and the insulating tunneling barrier 253 is an extremely thin insulating layer. The switching element 255 〇 电 8 transistor connection is between the word line W1 and the node 83, and the NMOS transistor is controlled by the selected signal on the data line ! The programming lines A1, A2, A3, and A4 are respectively located on the corresponding magnetic tunneling planes. It is near k, the vicinity of the elements 81A, 81B, 81C, 81D. In addition, the sensing circuit 2510 can detect the current flowing through the bit lines B1 and B2.

0503-A31218TWF 31 1273596 •為了將資料寫入至磁穿隨接面記憶元件81A,必須選取字元線谓以 及,程線Ar。於是施加第一寫入電流Iwl於選取之字元線谓之上,並施 •加寫入電流1w2於選取之編程線Ai之上。第-寫入電流Iwl於所選取 ♦之子元線W1附近產生第一寫入磁場。第二寫入電流Iw2於所選取之編程 線A1附近產生苐一寫入磁場。結果由電流與產生之第一與第二寫 入磁場於磁f隨接面記憶元件81A處形成一合併磁場,該合併磁場之強度 足以將磁穿隨接面記憶元件81A中的自由鐵磁性層之穩定磁矩方向完全轉 變。 自由鐵磁性層之穩定磁矩方向平行於易磁化軸並垂直於難磁化軸。於 _此貝施型悲中’難磁化軸垂直於編程線A1之延伸方向。於其他實施型態 t,難磁化軸與編程線A1延伸方向之夾角可為45度。第—及第二寫入^ 場之合併磁場,其強度已超過一低限磁場,該低限磁場強度足以轉換被寫 入之磁穿隧接面記憶元件中的自由鐵磁性層之穩定磁矩方向。因此被選取 之磁穿隧接面記憶元件81Α中儲存了二元數位資料。 第25圖中所示之MRAM陣列實施例的讀取程序仍舊遵循第η圖中所 述的步驟。首先,選取對應於受讀取之磁穿隧接面記憶元件81Α的位元線 Β1,並施加讀取電壓Vread於其上(步驟21〇)。接著再選取對應於受讀取之磁 馨牙隧接面圮憶元件81A的資料線D1,而將對應於受讀取之磁穿隧接面記憶 元件81A的子元線W1接地。於是開關元件2550被導通,而第一讀取電流 Irl流過位元線B1、該等並聯之磁穿隧接面記憶元件81A_81D、以及開關元 件2550,最後流至接地的字元線wi。接著保持第一讀取電流Irl並藉感測 電路2510取樣該讀取電流lri(步驟220)。接著於編程線A1上施加一調整 電流Iadj以產生一擺動磁場,以便暫時改變對應於編程線八丨之受讀取磁穿 隧接面記憶元件81A的自由鐵磁性層之磁矩方向(步驟23〇)。此處之擺動磁 場強度小於低限磁場之強度。此外,該擺動磁場沿著難磁化軸有一非零分 量,因而受讀取之磁穿隧接面記憶元件的鐵磁性自由層之磁矩方向會暫時 0503-A31218TWF 32 .1273596 •性地轉變一介於〇至90度之角度。 接著施加第二讀取電流Ir2,其流經位元線Β1、磁穿隧接面記憶元件 , 81A-81D、開關元件2550,最後流至接地之字元線wi。接著,於擺動磁場 • 仍存在時,藉感測電路2510保持並取樣第二讀取電流Ir2(步驟24〇)。接著 感測電路2510對第一與第二讀取電流Irl、ir2進行比較(步驟250)。於步驟 260中’若發現第二讀取電流Ir2超過第一讀取電流,則受讀取之磁穿隧 接面記憶元件81A於被擺動電流轉變前,原本的自由鐵磁性層之磁矩方向 為與固定鐵磁性層之磁矩方向不相平行(步驟270)。若發現第一讀取電流Irl 超過第二讀取電流Ir2,則受讀取之磁穿隧接面記憶元件81A於被擺動電流 ® 轉變前,原本的自由鐵磁性層之磁矩方向為與固定鐵磁性層之磁矩方向相 平行(步驟275)。由於第二讀取電流ir2可反映節點83與字元線wi之間的 整體電阻值,而該整體電阻值已由於磁穿隧接面記憶元件受擺動磁場之影 %而改k,因此儲存於受讀取之磁穿隧接面記憶元件的資料可藉由比較第 一讀取電流Irl與第二讀取電流Ir2之值而獲得。 接著去除擺動磁場(步驟280)。由於擺動磁場小於轉換磁穿隨接面記情 元件81A之穩定電阻的低限磁場,自由鐵磁性層之磁場方向回復至原先未 施加擺動磁場之狀態。於是在去除擺動磁場之後,受讀取之磁穿隧接面記 鲁fe元件81A的電阻值與施加擺動磁場之前的電阻值相同。所以此時並不需 要於讀取程序之後另行將原先的資料寫入受讀取之記憶單元中。值得注意 的是,於上述所有實施例中,皆運用一感測電路藉著比較第一電流M與第 二電流Ir2之值,以獲得目標磁穿隨接面記憶元件中所儲存之資料。然而亦 可藉著量測施加擺動磁場前後之目標磁穿隧接面記憶元件上的電壓,以獲 得其中所儲存之資料。 又 本發明以實施例介紹了以非破壞性方式寫入與讀取記憶單元之方法, 包括··(1)於選取之位元線上取樣並保持第一信號;(2)沿著各複#丈之磁穿隨 接面記憶單元的難磁化軸方向施加一擺動磁場,其中該磁場足以使受選取0503-A31218TWF 31 1273596 • In order to write data to the magnetic wear-and-match surface memory element 81A, the word line and the line Ar must be selected. The first write current Iw1 is then applied over the selected word line and the write current 1w2 is applied over the selected programming line Ai. The first-write current Iw1 produces a first write magnetic field near the selected sub-element W1. The second write current Iw2 produces a first write magnetic field near the selected programming line A1. As a result, a combined magnetic field is formed by the current and the generated first and second write magnetic fields at the magnetic f-connecting surface memory element 81A, the combined magnetic field having an intensity sufficient to magnetically penetrate the free ferromagnetic layer in the interface memory element 81A. The direction of the stable magnetic moment is completely changed. The direction of the stable magnetic moment of the free ferromagnetic layer is parallel to the axis of easy magnetization and perpendicular to the axis of hard magnetization. In this case, the hard magnetization axis is perpendicular to the extending direction of the programming line A1. In other implementations t, the angle between the hard magnetization axis and the direction in which the programming line A1 extends may be 45 degrees. The combined magnetic field of the first and second write fields has a strength exceeding a low limit magnetic field, the low magnetic field strength being sufficient to convert the stable magnetic moment of the free ferromagnetic layer in the magnetic tunneling interface memory element being written direction. Therefore, binary magnetic data is stored in the selected magnetic tunneling interface memory element 81. The reading procedure of the MRAM array embodiment shown in Figure 25 still follows the steps described in Figure n. First, the bit line Β1 corresponding to the read magnetic tunnel junction memory element 81 is selected and the read voltage Vread is applied thereto (step 21A). Next, the data line D1 corresponding to the read magnetic tunneling interface memory element 81A is selected, and the sub-element W1 corresponding to the read magnetic tunneling interface memory element 81A is grounded. The switching element 2550 is then turned on, and the first read current Irl flows through the bit line B1, the parallel magnetic tunneling interface memory elements 81A_81D, and the switching element 2550, and finally to the grounded word line wi. The first read current Irl is then held and the read current lri is sampled by the sense circuit 2510 (step 220). Then, an adjustment current Iadj is applied to the programming line A1 to generate a wobble magnetic field for temporarily changing the direction of the magnetic moment of the free ferromagnetic layer of the read magnetic tunneling interface memory element 81A corresponding to the programming line gossip (step 23). 〇). Here the swing magnetic field strength is less than the strength of the low limit magnetic field. In addition, the oscillating magnetic field has a non-zero component along the hard magnetization axis, and thus the direction of the magnetic moment of the ferromagnetic free layer of the magnetic tunneling interface memory element to be read is temporarily 0503-A31218TWF 32.1273596. 〇 to an angle of 90 degrees. A second read current Ir2 is then applied, which flows through the bit line Β1, the magnetic tunneling junction memory element, 81A-81D, the switching element 2550, and finally to the grounded word line wi. Next, when the wobble magnetic field is still present, the sensing circuit 2510 holds and samples the second read current Ir2 (step 24A). The sensing circuit 2510 then compares the first and second read currents Irl, ir2 (step 250). In step 260, if the second read current Ir2 is found to exceed the first read current, the direction of the magnetic moment of the original free ferromagnetic layer before the read magnetic tunneling interface memory element 81A is converted by the wobble current. It is not parallel to the direction of the magnetic moment of the fixed ferromagnetic layer (step 270). If the first read current Irl is found to exceed the second read current Ir2, the direction of the magnetic moment of the original free ferromagnetic layer is fixed and fixed before the read magnetic tunneling interface memory element 81A is converted by the wobble current®. The magnetic moment directions of the ferromagnetic layers are parallel (step 275). Since the second read current ir2 can reflect the overall resistance value between the node 83 and the word line wi, and the overall resistance value has been changed to k due to the shadow of the magnetic tunneling interface memory element being subjected to the swing magnetic field, it is stored in The data of the read magnetic tunneling junction memory element can be obtained by comparing the values of the first read current Irl and the second read current Ir2. The wobble magnetic field is then removed (step 280). Since the oscillating magnetic field is smaller than the low-limit magnetic field of the stabilizing resistance of the magnetically oscillating surface symmetry element 81A, the magnetic field direction of the free ferromagnetic layer returns to the state where the oscillating magnetic field is not applied. Then, after the wobble magnetic field is removed, the magnetic resistance of the read magnetic tunneling junction surface element 81A is the same as the resistance value before the application of the wobble magnetic field. Therefore, it is not necessary to separately write the original data into the memory unit to be read after reading the program. It should be noted that in all of the above embodiments, a sensing circuit is used to compare the values of the first current M and the second current Ir2 to obtain the data stored in the target magnetic access interface memory element. However, it is also possible to obtain the data stored therein by measuring the voltage of the target magnetic tunneling surface memory element before and after the application of the oscillating magnetic field. The present invention, by way of example, introduces a method for writing and reading a memory unit in a non-destructive manner, including: (1) sampling and maintaining a first signal on a selected bit line; (2) along each complex # A magnetic field is applied to the hard magnetization axis of the memory unit of the interface, wherein the magnetic field is sufficient for selection

0503-A31218TWF 33 1273596 以魏方向獅—介於G至9G度之銳肖,但該磁場又不足 轉; (3)於__之位元賴自由鐵 磁=4’ _細—位元線上的第二信魏行取樣;(佩較第一與第 一^唬以辨別該受選取位元之狀態。 /、 如上’必須瞭解該等實施例僅供說明參考而非 本發明之範圍不應受上述任何實施例之限制,而應由 礙噴綱或所有該等 該等=:=:=:r:r定並提一^ 技術領域」,11 _ ’雖然標題為「發明之 之辭句。此外,Γ「I於該標題段落中用以描述所謂的技術領域 ,'切馳」標題下馳狀触减被論斷為已被承 =為=月之習知技術。而「發咖容」亦不應被視於求 述之本發明的描述。此外,本發明之敘述中以 = :=:包含單::量之該物。依一 — #轉4求項制定義了本發明及其等值物,藉此保1太0503-A31218TWF 33 1273596 The lion in the direction of the Wei - between the G and the 9G degree, but the magnetic field is not enough; (3) in the __ position on the free ferromagnetic = 4' _ fine - bit line The second letter is sampled; (the first and the first are compared to identify the state of the selected bit. /, as above, it is necessary to understand that the embodiments are for illustrative purposes only and the scope of the invention is not The limitations of any of the above embodiments should be determined by the impediment or all of these ===:=:r:r and the technical field, 11_' although the title is "the invented sentence." In addition, Γ "I used to describe the so-called technical field in the title paragraph, and the heading of the 'cutting' heading was judged to be the conventional technology that has been accepted as = month. The description of the present invention should not be taken as a description. In addition, in the description of the present invention, =:=: contains a single:: quantity of the object. The invention is defined by the one-to-four item system. Value, to protect 1 too

發明=範圍。於所有情況下,該等請求項之範圍應依據其本身之法律Μ 而決定’而非受說明書中標題的限制。 思 0503-A31218TWF 34 .1273596 ·· 【圖式簡單說明】 第1圖為Tang之發明所揭露之2T1之磁㈣接面元件之陣列 _ 的結構; • 第2圖為Gallagher之發明所揭露之電路; 第3圖A Pemer之發曰月所揭露之交叉點陣列,其中包含複數之磁穿隨 接面記憶單元; 第4A圖與第4B圖為第3圖中流經化職之電阻性交叉點陣列的感測 與漏電電流通路; 第5圖為Gogl之發明所揭露的mram組態; • 第6圖為本發明實施例之包含記憶單元陣列的積體電路元件之功能區 塊圖; 第7圖為本發明實施例之運用於第6圖中記憶單元陣列的記憶單元之 功能區塊圖; 第8圖為本發明實施例之記憶單元陣列的部分電路圖; 第9圖為第8圖中之記憶單元陣列的部分截面圖; 第10圖為第8圖中之記憶單元陣列的部分平面圖; 第11圖為本發明實施例之讀取記憶單元之方法的流程圖; • 第12圖為第8圖中之記憶單元陣列的另一實施型態; 第13圖為第8圖中之記憶單元陣列的另一實施例之部分電路圖; 第14圖為第8圖中之記憶單元陣列的另一實施例之部分電路圖; 第15圖為第Η圖中之記憶單元陣列的另一實施例之部分電路圖; 第16圖為第14圖中之記憶單元陣列的又另一實施例之部分電路圖; 第17圖為第16圖中之記憶單元陣列的另一實施例之部分電路圖; 第18圖為第π圖中之記憶單元陣列的另一實施例之部分電路圖; 第19圖為第17圖中之記憶單元陣列的又另一實施例之部分電路圖;Invention = scope. In all cases, the scope of such claims shall be determined in accordance with their own legal know- ‘not subject to the headings in the specification.思0503-A31218TWF 34 .1273596 ·· [Simple diagram of the diagram] Figure 1 shows the structure of the array of magnetic (4) junction elements of 2T1 disclosed by Tang's invention; • Figure 2 shows the circuit disclosed by the invention of Gallagher Figure 3 is a cross-point array disclosed by Pemer's hair, which contains a plurality of magnetic wear-and-match surface memory cells; Figures 4A and 4B are the resistive cross-point arrays flowing through the chemical system in Figure 3. Sensing and leakage current path; FIG. 5 is a mram configuration disclosed by Gogl's invention; FIG. 6 is a functional block diagram of an integrated circuit component including a memory cell array according to an embodiment of the present invention; FIG. 8 is a partial circuit diagram of a memory cell array according to an embodiment of the present invention; FIG. 9 is a memory diagram of FIG. 8 is a functional block diagram of a memory cell used in the memory cell array of FIG. 6; a partial cross-sectional view of a cell array; FIG. 10 is a partial plan view of the memory cell array in FIG. 8; FIG. 11 is a flow chart of a method of reading a memory cell according to an embodiment of the present invention; Another of the memory cell arrays FIG. 13 is a partial circuit diagram of another embodiment of the memory cell array in FIG. 8; FIG. 14 is a partial circuit diagram of another embodiment of the memory cell array in FIG. 8; FIG. 16 is a partial circuit diagram of still another embodiment of the memory cell array in FIG. 14; FIG. 17 is a memory cell in FIG. a partial circuit diagram of another embodiment of the array; FIG. 18 is a partial circuit diagram of another embodiment of the memory cell array in the πth diagram; FIG. 19 is another embodiment of the memory cell array in FIG. Part of the circuit diagram;

第2〇圖為根據本發明實施例之配置單一開關元件的磁穿隧接面記憶元 0503-A31218TWF 35 .1273596 件之記憶陣列的電路圖; =21圖為第20圖中之電路的部分截面圖; 第22圖為第20圖中之電路的部分平面圖; 第23圖為第20圖中之電路的另一部分平面圖; 憶 =24圖,據本發㈣—實施例之配置單—關元件的磁雜接面記 兀件之§己丨思陣列的電路圖; 記憶===—實施例之配置單-開關元件的磁賴面2 is a circuit diagram of a memory array of a magnetic tunneling interface memory element 0503-A31218TWF 35 .1273596 arranging a single switching element according to an embodiment of the present invention; FIG. 21 is a partial cross-sectional view of the circuit in FIG. Figure 22 is a partial plan view of the circuit of Figure 20; Figure 23 is a plan view of another portion of the circuit of Figure 20; 忆 = 24 Figure, according to the present invention (four) - the configuration of the single-off component of the magnetic Circuit diagram of the § 丨 阵列 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

第26圖為運用於第25 實施方式。 圖中之磁穿隧接面記憶元件的另一分組耦接之 【主要元件符號說明】 100〜Tang 之 2T1R 之 MRAM 單元; 12〜位元線; 15A、15B〜編程線; 20A、20B〜記憶單元; 24A、24B〜字元線; 300〜Pemer之交叉點記憶單元陣列; 31〜磁穿隧接面記憶單元; 33〜位元線; 10A、10B、l〇C〜開關元件; 14A、14B〜記憶單元; 200〜Gallagher 之電路; 22A、22B〜位元線; 32〜字元線; 42A、42B、42C、42D〜記憶單元之電阻 Is〜感測電流; 500〜GogliMRAM;51A、51B〜字元線; S3、S4〜漏電流; 50〜位元線; 51、52、53、54、別、56、57、 58〜磁穿隧接面記憶元件;Figure 26 is a view for the twenty-fifth embodiment. Another group coupling of the magnetic tunneling interface memory element in the figure [Main component symbol description] 100~Tang 2T1R MRAM cell; 12~bit line; 15A, 15B~ programming line; 20A, 20B~memory Unit; 24A, 24B~word line; 300~Pemer cross point memory cell array; 31~ magnetic tunneling junction memory unit; 33~bit line; 10A, 10B, l〇C~ switching element; 14A, 14B ~ memory unit; 200~Gallagher circuit; 22A, 22B~bit line; 32~word line; 42A, 42B, 42C, 42D~ memory unit resistance Is~ sense current; 500~GogliMRAM; 51A, 51B~ Word line; S3, S4~ leakage current; 50~bit line; 51, 52, 53, 54, and 56, 57, 58~ magnetic tunneling interface memory elements;

Tr卜Tr2〜電晶體; 600〜積體電路; 0503-A31218TWF 36 1273596Tr Tr2 ~ transistor; 600 ~ integrated circuit; 0503-A31218TWF 36 1273596

610〜記憶單元陣列; 630〜介面; 650〜輸入/輸出電路; 710〜磁穿隨接面元件; 730、740、750〜端點; (1,1)〜記憶單元; Β1·Β4〜位元線;610~memory cell array; 630~interface; 650~input/output circuit; 710~magnetic wear-and-match surface element; 730, 740, 750~end point; (1,1)~memory unit; Β1·Β4~bit line;

Rl、R2〜讀取線; 620〜陣列邏輯電路; 640〜其他邏輯電路; 700〜MRAM記憶單元 720〜開關元件; 800〜記憶單元陣列; Wl、W2〜字元線; Α1-Α4、ΑΓ-Α4,〜導線 110a-110h〜開關元件; 120a-120d、125a-125d、130a-130d、135a-135d〜磁穿隧接面堆疊;Rl, R2~ read line; 620~array logic circuit; 640~other logic circuit; 700~MRAM memory unit 720~switch element; 800~memory cell array; Wl, W2~word line; Α1-Α4, ΑΓ- Α4, ~ wires 110a-110h~ switching elements; 120a-120d, 125a-125d, 130a-130d, 135a-135d~ magnetic tunneling junction stack;

105〜基材; 110a、nob〜電晶體; 115〜源極/沒極; 117〜閘極; 140、150、160〜内連線; 190〜寫入線; 170〜堆疊組; 1100〜讀取記憶體之非破壞性方法; 1200、1300、1400、1500、1600、1700、1800、1900〜記憶單元陣列; 110〜開關元件; 120〜磁穿隧接面堆疊; 170〜堆疊組; RJ、R2〜讀取線; Α1-Αη、Α1’·Αη’、ΑΓ-Αη”〜寫入線; Β卜 Β2、Β3、Β4〜位元線; Β1’、Β2’、Β3’、Β4’〜反向位元線; W卜W2〜字元線;105~substrate; 110a, nob~transistor; 115~source/no pole; 117~gate; 140, 150, 160~ interconnect; 190~ write line; 170~ stack group; 1100~read Non-destructive method of memory; 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900~ memory cell array; 110~ switching element; 120~ magnetic tunneling junction stack; 170~ stacking group; RJ, R2 ~ Read line; Α1-Αη, Α1'·Αη', ΑΓ-Αη~~ write line; Β卜Β2, Β3, Β4~bit line; Β1', Β2', Β3', Β4'~reverse Bit line; W Bu W2 ~ word line;

Wl’、W2’、Wl’-o、Wl’-e、W2’-o、W2’-e〜反向字元線; 1305、1405、1407、1505、1507、1605、1705、1805、1807、1905、 1907〜記憶單元; 1310a、1310b、1410a-1410d、1510a-1510d〜開關元件; 1610a、1710c、1810a、1810c、1910a、1910c〜二極體; 1610b、1710d、1810b、1810d、1910b、1910d〜電晶體; 2000、2400、2500、2600〜MRAM 陣列; 0503-A31218TWF 37 1273596 ' 2010、2410、2510〜感測電路; 2020、2420、2520〜自由鐵磁性層; 2030、2430、2530〜絕緣穿隧障壁; 2040、2440、2540〜固定鐵磁性層;Wl', W2', Wl'-o, Wl'-e, W2'-o, W2'-e~ reverse word line; 1305, 1405, 1407, 1505, 1507, 1605, 1705, 1805, 1807, 1905, 1907~memory unit; 1310a, 1310b, 1410a-1410d, 1510a-1510d~ switching element; 1610a, 1710c, 1810a, 1810c, 1910a, 1910c~diode; 1610b, 1710d, 1810b, 1810d, 1910b, 1910d~ Transistor; 2000, 2400, 2500, 2600~MRAM array; 0503-A31218TWF 37 1273596 '2010, 2410, 2510~ sensing circuit; 2020, 2420, 2520~ free ferromagnetic layer; 2030, 2430, 2530~ insulation tunneling Barrier; 2040, 2440, 2540~ fixed ferromagnetic layer;

Dl、D2〜資料線;Dl, D2 ~ data line;

Bl、B2〜位元線; W1、W2〜字元線; 61A、61B、61C、61D、71A、71B、71C、71D、81A、81B、81C、81D 磁穿隧接面記憶元件; φ A卜A2、A3、A4〜編程線; 63、73、82、83、84〜節點; 65、2450〜開關元件; 70〜基材;Bl, B2~bit line; W1, W2~word line; 61A, 61B, 61C, 61D, 71A, 71B, 71C, 71D, 81A, 81B, 81C, 81D magnetic tunneling interface memory element; φ A Bu A2, A3, A4~ programming line; 63, 73, 82, 83, 84~ node; 65, 2450~ switching element; 70~ substrate;

Iwl〜第一寫入電流;Iwl~first write current;

Iw2〜第二寫入電流; ladj〜調整電流,Iw2~second write current; ladj~ adjust current,

Irl〜第一讀取電流; _ Ir2〜第二讀取電流。 0503-A31218TWF 38Irl ~ first read current; _ Ir2 ~ second read current. 0503-A31218TWF 38

Claims (1)

.1273596 十、申請專利範園: 種磁性記憶單元之_,其中每健等磁性記憶單元包括由自由鐵 岐鐵磁性層、位於前二者間之躲穿_壁組成之堆疊, 二Γί”號與—磁場於受選取磁性記憶單元處產生的合併磁場強度超 ° °欠該⑽取雜魏單元之電_的紐磁獅度 兀之陣列包括: 平 複數之磁性記憶單元,相舞接在一起; 複數之第一導線,分別對應於每一該等複數之磁性記憶單元,用以於 讀取動作時於鄰近於受選取磁性記憶單元處施加一調整信號,該調整信號 產生-磁場’該磁場之強度足以改變該受縣磁性記憶單元之磁矩; 第二導線,垂直於每-該等複數之第一導線,用以施加第一讀取信號 至,等複數之雜記鮮元,以及於該機職施加轉近於該受選取記 憶單元處時,用以施加第二讀取信號至該等複數之磁性記憶單元;以及 感測電路’接至該第二導線,用以比較該第—讀取信號與該第二讀 取信號,以便辨別該受選取記憶單元之邏輯狀態。 2.如申請專利細第丨項所述之磁性記憶單元之陣列,更包括開關元 件,減至該等複數之磁性記憶單元’當關閉該開關元件時可防止該等磁 性§己憶早70之漏電流問題。 ' 、3.如中請專利細第2項所述之磁性記憶單紅_,其中該開關元件 為電晶體’包括閘極、第一源/汲極、以及第二源/汲極。 4.如申請專利範圍第3項所述之磁性記憶單元之陣列,其中該電晶體用 以讀取及寫入該受選取磁性記憶單元之邏輯狀態。 5·如申請專利範圍第4項所述之磁性記憶單元之陣列,其中該電晶體用 以於收到該選取信號時提供該第一與第二讀取信號至該等複數=磁=記憶 單元,而該第三導線用以提供接地電壓至該等複數之磁性記憶單元,以便 讀取每一該等磁性記憶單元之邏輯狀態。 0503-A31218TWF 39 1273596 6·如申明專利範圍第4項所述之磁性記憶單元之陣列,其中該電晶體用 以=收職雜錢時經由該第二導線提供接地賴至鮮複數之磁性記 隐單元而該第一^線用以提供寫入信號至該等複數之磁性記憶單元,以 便將邏輯狀態寫入每一該等磁性記憶單元。 &gt;7·如申4專利縫第3項所述之磁性記憶單元之陣列,其中該電晶體用 、貝取或寫入母該等文選取之磁性記憶單元的邏輯狀態,其中該問極耦 以施加選取信號至該電晶體哺料線,該第—源級極雛至該等 稷數之磁性記鮮元㈣―端點,該第二源級_接至第三導線,而該等 複數之磁性記憶單元的第二端點耦接至該第二導線。 I 8·如中請專纖圍第7項所述之雌記憶單元之師】,其巾於該選取信 唬產生時該第二導線用以提供該第一與第二讀取信號至該等複數之磁性記 憶早,而該電晶體用以經由該第三導線提供接地電壓至該等複數之磁性 圮fe單元,以便讀取每一該等磁性記憶單元之邏輯狀態。 9.如申請專利範圍第7項所述之磁性記憶單元之陣列,其中該電晶體用 2收到該選取信號時經由該第三導線提供寫人健至該等複數之磁性記 憶單元,而該第二導線用以提供接地電壓至鱗複數之磁性記憶單元,以 便將邏輯狀態寫入每一該等磁性記憶單元。 _ 10·如申請專利範圍第1項所述之磁性記憶單元之陣列,更包括兩個開 關το件,分別減至該等複數之磁性記憶單元的兩端,該等複數之磁性記 憶單元並聯介於該等開關元件之間。 11 ·如申請專利範圍第1 〇項所述之磁性記憶單元之陣列,其中該等開關 元件為電晶體。 、 12·如申請專利範圍第11項所述之磁性記憶單元之陣列,其中該電晶體 用以讀取或寫入每一該等受選取之磁性記憶單元的邏輯狀態,其中該等電 晶體之閘極耦接至一用以施加選取信號至該等電晶體的資料線,該等電晶 體之第-源級極減至與其對應之第三導線,該等電晶體之第二源/沒極糕 0503-A31218TWF 40 •1273596 的邏輯狀恶的方法,其中該寫入信號經由該字元線施加至該等複數之磁性 記憶單元,_等第二端點透過該電晶體經由該位元線接地,以便將邏輯 狀態寫入每一該等磁性記憶單元。 2?·如申請專利範圍第Z3項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀態的方法,其巾該電·導通時可用_取/寫人每—該等受選取 之磁性記憶單摘邏輯狀態,其巾該·_至狐線,該第—源/汲極麵 接至該等複數之雜記鮮元的第—端點,該第二職極減至字元線, 而該等複數之磁性記憶料的第二端點_至位元線,其中該位元線連接 至提供比較功能之比較電路。.1273596 X. Application for Patent Park: A kind of magnetic memory unit, in which each magnetic memory unit includes a stack of free iron cores, a layer of hiding between the first two, and a wall. And the magnetic field generated at the selected magnetic memory unit is greater than the intensity of the combined magnetic field. The array of the magnetic ray is used to: the magnetic memory unit of the flat complex number, and the dance is joined together. a plurality of first conductors respectively corresponding to each of the plurality of magnetic memory units for applying an adjustment signal adjacent to the selected magnetic memory unit during the reading operation, the adjustment signal generating a magnetic field The intensity is sufficient to change the magnetic moment of the magnetic memory unit of the county; the second wire is perpendicular to each of the plurality of first wires for applying the first read signal to, and the like, and the plurality of miscellaneous elements, and a magnetic memory unit for applying a second read signal to the plurality of magnetic memory units when the machine is applied to the selected memory unit; and the sensing circuit is coupled to the second wire for comparison The first read signal and the second read signal to distinguish the logic state of the selected memory cell. 2. The array of magnetic memory cells as described in the application specification, further including a switching element, The magnetic memory unit of the plurality can prevent the leakage current problem of the magnetic § 忆 早 早 70 when the switching element is turned off. ', 3. The magnetic memory single red _, as described in the second item of the patent, Wherein the switching element is a transistor 'including a gate, a first source/drain, and a second source/drain. 4. The array of magnetic memory cells according to claim 3, wherein the transistor is used The array of magnetic memory cells of claim 4, wherein the transistor is configured to provide the first signal when the selected signal is received. And a second read signal to the plurality of = magnetic = memory cells, and the third wire is used to provide a ground voltage to the plurality of magnetic memory cells to read the logic state of each of the magnetic memory cells. 0503-A31218TW The array of the magnetic memory unit of claim 4, wherein the transistor is used to provide a magnetic recording unit grounded to the fresh and plural number via the second wire when the transistor is used for the payment of miscellaneous money. The first line is used to provide a write signal to the plurality of magnetic memory cells to write a logic state to each of the magnetic memory cells. [7] The magnetic properties described in claim 3 of claim 4 An array of memory cells, wherein the transistor is used, fetched, or written to a logic state of a magnetic memory cell selected from the parent, wherein the polarity is coupled to apply a select signal to the transistor feed line, the first source level The second source stage is connected to the third wire, and the second end of the plurality of magnetic memory cells is coupled to the second wire. I 8· In the case of the female memory unit of the seventh item, the second wire is used to provide the first and second read signals to the selected signal. The magnetic memory of the plurality is early, and the transistor is configured to provide a ground voltage to the plurality of magnetic cells via the third wire to read the logic state of each of the magnetic memory cells. 9. The array of magnetic memory cells of claim 7, wherein the transistor provides a magnetic memory unit to the plurality of magnetic memory cells via the third wire when the selection signal is received by the transistor 2; The two wires are used to provide a grounding voltage to the scalar magnetic memory unit to write a logic state to each of the magnetic memory cells. _10. The array of magnetic memory units according to claim 1, further comprising two switches τ, respectively reduced to the two ends of the plurality of magnetic memory units, wherein the plurality of magnetic memory units are connected in parallel Between the switching elements. An array of magnetic memory cells as described in claim 1 wherein the switching elements are transistors. 12. The array of magnetic memory cells of claim 11, wherein the transistor is adapted to read or write a logic state of each of the selected magnetic memory cells, wherein the transistors The gate is coupled to a data line for applying a selection signal to the transistors, and the first source of the transistors is reduced to a third conductor corresponding thereto, and the second source/no pole of the transistors </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> In order to write a logic state to each of the magnetic memory cells. 2? The method for discriminating the logical state of the selected magnetic memory unit in the array as described in the scope of claim Z3, the towel can be used for the electric conduction, the current magnetic memory can be used for each of the selected magnetic memories. Extracting the logic state, the towel is the _ to the fox line, the first source/bungee face is connected to the first end point of the plurality of coma, and the second job is reduced to the word line, and the And a second end_to-bit line of the plurality of magnetic memory materials, wherein the bit line is connected to a comparison circuit that provides a comparison function. 、2。8·如帽專利範圍第27項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀㈣方法,其中該第—與第二信號經由該位元線施加至該等複數 ^雜記憶單元,而該等第二端點透過該電晶體經由該字魏接地,以便 碩取每一該等磁性記憶單元之邏輯狀態。 的、範圍第27項所述之辨別陣列中受選取之磁性記憶單元 兮方法,其中該寫入信號是透過該電晶體經由該字元線施加至 記憶單元,W第二端點經由該位树接地,以便將邏 輯狀怨寫入母一該等磁性記憶單元。 m如申請專·_ u卿叙觸陣選性_ 該等複數之磁_單:::=號之步驟更包括運用編接至 元並聯祕在-起 ㈣的兩個關元件,該等複數之磁性記憶單 μ專利範圍第30項所述之辨別陣列中 的邏輯狀態的方法,射鱗元件為㈣、取之雜疏早兀 的邏=1=瓣31項所述之賴峨選取之磁性記憶單元 二:=該電晶體導通時可讀取/寫入每-該等受選取之磁 的邏㈣,射該㈣嫩__至⑽,該等電晶 0503-A31218TWF 43 1273596</ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; And a memory unit, wherein the second terminals are grounded through the transistor via the word to obtain a logic state of each of the magnetic memory cells. The method of selecting a magnetic memory unit according to the method of claim 27, wherein the write signal is applied to the memory unit via the word line through the transistor, and the second endpoint passes the bit tree Grounding to write logic complaints to the parent magnetic memory unit. m such as application for special _ u 卿 触 选 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The method of discriminating the logic state in the array described in the 30th item of the magnetic memory single μ patent range, the scale element is (4), the logic of the wedging and early =1=1=the 31th of the valve Memory unit 2:= When the transistor is turned on, it can read/write each of the selected magnetic logics (4), shoot the (four) tender __ to (10), and the crystal crystals 0503-A31218TWF 43 1273596 二U、/;及極搞接至第—與第二位元線,該等電晶體之第二源級極麵接 至料稷數之雜記鮮元料—端點,_料數之雜魏單元的第 -知點減綠取t,其中觸取線連接至提觀較舰之比較電路。 、。如月專利範圍第32項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀悲的方法,其中寫人信號是透過該等電晶體經由該等位元線施加 ,該等複數之磁性記憶單S,而該轉二端輯過鱗電晶體經由該第一 與第二位讀躺,赠讀轉—縛離記鮮^糖狀態。 34.士申⑺專他g第32項職之制陣财受選取之磁性記憶單元 的邏輯狀態的方法,其中該寫人慨透過該等電晶體經由鱗位元線施加 至該專複數之磁性記憶單元,而鶴二端點經由該讀取線接地,以便將邏 輯狀態寫入每一該等磁性記憶單元。 35·如申請專纖_ U項所述之__技魏之雜記憶單元 的邏輯狀態的方法,其中該第一與第二信號包括電流或電壓。 36.如申請專利範圍第21項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀態的方法,其中該等磁性記憶單元以並聯方式減在一起。 37·如申請專利範圍第21項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀態的方法,其中該等磁性記憶單元乃經由下述方式減在一起, φ其中第-組該等複數之磁性記憶單元串聯在一起,而第二組該等複數之磁 性記憶单兀串聯在-起,之後再將該第一組與該第二組該等複數之磁性記 憶單元相並聯。 、3口8·如申請專利範圍帛21項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀態的方法,其巾施加_整錄之步驟包括於接近鮮受選定磁 性記憶單元纽減碰錢,射_整錢之強度僅足以暫時性地改 變該文選取雜記鮮元之磁矩方向,而在移除該調整錄之後,該受選 取磁性記憶單元之魏回復絲施加該調·號前之原本狀態。 39·如申請專利範圍第21項所述之辨別陣列中受選取之磁性記憶單元 0503-A31218TWF 44 1273596 的邏輯狀態的方法, 其中施加該調整信號之步驟包括放办Two U, /; and extremely connected to the first - and second bit line, the second source level of the transistor is connected to the number of materials of the number of materials - the end point, the number of materials The first-known point of the unit is reduced by green, and t is taken, and the touch line is connected to the comparison circuit of the ship. ,. A method for discriminating the logical sorrow of a selected magnetic memory unit in an array as described in claim 32 of the patent scope, wherein the write signal is applied through the equipotential line through the isoelectric line, the plurality of magnetic memory sheets S, and the two-end series of the scaled crystals are read and lie by the first and second positions, and the reading and translating are separated from the fresh sugar state. 34. Shishin (7) is a method of selecting the logic state of the magnetic memory unit of the 32nd job of the 32nd job, wherein the person writes the magnetic force of the magnetic circuit through the scale line through the scale line. The memory unit, and the second end of the crane is grounded via the read line to write a logic state to each of the magnetic memory units. 35. A method of applying a logic state of a memory cell of the __Technology, wherein the first and second signals comprise a current or a voltage. 36. A method of identifying a logical state of a selected magnetic memory cell in an array as described in claim 21, wherein the magnetic memory cells are subtracted together in parallel. 37. A method of identifying a logical state of a selected magnetic memory cell in an array as described in claim 21, wherein the magnetic memory cells are subtracted together by φ wherein the first group of the plurality The magnetic memory cells are connected in series, and the second set of the plurality of magnetic memory cells are connected in series, and then the first group is connected in parallel with the second group of the plurality of magnetic memory cells. 3 port 8 · The method for discriminating the logical state of the selected magnetic memory unit in the array as described in claim 21, the step of applying the towel to the recording includes the near-frequently selected magnetic memory unit The strength of the money, the shot _ the whole money is only enough to temporarily change the direction of the magnetic moment of the selected fresh-keeping element, and after the adjustment record is removed, the Wei return line of the selected magnetic memory unit is applied before the adjustment number The original state. 39. A method of discriminating a logic state of a selected magnetic memory unit 0503-A31218TWF 44 1273596 in an array as described in claim 21, wherein the step of applying the adjustment signal comprises placing 40.如申請專利範圍第39 -/卿〜枕加‘加一足以將該受選 之調整信號。 的邏輯狀態的方法,其中該銳角角度約為45度。 項所述之_ _巾受選取之雜記憶單元 41.如申請專利範圍第η項所述之辨別陣列中受選取之磁性記憶單元 的邏輯狀悲的方法’其中該專磁性記憶單元為磁性隨機存取記憶體 (magnetic random access memory,MRAM)單元,包括擁有複數疊層之磁穿隨 接面(magnetic tunneling junction, MTJ)堆疊,而該調整信號沿著該受選取磁 性記憶單元之難磁化軸施加一磁場。 0503-A31218TWF 4540. If the scope of the patent application is 39 - / Qing ~ pillow plus ‘plus one is enough to adjust the signal of the selection. The method of logic state, wherein the acute angle is about 45 degrees. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A magnetic random access memory (MRAM) unit includes a magnetic tunneling junction (MTJ) stack having a plurality of stacked layers, and the adjustment signal is along a hard magnetic axis of the selected magnetic memory unit Apply a magnetic field. 0503-A31218TWF 45
TW94113450A 2004-04-27 2005-04-27 MRAM arrays and methods for writing and reading magnetic memory device TWI273596B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11542204A 2004-04-27 2004-04-27

Publications (2)

Publication Number Publication Date
TW200638420A TW200638420A (en) 2006-11-01
TWI273596B true TWI273596B (en) 2007-02-11

Family

ID=38621589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94113450A TWI273596B (en) 2004-04-27 2005-04-27 MRAM arrays and methods for writing and reading magnetic memory device

Country Status (1)

Country Link
TW (1) TWI273596B (en)

Also Published As

Publication number Publication date
TW200638420A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
CN100466093C (en) Magnetoresistive storage device with double-tunnel junction
US7154798B2 (en) MRAM arrays and methods for writing and reading magnetic memory devices
CN1307643C (en) Reading method for magnet resistance device with soft reference layer
US6765821B2 (en) Magnetic memory
CN1758372B (en) Magnetic memory
US7366009B2 (en) Separate write and read access architecture for a magnetic tunnel junction
EP2656346B1 (en) Memory array having local source lines
KR20030009097A (en) Cladded read conductor for a pinned-on-the-fly soft reference layer
TW200405333A (en) Multi-bit magnetic memory device
CN103180960A (en) Structures and operating method for field-reset spin-torque mram
TW200401290A (en) A magnetic memory device and method
TW200903715A (en) Magnetic shielding in magnetic multilayer structures
US10937947B2 (en) Magnetic memory device with a nonmagnet between two ferromagnets of a magnetoresistive effect element
CN110197682A (en) Storage unit, memory and method for writing data
TW200305977A (en) Magneto resistive storage device having a magnetic field sink layer
JP2004153181A (en) Magnetoresistance effect element and magnetic memory
WO2004053880A2 (en) Mram memories utilizing magnetic write lines
US7050326B2 (en) Magnetic memory device with current carrying reference layer
US7075818B2 (en) Magnetic random access memory with stacked memory layers having access lines for writing and reading
JP2006278645A (en) Magnetic memory device
JP2007281247A (en) Spin memory
JP3980990B2 (en) Magnetic memory
TWI273596B (en) MRAM arrays and methods for writing and reading magnetic memory device
CN107017275A (en) Magnetic memory apparatus
CN100476994C (en) Magnetic storying unit arrays and methods for identifying logic state of magnetic storying units