且特別是有關於 主動元件陣列的And especially about the array of active components.
1271679 15672twf.d〇c/g 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種主動元件陣列, 種具有向檢測準確度的主動元件陣列及 檢測方法。 【先前技術】 」於顯示ϋ的需求與日遽增,因此業界全力投入相關 ^不益的發展。其中’具有高畫f、㈣利用效率佳、低 耗功率、無11射等優越特性之平面顯示H(Flat Panel Display)已逐漸成為市場之主流。 r目前常見的平面顯示器包括液晶顯示器(Liquid ^yStal’ LCD)、有機電致發光顯示器(Organic EleCtr〇-luminescence DMay,〇ELD)以及電漿顯示器 (Plasma Display Panel,rop)等等。其中,以液晶顯示器與 有機電致f光顯示H來說’現今乡以絲元件作為驅動元 件,以提高顯示器的反應速度。 此外,由於顯示器的高影像解析度需求,以及電子產 品的輕薄短小化趨勢,顯示面板上之轉積體電路(此· 1C )的構裝技術已逐漸由晶粒_電路板接合技術(chip 〇n Board,COB )轉變為軟片自動貼合技術(Tape Aut〇mated1271679 15672twf.d〇c/g IX. Description of the Invention: [Technical Field] The present invention relates to an active device array, an active device array having detection accuracy, and a detecting method. [Prior Art] The demand for display has increased and the industry has been fully involved in the development of the unhelpful development. Among them, the flat panel display H (Flat Panel Display) with high image f, (4) excellent utilization efficiency, low power consumption, and no 11 shot has gradually become the mainstream of the market. r The current common flat panel displays include liquid crystal displays (Liquid ^ yStal' LCD), organic electroluminescent displays (Organic EleCtr 〇-luminescence DMay, 〇 ELD), and plasma display panels (rop). Among them, in the case of a liquid crystal display and an organic electro-optic display H, the current silk element is used as a driving element to increase the reaction speed of the display. In addition, due to the high image resolution requirements of the display and the trend of thin and light electronic products, the assembly technology of the revolving circuit on the display panel (this 1C) has gradually been adopted by the die-board bonding technology (chip 〇 n Board, COB) turned into film automatic bonding technology (Tape Aut〇mated
Bonding,TAB ) ’之後再演進成接腳之間具有微間距( pitch )之晶粒-玻璃接合技術(Chip 〇n⑺咖,c〇G )。 圖1繪示為習知晶粒-玻璃接合技術之主動驅動型態 顯示器的顯示面板示意圖。請參照圖!,主動驅動型態之 1271679 15672twf.doc/g 顯示面板100具有顯示區102以及周邊電路區l〇4,其中 顯示區102内係配置有多條掃瞄配線112、多條資料配線 114以及多個電性連接至掃瞄配線112與資料配線ι14的 晝素單元116。此外,周邊電路區1〇4内係配置有多個閘 極驅動積體電路120以及多個資料驅動積體電路13〇。其 • 中,閘極驅動積體電路120係與掃瞄配線112電性連接, 而資料驅動積體電路130則係與資料配線114電性連接。 _ 換言之,掃瞄配線與資料配線114係分別藉由閘極驅 動積體電路120以及資料驅動積體電路13〇而驅動。 以現行的主動式平面顯示器之製程來說,在完成圖i 之顯示面板100後,通常會接著進行電路檢測,以確認顯 示面板100上的電路在製程中是否有缺陷產生。圖2繪示 為¥知用以4欢測圖1之顯示面板1 〇〇的檢測墊之配置示音 圖。租同日令參知、圖1及圖2,在顯示面板1〇〇的周邊電路 區104内,除了配置有閘極驅動積體電路丨2〇與資料驅動 積體電路130以外,尚有用以檢測電路的多個檢測墊14〇。 鲁其中,這些檢測墊140均具有積體電路晶片壓合區142盥 探針點測區144。 承上所述,在檢測過程中,操作人員係令探針與 探針點測區144接觸,以便於傳送檢測訊號至檢測墊14〇', 此時檢測訊號將經由檢測墊14〇傳送至顯示區1〇2内,以 對顯示區102内的晝素單元116進行檢測。而且,在中、 小尺寸的顯示面板中,為了節省空間,檢測墊刚的積體 電路晶片壓合區142與探針點測區144係分別以交錯排列 6 1271679 15672twf.doc/g 的方式配置在顯示面板上,如圖2所示。 此外,在目前的中、小尺寸之顯示面板中,為了提高 解析度,通常會縮小檢測墊140的尺寸及間距。以5.5忖 的顯示面板為例,探針點測區144的面積約為36微米χ150 微米,而間距d約24微米。為了因應這種尺寸的檢測墊, ^ 在檢測過程中所使用的探針108必須更精密、更細小,然 而此種探針的價格昂貴,將提高顯示面板100之檢測過程 g 的成本。 而且,由於探針點測區144的間距d太小,因此在檢 測過程中容易發生探針108所探壓的位置錯誤,或是相鄰 之檢測訊號相互干擾的情況,因而降低檢測準確度。 【發明内容】 有鑑於此’本發明的目的就是在提供一種主動元件陣 列,其所配置之檢測墊有助於在檢測過程中降低檢測難度 以及提高檢測準確度。 本發明的另一目的是提供一種主動元件陣列的檢測方 法,以提高主動元件陣列的檢測準確度。 本發明提出一種主動元件陣列,其主要係由基板、多 條掃瞄配線、多條資料配線、多個晝素單元以及多個檢測 墊所構成。其中,基板具有一顯示區與一周邊電路區。這 些掃瞄配線與資料配線係配置在基板上,並且分別在顯示 區及周邊電路區内圍成多個晝素區域與擬晝素區域。這些 晝素單元即是分別位於這些晝素區域内,並電性連接至掃 瞄配線與資料配線。檢測墊係緊鄰掃瞄配線及/或資料配線 7 1271679 15672twf.doc/g 而配置在基板上’並位於周邊電路區内。其中各個檢 係電性連接於對應之資料配線或掃瞄配線。 在本發明的較佳實施例中,各個晝素單元包括—第一 主動^件以及-晝素電極。其巾,第—主動元件係電性連 接至貧料配線與掃瞄配線,而晝素電極的材質例如是銦錫 氧化物或銦辞氧化物,且其係電性連接至第一主動元件、。 在本發明的較佳實施例中’這些檢測墊係分別$於i 述之擬晝素區域内,且各檢測墊係電性連接至對應之資料 配線。其中,這些檢測塾的材質例如是錮錫氧化物或^ =物。此外,在—實施财,此絲元件陣列更包括多 個弟一主動70件’這些第二主動元件係配置於基板上,並 ^於擬晝素區域内。其中’這些第二主航件恆為開啟狀 恶而且,在各擬晝素區域内,檢測墊係藉由第二主動元 件而電性連接於資料配線。另外,第二主航件例如 膜電晶體(她版_論,财),且其源極係與没極相 互電性連接。 ί本發明的較佳實施射,上述之檢測塾例如是配置 於擬旦素區域之外,且這些檢測墊的材質例如是金屬。 ^㈣還提出-種主動元件_的檢測方法,其係用 動70件陣列’此主動元件陣列係由多個顯示書 素結構與多麵晝素結構所構成,且各晝素結構包括一第 ―主動7C件’各擬晝素結制包括—第二主動元件。此外, 这些擬晝素結獅分職性連接於這㈣素結構。此主動 兀件陣列的檢測方法係先·這些第—主動元件,然後再 8 1271679 15672twf.doc/g 開啟攻些第二主動元件,接著輸入檢測訊號至各個擬畫素 結構,以藉由這些擬晝素結構將檢測訊號傳送至畫素結構。 在本發明的較佳實施例中,各個擬晝素結構更包括一 擬晝素電極,而輸入這些檢測訊號的方法包括將這些檢測 訊號輸入至這些擬晝素電極。之後這些檢測訊號係分別從 擬畫素電極經由第二主動元件而傳送至晝素結構。 本發明之主動元件陣列中的檢測墊具有足夠大的尺寸與 瞻 ^距’因此可在主動元件陣列的檢測過程中降低檢測難度並提 同檢測準確度。而且,相關單位亦不必花太多成本來購置精密 的探針。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 本發明係利用一般主動元件陣列所具有的擬晝素結構 (dummy pixel)來作為傳遞檢測訊號的檢測墊,以避免在檢 釀 >則過程中發生相鄰之訊號相互干擾的問題。以下將舉實施 例詳細說明之。 圖3繪示為本發明之第一實施例中主動元件陣列的部 分不意圖。請參照圖3,主動元件陣列300主要係由基板 3〇2、多條掃瞄配線312、多條資料配線314、多個檢測墊 316以及多個晝素單元320所構成。其中,基板302上係 區分為兩個區域,其分別是顯示區304以及周邊電路區 306。掃目苗配線312與資料配線314均配置在基板3〇2上, 9 1271679 15672twf.doc/g 並且在顯示區304内圍成多個畫素區域3〇5。此外,婦晦 配線312與資料配線314更在周邊電路區3〇6内圍成多; 擬晝素區域307。 • 承上所述,每一個畫素單元320均配置於單一晝素區 域305内,且晝素單元320主要係由第一主動元件322以 _ 及畫素電極324所構成。其中,晝素電極324係電性連接 至第一主動元件322,而第一主動元件322則係電性連接 • 於掃瞄配線312與資料配線314,並依據其由掃瞄配線312 與資料配線314所接收到的訊號來決定是否驅動晝素電極 324。在一實施例中,第一主動元件322例如是薄膜電晶 體,而晝素電極324的材質例如是銦錫氧化物(IndiumTin Oxide,ITO)或銦鋅氧化物(indium Zinc 0xide,IZ〇)。 請繼續參照圖3,檢測墊316係配置於擬畫素區域3〇7 之外,而且在本實施例中,檢測墊316例如是緊鄰顯示區 304邊緣的掃瞄配線312而配置,並電性連接至資料配線 314。其中,檢測墊316的材質例如是金屬,且其可以是與 ❿ 資料配線314以同一道製程形成,當然也可以是由額外的 製程所形成。特別的是,本實施例之擬晝素區域307内並 未配置有任何主動元件,因此在操作人員將檢測訊號輸入 至檢測墊316之後,檢測訊號可直接經由資料配線314傳 遞至顯示區304内的畫素單元320,以便於進行檢測。 請繼續參照圖3,本實施例之檢測墊316可以具有與 畫素電極324相同的寬度w。此外,由於配置在擬畫素區 域307内的透明電極326亦電性連接至資料配線314,因 1271679 15672twf.doc/g 此在檢測過程中,探針(未繪示)可將檢測訊號輸入至檢 測墊316或透明電極326,以使檢測訊號經由資料配線314 傳遞至晝素單元320。換言之,透明電極326亦可視為檢 測,316的一部份。在一實例中,檢測墊316的寬度w例 如疋63微米,而檢測墊316加上透明電極似的總長度乙 . 則例如是508微米。由此可知,檢測墊310的尺寸係足夠 大以避免在檢測過程中發生探針之探壓位置錯誤的情形。 藝雖然在本貫施例中,檢測墊316係電性連接至資料配 線314,但實際上檢測訊號可以經由掃描配線312或資料 配線314傳遞至畫素單元32〇,因此本發明並不限定用以 傳遞檢測訊號的檢測墊是電性連接至資料配線314或掃瞄 配線312。 田 圖4緣示為本發明之第二實施例中主動元件陣列的部 分不意圖。請參照圖4,在本實施例中,檢測墊416係電 生連接至掃描配線312,而且晝素區域305内例如是配置 有儲存電容Cs,檢測墊416則例如是配置在電性連接至儲 存電容Cs的匯流電極350之間。值得一提的是,在此種配 置方式下,相鄰之檢測墊416間的間距D例如是可以增加 至242微米,進而降低主動元件陣列4〇〇的檢測難度,曰並 提南其檢測準確度。此外,檢測墊416的長度l例如是275 微米,而其寬度w則例如是5〇微米。當然,檢測墊々Μ 的尺寸亦足夠大以避免在主動元件陣列4〇〇的檢測過程 中’發生探針(未綠示)之探壓位置錯誤的情形。 值得一提的是,本發明也可以直接以配置在擬晝素區 11 1271679 15672twf.doc/g 電極作為檢_ ’且其亦可達到與上述實施例相似 之。以下將舉實施例說明之。 、一!會示為本發明之第三實施例中主動元件陣列的部 的是’圖5之主動元件陣列500的主 51 3之主動元件陣列300的主要構件相同, 300:下將:十對主動元件陣列5〇0相對於主動元件陣列 300的不同處作說明。 請參照圖5 ’檢測塾516係配置在基板3〇2上, =固檢測塾516均配置在單一擬晝素區域3〇70,並電性 其所對應的資料配線314。值得注意的是,在一較 制例中’檢測塾516例如是與晝素電極324在同一道 Dft製作完成的透明電極。換言之,檢測塾516的材質 H^與晝素電極324的材質同樣為銦錫氧化物或銦鋅氧 更特別的是’本實施例之主動元件陣列5〇〇例如是包 # 一多個恆為開啟狀態的第二主動元件318,舉例來說, 動元件318例如是源極與汲極相互電性連接的薄膜 佥:-。且其係分別配置於擬晝素區域307内,而各個擬 旦素區域307内的檢測墊516即是藉由第二主動元件318 而電性連接於資料配線314。 k請f參照圖5,在主動林陣列的檢測過程中, 呆/人員將檢測訊唬藉由探針(未繪示)輸入至檢測墊 j、、’,檢測訊號係經由檢測墊516所連接之資料配線324 运至晝素單元32〇,進而對各個晝素單元32〇進行檢 1271679 測。在此,本實施例之檢測墊516的尺寸大小係取決於擬 晝素區域307的大小,而擬畫素區域307的大小一般來說 係與晝素區域305的大小相同。因此,檢測墊516係具有 足夠大的尺寸,進而避免在檢測過程中發生探針之探壓位 • 置錯誤的情形。 • 基於上述’本實施例係令主動元件陣列500之擬畫素 區域307中的第二主動元件318恆為開啟狀態,以便於以 春 配置在擬畫素區域307内的電極作為檢測墊516,因而能 夠節省主動元件陣列500的配置空間。此外,由於檢測墊 516可與晝素電極324在同一道製程中一併形成,因此主 動元件陣列500的製程與習知相較之下可節省一道形成檢 測墊的製程,進而降低製程成本。 素區域307内的透明電極作為檢測墊516 傳遞至顯示區304内的晝素單元32〇。以 明之。 然而,即使擬晝素區域3〇7内所配置的第二主動元件 318係與晝素區域3G5内的第一絲元件322相同,均為 正常運作的主動元件’本發明仍可以直接配置在擬晝 516 ’以將檢測訊號 。以下將舉實施例說 圖6%示為—般常見之主動元件Bonding, TAB) then evolved into a grain-glass bonding technique (Chip 〇n (7) coffee, c〇G) with a fine pitch between the pins. 1 is a schematic diagram of a display panel of an active drive type display of the conventional die-glass bonding technique. Please refer to the picture! The active display type 1271679 15672 twf.doc/g The display panel 100 has a display area 102 and a peripheral circuit area 104, wherein the display area 102 is provided with a plurality of scan lines 112, a plurality of data lines 114, and a plurality of The pixel unit 116 is electrically connected to the scan wiring 112 and the data wiring ι14. Further, a plurality of gate driving integrated circuits 120 and a plurality of data driving integrated circuits 13A are disposed in the peripheral circuit region 1?4. In the middle, the gate driving integrated circuit 120 is electrically connected to the scan wiring 112, and the data driving integrated circuit 130 is electrically connected to the data wiring 114. In other words, the scan wiring and the data wiring 114 are driven by the gate driving integrated circuit 120 and the data driving integrated circuit 13A, respectively. In the current active flat panel display process, after the display panel 100 of FIG. i is completed, circuit detection is usually performed to confirm whether the circuit on the display panel 100 is defective in the process. FIG. 2 is a schematic diagram showing the configuration of the detecting pad for the display panel 1 of FIG. 1. In the peripheral circuit area 104 of the display panel 1A, it is useful to detect, in addition to the gate drive integrated circuit 丨2〇 and the data drive integrated circuit 130, in the peripheral circuit area 104 of the display panel 1A. A plurality of test pads 14 电路 of the circuit. Each of the test pads 140 has an integrated circuit die pad 142 探针 probe spot 144. As described above, during the detection process, the operator contacts the probe with the probe spot 144 to facilitate transmitting the detection signal to the detection pad 14〇, and the detection signal is transmitted to the display via the detection pad 14〇. In the area 1〇2, the pixel unit 116 in the display area 102 is detected. Moreover, in the medium and small size display panel, in order to save space, the integrated circuit wafer nip area 142 and the probe spot area 144 of the test pad are respectively arranged in a staggered arrangement of 6 1271679 15672 twf.doc/g. On the display panel, as shown in Figure 2. Further, in the current medium and small size display panels, in order to improve the resolution, the size and pitch of the detecting pads 140 are usually reduced. Taking a 5.5 inch display panel as an example, the probe spot area 144 has an area of about 36 microns χ 150 microns and a pitch d of about 24 microns. In order to cope with the detection pad of this size, the probe 108 used in the inspection process must be more precise and finer, but such a probe is expensive, which will increase the cost of the detection process g of the display panel 100. Moreover, since the pitch d of the probe spotting area 144 is too small, it is easy to cause a positional error of the probe 108 to be detected during the detection process, or the adjacent detection signals interfere with each other, thereby reducing the detection accuracy. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an active device array which is configured to help reduce the difficulty of detection and improve the accuracy of detection during the detection process. Another object of the present invention is to provide a method of detecting an active device array to improve the detection accuracy of an active device array. The present invention provides an active device array which is mainly composed of a substrate, a plurality of scanning wires, a plurality of data wires, a plurality of pixel units, and a plurality of detecting pads. The substrate has a display area and a peripheral circuit area. The scan wiring and the data wiring are disposed on the substrate, and a plurality of halogen regions and pseudomorphic regions are enclosed in the display region and the peripheral circuit region, respectively. These halogen units are located in these halogen regions and are electrically connected to the scan wiring and data wiring. The test pads are placed next to the scan wiring and/or data wiring 7 1271679 15672 twf.doc/g on the substrate and located in the peripheral circuit area. Each of the detectors is electrically connected to the corresponding data wiring or scanning wiring. In a preferred embodiment of the invention, each of the pixel units includes a first active component and a - germanium electrode. The towel, the first active component is electrically connected to the lean wiring and the scanning wiring, and the material of the halogen electrode is, for example, indium tin oxide or indium oxide, and is electrically connected to the first active component, . In a preferred embodiment of the invention, the test pads are each in the region of the pseudo-halogen, and each of the test pads is electrically connected to the corresponding data wiring. Among them, the material of these detection defects is, for example, antimony tin oxide or ^= material. In addition, in the implementation, the array of wire elements further comprises a plurality of younger ones and an active 70 pieces. These second active elements are disposed on the substrate and are in the pseudomorphic region. Wherein the second primary airfoil is always open and the detection pads are electrically connected to the data wiring by the second active component in each of the pseudo-alloy regions. In addition, the second main navigation member is, for example, a membrane transistor, and its source is electrically connected to the immersion. Preferably, in the preferred embodiment of the invention, the detection means is disposed outside the region of the pseudo-denier, and the material of the detection pads is, for example, a metal. ^ (4) also proposed a method for detecting an active component _, which uses a 70-element array of 'active element arrays' composed of a plurality of display morpheme structures and a multi-faceted morpheme structure, and each morpheme structure includes a ―Active 7C pieces' each of the imaginary elements includes a second active component. In addition, these pseudo-salmon lions are connected to this (four) structure. The detection method of the active element array is first of these first-active components, and then 8 1271679 15672twf.doc/g is opened to attack the second active components, and then the detection signals are input to the respective pseudo-pixel structures, thereby The pixel structure transmits the detection signal to the pixel structure. In a preferred embodiment of the invention, each of the pseudomorphic structures further includes a pseudomorphic electrode, and the method of inputting the detection signals includes inputting the detection signals to the pseudomorphic electrodes. These detection signals are then transmitted from the pseudo-pixels to the halogen structure via the second active element. The test pads in the active device array of the present invention have a sufficiently large size and viewing distance so that the detection difficulty can be reduced and the detection accuracy can be improved during the detection of the active device array. Moreover, the relevant units do not have to spend too much on the purchase of sophisticated probes. The above and other objects, features and advantages of the present invention will become more <RTIgt; [Embodiment] The present invention utilizes a dummy pixel of a general active device array as a detection pad for transmitting a detection signal to prevent adjacent signals from interfering with each other during the detection process. problem. The embodiments will be described in detail below. Fig. 3 is a view showing a part of the active device array in the first embodiment of the present invention. Referring to FIG. 3, the active device array 300 is mainly composed of a substrate 3〇2, a plurality of scan lines 312, a plurality of data lines 314, a plurality of detection pads 316, and a plurality of pixel units 320. The substrate 302 is divided into two regions, which are a display region 304 and a peripheral circuit region 306, respectively. Both the sweeping wire 312 and the data wiring 314 are disposed on the substrate 3〇2, 9 1271679 15672 twf.doc/g and enclose a plurality of pixel regions 3〇5 in the display area 304. In addition, the maternity and child wiring 312 and the data wiring 314 are further enclosed in the peripheral circuit area 3〇6; • As described above, each of the pixel units 320 is disposed in a single pixel region 305, and the pixel unit 320 is mainly composed of the first active device 322 and the pixel electrode 324. Wherein, the halogen electrode 324 is electrically connected to the first active component 322, and the first active component 322 is electrically connected to the scan wiring 312 and the data wiring 314, and according to the scan wiring 312 and the data wiring. The signal received by 314 determines whether to drive the halogen electrode 324. In one embodiment, the first active device 322 is, for example, a thin film transistor, and the material of the halogen electrode 324 is, for example, Indium Tin Oxide (ITO) or indium zinc oxide (Indium Zinc 0xide, IZ〇). Referring to FIG. 3, the detecting pad 316 is disposed outside the pseudo-pixel area 3〇7, and in the embodiment, the detecting pad 316 is configured, for example, to the scanning line 312 adjacent to the edge of the display area 304, and is electrically connected. Connect to data wiring 314. The material of the detecting pad 316 is, for example, metal, and may be formed in the same process as the ❿ data wiring 314. Of course, it may be formed by an additional process. In particular, no active components are disposed in the pseudomorphic region 307 of the embodiment. Therefore, after the operator inputs the detection signal to the detection pad 316, the detection signal can be directly transmitted to the display area 304 via the data wiring 314. The pixel unit 320 is arranged for detection. With continued reference to FIG. 3, the test pad 316 of the present embodiment can have the same width w as the pixel electrode 324. In addition, since the transparent electrode 326 disposed in the pseudo-pixel region 307 is also electrically connected to the data wiring 314, since the detection process is performed, a probe (not shown) can input the detection signal to the detection electrode 314. The pad 316 or the transparent electrode 326 is detected to pass the detection signal to the pixel unit 320 via the data wiring 314. In other words, the transparent electrode 326 can also be considered as part of the detection, 316. In one example, the width ν of the test pad 316 is, for example, 疋 63 microns, and the total length B of the test pad 316 plus a transparent electrode is, for example, 508 microns. From this, it can be seen that the size of the test pad 310 is sufficiently large to avoid a situation in which the position of the probe is incorrectly detected during the detection. Although the detection pad 316 is electrically connected to the data wiring 314 in the present embodiment, the detection signal can be transmitted to the pixel unit 32 via the scanning wiring 312 or the data wiring 314. Therefore, the present invention is not limited thereto. The detection pad for transmitting the detection signal is electrically connected to the data wiring 314 or the scanning wiring 312. Field 4 is a part of the active element array in the second embodiment of the present invention. Referring to FIG. 4, in the present embodiment, the detecting pad 416 is electrically connected to the scanning wiring 312, and the memory region C is disposed, for example, in the halogen region 305, and the detecting pad 416 is disposed, for example, electrically connected to the storage. The capacitor Cs is between the bus electrodes 350. It is worth mentioning that, in this configuration mode, the spacing D between adjacent detection pads 416 can be increased to 242 micrometers, for example, thereby reducing the detection difficulty of the active device array 4〇〇, and the detection accuracy is improved. degree. Further, the length l of the detecting pad 416 is, for example, 275 μm, and the width w thereof is, for example, 5 μm. Of course, the size of the test pad is also large enough to avoid the occurrence of a wrong position of the probe (not shown) during the detection of the active device array 4'. It is worth mentioning that the present invention can also be directly disposed in the pseudomorphic region 11 1271679 15672 twf.doc/g electrode as the inspection _ ' and it can also be similar to the above embodiment. The embodiment will be described below. The first component of the active device array in the third embodiment of the present invention is the same as the main components of the active device array 300 of the main device 51 of the active device array 500 of FIG. 5, 300: the next: ten pairs The difference between the active device array 5〇0 and the active device array 300 will be described. Referring to Fig. 5, the detecting unit 516 is disposed on the substrate 3〇2, and the solid detecting unit 516 is disposed in the single pseudomorphic region 3〇70, and electrically connected to the data wiring 314 corresponding thereto. It is to be noted that, in a comparative example, the detecting 塾 516 is, for example, a transparent electrode which is formed in the same Dft as the halogen electrode 324. In other words, the material H of the detecting crucible 516 and the material of the halogen electrode 324 are the same as indium tin oxide or indium zinc oxide. More specifically, the active device array 5 of the present embodiment is, for example, a package #一恒为The second active component 318 in the open state, for example, the movable component 318 is, for example, a thin film 源: - the source and the drain are electrically connected to each other. The detection pads 516 in each of the pseudo-denier regions 307 are electrically connected to the data wiring 314 by the second active device 318. k Please refer to FIG. 5, in the process of detecting the active forest array, the person/person will input the detection signal to the detection pad j, ' by a probe (not shown), and the detection signal is connected via the detection pad 516. The data wiring 324 is transported to the halogen unit 32〇, and the individual pixel units 32〇 are tested for 1271679. Here, the size of the detecting pad 516 of the present embodiment depends on the size of the pseudomorphic region 307, and the size of the pseudo pixel region 307 is generally the same as the size of the pixel region 305. Therefore, the test pad 516 is of a sufficiently large size to avoid the occurrence of an error in the probe position of the probe during the detection process. • Based on the above-described embodiment, the second active element 318 in the pseudo pixel region 307 of the active device array 500 is always turned on, so that the electrode disposed in the pseudo-pixel region 307 in spring is used as the detection pad 516. It is thus possible to save the configuration space of the active device array 500. In addition, since the test pads 516 can be formed together with the halogen electrodes 324 in the same process, the process of the active device array 500 can save a process for forming the test pads, thereby reducing the process cost. The transparent electrode in the prime region 307 is transferred as a detection pad 516 to the halogen unit 32A in the display region 304. To be clear. However, even if the second active component 318 disposed in the pseudomorphic region 3〇7 is the same as the first silk component 322 in the halogen region 3G5, the active component is normally operated.昼 516 ' will detect the signal. The following will show an embodiment. Figure 6% shows the common active components.
13 1271679 15672twf.doc/g 就疋e兒,擬晝素結構62〇係藉由掃描配線6〇6或資料配線 60=而電性連接於晝素結構61〇。此外,畫素結構61〇還包 括第「主動70件612與晝素電極6丨4,其中第—主動元件 612係電f生連接至掃#苗配線6〇6與資料配線刪,而畫素電 極614則係電性連接至第—主動元件612。同樣地,擬畫 素結^冓㈣還包括第二主動元件622與擬晝素電極624, 其中第-主動兀件622係電性連接至掃描配線_與資料 配線608 ’而擬畫素電極624則係電性連接至第二主動元 件 622 〇 請同時參照圖6及圖7,在主動元件陣列的檢測過程 中,其係,開啟第-主動元件612,如步驟請〇所述。其 中開=帛主動元件612 #方法例如是輸入訊號至電性 連接於第-主動元件612的獅崎_。接著,進行 驟S702,也就是開啟第二主動元件622。同樣的,開啟第 二主動兀件622的方法亦是輸入訊號至電性連接於第二主 動元件622的掃瞄配線606。 然後’進^步驟S7〇4,輸入檢測訊號至各個擬晝素結 構620 + U藉由擬晝素結構62〇而將檢測訊號傳遞至晝 素結構⑽,進而對晝素結構61〇進行檢測。在此,輸二 檢測訊號,方法例如是將檢測訊號輸入至擬晝素電極 在貝例中’其例如是利用探針(未綠示)而將檢測 訊號輸入至,晝素電極624。此時由於第二主動耕似 已為開啟狀態,因此檢職號可經由擬晝素電極624傳遞 至資料配線608 ’再經由資料配線6〇8傳遞至各個畫素結13 1271679 15672twf.doc/g In the case of 疋e, the pseudomorphic structure 62 is electrically connected to the halogen structure 61 by scanning wiring 6〇6 or data wiring 60=. In addition, the pixel structure 61〇 further includes a “active 70 piece 612 and a halogen electrode 6丨4, wherein the first active element 612 is electrically connected to the scan #苗 wiring 6〇6 and the data wiring is deleted, and the pixel is The electrode 614 is electrically connected to the first active element 612. Similarly, the pseudo elementary layer (4) further includes a second active element 622 and a pseudomorphic electrode 624, wherein the first active element 622 is electrically connected to Scanning wiring _ and data wiring 608 ' and the pixel electrode 624 is electrically connected to the second active component 622. Please refer to FIG. 6 and FIG. 7 simultaneously, in the process of detecting the active device array, the system is turned on - The active component 612 is as described in the following steps. The open/帛 active component 612 # method is, for example, an input signal to a siraki _ electrically connected to the first active component 612. Then, step S702 is performed, that is, the second is turned on. The active element 622. Similarly, the method of turning on the second active element 622 is also inputting a signal to the scan line 606 electrically connected to the second active element 622. Then, 'in step S7〇4, inputting the detection signal to each Quasi-purin structure 620 + U by pseudomorphic structure 62〇, the detection signal is transmitted to the halogen structure (10), and then the pixel structure 61〇 is detected. Here, the second detection signal is transmitted by, for example, inputting a detection signal to the pseudomorphic electrode in the case of 'for example, The detection signal is input to the halogen electrode 624 by using a probe (not shown in green). At this time, since the second active cultivation is already in an open state, the inspection number can be transmitted to the data wiring 608 via the pseudo element electrode 624. 'Re-delivered to each pixel via data wiring 6〇8
1271679 15672twf.doc/g 構610的晝素電極614,以檢測這些晝素結構61〇是否正 常運作。 由上述可知,本實施例係直接利用擬晝素結構62〇中 的擬畫素電極624作為檢測墊,以對晝素結構61〇進行檢 測。換言之,主動元件陣列600毋須再額外配置用以接收 檢測訊號的檢測墊,不但可以節省主動元件陣列6〇〇的配 置空間,更可以節省製程成本。 綜上所述,由於本發明之主動元件陣列中的檢測墊具 有足夠大的尺寸,因此在檢測過程中操作人員能夠輕易地 將探針探壓在正確的檢啦±。鮮之,本發日歧有助於 降低主動元件陣列的檢測難度。而且,相關單位亦不必花 太多成本來購置精密的探針。 再者,本發明之主動元件陣列中的檢測墊之間亦且有 ^夠的間距,以便於在檢測過程中避免相鄰之檢測虹 以4t利用本發明之主動元件陣列的檢測方法不伸可 板上配置檢測塾的空間,更可以節去- 道核測塾的製程,進而降低㈣ 令 限定:::發揭r,^ 作些; 請專利範圍所界定者為準。 1271679 15672twf· doc/g 圖1緣示為習知晶粒-玻璃接合技術之主動驅動型悲 顯示器的顯示面板示意圖。 圖2緣示為習知用以檢測圖1之顯示面板100的檢測 墊之配置示意圖。 圖3繪示為本發明之第一實施例中主動元件陣列的部 分示意圖。 圖4繪示為本發明之第二實施例中主動元件陣列的部 分示意圖。 圖5繪示為本發明之第三實施例中主動元件陣列的部 分示意圖。 圖6繪示為一般常見之主動元件陣列的部分示意圖。 圖7繪示為本發明之一較佳實施例中檢測主動元件陣 列的步驟流程圖。 【主要元件符號說明】 100 :顯示面板 102、304、602 :顯示區 104、306、604 :周邊電路區 108 :探針 112、312、606 :掃瞄配線 114、314、608 :資料配線 116、320 :晝素單元 120 :閘極驅動積體電路 U0 :資料驅動積體電路 140、316、416、516 :檢測墊 1271679 15672twf.doc/g 142 :積體電路晶片壓合區 144 :探針點測區 300、400、500 :主動元件陣列 302 :基板 • 305 :晝素區域 - 307 :擬晝素區域 318、622 :第二主動元件 322、612 :第一主動元件 324、614 :晝素電極 326 :透明電極 350 :匯流電極 610 :畫素結構 620 :擬晝素結構 624 :擬晝素電極 S700 :開啟第一主動元件 S702 :開啟第二主動元件 參 S704 :輸入檢測訊號至各個擬晝素結構 171271679 15672twf.doc/g The elementary electrode 614 of the structure 610 is used to detect whether these halogen structures 61〇 are functioning properly. As apparent from the above, in the present embodiment, the pseudo-pixel electrode 624 in the pseudomorphic structure 62 is directly used as a detecting pad to detect the halogen structure 61〇. In other words, the active device array 600 does not need to be additionally configured to receive the detection signal of the detection signal, which not only saves the configuration space of the active device array 6〇〇, but also saves the process cost. In summary, since the detecting mat in the active device array of the present invention has a sufficiently large size, the operator can easily probe the probe at the correct check during the detecting process. Freshly, this difference helps to reduce the difficulty of detecting active component arrays. Moreover, the relevant units do not have to spend too much money to purchase sophisticated probes. Furthermore, the detection pads in the active device array of the present invention also have sufficient spacing between them to avoid the detection method of the active device array of the present invention being prevented from being used in the detection process. The space on the board for detecting flaws can be eliminated. The process of measuring the nuclear test can be reduced, and then the limit is reduced. (4) The limit is limited to::: 揭揭 r,^ Do this; the scope defined by the patent scope shall prevail. 1271679 15672twf·doc/g Fig. 1 is a schematic view showing a display panel of an active drive type sad display which is a conventional die-glass bonding technique. 2 is a schematic view showing the configuration of a detecting pad for detecting the display panel 100 of FIG. 1. Fig. 3 is a partial schematic view showing an active device array in the first embodiment of the present invention. 4 is a partial schematic view of an active device array in a second embodiment of the present invention. Fig. 5 is a partial schematic view showing an active device array in a third embodiment of the present invention. FIG. 6 is a partial schematic view showing an array of common active components. FIG. 7 is a flow chart showing the steps of detecting an array of active components in a preferred embodiment of the present invention. [Main component symbol description] 100: display panel 102, 304, 602: display area 104, 306, 604: peripheral circuit area 108: probes 112, 312, 606: scan wiring 114, 314, 608: data wiring 116, 320: halogen unit 120: gate drive integrated circuit U0: data drive integrated circuit 140, 316, 416, 516: detection pad 1271679 15672twf.doc / g 142: integrated circuit wafer nip 144: probe point Measuring area 300, 400, 500: active element array 302: substrate • 305: halogen region - 307: pseudomorphic region 318, 622: second active element 322, 612: first active element 324, 614: germanium electrode 326: transparent electrode 350: bus electrode 610: pixel structure 620: pseudomorphic structure 624: pseudomorphic electrode S700: first active element S702 is turned on: second active element is turned on, reference S704: input detection signal to each pseudo-halogen Structure 17