TWI273514B - Analyses of heavily corrupted images using fuzzy partitions - Google Patents

Analyses of heavily corrupted images using fuzzy partitions Download PDF

Info

Publication number
TWI273514B
TWI273514B TW94117326A TW94117326A TWI273514B TW I273514 B TWI273514 B TW I273514B TW 94117326 A TW94117326 A TW 94117326A TW 94117326 A TW94117326 A TW 94117326A TW I273514 B TWI273514 B TW I273514B
Authority
TW
Taiwan
Prior art keywords
image
value
noise
stage
point
Prior art date
Application number
TW94117326A
Other languages
Chinese (zh)
Other versions
TW200641725A (en
Inventor
Chao-Lieh Chen
Chi-Chieh Chuang
Chun-Cheng Yang
Original Assignee
Kun Shan University Of Technol
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kun Shan University Of Technol filed Critical Kun Shan University Of Technol
Priority to TW94117326A priority Critical patent/TWI273514B/en
Publication of TW200641725A publication Critical patent/TW200641725A/en
Application granted granted Critical
Publication of TWI273514B publication Critical patent/TWI273514B/en

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Picture Signal Circuits (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

This invention based on fuzzy automata theory retrieves the characteristics of images heavily corrupted by Gaussian impulse noises. The retrieved characteristics are represented with fuzzy sets, each of which is also called a fuzzy partition of the image histogram. The membership functions are used for noise filtering, multi-level thresholding, segmentation, and edge detection. This invention further utilizes the result images of filtering and thresholding to perform the second phase processing. After two-phase filtering, the signal-to-noise ratio SNR and the peak signal to noise ratio PSNR are increased up to 10 db for images polluted by noises higher than 50%. Having very low complexity of processing time and memory space, the kernel operation of the algorithm can be implemented with super-scalar super-pipelined 16-bit floating-point processing unit and achieve 24-bit true color results. This invention break through the bottleneck that heavily corrupted image cannot be analyzed.

Description

1273514 九、發明說明: 【發明所屬之技術領域】 本發明係利用了模糊制動機的原理,使一個佈滿高斯及脈衝 混合雜訊的影像可以自我組織取得其原影像特徵值,這些特徵值 將以模糊集合來表示,而模糊集合的歸屬度函數便可以用來進行 一 σ孔;慮除、影像多值化(multi-level thresholding)與影像分割 (segmentation)、影像邊緣擷取(edge detecti〇n)等功能,且經過雜 訊濾除及多值化處理後的影像,則可以作為第二階段的雜點濾除 參考,在經過二個階段的濾除雜訊處理之後可以大幅增加影像的 SNR以及pSNR值,使影像雜訊濾波器可以讓影像更為清晰。並 且重新獲得多值化、分割、以及邊緣擷取等處理之後的影像。經 過分割之後的影像可以應用來進行醫療影像診斷 ' MPEG壓縮、 影像辨識等其他領域。 【先前技術】 衫像疋傳達訊息時最直接也是最有效的方式,特別係在科技 時代影像傳輸之應用已普遍存在於我們生活周遭,如醫療、保全、 太空等科技,可是當影像在截取或透過媒介傳輸的過程中,有可 能因為截取設備解析度太低、儲存格式的壓縮技術太差、源於殘 缺之通Λσσ貝或含雜訊之管道所產生的脈衝及高斯雜訊,使原本 清晰的影像產生色嫩變、模糊而破壞影像以致降低產業價值, 因此要將影像呈現在制者之前,通常需要經過影像處理的還原 技術,以進一步進行影像之分析以及運算例如影像多值化(image 1273514 multi-level thresholding)以及影像分割(image segmentatl〇n) 等。在影像處理的領域中,雜訊移除有許多既有的濾波方法,如: low pass filters > median f i Iter > weighted median f i Iters (WM,1273514 IX. Description of the invention: [Technical field of the invention] The present invention utilizes the principle of a fuzzy brake to enable an image filled with Gaussian and pulsed mixed noise to self-organize to obtain its original image feature values, which will be It is represented by a fuzzy set, and the attribute function of the fuzzy set can be used to perform a sigma hole; multi-level thresholding and segmentation, image edge capture (edge detecti〇) n) and other functions, and after the noise filtering and multi-valued image, can be used as the second stage of the noise filtering reference, after the two stages of filtering noise processing can greatly increase the image The SNR and pSNR values allow the image noise filter to make the image sharper. And re-obtain the image after processing such as multi-value, segmentation, and edge capture. The image after segmentation can be applied for medical image diagnosis 'MPEG compression, image recognition and other fields. [Previous technology] Shirts are the most direct and effective way to convey messages. Especially in the technology age, the application of image transmission has been widespread in our lives, such as medical, security, space and other technologies, but when images are intercepted or In the process of transmission through the medium, it may be because the resolution of the interception device is too low, the compression technique of the storage format is too bad, and the pulse and Gaussian noise generated by the defective channel or the noise-containing pipeline make the original clear. The image produces color that is tender and blurred, destroying the image and degrading the industrial value. Therefore, before the image is presented to the producer, image processing reduction techniques are usually required to further perform image analysis and calculations such as image multi-value (image) 1273514 multi-level thresholding) and image segmentation (image segmentatl〇n). In the field of image processing, there are many existing filtering methods for noise removal, such as: low pass filters > median f i Iter > weighted median f i Iters (WM,

Browrigg, 1984) > center weighted median filters(CWM, Ko andBrowrigg, 1984) > center weighted median filters(CWM, Ko and

Lee, 1991)···等方法。在以往所提出的種種方法中,大多數皆是 只對受污染之影像作一次的雜訊濾除動作,在經過一次的雜訊濾 除動作之後,影像上還是會殘留很大比例無法移除的雜訊,故其 方法不盡完善。例如Median Filter不論取樣視窗中有無雜訊, 皆會對其視窗做中間值運算,當影像雜訊超過30%的時候,其雜訊 濾除的效果則會急速的變差,且容易將原本已經是雜訊的部分也 列入其中間值運算的依據,會使得原本已經受到污染的影像更加 模糊不清。又如WFMFilter在處理影像時,將影像灰階固定分成 暗、中、亮三類,無法自動根據影像本身特性取得灰階分佈的分 割點,以產生較好的效果,且視覺效果也沒有Median Filter要 來的好,因為在雜訊比例較低時,一個九宮格的取樣視窗中,可 能只有一至二點雜訊點,如果使用WFMFilter來處理,在處理後 影像上面容易有線條模糊的感覺。 以影像分析領域來說,包含三種常用的處理,臨界化 (Thresholding)分割(segmentati〇n)以及邊緣^貞測(响❻ detection),對於高污染(污染比例大於3〇%)的影像而言,在先前 技術中尚未找到可以進行臨界化、分割、以及邊緣偵測等快速(低 運算複雜度)且有效的方法。因此在進步性上來說本發明實為一大 1273514 •突破。 【發明内容】 本發明之主要目的係在提供—種能移除高比例獅的兩階段 式影像濾波器,並且進行臨界化(Thresh〇lding)、分割 (segmentat題)、以及邊緣_(_ detection)等處理。除了 可獲得較真實原始影像以及進行有效的影像分析之外,影像處理 時間並可大幅縮短。 參 树a狀主要特徵是在提供-種包含有二階段式濾、波器, 其中,第-段的影像濾波輯受污染的影像進行統計產生直方圖 (histogram),使用雜訊影像的直方圖自動產生隸屬度函數 (Membership ?11此乜〇阳)的 LR 參數左分布(Left spread) α、 均值(mean) m、以及右分布(Right Spreacj)冷,用以代表其LR 杈糊集合(α,m,点)LR,然後利用自動取得的模糊集合以及隸屬 度函數根據模糊理論進行雜訊之濾除並產生第一階段的臨界影 % 像(Thresholded Image)。第二階段的影像濾波器中,係將第一 階段所得影像再取樣,轉成複雜度較低的影像,此階段會對前一 邓刀所產生的£&界影像做取樣的動作,將取樣的中心點與其周邊 的數值一一做比較,判斷是否為第一階段未濾除雜點,並使用此 取樣視ϋ中非雜點的部份做為填補中心點的依據。 … 【實施方式】 有關本發明為達上述之使用目的及功效,所採用之技術手 段’兹舉出較佳可行之實施例,並配合圖式所示,詳加說明如下: 在衫像處理的領域_,濾除影像雜訊的方式與一般通訊系統 7 1273514 以遽波概念是相_,兩者都是將輸人訊號依序經過取樣、運 异、濾波或處赠再將其輸出。常見的處理轉方切是先 透過一舰料顺取樣彳«(咖咖wind罐f彡像上以類似 CRT顯示ϋ水平掃描的方式移動視窗依序處理每個像素,每次移 動間隔-個像素㈣)。如第—圖影像取樣視窗水平掃描移動。由 左往右移練樣視窗,當絲移_最右㈣,視贿回到最左 側並將視隸下鶴-個像素,魏執行這働作朗全部像素 處理完畢。 ^ 本發明亦使用模糊推論進行影像處理的示意圖如第二圖所 示,取樣視窗的大小則由設計規格與演算法來決定,最常使甩的 取樣視窗為九宮格(3 X 3)的取樣視窗,因此在取樣的視窗當中以 奇數值的取樣視窗較佳,在奇數的取樣視窗當中又以九宮格的取 樣最佳’因為-張影像是由連續的訊號驗成的,所以在九宮格 取樣的影像當中在沒有參雜任何雜訊時,中間點舆周邊的像素值 的差異亚不會太大。取樣視窗中的像素經過模糊推論系統之後產 生新的像素灰取代原來取樣減巾的—個像素。 本發明使賴齡狀高污_像分析法其包含有二階段式 (two-phase)濾波器。分述如下: 1· Phase I 方法 在第一階段(Phase I)的影像渡波器中,利用模糊分割法,根 據影像特性自動取得模糊分割之隸屬度函數(Μ—φ FUnCti〇n)參數α、m、β,後根據模糊理論進行雜訊之濾除,其濾 1273514 除效果遠優於中間值與使用固定隸屬度函數運算的處理效果。除 此之外,由於使用模糊分割,經第一階段濾波的影像,若以每分 割中的單一灰階值來分類,亦即灰階值屬於同一分割者以同一灰 階值表示時,即可達到第一階段多值化的目的。 請參閱第三圖所示其步驟如下: (一)統計產生直方圖(hist〇gram),並將直方圖進行分段。 將NxN個像素的受污染影像代入XA(i,的矩陣當中。統計出 該影像矩陣XA(i,j)的直方圖hs(x),保留直方圖值在5〜25〇的部 伤,這樣可以先將影像中大部份的ImpUlse N〇ise濾除。重新計 异出景々像直方圖的正確起始和結束點,將直方圖每一個灰階的數 值與0做味,當數值比較到第_個及最後_個不為Q的灰階值 時,即為直方圖的正確起始和結束點 計算出hs(x)的矩陣中有效的起始值hss與終點值hsf,將 histogram每一個灰階的數值與〇做比較,當數值比較到第一個及 最後個不為〇的灰階值時,即為伽紅棚的正確起始和結束 為了哥找出hs(x)中的隸屬函數(Mefflbership Function),所 以我們必須將hs(x)做降頻取樣如⑴⑵,其中的y為取樣參考 值’ 為取樣段數,Q騎段取樣巾職灰階數。 c. =(0 X 2 + 1) + 2)x2 0) c 一 « Ρ . (2) 由母#又取樣中找到局部的谷點(局部最低統言十婁文的灰階) 1273514 和峰點(局部最大統計數的灰階)。 计异出hs(x)中每段取樣7·的位置^(0與每個取樣段落的平 均值rhS(i),如(3)(4)所示。 c,,〇= ίΜχ/Lee, 1991)··· and other methods. Most of the methods proposed in the past are only a noise filtering action on the contaminated image. After a noise filtering operation, the image still has a large percentage of the image that cannot be removed. The noise is not perfect. For example, Median Filter will perform intermediate value calculation on its window regardless of whether there is any noise in the sampling window. When the image noise exceeds 30%, the noise filtering effect will be rapidly deteriorated, and it will be easy to The part of the noise is also included in the basis of the interim value calculation, which will make the already contaminated image more blurred. For example, when WFMFilter processes images, the gray scales of the images are fixed into dark, medium and bright. It is impossible to automatically obtain the grayscale distribution points according to the characteristics of the images, so as to produce better results, and the visual effects are not required by Median Filter. It's good, because when the proportion of noise is low, there may be only one or two noise points in the sampling window of a nine-square grid. If you use WFMFilter to process, there is a tendency to blur the lines on the processed image. In the field of image analysis, there are three commonly used processes, Thresholding segmentation and edge detection, for images with high pollution (contamination ratio greater than 3〇%). Fast (low computational complexity) and efficient methods for criticalization, segmentation, and edge detection have not been found in the prior art. Therefore, in terms of progress, the present invention is actually a large 1273514 • breakthrough. SUMMARY OF THE INVENTION The main object of the present invention is to provide a two-stage image filter capable of removing high proportion lions, and to perform criticalization, segmentation (segmentat problem), and edge_(_detection). ) and so on. In addition to obtaining more realistic raw images and performing effective image analysis, image processing time can be significantly reduced. The main feature of the a tree shape is to provide a two-stage filter and wave filter. The image of the first segment is filtered to generate a histogram, and a histogram of the noise image is used. The LR parameter Left spread α, Mean m, and Right Spreacj of the LR parameter that automatically generates the membership function (Membership 1111) are used to represent their LR 集合 集合 collection (α , m, point) LR, then use the automatically obtained fuzzy set and the membership function to filter the noise according to the fuzzy theory and generate the first stage of the Thresholded Image. In the second stage of the image filter, the image obtained in the first stage is resampled and converted into a less complex image. At this stage, the action of the £& boundary image generated by the previous Deng knife will be sampled. The center point of the sampling is compared with the values around it to determine whether the first stage has not filtered out the noise points, and the part of the non-noise point in the sampling view is used as the basis for filling the center point. [Embodiment] The present invention is directed to a preferred embodiment of the present invention in order to achieve the above-mentioned purpose and effect, and is illustrated in the accompanying drawings. Field _, the way to filter out image noise and the general communication system 7 1273514 is the concept of chopping, both of which are to sample, transfer, filter or give the input signal in sequence. The common processing of the square cut is to first process each pixel through a ship shovel sampling 彳 « (the coffee pot wind tank on the image like a CRT display ϋ horizontal scanning way to process each pixel, each time interval - pixels (4)). For example, the image-sampling window is horizontally scanned and moved. Move the sample window from left to right, and when the silk moves _ the rightmost (four), the bribe returns to the leftmost side and will look down the crane - a pixel, and Wei performs all the pixel processing. ^ The schematic diagram of the present invention also uses fuzzy inference to perform image processing. As shown in the second figure, the size of the sampling window is determined by design specifications and algorithms. The sampling window of the frame is most often used as a sampling window of a 9-square grid (3 X 3). Therefore, in the sampling window, the sampling window with odd values is better. In the odd sampling window, the sampling of the nine squares is the best. Because the image is detected by continuous signals, it is sampled in the image of the nine squares. When there is no noise involved, the difference in pixel values around the middle point 不会 is not too large. The pixels in the sampling window are subjected to a fuzzy inference system to produce a new pixel gray instead of the original pixel of the sampled towel. The present invention enables a high-soil-like image analysis method to include a two-phase filter. The description is as follows: 1. Phase I method In the image wave of the first phase (Phase I), the fuzzy segmentation method is used to automatically obtain the membership function of the fuzzy segmentation (Μ-φ FUnCti〇n) parameter α according to the image characteristics. After m and β, the noise is filtered according to the fuzzy theory. The filtering effect of 1273514 is much better than the intermediate value and the processing effect using the fixed membership function. In addition, due to the use of fuzzy segmentation, if the image filtered by the first stage is classified by a single grayscale value in each segment, that is, when the grayscale value belongs to the same segmenter, it is represented by the same grayscale value. Achieve the purpose of multi-valued in the first phase. Please refer to the steps in the third figure as follows: (1) Statistics generate a histogram (hist〇gram) and segment the histogram. Substituting the contaminated image of NxN pixels into the matrix of XA (i, the histogram hs(x) of the image matrix XA(i,j) is counted, and the histogram value of 5~25〇 is retained, so that You can first filter out most of the ImpUlse N〇ise in the image. Re-count the correct starting and ending points of the histogram, and compare the value of each grayscale of the histogram with 0. When the _th and last _ are not the gray scale value of Q, the effective starting value hss and the end point value hsf in the matrix of hs(x) are calculated for the correct starting and ending points of the histogram, and the histogram The value of each gray scale is compared with 〇. When the value is compared to the first and last gray scale values that are not 〇, it is the correct start and end of the gamma shed for finding the hs(x) The membership function (Mefflbership Function), so we must downsample the hs(x) as (1)(2), where y is the sampling reference value 'for the number of sampling segments, and the Q riding segment samples the gray level of the towel. c. =( 0 X 2 + 1) + 2)x2 0) c a « Ρ . (2) Find the local valley point from the mother # again sampling (the lowest gray level of the local minimum ten words) 12 73514 and peak point (gray scale of the local maximum statistic). Calculate the position of each segment of hs(x) 7· (0) and the average value rhS(i) of each sample segment, as shown in (3)(4). c,,〇= ΜχΜχ/

Lv ^ J _ (3) (4) Σ hsix) ^(0 = ^^——Lv ^ J _ (3) (4) Σ hsix) ^(0 = ^^——

CPCP

計算出每個取樣段落的平均差異值r。⑴,如⑸所示。 “ (5) 判斷1"。(1)與r<5(i-1)之間是否有預設谷點Cm(i),在兩個預設 谷點Q⑴與必-1)之間尋找峰點CM⑴,如⑹⑺所示。 {cw (k)\keN}^ {chs {i)\r〇 {i)r〇 (/ -1) < 〇5 / € ^ {1}j cm(0 = max hs(x) () ^ (7) _在峰點CM⑴與CM(H)之間找出正確的谷點Cm(i),如⑻所 不。 ⑻ (三)計算出每段模糊分割·的夂 "的參數㈣、点,如(9)(10)(11) 所示,以計算每段分割的隸屬度函數。 左分布(left spread)參數: (9) α/ =^(0-^(0 均值參數: mi =^(0 (10) 10 1273514 ’右分布(right spread)參數· + (11) 我們以(ίη,仙,表示該模糊分割。 利用sh X &取樣視窗ΥΑ來對ΧΑ取樣,對於第(h, w)-th取 樣視窗如(12)所示。 ie[h,hJr(sh -1)] (⑺ j e[wyw^(sw -1)]Calculate the average difference value r for each sampled segment. (1), as shown in (5). "(5) Judging whether 1"(1) and r<5(i-1) have a preset valley Cm(i), finding a peak between two preset valleys Q(1) and must-1) Point CM(1), as shown in (6)(7). {cw (k)\keN}^ {chs {i)\r〇{i)r〇(/ -1) < 〇5 / € ^ {1}j cm(0 = Max hs(x) () ^ (7) _ Find the correct valley point Cm(i) between the peak points CM(1) and CM(H), as in (8). (8) (3) Calculate each segment of fuzzy segmentation· The parameters of the 夂" (4), points, as shown in (9)(10)(11), to calculate the membership function for each segmentation. Left spread parameters: (9) α/ =^(0 -^(0 mean parameter: mi =^(0 (10) 10 1273514 'right spread parameter · + (11) We use (ίη, 仙, to represent the fuzzy segmentation. Use sh X & sampling windowΥΑ To sample the ΧΑ, for the (h, w)-th sampling window as shown in (12). ie[h,hJr(sh -1)] ((7) je[wyw^(sw -1)]

將YA(i,j)代入第々段模糊分割(Jk,fflk,i^k)LR,來得到像 素YA(i,j)的第k組隸屬度…(i,j),如(13)。 'nheUjUj) 1 YA(Uj)Qmk 、ak Pk ,where aQb = mdx(a-b, 0) (13)Substituting YA(i,j) into the third segment fuzzy segmentation (Jk, fflk, i^k) LR to obtain the kth group membership degree of the pixel YA(i,j)...(i,j), such as (13) . 'nheUjUj) 1 YA(Uj)Qmk, ak Pk , where aQb = mdx(a-b, 0) (13)

(四)計算出取樣視窗之最大可能估計值與加權平均值。 計算出Sh X Sw取樣視窗YA中之最大可能估計值AVd〇(i4), 將YA(i,j)乘上;ca(i,j)得到加權值Wk,ux如(15),再除以隸孱度 函數的wk,u如(16),即為加權平均值取⑽如(17)所示。 ΣΣ^;) AV^±Uil-- /=1 y=l Wkyu = /=1 j=\ n,⑽十(Ά,《)+0.5)」 (14) (15) (16) 11 (17) 1273514 •(五)輸出濾波結果並將影像臨界化(thresholding)。 計算出第k段加權平均值Wk,ain與最大可能估計值AVk之間的差 異值,最接近的加權平均值Wtgm如(18)所示,選擇它輸出至〇K(h, w),反覆此過程直到NxN影像XA全部被取樣完為止,亦即h := N iw = N即完成處理。矩陣οκ即為第一階段濾波後影像。 v丨;卜户μ卜'4 — 08)(d) Calculate the maximum possible estimate and weighted average of the sampling window. Calculate the maximum possible estimated value AVd〇(i4) in the Sh X Sw sampling window YA, multiply YA(i,j); ca(i,j) obtain the weighted value Wk, ux as (15), and divide by The wk of the membership function, u is (16), that is, the weighted average is taken as (10) as shown in (17). ΣΣ^;) AV^±Uil-- /=1 y=l Wkyu = /=1 j=\ n,(10)Ten (Ά,")+0.5)" (14) (15) (16) 11 (17) 1273514 • (5) Output the filtered result and threshold the image. Calculate the difference between the k-th weighted average Wk, ain and the maximum possible estimate AVk. The closest weighted average Wtgm is shown in (18), and it is selected to output to 〇K(h, w). This process is completed until the NxN image XA is completely sampled, that is, h := N iw = N. The matrix οκ is the first stage filtered image. v丨;卜户μ卜'4 — 08)

對0K(h,w)經過臨界化之後成為臨界化影像矩陣训化,幻如 (19)所示。 (V/ e iV - {1),^(/) < 0K(h^w) < cm(in))[TH(Kw) = c,v/ (/)] (19) TH即為第一階段界化影像(thresholded image)。 2. Phase II 方法 本發明在第二階段的影像濾波器中,因為Thresholding的動 作,會將原本灰階複雜度較高的影像,轉成複雜度較低的影像, 所以當取樣視窗中,相鄰的像素點數值不相同時,即代表此處可 能為影像的邊緣,但是如果不相同的點超過一定數量時,則此處 為第一階段未濾除雜點的可能性則會大大的提高,所以此階段會 對第一階段所產生的臨界化影像做取樣的動作,將取樣的中心點 與其周邊的數值一一做比較,如果中心點與周圍的值有相同時, 則對雜點判斷值K做累加的動作,有一點相同就累加1,當取樣中 心點與周圍各點都比較完畢,且雜點判斷值K同時也小於所設定 的雜點判定門檻值Kt時,則將此取樣視窗的中心點判定為第一階 12 1273514 段朱濾除雜點,並使用此取樣視窗中非雜點的部份做為填補中心 點的依據。其方法步驟如下(請參閱第四圖所示): (一) 將第一階段臨界化影像後放置到一個Nxiv的TH矩陣内。 (二) 對TH矩陣使用/7X77的取樣視窗xd做水平掃描,對〇κ 矩陣使用77X刀的取樣視窗X0做水平掃描,第(I,J)-th個取樣視 窗如(20)。After 0K(h, w) is criticalized, it becomes a criticalized image matrix training, as shown in (19). (V/ e iV - {1),^(/) < 0K(h^w) < cm(in))[TH(Kw) = c,v/ (/)] (19) TH is the first A staged image (thresholded image). 2. Phase II method In the image filter of the second stage, the image of the original gray-scale complexity is converted into a lower-complexity image by the Thresholding action, so when in the sampling window, the phase If the neighboring pixel values are different, it means that the edge of the image may be here, but if the number of different points exceeds a certain number, the possibility that the first stage does not filter out the noise is greatly improved. Therefore, at this stage, the action of sampling the critical image generated in the first stage is compared, and the center point of the sample is compared with the value of the periphery. If the center point is the same as the surrounding value, the noise point is judged. The value K is the cumulative action. When there is one point, the total is incremented by 1. When the sampling center point is compared with the surrounding points, and the noise point judgment value K is also smaller than the set noise threshold value Kt, the sampling is performed. The center point of the window is determined as the first order 12 1273514 segment of the filter, and the non-noise portion of the sampling window is used as the basis for filling the center point. The method steps are as follows (please refer to the fourth figure): (1) The first stage critical image is placed in an Nxiv TH matrix. (2) Horizontal scanning is performed on the TH matrix using the sampling window xd of /7X77, and the horizontal scanning is performed on the sampling window X0 of the 77X knife for the 〇κ matrix, and the (I, J)-th sampling window is (20).

x〇0,J) = 〇K(U) [Λ/+(,7-1)] (三) 設定雜點判定門檻值Kt。將取樣視窗的中心點分別與 周圍的各點做比較。 數值相同,雜點判斷值κ累加。 數值不相同,雜點判斷值K不變。 (四) 比較雜點判斷值K及雜點判定門檻值Kt。 K>Kt,判定中心點不為雜點。並移動此第(I,j)—th取樣視 窗至下一個像素點。X〇0,J) = 〇K(U) [Λ/+(,7-1)] (3) Set the noise threshold Kt. Compare the center point of the sampling window with the surrounding points. The values are the same, and the hysteresis judgment value κ is accumulated. The values are not the same, and the noise judgment value K does not change. (4) Comparing the judgment value K of the noise point and the threshold value Kt of the noise determination. K>Kt, the center point is not considered to be noisy. And move this (I, j)-th sampling window to the next pixel.

/外以外 K<Kt,判定中心點為雜點。並進行下面步驟(五) (五)取出取樣視窗xo中扣除中心點χο(/+卜 非雜點的像素灰階數值;並做中間值運算。 (/、)將判疋為雜點的xo(/+「”/2"j,J+卜,2}代換為中 後的值。當全部取樣完畢,亦即I=N且:ί=Ν時,QK鱗更新〜運斤 即元成第一階段雜訊渡除程序。 ^ 13 1273514/ Outside K<Kt, the center point is determined to be a noise point. And carry out the following steps (5) (5) Take out the sampling window xo deducting the center point χ ο (/ + 卜 non-noise pixel grayscale value; and do the intermediate value operation. (/,) will be judged as a xo (/+""/2"j,J+b,2} is replaced by the value of the middle and the back. When all the sampling is completed, that is, I=N and: ί=Ν, QK scale update ~ Yunjin is Yuancheng One-stage noise removal procedure. ^ 13 1273514

Baboon impulse noise 150 的 SNR 比較表 Baboon150 :10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 10.8244 7.768 5.9896 4.7329 3.7774 2.9929 2.2834 1.7313 1.2292 0.7659 Median Filtered 18.0166 16.9213 15.0657 12.5092 9.919 7.5337 5.3065 3.6388 2.2452 1.0347 WFM Filtered 17.5799 16.9728 16.0106 14.6819 13.0505 11.3619 8.9688 6.4711 3.4843 0.3572 Phase I Filtered 16.533 15.9187 14.8974 14.0902 12.7487 11.157 9.4444 6.4916 3.5728 3.078 Phase II Filtered 16.6718 16.2471 15.6855 15.6911 15.0578 14.2947 12.6084 8.9438 4.3779 3.2899 Phase III Filtered 16.5768 16.2 15.657 15.7529 15.3631 14.832 13.5121 9.9552 4.7145 3.3234Baboon impulse noise 150 SNR comparison table Baboon150: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 10.8244 7.768 5.9896 4.7329 3.7774 2.9929 2.2834 1.7313 1.2292 0.7659 Median Filtered 18.0166 16.9213 15.0657 12.5092 9.919 7.5337 5.3065 3.6388 2.2452 1.0347 WFM Filtered 17.5799 16.9728 16.0106 14.6819 13.0505 11.3619 8.9688 6.4711 3.4843 0.3572 Phase I Filtered 16.533 15.9187 14.8974 14.0902 12.7487 11.157 9.4444 6.4916 3.5728 3.078 Phase II Filtered 16.6718 16.2471 15.6855 15.6911 15.0578 14.2947 12.6084 8.9438 4.3779 3.2899 Phase III Filtered 16.5768 16.2 15.657 15.7529 15.3631 14.832 13.5121 9.9552 4.7145 3.3234

Lenna impulse noise 100 的 SNR 比較表 LennalOO 、10% 20% 30% 40% ;50% 60% 70% 80% 90% 100% Source Image 12.7738 9.8454 8.1084 6.8865 5.9126 5.1209 4.4449 3.8921 3.3693 2.9216 Median Filtered 23.0554 21.0961 18.553 15.3751 12.5733 9.9956 7.8829 6.1276 4.6346 3.4728 WFM Filtered 20.1453 18.8165 17.5187 16.0191 14.7736 13.1493 11.4134 9.0531 6.0836 2.9105 Phase I Filtered 20.7353 19.751 18.5224 16.9775 15.5831 13.7298 11.7393 8.0751 6.2016 0.8327 Phase Π Filtered 20.2974 19.7845 19.341 18,8275 17.9098 16.7958 14.8107 9.8009 7.0708 0.9592 Phase III Filtered 20.0214 19.4985 19.1255 18.7766 18.0418 17.3174 15.6446 10.4166 7.4849 0.9899Lenna impulse noise 100 SNR comparison table LennalOO, 10% 20% 30% 40%; 50% 60% 70% 80% 90% 100% Source Image 12.7738 9.8454 8.1084 6.8865 5.9126 5.1209 4.4449 3.8921 3.3693 2.9216 Median Filtered 23.0554 21.0961 18.553 15.3751 12.5733 。 。 。 。 。 。 。 。 。 。 。 19.1255 18.7766 18.0418 17.3174 15.6446 10.4166 7.4849 0.9899

Lenna impulse noise 150 的 SNR 比較表 Lennal50 10% 20% :,30% 11¾ '50% / 60% :70% 80% 90% 100% Source Image 10.4628 7.4211 5.6981 4.4827 3.5464 2.7434 2.0715 1.4676 0.9646 0.5199 Mediian: Filtered, 22.4472 20.0665 16.4491 13.3095 10.2374 7.4684 5.2682 3.3371 1.915 0.7521 WFM Filtered , 20.3724 18.8613 17.0277 15.4704 13.7193 11.4278 8.9774 6.0738 2.959 0.6548 Phase I Filtered 20.2181 18.9669 17,2263 15.6029 13.7321 11.7205 9.1009 6.0836 0.0019 0 Phase II Filtered 19.9616 19.1947 18.6209 18.0375 16.9158 15.3521 12.3493 8.6377 0.0001 -0.0001 Phase III Filtered 19.7374 18.956 18.6085 18.174 17.4214 16.1191 13.348 9.7365 0.0001 •0.0001Lenna impulse noise 150 SNR comparison table Lennal50 10% 20% :,30% 113⁄4 '50% / 60% :70% 80% 90% 100% Source Image 10.4628 7.4211 5.6981 4.4827 3.5464 2.7434 2.0715 1.4676 0.9646 0.5199 Mediian: Filtered, 22.4472 20.0665 16.4491 13.3095 10.2374 7.4684 5.2682 3.3371 1.915 0.7521 WFM Filtered , 20.3724 18.8613 17.0277 15.4704 13.7193 11.4278 8.9774 6.0738 2.959 0.6548 Phase I Filtered 20.2181 18.9669 17,2263 15.6029 13.7321 11.7205 9.1009 6.0836 0.0019 0 Phase II Filtered 19.9616 19.1947 18.6209 18.0375 16.9158 15.3521 12.3493 8.6377 0.0001 - 0.0001 Phase III Filtered 19.7374 18.956 18.6085 18.174 17.4214 16.1191 13.348 9.7365 0.0001 •0.0001

Peppers impulse noise 100 的 SNR 比較表 peppers 100 10% .20% 30% __ 60% 70% 80% 90% 100¾ Source Image 12.9438 10.0034 8.2382 6.9488 6.0112 5.2064 4.5462 3.9724 3.4736 3.0067 Median Filtered 24.0664 21.5265 18.8431 15.529 12.6623 10.0499 7.9544 6.1696 4.7212 3.5189 WFM Filtered 21.0013 19.6803 18.498 16.7943 15.2045 13.4744 11.599 9.1467 6.2311 2.9955 Phase I Filtered 17.4986 19.9714 18.6179 13.2332 15.2856 11.8912 11.2605 9.0722 6.2196 3.1031 Phase II Filtered 17.988 19.8917 19.1558 14.0177 17.5211 13.4005 13.5415 11.4211 6.9028 3.1005 Phase III Filtered 18.0673 19.5867 18.9685 14.1328 17.7265 13.6984 14.0165 12.4223 7.1967 3.1059 15 1273514Peppers impulse noise 100 SNR comparison table pepperers 100 10% .20% 30% __ 60% 70% 80% 90% 1003⁄4 Source Image 12.9438 10.0034 8.2382 6.9488 6.0112 5.2064 4.5462 3.9724 3.4736 3.0067 Median Filtered 24.0664 21.5265 18.8431 15.529 12.6623 10.0499 7.9544 6.1696 4.7212 3.5189 WFM Filtered 21.0013 19.6803 18.498 16.7943 15.2045 13.4744 11.599 9.1467 6.2311 2.9955 Phase I Filtered 17.4986 19.9714 18.6179 13.2332 15.2856 11.8912 11.2605 9.0722 6.2196 3.1031 Phase II Filtered 17.988 19.8917 19.1558 14.0177 17.5211 13.4005 13.5415 11.4211 6.9028 3.1005 Phase III Filtered 18.0673 19.5867 18.9685 14.1328 17.7265 13.6984 14.0165 12.4223 7.1967 3.1059 15 1273514

Peppers impulse noise 150 的 SNR 比較表 pepperslSO 10% 20% :30% 40% 50% 60% 70% 80% 90% 100% Source Image 10.5023 7.5439 5.7997 4.5544 3.6344 2.7545 2.146 1.5176 1.0333 0.5724 Median Filtered 23.3079 20.5331 17.0017 13.3635 10.3423 7.3407 5.4003 3.4215 2.03 0.8134 WFM Filtered 21.1766 19.7254 17.6346 15.444 13.3504 10.6133 8.7324 4.1155 2.6608 -0.1175 Phase I Filtered 20.6664 12.9899 17.3114 10.8172 13.3292 10.5972 8.7219 5.8571 2.9736 -0.3347 Phase II Filtered 20.1187 13.492 18.8707 12.1188 16.9852 14.4236 12.3534 8.1697 3.7543 -0.3553 Phase III Filtered 19.7929 13.533 18.7827 12.281 17.5308 15.5836 13.7786 9.224 4.1097 -0.3545Peppers impulse noise 150 SNR comparison table pepperslSO 10% 20% : 30% 40% 50% 60% 70% 80% 90% 100% Source Image 10.5023 7.5439 5.7997 4.5544 3.6344 2.7545 2.146 1.5176 1.0333 0.5724 Median Filtered 23.3079 20.5331 17.0017 13.3635 10.3423 7.3407 5.4003 3.4215 2.03 0.8134 WFM Filtered 21.1766 19.7254 17.6346 15.444 13.3504 10.6133 8.7324 4.1155 2.6608 -0.1175 Phase I Filtered 20.6664 12.9899 17.3114 10.8172 13.3292 10.5972 8.7219 5.8571 2.9736 -0.3347 Phase II Filtered 20.1187 13.492 18.8707 12.1188 16.9852 14.4236 12.3534 8.1697 3.7543 -0.3553 Phase III Filtered 19.7929 13.533 18.7827 12.281 17.5308 15.5836 13.7786 9.224 4.1097 -0.3545

Boat impulse noise 100 的 SNR 比較表 boatlOO 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 14.0246 11.0775 9.2924 8.0422 7.1127 6.3088 5.6149 5.0504 4.5253 4.0722 Median Filtered 20.9373 19.6684 17.8279 15.5728 13.33 10.9758 8.9781 7.3076 5.8568 4.6913 WFM Filtered 19.0911 18.2913 17.3357 16.4812 12.5724 12.9488 11.7269 9.8422 7.1108 4.3928 Phase I Filtered 19.1426 18.2104 17.4986 16.2999 15.0153 13.5299 11.8167 9.7533 7.1591 4,0939 Phase II Filtered 18.6621 18.0138 17.7345 17.0894 16.3519 15.2701 13.728 11.2164 7.6578 4.046 Phase III Filtered 18.2269 17.7008 17,4702 16.9446 16.3657 15.5164 14.1773 Ί 1.8487 7.8542 4.0377SNR of Boat impulse noise 100 Comparison table boatlOO 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 14.0246 11.0775 9.2924 8.0422 7.1127 6.3088 5.6149 5.0504 4.5253 4.0722 Median Filtered 20.9373 19.6684 17.8279 15.5728 13.33 10.9758 8.9781 7.3076 5.8568 4.6913 WFM Filtered 19.0911 18.2913 17.3357 16.4812 12.5724 12.9488 11.7269 9.8422 7.1108 4.3928 Phase I Filtered 19.1426 18.2104 17.4986 16.2999 15.0153 13.5299 11.8167 9.7533 7.1591 4,0939 Phase II Filtered 18.6621 18.0138 17.7345 17.0894 16.3519 15.2701 13.728 11.2164 7.6578 4.046 Phase III Filtered 18.2269 17.7008 17, 4702 16.9446 16.3657 15.5164 14.1773 Ί 1.8487 7.8542 4.0377

Boat impulse noise 150 的 SNR 比較表 boatlSO : :10% .20% ‘ 30% 40% '50% 60% 70% 80% 90% 100% Source Image 11.585 8.5414 6.8766 5.6137 4.5991 3.8314 3.1981 2.6063 2.0628 1.639 MedianFiltered 20.65 18.7815 16.5899 13.7566 10.8475 8.3562 6.3518 4.536 3.0001 1.9455 WFM Filtered 9.4359 8.9687 16.7299 15.1802 13.2572 11.3381 9.2217 6.5049 3,4561 0.6624 Phase I Filtered 18.9864 16.7837 15.1843 13.7756 12.5597 11.511 10.7019 8.9552 8.2656 6.7594 Phase II Filtered 18.6295 17.0105 15.4449 14.0047 12.7S47 11.7693 10.9927 8.9546 8.3607 6.7828 Phase III Filtered 18.2229 16.972 15.4704 14.0772 12.8166 11.7831 10.9909 8.9546 8.3006 6.7881SNR of Boat impulse noise 150 Comparison table boatlSO : :10% .20% ' 30% 40% '50% 60% 70% 80% 90% 100% Source Image 11.585 8.5414 6.8766 5.6137 4.5991 3.8314 3.1981 2.6063 2.0628 1.639 MedianFiltered 20.65 18.7815 16.5899 13.7566 10.8475 8.3562 6.3518 4.536 3.0001 1.9455 WFM Filtered 9.4359 8.9687 16.7299 15.1802 13.2572 11.3381 9.2217 6.5049 3,4561 0.6624 Phase I Filtered 18.9864 16.7837 15.1843 13.7756 12.5597 11.511 10.7019 8.9552 8.2656 6.7594 Phase II Filtered 18.6295 17.0105 15.4449 14.0047 12.7S47 11.7693 10.9927 8.9546 8.3607 6.7828 Phase III Filtered 18.2229 16.972 15.4704 14.0772 12.8166 11.7831 10.9909 8.9546 8.3006 6.7881

Baboon impulse noise 100 的 PSNR 比較表 BaboonlOO 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 18.4758 15.5736 13.7707 12.5765 11.5704 10.7777 10.116 9.5356 9.0272 8.5678 Median Filtered 23.6095 22.9403 21.5209 19.7481 17.5821 15.5866 13.6753 12.037 10.6483 9.4785 WFM Filtered 22.4393 21.6793 20.778 19.8066 18.9528 17.8874 16.5002 13.8104 11.1789 8.6852 Phase I Filtered 21.9419 21.1672 20.1341 19.9752 19.1635 18.1297 16.6143 14.2655 11.367 9.9405 Phase II Filtered 22.0161 21.3949 20.6081 21.1954 20.8725 20.2771 19.1193 16.2114 11.8374 10.0271 Phase III Filtered 21.8863 21.3147 20.5594 21.1924 20.9886 20.594 19.6867 16.9031 12.0233 10.0546 16 1273514PSNR Comparison Table for Baboon impulse noise 100 BaboonlOO 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 18.4758 15.5736 13.7707 12.5765 11.5704 10.7777 10.116 9.5356 9.0272 8.5678 Median Filtered 23.6095 22.9403 21.5209 19.7481 17.5821 15.5866 13.6753 12.037 10.6483 9.4785 WFM Filtered 22.4393 21.6793 20.778 19.8066 18.9528 17.8874 16.5002 13.8104 11.1789 8.6852 Phase I Filtered 21.9419 21.1672 20.1341 19.9752 19.1635 18.1297 16.6143 14.2655 11.367 9.9405 Phase II Filtered 22.0161 21.3949 20.6081 21.1954 20.8725 20.2771 19.1193 16.2114 11.8374 10.0271 Phase III Filtered 21.8863 21.3147 20.5594 21.1924 20.9886 20.594 19.6867 16.9031 12.0233 10.0546 16 1273514

Baboon impulse noise 150 的 PSNR 比較表 Baboonl50 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 16.3252 13.2688 11.4904 10.2338 9.2782 8.4937 7.7843 7.2322 6.73 6.2668 Median Filtered 23.5175 22.4221 20.5665 18.0101 15.4198 13.0346 10.8073 9.1397 7.746 6.5356 WFM Filtered 23.0807 22.4737 21.5114 20.1828 18.5514 16.8628 14.4697 11.972 8.9851 5.858 Phase I Filtered 22.0338 21.4196 20.3983 19.591 18.2496 16,6579 14.9453 11.9925 9.0737 8.5788 Phase II Filtered 22.1727 21.7479 21.1863 21.1919 20.5587 19.7956 18.1092 14.4447 9.8787 8.7907 Phase III Filtered 22.0776 21.7009 21.1578 21.2538 20.8639 20.3329 19.013 15.456 10.2153 8.8242PSNR of Baboon impulse noise 150 Comparison Table Baboonl50 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 16.3252 13.2688 11.4904 10.2338 9.2782 8.4937 7.7843 7.2322 6.73 6.2668 Median Filtered 23.5175 22.4221 20.5665 18.0101 15.4198 13.0346 10.8073 9.1397 7.746 6.5356 WFM Filtered 23.0807 22.4737 21.5114 20.1828 18.5514 16.8628 14.4697 11.972 8.9851 5.858 Phase I Filtered 22.0338 21.4196 20.3983 19.591 18.2496 16,6579 14.9453 11.9925 9.0737 8.5788 Phase II Filtered 22.1727 21.7479 21.1863 21.1919 20.5587 19.7956 18.1092 14.4447 9.8787 8.7907 Phase III Filtered 22.0776 21.7009 21.1578 21.2538 20.8639 20.3329 19.013 15.456 10.2153 8.8242

Lenna impulse noise 100 的 PSNR 比較表 LennalOO :10% 20% 30% 40% ;50% 60% 70% 80% 90% 100% Source Image 18.6353 15.7069 13.9699 12.7481 11.7741 10.9825 10.3064 9.7536 9.2309 8,7831 Median Filtered 28.9169 26.9576 24.4145 21.2366 18.4348 15.8571 13.7444 11.9891 10.4961 9.3344 WFM Filtered 26.0068 24.6781 23.3802 21.8806 20.6351 19.0108 17.2749 14.9147 11.9451 8.772 PKase I Filtered ; 26.5968 25.6125 24.3839 22.8391 21.4447 19.5914 17.6008 13.9367 12.0631 6.6943 Phase II Filtered 26.159 25.646 25.2025 24.689 23.7713 22.6573 20.6722 15.6624 12.9323 6.8207 Phase ffl Filtered 25.883 25.36 24.9871 24.6381 23.9034 23.1789 21.5062 16.2781 13.3465 6.8514Penna comparison table for Lenna impulse noise 100 LennalOO : 10% 20% 30% 40% ; 50% 60% 70% 80% 90% 100% Source Image 18.6353 15.7069 13.9699 12.7481 11.7741 10.9825 10.3064 9.7536 9.2309 8,7831 Median Filtered 28.9169 26.9576 24.4145 21.2366 18.4348 15.8571 13.7444 11.9891 10.4961 9.3344 WFM Filtered 26.0068 24.6781 23.3802 21.8806 20.6351 19.0108 17.2749 14.9147 11.9451 8.772 PKase I Filtered ; 26.5968 25.6125 24.3839 22.8391 21.4447 19.5914 17.6008 13.9367 12.0631 6.6943 Phase II Filtered 26.159 25.646 25.2025 24.689 23.7713 22.6573 20.6722 15.6624 12.9323 6.8207 Phase ffl Filtered 25.883 25.36 24.9871 24.6381 23.9034 23.1789 21.5062 16.2781 13.3465 6.8514

Lenna impulse noise 150 的 PSNR 比較表 _U|I5G 10% 720¾ :40% 50% <60% ;:;,70% 80% 90% 100% Source Image 16.3243 13.2826 11.5596 10.3442 9.408 8.6049 7.9331 7.3291 6.8262 6.3814 Median Filtered 28.3087 25.9281 22.3106 19.1711 16.099 13.33 11.1298 9.1986 7.7765 6.6136 WBMFiltered; 26.2339 24.7228 22.8892 21.3319 19.5809 17.2894 14.8389 11.9354 8.8205 6.5164 P6ase ^Filtered 26.0796 24.8285 23.0879 21.4645 19.5936 17.5821 14.9624 11.9451 5.8635 5.8615 iPhase II Filtered 25.8232 25.0562 24.4824 23.899 22.7773 21.2136 18.2108 14.4993 5.8616 5.8615 Phase ΠΙ Filtered 25.599 24.8175 24.47 24.0355 23,283 21.9806 19.2095 15.5981 5.8616 5.8615PSNR comparison table for Lenna impulse noise 150_U|I5G 10% 7203⁄4 : 40% 50% <60% ;:;, 70% 80% 90% 100% Source Image 16.3243 13.2826 11.5596 10.3442 9.408 8.6049 7.9331 7.3291 6.8262 6.3814 Median Filtered 28.3087 25.9281 22.3106 19.1711 16.099 13.33 11.1298 9.1986 7.7765 6.6136 WBMFiltered; 26.2339 24.7228 22.8892 21.3319 19.5809 17.2894 14.8389 11.9354 8.8205 6.5164 P6ase ^Filtered 26.0796 24.8285 23.0879 21.4645 19.5936 17.5821 14.9624 11.9451 5.8635 5.8615 iPhase II Filtered 25.8232 25.0562 24.4824 23.899 22.7773 21.2136 18.2108 14.4993 5.8616 5.8615 Phase ΠΙ Filtered 25.599 24.8175 24.47 24.0355 23,283 21.9806 19.2095 15.5981 5.8616 5.8615

Peppers impulse noise 100 的 PSNR 比較表 pepperslOO 10% 20% 30% m〇 >50% 60% 70% 8〇i | 90% Imm Source Image 18.8467 15.9063 14.1411 12.8516 11.9141 i 1.1092 10.449 9.8753 9.3765 8.9096 Median Filtered 29.9692 27.4294 24.7459 21.4318 18.5652 15.9527 13.8572 12.0724 10.6241 9.4218 WFM Filtered 26.9042 25.5832 24.4008 22.6971 21.1074 19.3773 17.5019 15.0496 12.134 8.8984 Phase I Filtered 23.4015 25.8742 24.5208 19.1361 21.1884 17.7941 17.1634 14.975 12.1224 9.006 Phase II Filtered 23.8909 25.7945 25.0586 19.9206 23.424 19.3033 19.4443 17.3239 12.8057 9.0033 Phase III Filtered 23.9702 25.4895 24.8713 20.0356 23.6294 19.6012 19.9193 18.3251 13.0996 9.0087 17 1273514Peppers impulse noise 100 PSNR Comparison table pepperslOO 10% 20% 30% m〇>50% 60% 70% 8〇i | 90% Imm Source Image 18.8467 15.9063 14.1411 12.8516 11.9141 i 1.1092 10.449 9.8753 9.3765 8.9096 Median Filtered 29.9692 27.4294 24.7459 21.4318 18.5652 15.9527 13.8572 12.0724 10.6241 9.4218 WFM Filtered 26.9042 25.5832 24.4008 22.6971 21.1074 19.3773 17.5019 15.0496 12.134 8.8984 Phase I Filtered 23.4015 25.8742 24.5208 19.1361 21.1884 17.7941 17.1634 14.975 12.1224 9.006 Phase II Filtered 23.8909 25.7945 25.0586 19.9206 23.424 19.3033 19.4443 17.3239 12.8057 9.0033 Phase III Filtered 23.9702 25.4895 24.8713 20.0356 23.6294 19.6012 19.9193 18.3251 13.0996 9.0087 17 1273514

Peppers impulse noise 150 的 PSNR 比較表 peppers 150 ;10% 20% 30% 40% i 50% 讓60% 70% 80% 90% 100% Source Image 16.4052 13.4467 11.7026 10.4573 9.5373 8.6574 8.0488 7.4204 6.9361 6.4753 Median Filtered 29.2107 26.436 22.9045 19.2664 16.2452 13.2435 11.3031 9.3243 7.9328 6.7163 WFM Filtered 27.0794 25.6282 23.5374 21.3469 19.2533 16.5162 14.6353 10.0183 8.5636 5.7853 Phase I Filtered 26.5692 18.8928 23.2143 16.72 19.2321 16.5 14.6248 11.76 8.8765 5.5682 Phase II Filtered 26.0215 19.3948 24.7735 18.0217 22.8881 20.3265 18.2562 14.0726 9.6571 5.5476 Phase III Filtered 25.6957 19.4358 24.6855 18.1838 23.4336 21.4864 19.6814 15.1268 10Ό125 5.5484PSNR of Peppers impulse noise 150 Comparison table peppers 150; 10% 20% 30% 40% i 50% Let 60% 70% 80% 90% 100% Source Image 16.4052 13.4467 11.7026 10.4573 9.5373 8.6574 8.0488 7.4204 6.9361 6.4753 Median Filtered 29.2107 26.436 22.9045 19.2664 16.2452 13.2435 11.3031 9.3243 7.9328 6.7163 WFM Filtered 27.0794 25.6282 23.5374 21.3469 19.2533 16.5162 14.6353 10.0183 8.5636 5.7853 Phase I Filtered 26.5692 18.8928 23.2143 16.72 19.2321 16.5 14.6248 11.76 8.8765 5.5682 Phase II Filtered 26.0215 19.3948 24.7735 18.0217 22.8881 20.3265 18.2562 14.0726 9.6571 5.5476 Phase III Filtered 25.6957 19.4358 24.6855 18.1838 23.4336 21.4864 19.6814 15.1268 10Ό125 5.5484

Boat impulse noise 100 的 PSNR 比較表 boat 100 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 18.8728 15.9257 14.1406 12.8904 11.9609 11.157 10.4631 9.8986 9.3735 8.9204 Median Filtered 25.7855 24.5166 22.6761 20.421 18.1782 15.824 13.8263 12.1558 10.705 9.5395 WFM Filtered 23.9393 23.1395 22.1839 21.3294 17.4206 17.797 16.5751 14.6904 11.959 9.241 Phase IFiltered 23.9908 23.0586 22.3468 21.1481 19.8635 18.3781 16.6649 T4.6OI5 12.0073 8.9421 Phase II Filtered 23.5103 22.862 22.5827 21.9376 21.2001 20.1183 18.5762 16.0646 12.506 8.8942 Phase IIIiFiltered 23.0751 22.549 22.3184 21.7928 21.2139 20.3646 19.0255 16.6969 12.7024 8.8859Boat impulse noise 100 PSNR Comparison table boat 100 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Source Image 18.8728 15.9257 14.1406 12.8904 11.9609 11.157 10.4631 9.8986 9.3735 8.9204 Median Filtered 25.7855 24.5166 22.6761 20.421 18.1782 15.824 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 20.3646 19.0255 16.6969 12.7024 8.8859

Boat impulse noise 150 的 PSNR 比較表 boatiSO . /10% 20% _圖 40% 50% :60% 70% 80% 90% 100% Source Image 16.4332 13.3897 11.7248 10,4619 9.4473 8.6796 8.0463 7.4545 6.911 6.4872 Median Filtered 25.4982 23.6297 21.4382 18.6048 15.6958 13.2044 11.2 9.3842 7.8483 6.7937 WFM Filtered 14.2841 13.8169 21.5781 20.0284 18.1054 16.1864 14.0699 11.3531 8.3044 5.5106 Phase IFiltered 23.8346 21.6319 20.0325 18.6238 17.4079 16.3592 15.5501 13.8035 13.1138 11.6076 Phase II Filtered 23.4777 21.8587 20.2931 18.8529 17.6329 16.6175 15.8409 13.8028 13.2089 11.631 Phase III Filtered 23.0712 21.8202 20.3187 18.9254 17.6648 16.6313 15.8391 13.8028 13.1488 11.6363PSNR of Boat impulse noise 150 Comparison table boatiSO . /10% 20% _ Figure 40% 50% : 60% 70% 80% 90% 100% Source Image 16.4332 13.3897 11.7248 10,4619 9.4473 8.6796 8.0463 7.4545 6.911 6.4872 Median Filtered 25.4982 23.6297 21.4382 18.6048 15.6958 13.2044 11.2 9.3842 7.8483 6.7937 WFM Filtered 14.2841 13.8169 21.5781 20.0284 18.1054 16.1864 14.0699 11.3531 8.3044 5.5106 Phase IFiltered 23.8346 21.6319 20.0325 18.6238 17.4079 16.3592 15.5501 13.8035 13.1138 11.6076 Phase II Filtered 23.4777 21.8587 20.2931 18.8529 17.6329 16.6175 15.8409 13.8028 13.2089 11.631 Phase III Filtered 23.0712 21.8202 20.3187 18.9254 17.6648 16.6313 15.8391 13.8028 13.1488 11.6363

由上列各表可知本發明方法包含兩階段的處理數據,第一階 段的數據大致上都與WFMFilter差不多,但是經過兩階段的處理 後,其數據及效果都能超越WFM Filter 3到4dB,甚至在脈衝雜 訊高度提升至200時(高斯雜訊變異數為1),數據超過wfm Filter 有5dB以上,表示AMFG Filter對於濾除高斯脈衝雜訊比WFM 18 1273514It can be seen from the above table that the method of the present invention comprises two stages of processing data, and the data of the first stage is substantially similar to the WFMFilter, but after two stages of processing, the data and effects can exceed the WFM Filter by 3 to 4 dB, and even When the pulse noise height is increased to 200 (the Gaussian noise variation is 1), the data exceeds the wfm Filter by more than 5dB, indicating that the AMFG Filter is for filtering Gaussian pulse noise compared to WFM 18 1273514.

Filter有更好的效果。 綜上所述本發明使用了兩階段式的影像濾波器,在第一階段 的濾波器部分,先對已受雜訊污染的影像做第一次雜訊的濾除動 作,由於雜訊比例大於3〇%以上的影像在經過第一階段的濾除動 作之後,可能會殘留大於一個像素(pixel)的雜訊,為了能使濾完 高頻雜訊後的影像更進一步接近原來的影像,所以對經過第一階 段濾除雜訊完後的影像進行臨界化(Thresh〇lding)得到 Threshdded image,再利用 Thresholdedimage 做為第二階段濾波 器的雜訊判斷依據,針對已經濾除雜訊後的影像再次進行處理, 經過實驗證明AMFG Filter*這制二次處理可以大幅增加影像的 祖以及PSNR值,使影像雜訊濾波器可以讓影像更為清晰。除 此之外根據前述方法中所述,所提出的影像濾波、臨界化'邊緣 抓取、和影像分割的時間和空間複雜度可以分別如下表可知,其 複雜度比現有方法都還低。Filter has a better effect. In summary, the present invention uses a two-stage image filter. In the filter portion of the first stage, the first noise filtering operation is performed on the image contaminated by the noise first, because the noise ratio is greater than More than 3% of the images may have more than one pixel of noise after the first stage of filtering, in order to make the image after filtering the high frequency noise closer to the original image, so The Threshdded image is obtained by thresholding the image after the first stage of filtering the noise, and then the Thresholded image is used as the noise judgment of the second stage filter for the image after the noise has been filtered out. After processing again, it has been experimentally proven that the secondary processing of AMFG Filter* can greatly increase the image ancestor and PSNR value, so that the image noise filter can make the image clearer. In addition, as described in the foregoing method, the time and space complexity of the proposed image filtering, criticalization 'edge grabbing, and image segmentation can be respectively as shown in the following table, and the complexity is lower than the existing methods.

AMFG Filter演算法空間複雜度AMFG Filter algorithm space complexity

Phase I Filter #影像邊長,Z影像Histogram的、^^7---- 記憶體瞬間最大使用量 Ιΰϊ--*--_ 最終儲存記憶體用量 3Ν2 ' ~------- Phase Π Filter 影像邊長"^55^各邊長。 一~_—---一-— 記憶^瞬間Θ使用量 Ύ2 ^ ----------_> 最終儲存記憶體用量 3N2 ~' —~---- 一丨 — 19 1273514Phase I Filter #Image side length, Z image Histogram, ^^7---- Memory instantaneous maximum usage Ιΰϊ--*--_ Final storage memory usage 3Ν2 ' ~------- Phase Π Filter image side length "^55^ each side length. One ~_------- Memory ^ Instant Usage Ύ2 ^ ----------_> Final Storage Memory Usage 3N2 ~' —~---- One 丨 — 19 1273514

Phase I Filter 相等次數 加法次數 乘法次數 除法次數 比較次數Phase I Filter Equals Number of Additions Number of Multiplications Number of Divisions Number of Comparisons

Floor次數 整體 一 Phase: II Filter 相等次數""" 比較次數 AMFG Filter演算法時間複雜度 影像邊長;取樣方格邊長;預設谷點;心=影像Histogram 取樣段數,cy=取樣段數中所佔灰階數量;£=影像Histogram的總灰 階數(c”xcp) ; h=Fuzzy mean 個數(Thresholds)。 2cn+3N2+4((N2^k2xn2)HN2><k2))^6k2+7(N2+cn)^5 = 0(N2xk2xn2+L) 一 N2+2(N\k2^l))-Jr3cn^4N^7(N2xk2><nJ-i- k2)^N2xk2^\〇Cn+\ = 0(N2xh xn2+L) 〇(^χ々)+2(#χ 怂)+3(妒>< 幻 x Y)+2 = 0(tV2x 幻 ~N^2(N2^k2^n2^ Cn)+(N2xk2) +1 = Q(tV2x^2+Z)~ %搬(^以 Y+蝌㈧+l)(A^cg+(iV-11))+37^= 撕2 ‘ xL) “ cn+l = 0(cn) -~~' 0(N2 xk2xn2 Jrk2xL) " ~ ^ iV=影像邊長;π取樣方格邊長。 '~ ^ [2(”2 一 1) + φν 一2)2 〜[5〇2 一l) + 3j(iV一 2)2 (n2-l)(N-2)2 =0(π2χΝ2) 累加次數 〇〜h2 - 1)(#一2)2 =〇(Aa/·2) 2(iV - 2)2 =〇(的 [2(^-D + 2j(iV-2)2 -0(η2χΝ2)Floor number overall Phase: II Filter equal number """ comparison times AMFG Filter algorithm time complexity image side length; sampling square side length; preset valley point; heart = image Histogram sampling number, cy= The number of gray scales in the number of sampling segments; £=the total grayscale number of the image Histogram (c"xcp); h=the fuzzy mean number (Thresholds). 2cn+3N2+4((N2^k2xn2)HN2>< K2))^6k2+7(N2+cn)^5 = 0(N2xk2xn2+L) -N2+2(N\k2^l))-Jr3cn^4N^7(N2xk2><nJ-i- k2) ^N2xk2^\〇Cn+\ = 0(N2xh xn2+L) 〇(^χ々)+2(#χ 怂)+3(妒>< 幻x Y)+2 = 0(tV2x 幻~N^ 2(N2^k2^n2^ Cn)+(N2xk2) +1 = Q(tV2x^2+Z)~ % Move (^ with Y+蝌(8)+l)(A^cg+(iV-11))+37^ = tear 2 ' xL) " cn+l = 0(cn) -~~' 0(N2 xk2xn2 Jrk2xL) " ~ ^ iV=image side length; π sample square side length. '~ ^ [2("2 -1) + φν a 2)2 ~[5〇2 a l) + 3j(iV-2)2 (n2-l)(N-2)2 =0(π2χΝ2) Accumulate Number of times h~h2 - 1)(#2)2=〇(Aa/·2) 2(iV - 2)2 =〇([2(^-D + 2j(iV-2)2 -0( η2χΝ2)

就影像分析上來說以這麼低的複雜度其臨界化、邊緣抓取和 影像分割效果減可㈣美财其他綠騎未受污染影像的 分析,突破了現有技術對於高污染的影像無法分析的箸境。這樣 的貢獻對於醫療影像儀n、影像壓縮、多舰軌等產業呈有重 要的價值。因此本方法不僅具產業可性且具高歧濟價值, 特別係其中第1段的多值分割之後影像τη,亦可由其他多值分 割的演算法所產生之影像替代,用以作為第二階段處理方法的輸 入,以擴大廣泛應用。故本發明實施例確實已能達到所預期之目 的及功效’又未見有_碰者公開在先,故本翻當能符合發 20 1273514 月專利之中%要件,爰依法提出申請,懇請早日審結,並核賜專 利,實深任感荷。 【圖式簡單說明】 第-圖影像取樣視窗水平式掃描移動圖。 第二圖使用模糊推論進行影像處理的示意圖。 第一圖本發明第—pg段的影像濾波器處理流程圖。 第四圖本發明第二階段的影像濾波n處理流程圖。In terms of image analysis, the criticality, edge grabbing and image segmentation effects are reduced with such low complexity. (IV) The analysis of uncontaminated images of other green riders of the US Treasury breaks through the existing technology for the analysis of highly polluted images. territory. Such contributions are of great value to industries such as medical imaging cameras, image compression, and multi-hull. Therefore, the method is not only industrially viable and has high ambiguity value, especially the image τη after multi-value segmentation in the first segment, and can also be replaced by images generated by other multi-value segmentation algorithms, and is used as the second-stage processing method. The input is expanded to broadly apply. Therefore, the embodiments of the present invention have indeed achieved the intended purpose and efficacy. 'There is no disclosure of the _ 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者 者After the conclusion, and granting a patent, I am deeply impressed. [Simple description of the diagram] The first-image image sampling window is horizontally scanned and moved. The second diagram uses fuzzy inference to perform a schematic of image processing. The first figure is a flowchart of image filter processing in the -pg segment of the present invention. The fourth figure is a flow chart of the image filtering n process of the second stage of the present invention.

第五圖本發明兩階段式影像處理示意圖。 第六圖(a) Baboon原影像 (b) Baboon摻雜70%高度150的脈衝雜訊後影像。 (c) Baboon MEDIAN Filters濾除雜訊後的影像。 (d) Baboon WFM Filter濾除雜訊後的影像。 (e) Baboon AMFGFilter第一階段濾除雜訊後的影像。 (f) Baboon AMFGFilter第二階段濾除雜訊後的影像。 第七圖(a) Baboon WFM Filter多值化後的影像。 (b) Baboon AMFG Filter第一階段多值化後的影像。 (c) Baboon AMFG Filter 第二階段多值化 (d) Baboon WFM Filter邊緣抓取後的影像。 (e) Baboon AMFG Filter第一階段邊緣抓取後的影像。 (f) BaboonAMFGFilter第二階段邊緣抓取後的影像。 第八圖(a) Lenna原影像 (b) Lenna摻雜70%高度150的脈衝雜訊後影像。 21 1273514 (c) Lenna MEDIAN Filters濾除雜訊後的影像。 (d) Lenna WFM Filter濾除雜訊後的影像。 (e) Lenna AMFGFilter第一階段濾除雜訊後的影像。 (f) Lenna AMFGFilter第二階段濾除雜訊後的影像。 第九圖(a) Lenna WFMHlter多值化後的影像。 (b) Lenna AMFGFilter第一階段多值化後的影像。 (c) Lenna AMFGFilter 第二階段多值化Figure 5 is a schematic diagram of the two-stage image processing of the present invention. Figure 6 (a) Baboon original image (b) Baboon doped with 70% height 150 pulsed noise image. (c) Baboon MEDIAN Filters filter out images after noise. (d) Baboon WFM Filter filters out images after noise. (e) The first stage of Baboon AMFGFilter filters out the image after the noise. (f) The second stage of Baboon AMFGFilter filters out the image after the noise. Figure 7 (a) Baboon WFM Filter multi-valued image. (b) Image of the first stage of Baboon AMFG Filter multi-valued. (c) Baboon AMFG Filter Phase 2 Multi-Valued (d) Image captured by the Baboon WFM Filter edge. (e) Image of the first stage edge capture of Baboon AMFG Filter. (f) Image of the second stage edge capture of BaboonAMFGFilter. Figure 8 (a) Lenna original image (b) Lenna is doped with a 70% height 150 pulsed noise image. 21 1273514 (c) Lenna MEDIAN Filters filter out images after noise. (d) Lenna WFM Filter filters out images after noise. (e) The first stage of the Lenna AMFGFilter filter out the image after the noise. (f) The second stage of the Lenna AMFGFilter filter out the image after the noise. Figure IX (a) Lenna WFMHlter multi-valued image. (b) Lenna AMFGFilter first-stage multi-valued image. (c) Lenna AMFGFilter Phase II Multi-Valued

(d) Lenna WFMFilter邊緣抓取後的影像。 (e) Lenna AMFGFilter第一階段邊緣抓取後的影像。 (f) LennaAMFGFilter第二階段邊緣抓取後的影像。 第十圖(a) Peppers原影像 (b) Peppers摻雜70%高度150的脈衝雜訊後影像。 (c) Peppers MEDIAN Filters濾除雜訊後的影像。 (d) Peppers WFMFilter濾除雜訊後的影像。 (e) P印pers AMFGFilter第一階段濾除雜訊後的影像。 (f) P印pers AMFGFilter第二階段濾除雜訊後的影像。 第十一圖(a) Peppers WFMFilter多值化後的影像。 (b) Peppers AMFGFilter第一階段多值化後的影像。 (c) Peppers AMFGFilter 第二階段多值化 (d) Peppers WFM Filter邊緣抓取後的影像。 (e) Peppers AMFGFilter第一階段邊緣抓取後的影像。 (f) Peppers AMFGFilter第二階段邊緣抓取後的影像。 22(d) Image captured by the edge of the Lenna WFMFilter. (e) Image of the first stage edge capture of Lenna AMFGFilter. (f) Image of the second stage edge capture of LennaAMFGFilter. Figure 10 (a) Original Peppers image (b) Peppers doped with 70% height 150 pulsed noise images. (c) Peppers MEDIAN Filters filter out images after noise. (d) Peppers WFMFilter filters out images after noise. (e) P-printed AMFGFilter The first stage of filtering out the image after the noise. (f) P-printed AMFGFilter The second stage filters out the image after the noise. Figure 11 (a) Peppers WFMFilter multi-valued image. (b) Images of the first stage of the Peppers AMFGFilter multi-valued. (c) Peppers AMFGFilter Phase 2 Multi-Valued (d) Images captured by the Peppers WFM Filter edge. (e) Images of the first stage of the Peppers AMFGFilter capture. (f) Image of the second stage edge capture of Peppers AMFGFilter. twenty two

Claims (1)

1273514 奶年i2月4日修(爲}正本 十、申請專利範圍·· 1 ·一種使用模糊分割之高污染影像分析法,其包含有二階 段式濾波器,其中: 第一階段的影像濾波器對受污染的影像進行統計產生 histogram,使用雜訊影像的直方圖(hist〇gram)自動產生隸屬度 函數(Membership Functions)的 LR 參數左分布(Left spread)1273514 Milk Year i February 4th Repair (for the original 10, the scope of the patent application · · 1 · A high-contamination image analysis method using fuzzy segmentation, which includes a two-stage filter, where: The first stage of the image filter Statistically generating a histogram on the contaminated image, using the histogram of the noise image to automatically generate the LR parameter left spread of the Membership Functions (Left spread) α、均值(mean) m、以及右分布(Right spread) β,用以代表其 LR模糊集合(α,m,/5)lr,然後利用自動取得的模糊集合以及隸 屬度函數根據模糊理論進行雜訊之濾除並產生第一階段的臨界 影像(Thresholded Image); 第二階段的影像舰器中,係將第—階段所得影像再取樣做 水平掃描’轉成複雜度較低的影像,此階段會對前一部分所產生 的臨界影像娜樣的動作’將取樣的巾讀與其周邊的數值一一 做比較,满是否為第—階段城除雜點,並使肢取樣視窗中 非雜點的部份做為填補中心點的依據。 2.如中請專利範圍第1項所述之使職糊分割之高污染影 像分析法’其巾在第-階段的影像毅器、巾其處理步驟如下: ㈠將影像代入矩陣中並計算出該矩陣的直方圖; ㈡將直方圖分成數個段落,並對每個段落取平均值; (三)每個段落平均值的差異如果由負值變為正值就預設為谷 黑占; 25 1273514 • ‘(四)在兩__設谷財财直調最大值,該最大值處 的灰階作為峰點(peak),再以兩個相鄰♦點之間求直方圖最小 值,該最小值處的灰階來作為最後正確谷點; ㈤將直額最低以及最高灰階處作為兩個谷點,使用-個 ^確峰點及鄰近_谷點形成—個_紗,♦點即為lr模糊集 合(1 m,yS)LR的均值參數m,峰點到左鄰近谷點的距離為左分 布參數cc,峰點到右鄰近谷點的距離為右分布參數β; (六) 以取樣視窗代人每段_分·,m,心的隸屬度函 ^可得取樣視窗中每個像素點胁該分割的加權伽及該取樣視 窗對於該分割的加權平均值; (七) 對於任-取樣視窗,計算最対能估計值與每段模糊分 割的加權平均值’絲大可能估計值差異最小的域平均值作為 輪出; 如此可得到第一階段濾除雜點後之影像。 3 ·如申請專利範圍第2項所述之使祕糊分割之高污染影 像分析法,其中在第—階段的影像濾波器中第_步驟我們只取出 直方圖在最大灰階值-5與最小灰階值+5之間的部份,如此可將影 像中大多的突波雜訊 Impulse Noise 濾除。 4 ·如申睛專利範圍第2項所述之使用模糊分割之高污染景{ 像分析法,將第一階段濾除雜點後之影像中的灰階值進行更新以 產生臨界影像(thresholded image),其做法為第一階段濾除雜 點後之影像中落入兩鄰近谷點之間(含較小的谷點)的所有灰階值 26 1273514 以其相對峰_灰雜取代,完叙後即為第—階段臨界影像。 5.如申請專利範圍第!項所述之使用模糊分割之高污染影 像分析b其中參數α、m、β代入模糊數得k組隸屬度函數值^ y自己計算妹樣視財之最大可能估計值,由取魏窗值乘上 取大可能估計值得加權值,由加權值除以隸屬度函數即為加 均值。 6 .如巾料_圍第2斯述之使關齡割之高污抑 像分析法’射加權平均值與最大可計值的差異值為最^ 則延擇輸出至-辦巾,並反覆此過程直至影像處理完畢,以完 成第一階段的影像濾波器進行雜訊之濾除。 7 ·如申請專概_丨項所叙使賴齡狀高污染影 像分析法’其巾在第二階段的影像濾波器巾其處理步驟如下: )字苐卩白^又影像濾波器處理的臨界影像後放置到一 個NxN的ΤΗ( I,J)矩陣内; ⑵對TH(I,J)矩陣使用馳的取樣髓xd( I+i,抑做水 平掃描; ⑶没定雜點判定門檀值Kt將取樣視窗的中心點分別與周圍 的各點做比較; )若:>、於Kt個點與巾々點具有相同灰階值,則該中心點判 定為雜點; ⑸取出取樣視窗中扣除中心點以外非雜點的數值;並做中間 值運算; (6)將判定為雜點的中心點代換為中間值運算後的值,每個取 27 1273514 •樣視.窗都減上述倾讀即_第二階郷_赠波影像; 如此在經過二個階段的_雜訊處理之後可以大幅增加影像 的SNR以及PSNR值,使影像雜訊渡波器可以讓影像更為清晰。 —8 .如㈣專利細第6項或第7項所述之使賴糊分割之 兩>可染影像分析法’其中在第二階段的影像濾波器中之第四步 驟,可設雜點判斷門檻值為Kt,雜點判斷值為κ,將取樣視窗的 中心點分顺關各航較,t數值_雜鑛值κ累加,當 φ數值不相同雜點判斷值κ不變,當K<Kt時,判定中心點為雜 點,當K^Kt時,判定中心點不為雜點。 9 .如申請專纖圍第6項或第7酬述之使賴糊分割之 高㈣影像分析法,其所產生之第二階段影像雜訊滤波影像,再 進仃第-階段濾、除雜後之影像巾的灰階值進行更新以產生臨 界影像ahreshoMed lmage),其做法為第一階段濾除雜點後之 影像中落人兩鄰近谷點之間(含較小的谷點)的所有灰階值以其相 對峰點的灰階值取代,可以得到最後的臨界影像。 # 1〇·如申請專利範圍第7項所述之使用模糊分割之高污染 影像分析法,射最後的臨界影像,將此最後的臨界影像進行取 樣’樣視窗中的中心點额左、左上,上,右上四個鄰近點比 f ’若有任一點不同’則設為最大灰階值,否則設為0,所有取 ^視窗完成之後可以得到邊緣偵測影像(Edge Detected Image),其邊緣紋路為白色。 旦1 1 ·如申請專利範圍第7項所述之使用模糊分割之高污染 影像分析法’其巾的觀_影像取得方法,取樣視窗中的中心 28 1273514 點砮與左、左上,上,右上四個鄰近點比較,若有任一點不同, 則設為0,否則設為最大灰階值,所有取樣視窗完成之後可以得 到黑色邊緣之邊緣偵測影像(Edge Detected Image),其邊緣紋 路為黑色。 12.如申請專利範圍第1項所述之使用模糊分割之高污染 影像分析法,其中所採用水平掃描方式可為左上至右下'右上至 左下、左下至右上及右下至左上。 13·如申請專利範圍第1項所述之使用模糊分割之高污染 影像分析法,其中所採用水平掃描方式亦可由垂直的方式取代。 14·如申請專利範圍第1項所述之使用模糊分割之高污染 影像分析法’其中影像濾波器中之取樣視窗除了以3><3外,亦可 依影像雜訊影像的雜訊污染程度而對取樣視窗做放大的動作, 如· 5x5、7x7、5x7、7x5的取樣視窗,可將其較大的雜訊移除, 能讓處理後的影像更接近原影像。 15·如申睛專利範圍第1項所述之使用模糊分割之高污染 影像分析法,將直方圖分段的參考值^的給定為根據熟知的奈奎 ’^KNyquisi Rate)取樣定理訂定公式以獲得取樣段數Cn。 1 6 ·如申請專利範圍第丄項所述之使用模糊分割之高污染 〜像分析法’其中第—階段的多值分狀後影像TH,亦可由為其 他多值分·演算法所產生之影像f代,㈣作為第二階段處理 方法的輪入。 旦17·如申請專利範圍第i項所述之使用模糊分割之高污染 刀析法將第二階段的處理可以實施多次,是為Phase III, 29 1273514 •其PSNR以及SNR將不會大幅改變。α, mean (mean) m, and right spread (Right spread) β, used to represent its LR fuzzy set (α, m, /5) lr, and then use the automatically obtained fuzzy set and membership function to perform fuzzy according to fuzzy theory The signal filtering and generating the first stage of the critical image (Thresholded Image); in the second stage of the image ship, the image obtained from the first stage is resampled for horizontal scanning and converted into a less complex image. The action of the critical image generated by the previous part will be compared with the surrounding values of the sampled towel, whether it is the first stage of the city, and the part of the limb sampling window is not the impurity point. As a basis for filling the center point. 2. The high-contamination image analysis method for the separation of the job described in the first paragraph of the patent scope is as follows: (1) Substituting the image into the matrix and calculating The histogram of the matrix; (2) Dividing the histogram into several paragraphs and averaging each paragraph; (3) If the difference between the average values of each paragraph changes from a negative value to a positive value, it is preset as Gu Hezhan; 25 1273514 • '(4) In the two __ set up the maximum value of the grain, the gray level at the maximum is used as the peak, and then the minimum of the histogram between two adjacent ♦ points, the minimum The gray level at the value is used as the last correct valley point; (5) The minimum and the highest gray level are used as the two valley points, and the use of -^^^^^^^^^^^^^^^^^^^ Lr fuzzy set (1 m, yS) LR mean parameter m, the distance from the peak point to the left adjacent valley point is the left distribution parameter cc, and the distance from the peak point to the right adjacent valley point is the right distribution parameter β; (6) sampling Each generation of _ minutes, m, and the degree of membership of the window can be obtained for each pixel in the sampling window. The weighting of the cut gamma and the weighted average of the sampling window for the segmentation; (7) For the any-sampling window, calculate the domain with the smallest difference between the best energy estimate and the weighted average of each segment of the fuzzy segmentation The average value is taken as the round; thus, the image after the first stage of filtering out the noise is obtained. 3 · As in the patent application scope item 2, the high-contamination image analysis method for secret separation, in the first stage of the image filter in the first stage, we only take out the histogram at the maximum gray level value -5 and the minimum The grayscale value is between +5, so that most of the burst noise Impulse Noise in the image is filtered out. 4 · If the high-contamination scene using fuzzy segmentation is described in item 2 of the scope of the patent application, the gray-scale value in the image after the first-stage filtering is updated to generate a critical image (threshold image) ), the method is that all gray scale values 26 1273514 falling between two adjacent valley points (including smaller valley points) in the image after the first stage of filtering out the noise are replaced by their relative peaks After that, it is the first stage critical image. 5. If you apply for a patent range! In the high-contamination image analysis using fuzzy segmentation, the parameters α, m, and β are substituted into the fuzzy number to obtain the k-group membership function value ^ y to calculate the maximum possible estimated value of the girl-like wealth, multiplied by the Wei window value. The upper one is estimated to be worth the weighted value, and the weighted value divided by the membership function is the mean value. 6. For example, if the towel material _ surrounding the second stipulations of the high-staining image analysis method of Guan Ling cut, the difference between the weighted average value and the maximum measurable value is the most ^ then the output is extended to - towel, and repeated This process is completed until the image processing is completed, to complete the first stage image filter for noise filtering. 7 · If the application is specifically _ 丨 所 使 赖 赖 赖 高 高 高 高 赖 赖 赖 其 其 其 其 其 其 其 其 其 其 其 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像 影像The image is placed in an NxN matrix of x(I,J); (2) The sampling medulla xd (I+i) is used for the TH(I,J) matrix, and the horizontal scanning is performed; (3) Kt compares the center point of the sampling window with each point around it;) If: >, the Kt points have the same gray level value as the frame point, then the center point is judged as a noise point; (5) Take out the sampling window Deduct the value of the non-noise point outside the center point; and do the intermediate value calculation; (6) Substituting the center point determined as the noise point into the value after the intermediate value operation, each taking 27 1273514 • The sample window is reduced by the above The reading is _ second-order 郷 _ gift image; so after two stages of _ noise processing can greatly increase the image SNR and PSNR value, so that the image noise router can make the image clearer. —8. As in (4) the second step of the fourth paragraph or the seventh item of the patent, the dyeable image analysis method, in the fourth step of the image filter in the second stage, may set the noise point. The threshold value is judged as Kt, and the judgment value of the noise point is κ. The center point of the sampling window is divided into different navigational values, and the t-value _ miscellaneous value κ is accumulated. When the φ value is not the same, the judgment value κ is unchanged, when K< When Kt, the center point is determined to be a noise point, and when K^Kt, it is determined that the center point is not a noise point. 9. If you apply for the sixth or seventh remuneration of the special fiber, the second stage image noise filtering image generated by the image is analyzed, and then the first stage filter and impurity removal are performed. The grayscale value of the image towel is updated to generate the critical image ahreshoMed lmage), which is the result of the first stage filtering out the noise in the image between the two adjacent valleys (including the smaller valley). The grayscale value is replaced by the grayscale value of its relative peak, and the final critical image can be obtained. # 1〇·If the high-contamination image analysis method using fuzzy segmentation described in item 7 of the patent application is applied, the final critical image is shot, and the last critical image is sampled. The center point in the sample window is left and left. Above, the upper right four adjacent points are set to the maximum gray level value if f 'if any point is different', otherwise set to 0, all the edges of the window can be obtained after the edge detection image (Edge Detected Image), the edge texture It is white. 1 1 · The high-pollution image analysis method using fuzzy segmentation as described in item 7 of the patent application's method of obtaining the image of the towel, the center of the sampling window 28 1273514 points and the left, upper left, upper, upper right Compare the four adjacent points. If any point is different, set it to 0. Otherwise, set it to the maximum gray level value. After all the sampling windows are completed, you can get the edge detection image of the black edge (Edge Detected Image). The edge texture is black. . 12. The high-pollution image analysis method using fuzzy segmentation as described in claim 1, wherein the horizontal scanning method may be from top left to bottom right 'upper right to lower left, lower left to upper right, and lower right to upper left. 13. The high-pollution image analysis method using fuzzy segmentation as described in the first paragraph of the patent application, wherein the horizontal scanning method used can also be replaced by a vertical method. 14. The high-pollution image analysis method using fuzzy segmentation as described in item 1 of the patent application section, wherein the sampling window in the image filter can be contaminated by noise of the image noise image in addition to 3> To the extent that the sampling window is zoomed in, such as the 5x5, 7x7, 5x7, and 7x5 sampling windows, the larger noise can be removed, allowing the processed image to be closer to the original image. 15. The high-contamination image analysis method using fuzzy segmentation as described in item 1 of the scope of the patent application, the reference value of the histogram segmentation is given according to the well-known Nike's KNyquisi Rate sampling theorem. Formula to obtain the number of sampling segments Cn. 1 6 · The high-contamination-image analysis method using the fuzzy segmentation as described in the scope of the patent application, the multi-valued fractal image TH of the first stage can also be generated by other multi-valued algorithms. The image f generation, (4) as the second stage of the processing method of the round. 17. The second stage of processing can be implemented multiple times using the high-polluting knife-analysis method using fuzzy segmentation as described in item i of the patent application scope. It is Phase III, 29 1273514 • Its PSNR and SNR will not change significantly. .
TW94117326A 2005-05-26 2005-05-26 Analyses of heavily corrupted images using fuzzy partitions TWI273514B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94117326A TWI273514B (en) 2005-05-26 2005-05-26 Analyses of heavily corrupted images using fuzzy partitions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94117326A TWI273514B (en) 2005-05-26 2005-05-26 Analyses of heavily corrupted images using fuzzy partitions

Publications (2)

Publication Number Publication Date
TW200641725A TW200641725A (en) 2006-12-01
TWI273514B true TWI273514B (en) 2007-02-11

Family

ID=38621564

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94117326A TWI273514B (en) 2005-05-26 2005-05-26 Analyses of heavily corrupted images using fuzzy partitions

Country Status (1)

Country Link
TW (1) TWI273514B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712691B (en) 2017-10-25 2021-07-23 商之器科技股份有限公司 System and method for converting a mobile device display into a medical image display
TWI672672B (en) * 2017-10-25 2019-09-21 商之器科技股份有限公司 Image display system and method of transforming display panels of mobile devices into being compatible with medical images display standard

Also Published As

Publication number Publication date
TW200641725A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
CN104657945B (en) The infrared small target detection method of multiple dimensioned space-time Federated filter under complex background
Kaliraj et al. An efficient approach for the removal of impulse noise from the corrupted image using neural network based impulse detector
CN104778669B (en) rapid image denoising method and device
CN102306377A (en) Method and device for reducing noise in ultrasound image
CN101976436B (en) Pixel-level multi-focus image fusion method based on correction of differential image
Meher Recursive and noise-exclusive fuzzy switching median filter for impulse noise reduction
CN102663706A (en) Adaptive weighted mean value filtering method based on diamond template
CN103400357A (en) Method for removing salt-pepper noises in images
CN104915930B (en) The method and device of grey level compensation and noise suppressed is carried out to image
CN101655977B (en) Method for eliminating image impulse noise based on differential image detection and filtration by multiple windows
CN106296763A (en) A kind of metal material Industry CT Image Quality method for quickly correcting
TWI273514B (en) Analyses of heavily corrupted images using fuzzy partitions
Nachtegael et al. Fuzzy filters for noise reduction: The case of Gaussian noise
Irum et al. A noise adaptive approach to impulse noise detection and reduction
CN106254723A (en) A kind of method of real-time monitoring video noise interference
CN106097306B (en) Obtain method, method for detecting image edge and the device of Image Edge-Detection operator
Kayhan An effective 2-stage method for removing impulse noise in images
JP4612522B2 (en) Change area calculation method, change area calculation device, change area calculation program
JP4140402B2 (en) Image processing device
Wu et al. Bi-lateral filtering based edge detection on hexagonal architecture
CN114994098A (en) Foreign matter detection method and device
CN111860326B (en) Building site article movement detection method, device, equipment and storage medium
Palabaş et al. Adaptive fuzzy filter combined with median filter for reducing intensive salt and pepper noise in gray level images
Lyakhov et al. Bilateral and Median Filter Combination for High-Quality Cleaning of Random Impulse Noise in Images
CN112861772A (en) Scene analysis method and device based on image recognition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees