TWI272730B - Method for growing group-III nitride semiconductor heterostructures on silicon substrate - Google Patents

Method for growing group-III nitride semiconductor heterostructures on silicon substrate Download PDF

Info

Publication number
TWI272730B
TWI272730B TW92128938A TW92128938A TWI272730B TW I272730 B TWI272730 B TW I272730B TW 92128938 A TW92128938 A TW 92128938A TW 92128938 A TW92128938 A TW 92128938A TW I272730 B TWI272730 B TW I272730B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
group iii
forming
iii nitride
Prior art date
Application number
TW92128938A
Other languages
Chinese (zh)
Other versions
TW200515614A (en
Inventor
Shang-Jr Gwo
Chung-Lin Wu
Original Assignee
Shang-Jr Gwo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shang-Jr Gwo filed Critical Shang-Jr Gwo
Priority to TW92128938A priority Critical patent/TWI272730B/en
Publication of TW200515614A publication Critical patent/TW200515614A/en
Application granted granted Critical
Publication of TWI272730B publication Critical patent/TWI272730B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention provides a method for forming group-III nitride semiconductor heterostructures on a silicon (111) substrate using a coincidently matched bilayer buffer grown on the Si (111) substrate. The coincidently matched bilayer buffer comprises a single-crystal silicon nitride (Si3N4) layer that is formed by introducing active nitrogen-plasma or ammonia to the Si (111) substrate at high temperature to form a single-crystal silicon nitride layer on the Si(111) substrate. Then, an AIN buffer layer or other group-III nitride layer is grown epitaxially on the single-crystal silicon nitride layer. Thereafter, the GaN epitaxial layer or group-III semiconductor heterostructures can be grown on the coincidently matched bilayer buffer.

Description

1272730 ------— --— —-—— --- 五、發明說明(1) · 一、 【發明所屬之技術領域】 ^ 本發明係有關於一種半導體結構,更特別地是一種在 矽底材上成長三族氮化物半導體異質蟲晶結構的方法。 二、 【先前技術】 半導體發光二極體(LED; light-emitting diode)之 結構至少包含一底材、一發光異質磊晶結構以及一對電極 用以驅使二極體發光。其底材可以是透明的或不透明的。 在短波長半導體發光二極體的應用中,其主要發光結構是 以氮化鎵(G a N ; g a 1 1 i u m n i t r i d e )化合物為其材料,而其 底材可以是一透明且為絕緣的底材如s a p p h i r e底材。一般 在解決磊晶膜與絕緣底材之間大晶格失配(1 at t i ce mismatch)的方法,是在發光二極體發光異質磊晶結構形 成前,在sapphire底材上成長一緩衝層或是成核層。在這 些方法當中,緩衝層係用來控制磊晶膜之成核作用的形成 並用以減少磊晶膜缺陷的發生。 二族氮化物半V體層(如氮化鎵、氮化銦、氮化鋁以 及這些氮化物的合金)在許 用材料的選擇’特別是在具 光二極體以及藍色雷射二極 最近的研究報告曾指出,除 之外,三族氮化物將會成為 前,對於三族氮化物較廣泛 多光電應用上已經成為主要使 有全色光域或是白色光源的發 體(LDs; laser diode)。一 也匕 了已經被用為光電應用的材料 廣泛使用的半導體材料。在目 的應用是當作發光層,但是存1272730 ------——————————— --- V. DESCRIPTION OF THE INVENTION (1) · 1. Technical Field of the Invention The present invention relates to a semiconductor structure, and more particularly to a A method of growing a Group III nitride semiconductor heterogeneous crystal structure on a tantalum substrate. 2. [Prior Art] The structure of a semiconductor light-emitting diode (LED) includes at least a substrate, a light-emitting hetero-epitaxial structure, and a pair of electrodes for driving the diode to emit light. The substrate can be transparent or opaque. In the application of short-wavelength semiconductor light-emitting diodes, the main light-emitting structure is a material of gallium nitride (G a N ; ga 1 1 iumnitride), and the substrate thereof can be a transparent and insulating substrate. Such as sapphire substrate. Generally, in the method of solving the large lattice mismatch between the epitaxial film and the insulating substrate, a buffer layer is grown on the sapphire substrate before the formation of the light emitting diode heterogeneous epitaxial structure. Or a nucleation layer. Among these methods, the buffer layer is used to control the formation of the nucleation of the epitaxial film and to reduce the occurrence of epitaxial film defects. Group II nitride semi-V body layers (such as gallium nitride, indium nitride, aluminum nitride, and alloys of these nitrides) are the choice of allowable materials, especially in light diodes and blue laser diodes. The research report has pointed out that, besides, the tri-family nitride will become the former, and the tri-nano-nitride has become the main body of the full-color or white light source (LDs; laser diode). . It is also a widely used semiconductor material that has been used as a material for photovoltaic applications. In the intended application, it is used as a light-emitting layer, but it is stored.

第6頁 五、發明說明(2) 在有對於以氮化 晶格匹配底材的 (S i C; silicon 材料。然而,除 sapph i r e的絕緣 且成本較向。在 大小的碳化矽晶 困難。對比之下 蠢晶技術將可整 由氮化物所能提 物為主的發 缺點。氧化 carb i de)是 了具有甚大 特性會使得 其它方面來 圓也使得以 ,成長在石夕 合目前以咬 供之各項新 光層在磊晶形成的過成中欠缺 1呂(Al2〇3;sapphire)及碳化石夕 兩個主要較常使用的成長底材 的晶袼不匹配度之外, 氮化物的元件的製程較為困難 為’鬲價位以及具有有限尺寸 石反化石夕為主的底材的應用較為 底材上的氮化鎵(GaN-on-Si ) 為主要材料的微電子技術以及 型功能。 對於在石夕底材上氮化鎵的 中指出氣化链緩衝層可以提供較:二》長=产 。然而’銘材和石夕材彼此之間的::3發光的實驗證明 條件下(共炫點溫度57rc,成在緩衝層成長溫度 。因此,銘材和石夕材在介面之為820°c)非常的高 的嚴重’❿在磊晶層以及矽底材Ϊ::互擴散現象是非常 以及造成磊晶層之品質降低。k成非刻意的高摻雜濃度 三 材 【發明内容】 本务明的主要目的在於提供一雔一 以解決在链/石夕介面之n二又層緩衝結構位於矽底 之間的交互擴散問題。Page 6 V. Inventive Note (2) There is a material for the substrate that matches the substrate with a nitrided lattice (S i C; silicon material. However, in addition to the insulation of sapph ire and the cost is relatively large, the size of the carbonized twin is difficult. In contrast, the stupid crystal technology will be able to be made up of nitride-based extracts. Oxidized carb i de) is a feature that will make other aspects of the circle also make it grow up in Shi Xihe. The various new light layers are lacking in the formation of epitaxial crystals, and there is a lack of crystallinity mismatch between the two commonly used growth substrates of carbon dioxide (Al2〇3; sapphire) and nitride. The process of the component is more difficult for the microelectronics technology and the type function of the main material of the substrate, which is the main material of the substrate with the finite price of the stone and the anti-fossil-based substrate. For the gallium nitride substrate on the Shixi substrate, it is pointed out that the gasification chain buffer layer can provide more than two: long = production. However, 'Ming materials and Shiyue materials are between each other::3 luminescence experiments prove that the conditions are a total of 57rc, which is the growth temperature in the buffer layer. Therefore, Mingshi and Shiyue are at the interface of 820°c. ) Very high severity '❿ in the epitaxial layer and the tantalum substrate:: The phenomenon of interdiffusion is very high and causes the quality of the epitaxial layer to decrease. k is a non-deliberate high doping concentration of three materials [Summary of the invention] The main purpose of the present invention is to provide a one-to-one solution to the problem of inter-diffusion between the two-layer buffer structure of the chain/石夕 interface between the bottom of the raft. .

第7頁 1272730 五、發明說明(3) 本發明的另一目的在於提供能夠形成具有特殊比例晶 格匹構之巧合晶格(c 〇 i n c i d e n t 1 a 11 i c e s )的氮化紹/氮化 矽雙層緩衝結構,以降低晶格不匹配所造成的問題,並能 用以成長南品質蠢晶薄膜。 根據以上所述之目的,本發明提供一種緩衝結構以解 決自動摻雜(autodoping)的問題,以及當單晶氮化鋁 (0 0 0 1 )緩衝層形成時在鋁/石夕之間的介面所造成的内部相 互擴散的問題。其方法包含採用一具有Ο 1 1)晶向表面之 單晶矽底材,其底材的表面可以藉由熱除氣步驟以移除在 原生氧化層而產生表面重構。接著,為本發明的特徵,在 矽底材上之(111)晶向表面形成一雙層緩衝結構。其雙層 緩衝結構包含一單晶氮化石夕層以及位於單晶氮化矽層上之 一氮化紹層或一其它三族氮化物層。接著,氮化鎵蠢晶層 即可成長於該雙層緩衝層上。本發明的所提出的雙層緩衝 結構的機制對於具有大晶格失配之異質磊晶形成有較佳的 優點。此外,對於在矽材上之氮化鎵異質磊晶成長,由於 具有巧合晶格常數比例匹配為1 : 2及5 : 2的晶格可分別形成 在單晶氮化矽(0 0 0 1 )/單晶矽(111)以及單晶氮化鋁(〇 〇 〇 1) /單晶氮化矽(0 0 0 1 )的介面,因此可用以形成高品質雙層 緩衝結構。更由於單晶氮化矽可作為擴散阻抗層,因此, 位於鋁/矽之間介面的交互擴散問題可以藉由此雙層緩衝 結構而解決。Page 7 1272730 V. DESCRIPTION OF THE INVENTION (3) Another object of the present invention is to provide a nitrided/nitridium nitride double capable of forming a coincident lattice (c 〇incident 1 a 11 ices ) having a special ratio lattice structure. Layer buffer structure to reduce the problems caused by lattice mismatch, and can be used to grow south quality stupid film. In accordance with the above objects, the present invention provides a buffer structure to solve the problem of autodoping, and an interface between aluminum/stones when a single-crystal aluminum nitride (0 0 0 1 ) buffer layer is formed. The problem of internal interdiffusion caused. The method comprises the use of a single crystal germanium substrate having a 晶 1 1) crystal orientation surface, the surface of which may be subjected to a thermal degassing step to remove surface remodeling in the native oxide layer. Next, in accordance with a feature of the present invention, a (double) buffer structure is formed on the (111) crystal orientation surface of the tantalum substrate. The double-layer buffer structure comprises a single crystal nitride layer and a nitride layer or a other group III nitride layer on the single crystal tantalum nitride layer. Then, a gallium nitride stupid layer can be grown on the double buffer layer. The proposed mechanism of the double layer buffer structure of the present invention has a preferred advantage for heterogeneous epitaxial formation with large lattice mismatch. In addition, for the gallium nitride heterogeneous epitaxial growth on the coffin, a lattice having a coincidence lattice constant ratio of 1: 2 and 5: 2 can be formed in the single crystal tantalum nitride (0 0 0 1 ), respectively. / Single crystal germanium (111) and single crystal aluminum nitride (〇〇〇1) / single crystal tantalum nitride (0 0 0 1 ) interface, so it can be used to form a high quality double buffer structure. Further, since the single crystal tantalum nitride can be used as the diffusion resistance layer, the problem of the mutual diffusion of the interface between the aluminum/germanium can be solved by the double buffer structure.

1272730 五、發明說明(4) 此外,本 物半導體異質 式去除殘留在 並使得矽底材 底材上形成一 晶氮化石夕層, 矽底材之潔淨 於矽底材上。 層是以蠢晶成 樣利用蠢晶成 氮化鋁層上方 發明提供一種形成在矽底材上形成三族氮化 磊晶結構的方法,其中包含利用熱除氣的方 (1 1 1 )晶向表面石夕底材上殘留的薄氧化層, 重構。接著,為本發明的特徵,係在潔淨矽 雙層鍰衝結構。其中雙層緩衝結構包含一單 該單晶氮化矽層係利用導入活性氮氣電漿至 (1 1 1)晶向表面上以形成一單晶氮化矽層位 接著,一氮化紹緩衝層或一其它三族氮化物 長的方式形成在單晶氮化矽層上。接著,同 長的方式將三族氮化物異質磊晶結構形成在 四 【實施方式】 本發明的一些實施例會詳細描述如下。然而,除了此 詳細描述的實施例外,本發明還可以廣泛地在其他的實施 例施行,且本發明的範圍不受限定,並以之後的專利範圍 為準。 根據本發明係提供一種方法及結構以改善位於鋁/矽 以及鎵/石夕之間介面的内部交互擴散(i n t e r - d i f f u s i ο η )的 問題。 三族氮化物(group-III nitride)在石夕底材上之異質 蟲晶結構最近常被應用到到光電、微電子以及表面聲波元1272730 V. INSTRUCTIONS (4) In addition, the heterogeneous removal of the semiconductor semiconductor remains and forms a layer of cerium nitride on the substrate of the ruthenium substrate, and the substrate is cleaned on the ruthenium substrate. The layer is formed by using a stupid crystal into an aluminum nitride layer. The invention provides a method for forming a trivalent nitride epitaxial structure formed on a tantalum substrate, which comprises a square (1 1 1 ) crystal which is degassed by heat. The thin oxide layer remaining on the surface of the stone substrate was reconstituted. Next, a feature of the present invention is a clean 矽 double layer buffer structure. The double-layer buffer structure comprises a single single crystal tantalum nitride layer by introducing an active nitrogen plasma to the (1 1 1) crystal surface to form a single crystal tantalum nitride layer, followed by a nitride buffer layer. Or a other group III nitride is formed on the single crystal tantalum nitride layer. Next, a Group III nitride heteroepitaxial structure is formed in the same manner as in the fourth embodiment. [Embodiment] Some embodiments of the present invention will be described in detail below. However, the present invention is not limited to the scope of the invention, and the scope of the invention is not limited by the scope of the invention. In accordance with the present invention, a method and structure are provided to improve the problem of internal interdiffusion (i n t e r - d i f f u s i ο η ) located between the aluminum/germanium and the gallium/stone. Heterogeneous crystal structure of group-III nitride on Shixia substrate has recently been applied to photoelectric, microelectronic and surface acoustic wave elements.

第9頁 1272730 五、發明說明(5) '' ----—- 用Λ。⑫了具有大尺寸的可利用性(單晶石夕底材大 -士央吋)、低成本以及矽底材具有良好的結晶品質。 矽,打也有良好的材料特性,如摻雜特性(雙極性以 及冋載子;辰度)、可劈開性(c lea v able)、良好的熱傳導 11(、力比sapph i re大二倍)以及具有較成熟的製程技術。這 些矽底材的優點可以被用來開發許多新的三族氮化物材料 的,用範,,並可以用到氮化鎵以及石夕的元件整合。其理 由於冋〇口貝的氮化鎵異質磊晶在矽上的成長是可行的 ,足疋由於六方纖鋅礦(hexagonal wurtzite)( 0 0 0 1 )结晶 面與立方鑽石或閃辞礦(cubic diam〇nd 〇r zinc — (111)晶向表面可形成晶袼失配之特性所造成的。 本堆疊緩衝結構由幾値組成層構成,各個組成層具有 可以在層/層以及層/底材的介面之間形成特殊比例匹配之 巧合晶格(coincident lattice)的特性。在本發明的實施 例=,對於在矽底材上之高品質三族氮化物異質磊晶之成 長是利用分別形成在冷-氮化矽(〇 〇 〇 i) /矽(1 i i)(召—s ^仏( oooi)/si(m))與氮化鋁(0 0 0 1 )/ 0 —氮化矽(〇〇〇1)(ai3n4 ( 000 1 )/ /3 -Si3N4 ( 0 0 0 1 ))介面之丨:2及5:2特殊比例晶格匹 構以形成雙層緩衝結構。藉由使用本緩衝結構之技術,在 本發明的實施例中可以解決自動摻雜的問題以及在鋁/矽 之間所造成的内部交互擴散的問題。如以下實施例之實驗 結果所示,氮化鎵膜的磊晶品質也可以同時被改善。、Page 9 1272730 V. Description of invention (5) '' ------ Use Λ. 12 has a large size of usability (single crystal slab substrate - large-scale sputum), low cost and enamel substrate with good crystal quality.矽, also have good material properties, such as doping characteristics (bipolar and 冋 carrier; Chen), c lea v able, good heat conduction 11 (the force is twice as large as sapph i re) And has more mature process technology. The advantages of these tantalum substrates can be used to develop many new Group III nitride materials, and can be used to integrate gallium nitride and Shi Xi components. The reason for this is that the growth of gallium nitride heterogeneous epitaxial grains on the sputum is feasible, due to the hexagonal wurtzite (0001) crystal plane and cubic diamond or flash ore ( Cubic diam〇nd 〇r zinc — The (111) crystal orientation surface can be formed by the characteristics of wafer mismatch. The stacking buffer structure consists of several layers, each of which has layers/layers and layers/bottoms. The characteristics of the coincident lattice of special proportions are formed between the interfaces of the materials. In the embodiment of the present invention, the growth of the high-quality group III nitride heteroepitaxial growth on the tantalum substrate is utilized separately. In cold-nitriding crucible (〇〇〇i) / 矽 (1 ii) (call - s ^ 仏 ( oooi) / si (m)) and aluminum nitride (0 0 0 1 ) / 0 - tantalum nitride ( 〇〇〇1)(ai3n4 ( 000 1 )/ /3 -Si3N4 ( 0 0 0 1 )) interface: 2 and 5:2 special ratio lattices to form a double buffer structure. By using this buffer The technique of the structure can solve the problem of automatic doping and the problem of internal interaction diffusion caused between aluminum/germanium in the embodiment of the invention. As shown in the experimental results of the following examples, the epitaxial quality of the gallium nitride film can be simultaneously improved.

1272730 五、發明說明(6) 在石夕底材上之氮化錄膜有將近2〇. 4百分比在平面上( in-plane)之晶格失配(三(a(矽)_a(氮化鎵))/a(氮化鎵、 a(氮化鎵)(〇〇〇i) = 3.189A;a(矽)(111) = 3·840Α)以及大的 熱膨脹係數失配。很幸運地,藉由利用具有特殊比例晶格 匹構條件的緩衝層可以減少晶格之匹配。例如,在氮化铭 (0001 )(a(氮化鋁)( 00 0 1 ) = 3· 112Α)及矽(111)之間的特殊 比例晶格匹構為5 : 4的情況下,其有效晶格匹配可以由 + 23· 4百分比減少至-ΐ· 3百分比。因此,可藉由晶格形變 的降低而得到二維平滑之異質蠢晶成長的模式。 成長製程在本發明所揭露之實施例中使用一分子束蠢 晶(MBE ; molecular-beam epitaxy)裝置,本裝置並配有 射頻(RF ; radio frequency)氮氣電漿源。在分子束磊晶 成長反 度鎵金 氮氣在 個蠢晶 電波的 石夕底材 吋(111 一步地 此,藉 以顯示 之反射1272730 V. INSTRUCTIONS (6) The nitride film on the Shixi substrate has nearly 2 〇. 4 percent in-plane lattice mismatch (three (a) a a (nitriding) Gallium)) / a (gallium nitride, a (gallium nitride) (〇〇〇i) = 3.189A; a (矽) (111) = 3·840Α) and a large thermal expansion coefficient mismatch. Fortunately, The lattice matching can be reduced by using a buffer layer having a special ratio of lattice conditions. For example, in Niobium (0001) (a (aluminum nitride) ( 00 0 1 ) = 3.112 Α) and 矽 ( 111) When the special ratio lattice is 5:4, the effective lattice matching can be reduced from +2.3% to -ΐ·3 percentage. Therefore, the lattice deformation can be reduced. A mode of two-dimensional smooth heterogeneous crystal growth is obtained. Growth Process In the embodiment of the present invention, a molecular-beam epitaxy (MBE) device is used, and the device is equipped with radio frequency (RF; radio frequency) Nitrogen plasma source. In the molecular beam epitaxy, the inverse degree of gallium and gold nitrogen is in the stupid crystal wave of the Shixi substrate (111 step by step, by means of REFLECTING

應室之基本壓力為6 * 1 0-11托爾(t 〇 r r),並採用高詞 屬以及鋁金屬之分子束源(MBE effusion cel 1)。 導入電漿源之前藉由氮氣純化裝置將其純化。在養 成長過程中’採用相同的條件產生氮氣電漿。射歩 功率大約為450瓦以及氮氣的流率為〇· 5 sccin。在 載入分子束反應室之前,先用化學蝕刻法蝕刻三^ )晶向表面之矽底材。(111)晶向表面之矽底材更i 利用現場熱除氣法以移除所殘留的原生氧化層。泛 由乂上所述之别處理步驟(1 11)晶向表面石夕底材可 出)胃表面重構’並且藉由在底材溫度為8 0 0 °c日 式高能量電子繞射(RHEED ;reflecti〇n high- 1272730 五、發明說明(7) energy electron diffraction)圖案可確認其矽底材的表 面特性。 此外,反射咼能量電子繞射圖案可用來指出在磊晶成 長製程之前重構矽底材表面的品質以及平坦度。其底材溫 度的枚正係利用矽(1 1 1 )晶向表面表面在溫度為8 7 5。〇的 (M7)轉移成(m)重構之相轉移而得到。在本實施例中, 係比較在矽底材(111)晶向表面上氮化鎵磊晶成長中兩個 不同的緩衝層系統。這兩個緩衝層系統 2的氮…衝層。其唯一的不同點是在於其; 二曰糸、统包,一早曰曰曰万_氮化石夕層(点__ )(其厚度大約 ,利用牙透式電子顯微鏡(transmissi〇n electron microscopy)確認所得之結 可以利用(111)晶向表面矽底材#/早日日虱化矽層 性氮氣電漿在底材溫产為二U表,化作用且利用活 成。而厚度為30 C,時間為30秒的條件下形 的志具、击玄為士不未的氮化紹緩衝層係在每小時〇 1 2微乎 ,成長速率且在成長溫度為82(rc的條/0.12 ^卡 成。此外,成長在緩衝層上厚 n':猫日日成長所形 層係在較低的底材溫度(約:=米、的氮化鎵蟲晶 〇· 08微米的速率所形成。在、.八 以成長速率為每小時 電漿持續流通的條件下 2束蟲晶成長之後,在氮氣 600 t:時)可以觀察到(成長^化鎵表面(冷卻至500至 出此氮化鎵表面特性為且)/^1構圖案,以此可以指 Polarity)。 車乂 ^性貝的鎵極性(GaThe basic pressure of the chamber is 6 * 1 0-11 Torr (t 〇 r r), and the high-genus and molecular beam source of aluminum metal (MBE effusion cel 1) is used. It was purified by a nitrogen purifying device before being introduced into the plasma source. Nitrogen plasma was produced using the same conditions during growth. The power of the shot is about 450 watts and the flow rate of nitrogen is 〇·5 sccin. Prior to loading into the molecular beam reaction chamber, the substrate is etched by chemical etching to the surface of the substrate. The substrate of (111) crystal orientation surface is further i. The on-site thermal degassing method is utilized to remove the residual native oxide layer. The other processing steps described in the above-mentioned (1 11) crystal orientation to the surface of the substrate can be performed] and the surface of the stomach is reconfigured' and by the high-energy electron diffraction at a substrate temperature of 80 ° C ( RHEED ; reflecti〇n high- 1272730 V. Inventive Note (7) Energy electron diffraction) The surface characteristics of the tantalum substrate can be confirmed. In addition, the reflective 咼 energy electron diffraction pattern can be used to indicate the quality and flatness of the surface of the ruthenium substrate prior to the epitaxial growth process. The substrate temperature of the substrate is 矽(1 1 1 ) crystal to the surface of the surface at a temperature of 8 7 5 . The (M7) transition of 〇 is obtained by (m) recombination phase transfer. In this embodiment, two different buffer layer systems are compared in the gallium nitride epitaxial growth on the surface of the germanium substrate (111). The two buffer layers of the system 2 are nitrogen. The only difference is that it is two; 统, 统, 一 曰曰曰 氮化 氮化 氮化 点 点 (point __) (its thickness is approximately, confirmed by transmissi〇n electron microscopy) The obtained knot can be made by using (111) crystal orientation surface 矽 substrate #/ early day 虱 矽 矽 layered nitrogen plasma in the substrate temperature production is two U table, chemicalization and utilization of live. The thickness is 30 C, time For 30 seconds, the shape of the singularity, the smashing of the Xuanxun buffer layer is 〇1 2 micro, the growth rate and the growth temperature is 82 (rc strip / 0.12 ^ card into In addition, the growth of the buffer layer is thick n': the day-to-day growth of the cat is formed at a lower substrate temperature (about:=m, gallium nitride worm crystals, 08 micron). 8. The growth rate is 2 hours after the growth of plasma, and after 2 crystal growth, it can be observed at 600 t: (growth of gallium surface (cooling to 500 to the surface characteristics of this gallium nitride) For the /) / ^ 1 structure, which can be referred to as Polarity).

12727301272730

_ # i ί ί 一圖係表示本發明在(ι 11)晶向表面矽底材上 表面結構的方法之流程圖。步驟1表示(ui)晶向 氧化層:及熱處理方式移除在石夕底材的原生 產生原子度平坦及重構之表面。(1 1 1 )晶向表 材藉由上述製備法可產生矽底材(7*7)之表面重構 在800 /Λ4構表面可以藉由反射式高能量電子繞射圖案 導入古度確認其特性。步驟2表示將活性說氣電漿 材的:ί矽底材的表面並藉由(1⑴晶向表面矽底 f的ί面鼠化作用以形成-單晶氮化矽層。步驟3表示一 Ϊ = Ϊ Ϊ ”步驟,係根據鋁分子束的流量並在關閉 乂條件下,•單晶氮化矽層上形成單原子 ^位於々彳ί t S咼溫回火鋁預沉積原子層以形成一氮化鋁 ,^鼠化石夕層上方(步驟4)。然後,執行氮化銘層之磊 曰曰,長以形成氮化鋁緩衝層於單晶氮化矽層上方(步驟5) 吖:1 Ϊ緩衝層上形成鎵原子極性表面之氮化鎵膜 \/ 1 m ,者是形成三族氮化物半導體異質結構於氮化 I呂緩衝層上方(步驟6)。 卜妾者^>考第二A圖,矽底材][〇係利用熱除氣處理或 ,-鈍化處理(濕式蝕刻或現場氮氣電漿處理)以移除原 氧化層1用熱除氣處理步驟所製備的碎底材1 Q可以 出(7*7)纟面重構特性,並且可以利用反射式高能量電; 繞射圖案在8GG t確認其特性。此外,反射式高能量電子子_ # i ί ί Figure 1 is a flow chart showing the method of the present invention for the surface structure of the substrate on the (1) crystal orientation surface. Step 1 represents the (ui) crystal orientation oxide layer: and the heat treatment method removes the native atomic flat and reconstituted surface of the Shixi substrate. (1 1 1 ) Crystalline surface material can be produced by the above preparation method. The surface reconstruction of the ruthenium substrate (7*7) can be confirmed on the 800/Λ4 structure surface by the reflective high-energy electron diffraction pattern. characteristic. Step 2 denotes that the surface of the substrate is: 矽 矽 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 并 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面= Ϊ Ϊ ” step, according to the flow rate of the aluminum molecular beam and under the condition of closing ,, • forming a single atom on the single crystal yttrium nitride layer, located in the 々彳ί t S咼 temperature tempered aluminum predeposited atomic layer to form a Aluminum nitride, above the mouse fossil layer (step 4). Then, the nitriding layer is stretched to form an aluminum nitride buffer layer over the single crystal tantalum nitride layer (step 5) 吖: 1 A gallium nitride film of a polar surface of a gallium atom is formed on the buffer layer, and a heterogeneous structure of a group III nitride semiconductor is formed over the nitride buffer layer (step 6). Figure 2A, 矽 substrate] [Tanning system using thermal degassing treatment, or - passivation treatment (wet etching or on-site nitrogen plasma treatment) to remove the original oxide layer 1 using the thermal degassing treatment step prepared by the bottom Material 1 Q can produce (7*7) kneading surface reconstruction characteristics, and can utilize reflective high-energy electricity; the diffraction pattern confirms its characteristics at 8GG t. In addition, reflective high-energy electrons

第13頁 1272730Page 13 1272730

繞射圖案可指出重構矽表面在磊晶成長製程之前之品質以 坦f。其底材溫度的校正係利用⑴υ晶向表面矽底 2表面在溫度為875。〇時的(7*7)轉成(1*丨) 相 轉移所得到。 J ^ 接著,為本發明的特徵,其擴散阻障層12為一單晶氮 化矽層係利用(111)晶向表面矽底材1〇表面的氮化作用所 產生在石夕底材/皿度為9 〇 0 C的條件下導入活性氮氣電嘴 大約㈣以形成單晶氮”層。在本發明巾,(=)\水面 之虱化矽(单晶氮化矽)層(000 1 ) 1 2可藉由活性氮氣的導 入或疋利用熱裂解氨(thermally cracked NH3)的導入產 生,當(1 11 )面矽底材1 〇表面在略較高於s i (丨丨丨)相變溫度 (由(7*7)轉移至(m)相)、可產生單晶Si3N4(〇〇〇l) —(4*4) 表面重構(就(111)晶向表面矽底材之晶格參數而言,亦可 稱為”(8*8)”表面重構)。 一在反射式尚旎量電子繞射圖中可以顯示出在導入活性 氮氣電漿至(111)晶向表面矽底材丨〇表面在溫度為9 〇 〇 r及 其時間為30秒之條件下,”(8*8)”重構之反射式高能量電 子繞射圖案。反射式高能量電子繞射圖案表示出在石一氮 化石夕層( 0 0 0 1 ) 1 2上兩種不同的表面原子秩序。其中一種秩 序符合最上層”(8/3*8/3)”-結構之氮吸附原子(adat〇ms) 以及另一表面秩序符合、、(8*8),之晶格周期。在掃描穿 隧顯微技術(STM,Scanning Tunneling Microscopy)的實The diffraction pattern indicates the quality of the reconstructed tantalum surface prior to the epitaxial growth process. The substrate temperature is corrected using (1) twins to the surface of the surface of the bottom 2 at a temperature of 875. The (7*7) conversion to the (1*丨) phase transfer is obtained. J ^ Next, according to the features of the present invention, the diffusion barrier layer 12 is a single crystal tantalum nitride layer which is produced by the nitridation of the (111) crystal surface to the surface of the substrate. The active nitrogen gas nozzle is introduced into the active nitrogen gas nozzle at a temperature of 9 〇 0 C to form a single crystal nitrogen layer. In the present invention, (=) \ water surface bismuth telluride (single crystal yttrium nitride) layer (000 1 1 2 can be produced by the introduction of reactive nitrogen or by the introduction of thermally cracked NH3, when the surface of the (1 11 ) surface substrate is slightly higher than the si (丨丨丨) phase transition. Temperature (transferred from (7*7) to (m) phase), can produce single crystal Si3N4(〇〇〇l) - (4*4) surface reconstruction (in the crystal lattice of (111) crystal orientation surface 矽 substrate In terms of parameters, it can also be called “(8*8)” surface reconstruction). In the reflection-type electron diffraction diagram, it can be shown that the active nitrogen plasma is introduced into the (111) crystal surface to the bottom. The surface of the material is at a temperature of 9 〇〇r and its time is 30 seconds, "(8*8)" reconstructed reflective high-energy electron diffraction pattern. Reflective high-energy electron diffraction pattern table Two different surface atomic orders are shown on the stone-nitridite layer (0 0 0 1 ) 1 2 , one of which conforms to the uppermost layer of (8/3*8/3)”-structured nitrogen-adsorbing atoms ( Adat〇ms) and another surface order conforming to, (8*8), the lattice period. In the scanning tunneling microscopy (STM, Scanning Tunneling Microscopy)

第14頁 1272730 五、發明說明(10) 驗中,可以確認π ( 8 * 8 )’’晶格周期為單晶(〇 〇 〇丨)晶面之冷 -氮化矽1 2表面的重構單元晶胞。 接著,氮 係在表面氮原 第二C圖所示 沉積原子層1 4 施高溫回火銘 矽層1 2上方。 反射式高能量 層的氮吸附原 平滑。在此須 射圖案確定沿 -1 -1 0)16 方 係。接著,以 氮化链緩衝層 化铭緩衝層1 6的成長在雙層緩衝結構系統中 子終止之氣化石夕重構表面開始如第二B圖及 。在紹預沉積步驟中沉積丨5秒鋁,單一鋁預 在(111)晶向表面矽底材1〇上形成。然後實 預沉積原子層以形成一氮化鋁層於單晶氮化 而氮化铭(0 0 0 1 ) - ( 1 *丨)結構會顯示在即時的 電子繞射圖案(未表示)。指出鋁原子與最上 子鍵結形成一層的氮化鋁丨6且其表面非常的 ,注意的是’可以利用反射式高能量電子繞 著冷-氮化矽(2 — 1 - 1 0 ) 1 2以及氮化鋁(2 向^巧合晶袼的距離周期性具有整數比例關 一蠢晶成長方式在單晶氮化矽層丨2上方形成 16 ° 銘緩=氮化紹的單層及雙層兩種緩衝結構, 。〇及其成長速率為每 n、十^ :曰曰成長的〉皿度在820 層20是長在單晶^ 12破米。然後,氮化鎵磊晶 度為240微米件在V柄衝層16上。氣化鎵遙晶層20之厚 晶成長速产备較低的底材溫度成長(約為72〇。〇),其蟲 ’利用雙ί緩衝。在分子束遙晶成長之後 傅所开〆成的氮化鎵2 〇冷卻到5 0 0艺至6 〇 〇Page 14 1272730 V. INSTRUCTIONS (10) During the test, it can be confirmed that the π ( 8 * 8 ) '' lattice period is a single crystal (〇〇〇丨) crystal plane cold-tantalum nitride surface reconstruction Unit cell. Next, the nitrogen is deposited on the surface nitrogen layer as shown in the second C-graph of the atomic layer 14 above the high temperature tempering layer 1-2. The nitrogen adsorption of the reflective high energy layer is smooth. Here, the pattern of the shot is determined along the -1 -1 0)16 system. Next, the gasification of the gasification of the nucleus in the double-layered buffer structure system with the nitriding chain buffer layering of the buffer layer 16 begins as shown in Fig. 2B and . In the pre-deposition step, ruthenium was deposited for 5 seconds, and a single aluminum was formed on the (111) crystal to the surface of the substrate. The atomic layer is then pre-deposited to form an aluminum nitride layer on the single crystal nitride and the nitride (M 0 0 1 ) - ( 1 * 丨) structure is shown in an instant electronic diffraction pattern (not shown). It is pointed out that the aluminum atom is bonded to the uppermost sub-layer to form a layer of aluminum nitride ruthenium 6 and its surface is very large. Note that 'reflective high-energy electrons can be used to bypass the cold-zinc nitride (2 - 1 - 1 0 ) 1 2 And aluminum nitride (the distance between the 2-way and the coincident crystals has an integer ratio cyclically. The stupid crystal growth mode forms 16 ° above the single crystal tantalum nitride layer 丨2. Buffer structure, 〇 and its growth rate is n, ten ^ : 曰曰 growth of the dish in the 820 layer 20 is longer than the single crystal ^ 12 broken rice. Then, the gallium nitride epitaxy is 240 microns On the V handle layer 16, the thick crystal growth rate of the gallium carbide remote layer 20 produces a lower substrate temperature growth (about 72 〇. 〇), and its insect 'utilizes double buffer. After the crystal growth, the gallium nitride 2 傅 傅 〇 cooled to 500 艺 to 6 〇〇

1272730 五、發明說明(11) 。(:’且在具有氮電漿氣流的條 性之氮化鎵層20的(2*2)重構圖案。H豕原子表面極 構的Π: : ϋ盖圖、’s本發明提供一種具有雙層緩衝結 f 1 ^ $ 一極體、纟0構以解決當單晶氮化鋁 長自動換雜以及在銘/…介面 二:層成 的問題。在本發明中提供具有( ^政所產生 晶格常數為3. 840埃)的矽底材〇 表面面(平面上之 在(ill)曰接者為本發明的特徵係 底材1〇上形成一雙層緩衝結構,此 雙層緩衝結構可以改善半導體中; 一 η 1ϋ μ g ^11 内部兀素交互擴散的 問蟪,其中雙層緩衝層包含一單晶氮化矽層(〇〇〇Ul2苴晶 格常數為7. 61埃,以及位於單晶氮化矽層12上之氮化鋁層 (0 0 0 1 ) 1 6其晶格常數為3 · 11 2埃。 、曰 在本^月巾氮化紹16在84(^成長之後,可以顯示出 一(1*1)之反射式高能量電子繞射圖案,並且由繞射圖案 可,出氮化鋁緩衝層16為一具有平坦表面的高品質薄膜、。 ?著’可利用分子束磊晶法形成氮化鎵磊晶層2 〇或是三族 氮化物半‘體異貝蟲晶結構,同樣地在反射式高能量電子 繞射圖案中也可以顯示出後續氮化鎵層成長後的薄膜品 。在本發明中可利用反射高能量電子繞射圖案判斷i:2及、 5 : 2特殊比例晶格匹構之巧合介面分別形成在^ _氮化矽 (0001) /石夕(111)以及氮化I呂(0001) /氮化石夕(〇〇〇1) 之間。 ^ 1272730 五、發明說明(12) 此外,可以由反射式高能量電子繞射圖案以及X射線 繞射的研究中發現下列磊晶配向的關係: β -Si3N4 ( 0 0 0 1 ) I I Si (111 ) ; ^ ~Si3N4 [ 0-11 0 ] I |Si[11^2]; b-Si3N4[2-1-10]||Si [-110] and A1N( 0 0 0 1 )1| b-Si3N4 (0001); A1N[0-110]||b~Si3N4[0-110]; A1N[2-l-l〇]||b一1272730 V. Description of invention (11). (: 'and (2*2) reconstruction pattern of a strip of gallium nitride layer 20 having a nitrogen plasma gas flow. H豕 atomic surface polar structure of Π: : ϋ 图, 's the present invention provides a The double-layer buffered junction f 1 ^ $ one-pole body, 纟0 structure to solve the problem that when the single-crystal aluminum nitride is automatically changed and the layer is formed in the second layer of the interface, it is provided in the present invention. a lattice constant of 3.840 angstroms) of the surface of the ruthenium substrate (the ill splicer on the plane forms a double buffer structure on the substrate 1 of the present invention, the double buffer structure The semiconductor can be improved; a η 1 ϋ μ g ^11 internal enthalpy interdiffusion problem, wherein the double buffer layer comprises a single crystal yttrium nitride layer (〇〇〇Ul2 苴 lattice constant is 7.61 angstroms, and The aluminum nitride layer (0 0 0 1 ) 16 on the single crystal tantalum nitride layer 12 has a lattice constant of 3 · 11 2 angstroms, and the yttrium is in the moon. A (1*1) reflective high-energy electron diffraction pattern can be displayed, and the aluminum nitride buffer layer 16 can be made of a high-quality thin surface having a flat surface by the diffraction pattern. , "Molecular beam epitaxy can be used to form a gallium nitride epitaxial layer 2 〇 or a group III nitride semi-body worm crystal structure, which can also be used in a reflective high-energy electron diffraction pattern. The film product after the growth of the subsequent gallium nitride layer is displayed. In the present invention, the reflective high energy electron diffraction pattern can be used to determine the coincidence interface of the i:2 and 5:2 special ratio lattice structures respectively formed in the ^_nitrogen矽 (0001) / Shi Xi (111) and nitride I (0001) / nitrite 〇〇〇 (〇〇〇 1). ^ 1272730 V. Description of invention (12) In addition, can be reflected by high-energy electrons The following epitaxial alignment relationships were found in diffraction patterns and X-ray diffraction studies: β -Si3N4 ( 0 0 0 1 ) II Si (111 ) ; ^ ~Si3N4 [ 0-11 0 ] I |Si[11^2 b-Si3N4[2-1-10]||Si [-110] and A1N( 0 0 0 1 )1| b-Si3N4 (0001); A1N[0-110]||b~Si3N4[0- 110]; A1N[2-ll〇]||b one

Sis I [2-1-1 0 ]。因此,氮化鎵/氮化鋁/ 氮化矽之c -軸係 垂直於(1 1 1 )晶向之碎底材表面。Sis I [2-1-1 0 ]. Therefore, the c-axis of gallium nitride/aluminum nitride/yttria is perpendicular to the surface of the (1 1 1 ) crystallite substrate.

由於氮化鎵磊晶成長是在相同的成長條件長在不同的 緩衝結構上(皆含有一氮化鋁緩衝層),因此,為了比較這 些不同緩衝結構對磊晶膜性質的影響,二次離子質譜儀 (SIMS ; secondary-ion mass spectroscopy) 、χ 射線繞 射' 光致螢光光譜(PL ; photoluminescence)以及拉曼散 射(Raman scattering)等測量方法被用來比較這些具有/ 不具有石-氮化矽層之緩衝結構對氮化鎵磊晶膜的結構性 質及光學特性之影響。 接著,第三圖係表示對於具有單晶氮化鋁/單晶氮化 石夕雙層緩衝結構(a)以及氮化鋁單層緩衝結構(b)所成長之 氮化鎵膜利用二次離子質譜在氮化鎵膜/緩衝結構/底材公 面區域深度範圍附近作矽/鋁元素分析之示意。首先'雜1 質在成長方向之分佈可以利用二次離子質譜儀偵測得到^ 為了研究當氮化鎵在(111)晶向表面矽底材上成長的自動Since gallium nitride epitaxial growth is carried out under the same growth conditions on different buffer structures (all containing an aluminum nitride buffer layer), in order to compare the effects of these different buffer structures on the properties of the epitaxial film, secondary ions Measurements such as secondary-ion mass spectroscopy (SIMS), χ-ray diffraction, photoluminescence (PL), and Raman scattering were used to compare these with/without stone-nitrogen. The influence of the buffer structure of the ruthenium layer on the structural properties and optical properties of the gallium nitride epitaxial film. Next, the third figure shows the use of secondary ion mass spectrometry for a gallium nitride film grown with a single crystal aluminum nitride/single crystal nitride double layer buffer structure (a) and an aluminum nitride single layer buffer structure (b). An indication of the 矽/aluminum elemental analysis in the vicinity of the depth range of the gallium nitride film/buffer structure/substrate male surface region. First, the distribution of the heterogeneous mass in the growth direction can be detected by secondary ion mass spectrometry. ^ In order to study the automatic growth of gallium nitride on the (111) crystal surface to the surface of the substrate.

1272730 五、發明說明(13) 摻雜效應,在本發明φ # ^ % AV ^ ^ 中係針對兩種緩衝結構系統的樣品, 對鼠化鎵層/氮化鋁層以及 丁 籬早芬功雜工Λ及虱化鋁層/矽底材介面附近的鋁 離千及矽離子的二次離早暂 ^ ^ 夕^呂含量分佈圖的深度零點皆設 化铉忐具^雔屁/日日向表面。由此量測結果可決定出氮 辨邱旦士 , L Γ = 構(具有卢―氮化矽( 0 0 0 1 )層)的矽 才廣政里大小比在^革βτ蜂L. cr 。 S綾衝上成長的狀況小將近一個數量級 f仆ί :氮t广層不'、疋可以限制矽擴散至氮化鋁層以及 氮化銥層,在氮化鋁緩衝層的高成長溫度下, (〇〇J)U層同樣也可以防止銘擴散至%底材,在包含m =,制層的樣品t 元素在Θ底材的含量A小亦低於不 I S虱化矽擴散抑制層的樣品近一個數量級。因此,-二子 Ϊ : Ϊ ^ : 5可以顯示出在高溫成長氮化紹層以及後 、咳虱化銥絲日日層的過程中,單晶氮化矽層可 擴散至氮化鋁層和氮化鎵層以及抑制鋁擴散至ς底材。夕 參考第四Α圖及第四Β圖,係表示氮化鎵膜 不1272730 V. INSTRUCTIONS (13) Doping effect, in the φ # ^ % AV ^ ^ of the present invention, is for samples of two buffer structure systems, for the gallium-imide layer/aluminum nitride layer and the二次 虱 虱 虱 虱 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近 附近From this measurement, it can be determined that the nitrogen is determined by the L 旦 旦 L L 具有 具有 具有 具有 具有 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 广 β β β β β β β β β S 绫 冲 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上(〇〇J) The U layer can also prevent the diffusion of the precursor to the % substrate. In the sample containing m =, the sample t element is smaller than the sample of the non-IS antimony diffusion suppression layer. Nearly an order of magnitude. Therefore, -2子Ϊ : Ϊ ^ : 5 can show that the single crystal tantalum nitride layer can diffuse to the aluminum nitride layer and nitrogen during the high temperature growth of the nitrided layer and the coughing and twisting day layer. The gallium layer is layered and the aluminum is inhibited from diffusing to the tantalum substrate. Referring to the fourth and fourth maps, it is indicated that the gallium nitride film is not

緩衝結構上的光學特性的比較。在低溫(6.7 κ 1 光譜中顯示出氮化鎵膜成長在氮化鋁/氮化矽/矽1 . 層緩衝結構上方時,其氪化鎵膜的中性施子束缚激子 ;neutral-donor-bound exciton)的發光波峰 * 小於在氮化铭/秒(111)單層緩衝結構上方所形成的Comparison of optical properties on the buffer structure. In the low temperature (6.7 κ 1 spectrum, the GaN film is grown on the aluminum nitride/tantalum nitride/矽1 layer buffer structure, the neutral ferrite of the gallium telluride film binds the excitons; the neutral-donor -bound exciton) The illuminating peak* is smaller than the nitriding/second (111) single-layer buffer structure

1272730 五、發明說明(14) 螢光光譜波♦的半高寬值的 與猎由原子力顯微技術量測之 Ul2mevvs· 2〇meV) vs· 1· 1*1 〇9 cur2)的結果一致,證〜缺陷岔度(7*1 〇8 cm—2 方面的改善。在第四灰圖中之内;ϋ在磊晶層結晶品質 成長在氮化鋁/氮化矽/矽(11〇:,示係在不同溫度, 光波峰位置在在溫度高於7〇 κ日士,化鎵樣品的主要螢 峰由中性施子束缚激子發射轉至自3不出光致螢光光譜波 FX)發射(70 kB趨近於中性矽施子激2子(free exciton; El〇C),其中kB為波兹曼常數)ϋ子的局部化能量( 緩衝結構之樣品而言,其中性,^ f於此特性,對於單層 溫度的增加而單調上升,代表‘原縳激子波峰位置隨著 濃度非常大。因此,這和上述由二A (苑子)在此樣品内的 果是具有一致性的。 ——人離子質儀所得到的結 參考第四B圖,係表示在氮化鉉 上的罄杏本i Μίτγ从拉命 見化蘇成長在雙層缓衝結構 —、資先先〜’Χ的強度以及中性施子束缚激子在氮化鐘 溥膜成長在單層緩衝結構上的πχ螢光光笋強产之 、承1272730 V. INSTRUCTIONS (14) The full width and width values of the fluorescence spectral wave ♦ are consistent with the results of the hunting by the atomic force microscopy (Ul2mevvs· 2〇meV) vs· 1· 1*1 〇9 cur2). Proof - defect defect (7 * 1 〇 8 cm - 2 improvement. Within the fourth gray figure; ϋ in the epitaxial layer crystal quality growth in aluminum nitride / tantalum nitride / 矽 (11 〇:, The system is at different temperatures, the peak position of the light is at a temperature higher than 7〇κ日, and the main peak of the gallium sample is emitted by the neutral donor-bound exciton emission to the emission of the photoluminescence spectrum FX from the 3 (70 kB approaches the free exciton; El〇C), where kB is the Boltzmann constant. The localized energy of the scorpion (sample of the buffer structure, its neutrality, ^ f This characteristic, monotonously rising for the increase of the temperature of the single layer, represents that the position of the 'primary exciton peak is very large with concentration. Therefore, this is consistent with the above-mentioned fruit from the second A (Yuanzi) in this sample. ——The junction obtained by the human ionic mass spectrometer refers to the fourth B diagram, which indicates that the 罄 本 本 铉 铉 τ τ τ τ 从 从 从 从 从In the double-buffer structure -, first the first funding ~'Χ strength and neutral administered sub-bound exciton intensity production of Pu in the nitride film growth πχ clock fluorescent light shoots on a single layer of the buffer structure, bearing

Arrhenius示意圖。由Arrhenius圖示可得曰,在氮化 長在氮化鋁/氮化矽/矽(1U)雙層緩衝結構上的活化能^ 以藉由擬合熱活化關係得到其值大約為25meV,與文獻中 對於F X在未摻雜氮化鎵的活化能值的研究結果具有一致性 。此外,中性施子束缚激子在氮化鎵成長在氮化鋁/矽 (111)單層緩衝上的非放射性再複合的活化能可以利用兩 個熱活化能(Eai and Ea2)擬合。擬合所得之Eai and £^相Schematic diagram of Arrhenius. According to Arrhenius, the activation energy on the aluminum nitride/tantalum nitride/niobium (1U) double-layer buffer structure is obtained by fitting the thermal activation relationship to a value of about 25 meV. The results of the study on the activation energy value of FX in undoped gallium nitride are consistent in the literature. In addition, the non-radioactive recombination activation energy of neutral-strength-bound excitons in gallium nitride grown on an aluminum nitride/germanium (111) monolayer buffer can be fitted using two thermal activation energies (Eai and Ea2). Fitting the Eai and £^ phase

12727301272730

此外,在本發明中利用拉曼散射測量以比 =石同、=層系統時,成長在碎底材⑴υ晶向表面的氮兩化種 參考第五圖係表示以向後散射幾何 ?付之非偏極化拉支光譜,其入射光方向為沿著氮 51方乎向的著成長方向),並利用具有波長為51 4 5奈水的虱離子雷射的光源,兩種 l 份均可得~520^之拉曼訊號。此外,部 娩。除此之外,在成長於雙層緩 2页拉又Λ 品部份,可以得到^(1^)帶(73 、,、°構上的氮化鎵薄膜樣 “⑽訊號之存在代表雙:(二 樣品具高品質晶格。同時,對;:2成長的氮化鎵薄膜 與E 2拉曼訊號之強度比為} : 3。在未本=材料而曰言:A i ( L 〇) 長在雙層緩衝結構所得的A1 (L〇) ^Ε2Χ 測量氮化鎵成 微大於3),指出載子濃度僅略高ςς,為1:3.3(僅稍 濃度。此種結果與:次離子f譜儀所二=化鎵層的載子 性,並且顯示出利用氮化紹/氮化d里^结果具有一致 化鎵層在(111)晶向表面之矽底材上^ s ^衝結構成長氮 具有較低的矽濃度,故自動摻雜 所/于之氮化鎵層中 政應可大輻降低。 以上所述僅為本發明之較佳實施例而已 並非用以限In addition, in the present invention, when the Raman scattering is used to measure the ratio of the = stone system to the = layer system, the growth of the nitrogen substrate in the cleaved substrate (1) to the surface is referred to the fifth figure, and the backscattering geometry is expressed. The polarization polarization branch spectrum, the incident light direction is the growth direction along the nitrogen 51 direction, and the light source with the 虱 ion laser having a wavelength of 51 4 5 water, both of which can be obtained ~520^ Raman signal. In addition, childbirth. In addition, in the growth of the double-layered two-page pull and the product part, you can get the ^(1^) band (the gallium nitride film on the 73,,, ° structure) "(10) The presence of the signal represents the double: (The two samples have a high-quality lattice. At the same time, the ratio of the strength of the 2: grown gallium nitride film to the E 2 Raman signal is: : 3. In the absence of the material = rumors: A i ( L 〇) A1 (L〇) ^Ε2Χ obtained by double-layer buffer structure is measured to be slightly larger than 3), indicating that the carrier concentration is only slightly higher, which is 1:3.3 (only a slight concentration. This result is related to: secondary ion The f-spectrometer has a carrier property of the gallium layer, and shows that the nitrided layer is formed on the tantalum substrate of the (111) crystal orientation surface by using the nitrided/nitrided layer. The growth nitrogen has a lower concentration of ruthenium, so the cadmium layer in the autodoping layer can be greatly reduced. The above description is only a preferred embodiment of the present invention and is not intended to be limited.

12727301272730

第21頁 1272730Page 21 1272730

1式簡單說明 族氮ί物之技術“夕底材上成長三 ; /、貝职日日、、、口構的方法中各個步驟之流程圖 底材1成長圖:至二~D圖係根據本發明所揭露之技術,在矽 一何上成長一知氮化物丰塞轉s Μ ζ: β /丄上社 步驟之簡單示意圖; V體/、貝絲日日結構的方法中各個 單晶【化Ξ/係單根曰據,發明所揭露之技術,係表示對於具有 缓衝紝槿日日虱化矽雙層緩衝結構(a)以及氮化鋁單層 ΐί=Λ成人長之氮化鎵膜利用二次離子質譜在氮化 之示意圖 面區域深度範圍附近作矽/鋁元素分析 向表::Ί係根據本發明所揭露之技術,纟示在(ι 11)晶 心钮。。:材上亚利用氮化鋁/氮化矽雙層緩衝結構以及 i螢】:”Γ結構兩種方法成長氮化鎵蟲晶膜之低溫光 双S:光光譜比較; “访:圖係:根據本發明所揭露之技·,表示以氮化鋁/ I 層缓衝結構成長之氮化鎵磊晶膜的自由激子(FX) # '長在氮化鋁單層緩衝結構上之氮化鎵磊晶膜的中性 =子束缚激子(D〇X)之光致螢光光譜波峰強度的Arrhenius 圖形,·以及The formula 1 briefly describes the technique of the family nitrogen system. "The growth of the substrate on the eve of the substrate is three; /, the flow chart of each step in the method of daily life, and the structure of the mouth. The growth of the substrate 1 is as follows: to the second to the D The technology disclosed in the present invention grows on the 矽 知 氮化 氮化 氮化 丰 丰 丰 ζ ζ 简单 β β β β β β β β β β β β β β β ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; According to the technology disclosed in the invention, the invention discloses a double-layered buffer structure (a) having a buffering day and a single layer of aluminum nitride. The membrane is subjected to secondary ion mass spectrometry as a 矽/aluminum element analysis near the depth range of the nitriding plane region: Ί is based on the technique disclosed in the present invention, and is shown in (ι 11) crystal heart button. Upper Asia uses aluminum nitride/tantalum nitride double-layer buffer structure and i-fluorescent]: "Γ structure to grow gallium nitride insect crystal film low temperature light double S: optical spectrum comparison; "Interview: diagram: according to this The invention discloses a free exciton of a gallium nitride epitaxial film grown by an aluminum nitride/I layer buffer structure. FX) # 'neutral aluminum nitride grown on the gallium nitride epitaxial monolayer cushioning structure of membrane bound exciton = sub (D〇X) Arrhenius light induced fluorescence spectrum peak intensity of the pattern, and *

1272730 圖式簡單說明 第五圖係根據本發明所揭露之技術,表示利用氮化鋁 /氮化矽雙層緩衝結構以及氮化鋁單層緩衝結構所成長在 (111 )晶向表面矽底材上的兩種氮化鎵磊晶層之室溫拉曼 光譜示意圖。 主要部分之代表符號: 1 0矽底材 1 2單晶氮化矽層 1 4铭預沉積原子層 1 6單晶氮化鋁緩衝層 20具有鎵原子表面極性的氮化鎵層1272730 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a diagram showing the growth of a (111) crystal orientation surface 矽 substrate by an aluminum nitride/tantalum nitride double buffer structure and an aluminum nitride single layer buffer structure according to the disclosed technology. Schematic diagram of room temperature Raman spectroscopy of two kinds of gallium nitride epitaxial layers. Representative symbols of the main part: 1 0 矽 substrate 1 2 single crystal yttrium nitride layer 1 4 pre-deposited atomic layer 1 6 single crystal aluminum nitride buffer layer 20 gallium nitride layer with gallium atom surface polarity

第23頁Page 23

Claims (1)

1272730 _案號92128938 年 月 曰__ 六、申請專利範圍 1 . 一種形成半導體結構的方法,該形成半導體結構的方法 包含: 提供具有(111)晶向表面之一單晶矽底材; 形成一雙層緩衝結構位於具有(111)晶向表面之該單晶矽 底材上方;以及 形成三族氮化物半導體結構位於該雙層缓衝結構上方。 2.如申請專利範圍第1項形成半導體結構的方法,更包含 執行一表面重構製備步驟於具有(1 11 )晶向表面之該矽底 材。 3 ·,申請專利範圍第2項形成半導體結構的方法,其中上述 表面重構製備步驟包含在超高真空中之熱回火步驟。 4. 如申請專利範圍第1項形成半導體結構的方法,更包含、 執行表面製備步驟於具有(111)晶向表面之該矽底材。 5. 如申請專利範圍第4項形成半導體結構的方法,其中上 述表面製備步驟包含一在成長現場利用氫電漿進行矽表面 的清淨。1272730 _ Case No. 92128938 曰 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A double buffer structure is positioned over the single crystal germanium substrate having a (111) crystal orientation surface; and a group III nitride semiconductor structure is formed over the double buffer structure. 2. The method of forming a semiconductor structure according to claim 1 of the patent application, further comprising performing a surface reconstruction preparation step on the tantalum substrate having a (1 11 ) crystal orientation surface. 3. The method of claim 2, wherein the surface reconstruction preparation step comprises a thermal tempering step in an ultra-high vacuum. 4. The method of forming a semiconductor structure according to claim 1 of the patent application, further comprising: performing a surface preparation step on the tantalum substrate having a (111) crystal orientation surface. 5. The method of forming a semiconductor structure according to item 4 of the patent application, wherein the surface preparation step comprises cleaning the surface of the crucible with hydrogen plasma at a growth site. 6. 如申請專利範圍第4項形成半導體結構的方法,其中上 述表面製備步驟包含一成長腔外之濕式蝕刻。6. The method of forming a semiconductor structure according to item 4 of the patent application, wherein the surface preparation step comprises a wet etching outside the growth chamber. 第24頁 1272730 y f ^ _________ 案號 92128938 羊 k 月:^ 日 佟 π: __ 六、申請專利範圍 "" 1 ~' ' 7 ·專利範圍第1項形成半導體結構的方法,其中上述形成 雙層緩衝層包含: 形成一卓晶氮化石夕層位於具有(111)晶向表面之該石夕底材 上;以及 4 形成一三族氮化物層位於該單晶氮化矽層上。 8 ·如申請專利範圍第7項形成半導體結構的方法,其中上 述形成該單晶氮化矽層包含執行一氮氣電漿熱氮化作用至 具有(111)晶向表面之該碎底材上。 9 ·如申請專利範圍第7項形成半導體結構的方法,其中上 述形成該單晶氮化矽層包含執行一氨熱氮化作用至具有 (111)晶向表面之該石夕底材上。 1 0 ·如申請專刹範圍7項形成半,導體結構的方法,其中上述 形成該單晶氮化石夕層包含執行一化學氣相沉積至具有 (111)晶向表面之該石夕底材上。 1 1 ·如申請專利範圍第7項形成半導體結構的方法,其中上 述形成該三族氮化物層之步驟包含: 在不導入該氮氣電漿下執行一鋁預沉積步驟於該單晶氮化 矽層以形成一鋁預沉積原子層於該單晶氮化矽層上方; 執行一咼溫回火步驟於該鋁預沉積原子層以形成一單晶氮 化銘層於該單晶氮化咳層上方;以及Page 24 1272730 yf ^ _________ Case No. 92128938 Sheep k month: ^ 日佟π: __ VI. Patent application scope "" 1 ~' ' 7 · Patent scope 1st method of forming a semiconductor structure, wherein the above forms a double The layer buffer layer comprises: forming a crystal nitride layer on the stone substrate having a (111) crystal orientation surface; and 4 forming a group III nitride layer on the single crystal tantalum nitride layer. 8. The method of forming a semiconductor structure according to claim 7, wherein the forming the single crystal tantalum nitride layer comprises performing a nitrogen plasma thermal nitridation onto the fractured substrate having a (111) crystal orientation surface. 9. The method of forming a semiconductor structure according to claim 7, wherein the forming the single crystal tantalum nitride layer comprises performing an ammonia thermal nitridation onto the stone substrate having a (111) crystal orientation surface. 1 0. A method of forming a semi-conductor structure by applying a plurality of semiconductor structures, wherein said forming said single crystal nitride layer comprises performing a chemical vapor deposition onto said stone substrate having a (111) crystal orientation surface . 1 1 . The method of forming a semiconductor structure according to claim 7 , wherein the step of forming the group III nitride layer comprises: performing an aluminum pre-deposition step on the single crystal tantalum nitride without introducing the nitrogen plasma Forming an aluminum pre-deposited atomic layer over the single crystal tantalum nitride layer; performing a temperature tempering step on the aluminum pre-deposited atomic layer to form a single crystal nitride layer in the single crystal nitride layer Above; 第25頁 1272730 〆 k 案號92128938 W年^月日 修正 —— \ —— — 1 —— — 六、申請專利範圍 執行一氮化鋁磊晶成長於該單晶氮化鋁層以形成該三族氮, 化物層於該單晶氮化鋁層上方。 1 2.如申請專利範圍第1項形成半導體結構的方法,其中形 成該三族氮化物半導體結構的方法可以是化學氣相沉積 法。 1 3.如申請專利範圍第1項形成半導體結構的方法,其中形 成該三族氮化物半導體層結構的方法可以是分子束磊晶 法。 1 4.如申請專利範圍第1項形成半導體結構的方法,其中上 述三族氮化物半導體結構可以是一三族氮化物半導體單層 結構。 1 5.如申請專利範圍第1項形成半導體結構的方法,其中上 述三族氮化物半導體結構可以是一三族氮化物半導體多層 結構。 1 6.如申請專利範圍第1項形成半導體結構的方法,其中上 述三族氮化物半導體結構可以是一氮化鎵層。 1 7. —種在矽底材上成長三族氮化物半導體異質磊晶結構 的方法,該在矽底材上成長三族氮化物半導體異質磊晶結Page 25 1272730 〆k Case No. 92128938 W Year ^ Month Day Correction - \ —— — 1 —— — VI. Application for Patent Scope Execution of an aluminum nitride epitaxial growth in the single crystal aluminum nitride layer to form the three A family nitride layer is formed over the single crystal aluminum nitride layer. 1 2. A method of forming a semiconductor structure according to the first aspect of the patent application, wherein the method of forming the group III nitride semiconductor structure may be a chemical vapor deposition method. 1 3. A method of forming a semiconductor structure according to the first aspect of the patent application, wherein the method of forming the structure of the group III nitride semiconductor layer may be molecular beam epitaxy. 1 4. A method of forming a semiconductor structure according to claim 1, wherein the above-mentioned Group III nitride semiconductor structure may be a Group III nitride semiconductor single layer structure. A method of forming a semiconductor structure according to the first aspect of the patent application, wherein the above-mentioned group III nitride semiconductor structure may be a group III nitride semiconductor multilayer structure. 1 6. The method of forming a semiconductor structure according to claim 1, wherein the above-described group III nitride semiconductor structure may be a gallium nitride layer. 1 7. A method for growing a heterogeneous epitaxial structure of a Group III nitride semiconductor on a ruthenium substrate, which grows a heterogeneous epitaxial junction of a Group III nitride semiconductor on a ruthenium substrate 第26頁Page 26 k供具有(111)晶向表面之一碎底材; 執行 熱氣化作用於具有(111)晶向表面之該石夕底松 / 成一單晶氮化矽層於具有(1 1 1 )晶向表面之該矽底材上· f不執行該熱氮化作用下以執行一鋁預沉積步驟於該單曰 氮化石夕層上以形成一鋁預沉積原子層於該單晶氮化發^I 方, 執行一咼溫回火步驟於該鋁預沉積原子層以形成一單晶f 化鋁層於該單晶氮化矽層上方; 09鼠 執行一氮化鋁磊晶成長於該單晶氮化鋁層上方;及 形成一三族氮化物半導體結構於該氮化鋁磊晶層上方。 1 8 ·如申請專利範圍第1 7項在矽底材上成長三族氮化物 V體異質磊晶結構的方法,更包含在超高真空下執行一埶 回火步驟於具有(1 1 1 )晶向表面之該矽底材以形成一重構、、 石夕底材。 範 利 專 請 中 如 圍M晶面 1表 IX IX 第 項 π法 I - 方 的 構 結 晶 m 晶 磊有} 11 所貝且(r-H 異於(1 體驟矽 導步之 面 表 向 在石夕底材上成長三族氮化物半 更包含執行一現場氫電漿清淨 之該石夕底材以形成原子度平括 2 0·如申請專利範圍第17項在矽底材上成長三族氮化物半 V體異質蠢晶結構的方法’更包含執行一成長腔外之濕k for one of the (111) crystal orientation surfaces to be shredded; performing thermal gasification on the (111) crystal orientation surface of the Shimasson / into a single crystal tantalum nitride layer having a (1 1 1 ) crystal orientation On the surface of the substrate, f is not subjected to the thermal nitridation to perform an aluminum pre-deposition step on the single tantalum nitride layer to form an aluminum pre-deposited atomic layer on the single crystal nitride Performing a temperature tempering step on the aluminum pre-deposited atomic layer to form a single crystal f-aluminized layer over the single crystal tantalum nitride layer; 09 rat performing an aluminum nitride epitaxial growth on the single crystal nitrogen Above the aluminum layer; and forming a group III nitride semiconductor structure over the aluminum nitride epitaxial layer. 1 8 · A method for growing a Group III nitride V-body heterogeneous epitaxial structure on a ruthenium substrate, as in claim 17, further comprising performing a tempering step under ultra-high vacuum to have (1 1 1 ) The substrate is crystallized to form a reconstituted, stone substrate. Fan Li specializes in Zhongweiwei M crystal surface 1 Table IX IX The first π method I - square structure crystal m 晶磊 has 11 贝 and (rH is different (1 body 矽 矽 矽 向 向 向 向 向 向The growth of the Group III nitride on the substrate is carried out by performing an on-site hydrogen plasma cleaning to form an atomic degree. The growth of the group III nitrogen on the substrate is as described in the 17th article of the patent application. The method of compounding a semi-V body heterogeneous stupid structure' further includes performing a growth cavity 第27頁Page 27 以形成原子度平坦 餘刻於具有(111)晶向表面之該石夕底材 之碎(1 1 1 )晶向表面。 21·如申請專利範圍第17項在矽底材卜士旦一从" 增μ货所石曰从说,、 y低材上成長二族氮化物半 目女,主 /、T上迷執订該熱氮化作用於 具有(1 1 1 )日日向表面之該矽底材形 目女,Η η曰△主r 広何以化成该早晶氮化矽層於 具有(111)晶向表面之該石夕底材上方。 2 2 ·如申請專利範圍第1 7項在矽底姑 一 導體異質磊晶結構的方法,1中上 x二族氮化物半 氮氣電漿作用。 -中上迷熱氮化作用可以是一 2 3·如申请專利乾圍第17項在矽底 導體里皙号曰紝播ΛΑ 士 4 ^ -材上成長二知氣化物半 V體異貝麻日日結構的方法,其中上述三族 構可以是一三族氮化物半導體單層結構。、, 丰導體、-,。 ΓΛ申Λ專Λ?117項在石夕底材上成長三族氮化物半 導體異夤蠢晶結構的方法,:i:中μ、+、— 嫌β — - — /、节上述二族氮化物半導體結 構可以疋一知氮化物半導體多層結構。 25.—種具有三族氮化物半導體異質磊晶結 =該具有三錢化物半㈣異質^結構之半導體結構 具有(11 1 )晶向表面之一矽底材;To form a flat (1 1 1 ) crystal orientation surface of the stone substrate having a (111) crystal orientation surface. 21·If you apply for the patent scope, item 17 in the 矽 材 卜 卜 从 从 从 & & & 增 增 增 增 增 增 增 增 增 增 增 增 增 增 增 增 增 增 增 增 y y y y y y y y y y y y y y y y y y y Nitriding acts on the tantalum substrate of the (1 1 1 ) day-to-surface surface, and the Ηη曰△ main r is formed into the early crystalline tantalum nitride layer on the surface of the (111) crystal orientation surface. Above the substrate. 2 2 · If the patent application scope is in the 17th item, the method of heterogeneous epitaxial structure of the conductor is one, and the upper and lower x-nitrides are semi-nitrogen plasma. - The upper middle heat nitriding effect can be a 2 3 · If you apply for a patented dry circumference, the 17th item in the Loudi conductor, the nickname 曰纴 ΛΑ 4 4 ^ - - - - - - - - - - - - - - - - - - - - - A method of day-to-day structure, wherein the above tri-family structure may be a tri-family nitride semiconductor single-layer structure. ,, Feng conductor, -,. ΓΛ Λ Λ Λ 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 The semiconductor structure can be known as a nitride semiconductor multilayer structure. 25. A heterogeneous epitaxial junction having a group III nitride semiconductor = a semiconductor structure having a tri-nano-half (tetra) heterostructure; a substrate having a (11 1 ) crystal orientation surface; 1272730 案號92128938 f年^月^日 修正_ 六、申請專利範圍 一雙層緩衝結構位於具有(111)晶向表面之該矽底材上 方;以及 一三族氮化物半導體結構位於該雙層緩衝層上方。 2 6.如申請專利範圍第2 5項具有三族氮化物半導體異質磊 晶結構之半導體結構,其中上述雙層緩衝結構包含一擴散 阻障層位於具有(1 1 1 )晶向表面之該矽底材上方。1272730 Case No. 92128938 f year ^ month ^ day correction _ VI. Patent application range A double buffer structure is located above the germanium substrate having a (111) crystal orientation surface; and a triassic nitride semiconductor structure is located in the double layer buffer Above the layer. 2 6. The semiconductor structure having a heterogeneous epitaxial structure of a group III nitride semiconductor according to claim 25, wherein the double-layer buffer structure comprises a diffusion barrier layer located on the surface having a (1 1 1 ) crystal orientation surface Above the substrate. 2 7.如申請專利範圍第2 5項具有三族氮化物半導體異質磊 晶結構之半導體結構,其中上述擴散阻障層的材料為一單 晶氮化石夕。 28.如申請專利範圍第25項之具有三族氮化物半導體異質 磊晶結構之半導體結構,其中上述雙層緩衝結構包含一氮 化鋁層位於該擴散阻障層上方。 2 9 .如申請專利範圍第2 5項之具有三族氮化物半導體異質 磊晶結構之半導體結構,其中上述雙層緩衝結構包含一氮 化鎵層位於該擴散阻障層上方。2 7. The semiconductor structure having a heterogeneous epitaxial structure of a group III nitride semiconductor according to claim 25, wherein the material of the diffusion barrier layer is a single crystal nitride. 28. The semiconductor structure of claim 3, wherein the double buffer structure comprises an aluminum nitride layer over the diffusion barrier layer. A semiconductor structure having a Group III nitride semiconductor heteroepitaxial structure as claimed in claim 25, wherein the double buffer structure comprises a gallium nitride layer over the diffusion barrier layer. 3 0 .如申請專利範圍第2 5項具有三族氮化物半導體異質磊 晶結構之半導體結構,其中上述雙層緩衝結構包含一氮化 銦層位於該擴散阻障層上方。30. A semiconductor structure having a heterogeneous epitaxial structure of a group III nitride semiconductor according to claim 25, wherein the double buffer structure comprises an indium nitride layer over the diffusion barrier layer. 第29頁 1272730 案號 92128938 修正 六、申請專利範圍 3 1.如申請專利範圍第2 5項具有三族氮化物半導體異質磊 晶結構之半導體結構,其中上述三族氮化物半導體結構為 一三族氮化物半導體單層結構。 3 2 .如申請專利範圍第2 5項具有三族氮化物半導體異質蠢 晶結構之半導體結構,其中上述三族氮化物半導體結構為 一三族氮化物半導體多層結構。 第30頁Page 29 1272730 Case No. 92128938 Amendment 6. Patent Application No. 3 1. A semiconductor structure having a heterogeneous epitaxial structure of a Group III nitride semiconductor according to the 25th patent application, wherein the above-mentioned Group III nitride semiconductor structure is a three-family Nitride semiconductor single layer structure. A semiconductor structure having a Group III nitride semiconductor heteromorphous structure, wherein the above-described Group III nitride semiconductor structure is a Group III nitride semiconductor multilayer structure. Page 30
TW92128938A 2003-10-17 2003-10-17 Method for growing group-III nitride semiconductor heterostructures on silicon substrate TWI272730B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92128938A TWI272730B (en) 2003-10-17 2003-10-17 Method for growing group-III nitride semiconductor heterostructures on silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92128938A TWI272730B (en) 2003-10-17 2003-10-17 Method for growing group-III nitride semiconductor heterostructures on silicon substrate

Publications (2)

Publication Number Publication Date
TW200515614A TW200515614A (en) 2005-05-01
TWI272730B true TWI272730B (en) 2007-02-01

Family

ID=38441328

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92128938A TWI272730B (en) 2003-10-17 2003-10-17 Method for growing group-III nitride semiconductor heterostructures on silicon substrate

Country Status (1)

Country Link
TW (1) TWI272730B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484565B (en) * 2010-11-30 2015-05-11 Semiconductor Energy Lab Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US10006864B2 (en) 2015-10-05 2018-06-26 Industrial Technology Research Institute Carrier concentration measuring method and apparatus thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599462A (en) * 2018-11-30 2019-04-09 中国科学院半导体研究所 The In ingredient enriched nitride material growing method of N polar surface based on Si substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484565B (en) * 2010-11-30 2015-05-11 Semiconductor Energy Lab Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US10006864B2 (en) 2015-10-05 2018-06-26 Industrial Technology Research Institute Carrier concentration measuring method and apparatus thereof

Also Published As

Publication number Publication date
TW200515614A (en) 2005-05-01

Similar Documents

Publication Publication Date Title
US11646395B2 (en) High efficiency ultraviolet light emitting diode with electron tunnelling
US7012016B2 (en) Method for growing group-III nitride semiconductor heterostructure on silicon substrate
Armitage et al. Lattice-matched HfN buffer layers for epitaxy of GaN on Si
CN101060102B (en) Nitride semiconductor substrate, method of making the same and epitaxial substrate for nitride semiconductor light emitting device
JP3945782B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5122738B2 (en) Method for manufacturing ZnO crystal or ZnO-based semiconductor compound crystal, and method for manufacturing ZnO-based light emitting device
TW201108486A (en) Method for fabricating wafer products and method for fabricating gallium nitride semiconductor photonic elements
TW201144227A (en) β -Ga2O3 type single crystal growth method
TW200423397A (en) Growth of planar, non-polar A-plane gallium nitride by hydride vapor phase epitaxy
KR20090096549A (en) Zirconium and hafnium boride alloy templates on silicon for nitride integration applications
JP6418343B2 (en) Alumina substrate manufacturing method
US20040077165A1 (en) Hafnium nitride buffer layers for growth of GaN on silicon
TW201135926A (en) Growth of planar non-polar {10-10} m-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
US7718468B2 (en) Manufacture method for ZnO-containing compound semiconductor layer
TW201009898A (en) Film deposition method
JP2004063834A (en) Method for forming single crystal thin film on electromagnetic steel substrate, and single-crystal thin-film device therefor
JP2004115305A (en) Gallium nitride single crystal substrate, method of manufacturing the same, gallium nitride-based semiconductor device and light emitting diode
TWI272730B (en) Method for growing group-III nitride semiconductor heterostructures on silicon substrate
TW200403865A (en) Method of manufacturing III-V group compound semiconductor
JP2007129271A (en) Semiconductor light emitting element and method of manufacturing same
JP2007251027A (en) Zinc oxide based compound semiconductor, light-emitting element using the same, and manufacturing methods therefor
Fong et al. Characterizations of GaN films grown with indium surfactant by RF-plasma assisted molecular beam epitaxy
Tian et al. Effect of annealing atmosphere on the structural and optical properties of ZnO thin films on Si (100) substrates grown by atomic layer deposition
TWI379345B (en) A method of fabricating a zno film having a matching crystal orientation to silicon substrate
JP2012059874A (en) MANUFACTURING METHOD OF ZnO-BASED SEMICONDUCTOR LAYER AND MANUFACTURING METHOD OF ZnO-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees