TWI271213B - A microfluidic mixer utilizing electroosmotic flow - Google Patents

A microfluidic mixer utilizing electroosmotic flow Download PDF

Info

Publication number
TWI271213B
TWI271213B TW93111002A TW93111002A TWI271213B TW I271213 B TWI271213 B TW I271213B TW 93111002 A TW93111002 A TW 93111002A TW 93111002 A TW93111002 A TW 93111002A TW I271213 B TWI271213 B TW I271213B
Authority
TW
Taiwan
Prior art keywords
mixer
wafer
inlet
microfluidic
microfluidic mixer
Prior art date
Application number
TW93111002A
Other languages
Chinese (zh)
Other versions
TW200534916A (en
Inventor
Che-Hsin Lin
Lung-Ming Fu
Yu-Sheng Chien
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW93111002A priority Critical patent/TWI271213B/en
Publication of TW200534916A publication Critical patent/TW200534916A/en
Application granted granted Critical
Publication of TWI271213B publication Critical patent/TWI271213B/en

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

The present invention relates to a microfluidic mixer utilizing electroosmotic flow. The microfluidic mixer comprises a mixer body, a voltage switching device and a power supply device. The mixer body has a main channel, at least one first inlet, at least one second inlet and an outlet. The first and second inlets are used for inducting the fluids to be mixed to the main channel to proceed mixing. The mixed fluid flows out the mixer body through the outlet. The voltage switching device is used for switching the driving voltage between the fluids to be mixed. Whereby, neither moving part nor the external mechanical force is required for the mixing purpose.

Description

1271213 玖、發明說明: 【發明所屬之技術領域】 本葦明係有關於一種微流體混合器,特別是指一種利用 交替電滲透流驅動之主動式微流體混合器。 【先前技術】 混合在生物晶片中之試劑混合、樣品混合、異相萃取、 微量藥品配置、DNA及蛋白質分解等方面扮演著相當重要 的角色。而混合的工作在微尺度的領域裡,面臨了相當大 的考驗,由於在微流道内其雷諾數相當的低,因此想要藉 由紊流的效應來混合兩種以上的流體是相當困難的事。在 近幾年’關於在微管道中進行混合的方法陸續被提出,其 大致上可分為主動式混合器和被動式混合器兩大類。所謂 主動式混合器’即是在流體中施加額外的能量源以造成局 部蒼流進而增加其混合的效率,其中包含以機械力方式造 成混合、利用微電極在局部區域進行介電泳力操作以造成 渾沌流場或是利用超音波震動產生混合。而被動式混合 器,則完全沒有任何的可動元件,其輔助混合的方法是藉 由各式各樣的微結構,來增加不同流體間的相互接觸面 積,其包括多孔式進料法、三維折疊法,其混合的過程全 靠流體本身的擴散作用來達成。 鉍觀上述之微流體混合方式,除流體驅動力之外,均需 提供-額外之作用力以混合流冑,因&其系統之控制較為 複雜,且很難整合成可靠的微流體系統。而且其部分混合 輯需製造的微結構相當複雜,進而導致其製程非常的昂1271213 玖, INSTRUCTION DESCRIPTION: TECHNICAL FIELD The present invention relates to a microfluidic mixer, and more particularly to an active microfluidic mixer driven by alternating electroosmotic flow. [Prior Art] Mixed reagent mixing, sample mixing, heterogeneous extraction, micro drug configuration, DNA and protein decomposition play a very important role in biochips. The mixed work is facing a considerable test in the field of micro-scale. Because the Reynolds number is quite low in the micro-channel, it is quite difficult to mix two or more fluids by the effect of turbulence. thing. In recent years, methods for mixing in micro-pipes have been proposed, which can be roughly classified into active mixers and passive mixers. The so-called active mixer 'is to apply an additional energy source in the fluid to cause local turbulence and thus increase the efficiency of its mixing, including mechanically mixing, using microelectrodes to perform dielectrophoretic forces in localized areas to cause The chaotic flow field or the use of ultrasonic vibration to produce a mixture. The passive mixer, there is no moving element at all, and the auxiliary mixing method is to increase the mutual contact area between different fluids by various microstructures, including porous feeding method and three-dimensional folding method. The process of mixing is achieved by the diffusion of the fluid itself. In view of the above-mentioned microfluidic mixing method, in addition to the fluid driving force, it is necessary to provide an additional force to mix the flow, because the control of the system is complicated and difficult to integrate into a reliable microfluidic system. Moreover, the micro-structures that need to be partially mixed are quite complicated, which leads to a very high process.

O:\91\91651.DOC 1271213 貴’不適合製作成大量且可拋棄式之晶片。 因此,有必要提供一創新且富進步性的微流體混合器, 以解沬上述問題。 【發明内容】 本毛明之主要目的係提供一種微流體混合器,利用驅動 机體机動之電/參透流進行混合,操作時僅需將驅動電壓快 速切換於不同流體入口,便可達到不同流體之驅動及混 口,其不僅不需可動元件,亦不需複雜之管路設計,因此 不僅操作簡單,且可降低製造成本。 本發明之另一目的係提供一種微流體混合器,係用以混 合一種以上不同之微流體,該微流體混合器至少包括:一 混合器本體、一電壓切換裝置及一電源供應器。 該混合器本體係具有導通之一主管道、至少一第一入 口、至少一第二入口及一出口,該第一入口及第二入口係 用以分別導入所欲混合之流體,該出口係用以導出混合後 之流體。該電壓切換裝置之一端電氣連接該第一入口,另 一端電氣連接該第二入口,用以交替地切換不同流體之驅 動電壓。該電源供應器係電氣連接該繼電器及該出口,以 提供該等流體之驅動電壓。 【實施方式】 參考圖1 ’顯示本發明第一實施例之微流體混合器之立 體不意圖。該第一實施例之微流體混合器1係用以混合二 種不同之微流體,該微流體混合器丨包括:一混合器本體 11、一電壓切換裝置12及一電源供應器13。O:\91\91651.DOC 1271213 is not suitable for making a large number of disposable wafers. Therefore, it is necessary to provide an innovative and progressive microfluidic mixer to solve the above problems. SUMMARY OF THE INVENTION The main purpose of the present invention is to provide a microfluidic mixer that utilizes an electric/parallel flow that drives a motorized body to perform mixing, and only needs to quickly switch the driving voltage to different fluid inlets to achieve different fluids. Drive and mix, which not only does not require moving components, but also does not require complicated piping design, so it is not only easy to operate, but also reduces manufacturing costs. Another object of the present invention is to provide a microfluidic mixer for mixing more than one different microfluid. The microfluidic mixer comprises at least: a mixer body, a voltage switching device and a power supply. The mixer system has a main conduit, at least a first inlet, at least a second inlet, and an outlet, the first inlet and the second inlet are respectively for introducing a fluid to be mixed, and the outlet is used for To derive the mixed fluid. One end of the voltage switching device is electrically connected to the first inlet, and the other end is electrically connected to the second inlet for alternately switching the driving voltages of different fluids. The power supply is electrically connected to the relay and the outlet to provide a driving voltage for the fluids. [Embodiment] The vertical body of the microfluidic mixer of the first embodiment of the present invention is shown with reference to Fig. 1'. The microfluidic mixer 1 of the first embodiment is for mixing two different microfluidics, the microfluidic mixer 丨 comprising: a mixer body 11, a voltage switching device 12 and a power supply 13.

O:\91\91651.DOC 1271213 該混合器本體11 (例如一 T型微流體晶片或其他生物晶 片)具有連通之一主管道111、7第一入口 112、一第二入 口 113、及一出口 114。該主管道111係作為該等流體混合之 用,其可以是方形或圓形之凹槽,但不限於上述形式。該 主管道111包括一混合道1111、一第一導引道1112及一第 二導引道1113,使得該主管道1丨丨之外型由俯視觀之係為τ 型、Υ型、t型或Τ型或其他型式。該第一入口 η 2係與該 第一導引道1112相通,用以導入所欲混合之第一流體流至 該混合道1111 ;該第二入口 113係與該第二導引道1113相 通,用以導入所欲混合之第二流體流至該混合道i丨丨丨。該 出口 114係用以導出混合後之流體。該混合器本體丨i之材 質可以為玻璃、石夕、高分子材料或其他材料。 該電壓切換裝置12係為一單刀雙閘高壓繼電器,其一端 係電氣連接該第一入口 112,另一端電氣連接該第二入口 113 ’用以交替地切換不同流體之驅動電壓。該電源供應 器13係電氣連接該電壓切換裝置12及該出口 114,其係為 一南壓之電源供應器以提供該等流體之驅動電壓,利用電 滲透流驅動之方式驅動該等流體。 該第一實施例之微流體混合器1係進行直接交替電滲透 流驅動,利用循環切換第一流體及第二流體之電場,造成 兩種流體流向該混合道丨丨丨丨之過程中互相折疊並增加其 接觸面積’進而提高流體不穩定性而達成混合之目的。 參考圖2 ’顯示本發明第二實施例之微流體混合器之立 體示意圖。該第二實施例之微流體混合器2包括:一混合O:\91\91651.DOC 1271213 The mixer body 11 (eg, a T-type microfluidic wafer or other biochip) has a main inlet conduit 111, a first inlet 112, a second inlet 113, and an outlet. 114. The main pipe 111 serves as a mixing of the fluids, and may be a square or circular groove, but is not limited to the above. The main duct 111 includes a mixing lane 1111, a first guiding lane 1112 and a second guiding lane 1113, so that the main duct 1丨丨 is shaped like a τ type, a Υ type, and a t type. Or type or other type. The first inlet η 2 is in communication with the first guiding channel 1112 for introducing a first fluid flow to be mixed to the mixing channel 1111; the second inlet 113 is in communication with the second guiding channel 1113. For introducing a second fluid flow to be mixed to the mixing channel. The outlet 114 is used to derive the mixed fluid. The material of the mixer body 丨i may be glass, stone, polymer material or other materials. The voltage switching device 12 is a single-pole double-gate high-voltage relay having one end electrically connected to the first inlet 112 and the other end electrically connected to the second inlet 113' for alternately switching the driving voltages of different fluids. The power supply 13 is electrically connected to the voltage switching device 12 and the outlet 114, which is a south voltage power supply to supply driving voltages of the fluids, and is driven by electroosmotic flow driving. The microfluidic mixer 1 of the first embodiment is driven by direct alternating electroosmotic flow, and the electric fields of the first fluid and the second fluid are cyclically switched to cause the two fluids to fold into each other during the process of mixing the ballasts. And increase the contact area' to increase fluid instability and achieve mixing. Referring to Figure 2', there is shown a schematic view of a microfluidic mixer of a second embodiment of the present invention. The microfluidic mixer 2 of the second embodiment comprises: a mixing

O:\91\91651.DOC 1271213 器本體21、一電壓切換裝置22、一電源供應器23及一電阻 24。該混合器本體21具有連通之一主管道211、一第一入 口 212、一第二入口 213及一出口 214。該第二實施例之微 流體混合器2與第一實施例之不同處僅在於該第二實施例 之微流體混合器2中所使用之電壓切換裝置22係為一雙刀 雙閘高壓繼電器’且增加該電阻24,該電阻24可以是固定 電阻或是可變電阻,其一端係電氣連接該電壓切換裝置 22,另一端係接地,藉此以構成管道内流體阻抗與該電阻 24所構成之分壓電路,以提高混合的效率。 該第二實施例係進行箝位交替(第一實施例係直接交替) 電滲透流驅動之操作模式。以圖2所示之情況為例,當該 第二入口 213有電滲透流驅動時,該第一入口 212則透過該 電阻24接地,利用該第二入口 213至該第一入口 212間管道 中液體之阻抗及該電阻24所構成之分壓電路,以決定該第 一入口 212之電位,而得以更有效的控制電滲透流切換 時,流入第一入口 212之溢流量,而提高混合效率。 參考圖3,顯示本發明第三實施例之微流體混合器之立 體示意圖。該第二實施例之微流體混合器3與第一實施例 大致相同,所不同之處僅在於該第三實施例之微流體混合 器3包括二個第一入口 312,312a及二個第一導引道 3112,3112a,二個第二入口 313,313a及二個第二導引道 3 113,3 113a ’因此該微流體混合器3可以混合四種流體(分 別導入該二第一入口 312,312a及該二第二入口 3 13,3 13a)。第二實施例中,該電壓切換裝置32之一端係電 O:\91\91651.DOC -9- 1271213 氣連接該等第一入口 312,312a(亦即該等第一入口 312,3 12a皆位於同一電位),另一端電氣連接該等第二入口 313,313&(亦即該等第二入口313,313&皆位於同_電位), 其操作方式與第一實施例相同。該第三實施例之微流體混 合器3係用以混合四種不同之流體,然而可以理解的是, 只要加設第一入口或第二入口,該第三實施例之微流體混 合器3即可混合更多種流體。另外,該第三實施例之供電 方式可以有多種形式,例如左邊一組右邊一組(即該等第 一入口 312,312a—組,該等第二入口313,313&一組),或是 對角線同一組(即第一入口 312與第二入口 313a同一組,第 一入口 312a與第二入口 313同一組),或者為各個獨立供電 (即該等第一入口 312,312a,該等第二入口 313,313a皆為獨 立供電)。 參考圖4a至4f,顯示第一實施例之混合器本體加上一上 板之製程示意圖。該混合器本體丨丨係採用顯微鏡所使用之 載玻片作為玻璃底材,經4〇〇°C退火處理四小時以釋放其 殘餘應力後,利用沸騰之piranha溶液(H2S〇4(〇/〇): =3:1)清洗十分鐘。之後塗布一厚度約為3 μηι之AZ4620正 光阻薄膜20,作為玻璃底材於姓刻緩衝液(buffered oxide etchant,B0E)中蝕刻之蝕刻罩幕,然後利用畫好之光罩22 進行標準之光刻程序(圖4a)。並利用1M之HC1除去蝕刻過 程中所產生之沈澱物,經過40分鐘的蝕刻可得36 μιη深之 該主管道111(包括該混合道1111、該第一導引道1112及該 第一導引道1113)、該第一入口 112、該第二入口 113及該O:\91\91651.DOC 1271213 The main body 21, a voltage switching device 22, a power supply 23 and a resistor 24. The mixer body 21 has a main pipe 211, a first inlet 212, a second inlet 213 and an outlet 214. The microfluidic mixer 2 of the second embodiment differs from the first embodiment only in that the voltage switching device 22 used in the microfluidic mixer 2 of the second embodiment is a double-pole double-gate high-voltage relay. And adding the resistor 24, the resistor 24 may be a fixed resistor or a variable resistor, one end of which is electrically connected to the voltage switching device 22, and the other end is grounded, thereby forming a fluid impedance in the pipeline and the resistor 24. Dividing the circuit to increase the efficiency of the mixing. This second embodiment is an operation mode in which the clamp is alternated (the first embodiment is directly alternated) by the electroosmotic flow drive. For example, as shown in FIG. 2, when the second inlet 213 is driven by the electroosmotic flow, the first inlet 212 is grounded through the resistor 24, and the second inlet 213 is used in the pipeline between the first inlet 212 and the first inlet 212. The impedance of the liquid and the voltage dividing circuit formed by the resistor 24 determine the potential of the first inlet 212 to more effectively control the overflow flow into the first inlet 212 when the electroosmotic flow is switched, thereby improving the mixing efficiency. . Referring to Figure 3, there is shown a schematic view of a microfluidic mixer of a third embodiment of the present invention. The microfluidic mixer 3 of the second embodiment is substantially the same as the first embodiment except that the microfluidic mixer 3 of the third embodiment includes two first inlets 312, 312a and two first guides. The approach channel 3112, 3112a, the two second inlets 313, 313a and the two second guide channels 3 113, 3 113a 'so the microfluidic mixer 3 can mix four fluids (imported into the two first inlets 312, 312a and The second second inlet 3 13, 3 13a). In the second embodiment, one of the voltage switching devices 32 is electrically connected to the first inlets 312, 312a (i.e., the first inlets 312, 3 12a are located at the O:\91\91651.DOC -9-1271213). The other end is electrically connected to the second inlets 313, 313 & (i.e., the second inlets 313, 313 & are all at the same potential), and operates in the same manner as the first embodiment. The microfluidic mixer 3 of the third embodiment is for mixing four different fluids, however, it will be understood that the microfluidic mixer 3 of the third embodiment is provided as long as the first inlet or the second inlet is added. More fluids can be mixed. In addition, the power supply mode of the third embodiment may be in various forms, such as a set of the right side of the left group (ie, the first entries 312, 312a - the group, the second entries 313, 313 & a set), or a diagonal The same group of lines (ie, the first inlet 312 is the same group as the second inlet 313a, the first inlet 312a is the same group as the second inlet 313), or is independently powered (ie, the first inlets 312, 312a, the second inlets) 313, 313a are all independent power supply). Referring to Figures 4a through 4f, a schematic view of the process of the mixer body of the first embodiment plus an upper plate is shown. The mixer body is made of a glass slide used as a glass substrate and annealed at 4 ° C for four hours to release its residual stress, and then boiled piranha solution (H2S〇4 (〇/〇) ): =3:1) Wash for ten minutes. Then, an AZ4620 positive photoresist film 20 having a thickness of about 3 μm is applied as an etching mask for etching the glass substrate in a buffered oxide etchant (B0E), and then the photomask 22 is used for standard light. Inscribed program (Figure 4a). And using 1M of HC1 to remove the precipitate generated during the etching process, after 40 minutes of etching, the main pipe 111 having a depth of 36 μm can be obtained (including the mixing channel 1111, the first guiding channel 1112 and the first guiding) Lane 1113), the first inlet 112, the second inlet 113, and the

O:\91\9165l.DOC -10- 1271213 出口 114(圖4b)。隨後利用K〇H溶液將該光阻薄膜2〇去除 (圖4c),即可得到該混合器本體11。 然p,為了獲得一完整之微管道,需要加上一上板24, 其係為一空白玻璃,且鑽好一第一通道241、一第二通道 242及一第三通道243(圖4(1)。之後將該上板24置於該混合 器本體11上且進行對位,使該第一通道241對準該第一入 口 112,該第二通道242對準該第二入口 113,該第三通道 243對準該出口 114(圖讣)。之後將該上板24及該混合器本 體11置於580°C之高溫爐中十分鐘,使該上板24及該混合 器本體11熔融接合(圖4f)。 參考圖5,顯示第一實施例在不同切換頻率下,混合距 離與混合效率之關係圖。此實驗之操作電壓為9〇v/ctn, 且混合距離係沿著該混合道llu計算,其起算點為該第一 導引道1112及該第二導引道1113進入該混合道丨丨丨丨之 處。在本圖中,線段係代表電腦模擬數據,符號係代表實 驗、,Ό果,其中符號籲代表OHz,〇代表1 Hz,△代表2Hz, ㊉代表10Hz。在第一實施例之直接交替操作模式之下,一 入口施加電壓,另一入口則為開放端,因而造成其電位僅 略低於施加電壓端之電位,因此利用此種操作模式所獲得 之流體擺動較小,但仍可在短距離内得到混合的作用。當 操作頻率於0 Hz時,流體流動呈現層流,只有因擴散而造 成之局部混合。當操作頻率設定於1 ^2時,則可以見到流 體因擾動而造成明顯之混合作用。當頻率增加為2HZ時, 則由於擾動之頻率加快,因此其混合作用更為明顯。但當O:\91\9165l.DOC -10- 1271213 Exit 114 (Figure 4b). The photoresist film 2 is then removed by using a K〇H solution (Fig. 4c) to obtain the mixer body 11. However, in order to obtain a complete micro-pipe, an upper plate 24 is needed, which is a blank glass, and a first channel 241, a second channel 242 and a third channel 243 are drilled (Fig. 4 (Fig. 4 1). The upper plate 24 is then placed on the mixer body 11 and aligned such that the first channel 241 is aligned with the first inlet 112 and the second channel 242 is aligned with the second inlet 113. The third passage 243 is aligned with the outlet 114 (Fig. 。). The upper plate 24 and the mixer body 11 are then placed in a high temperature furnace at 580 ° C for ten minutes to melt the upper plate 24 and the mixer body 11 . Engagement (Fig. 4f) Referring to Fig. 5, there is shown a plot of the mixing distance and mixing efficiency for the first embodiment at different switching frequencies. The operating voltage for this experiment is 9 〇 v/ctn, and the mixing distance is along the mixture. In the figure, the starting point is that the first guiding channel 1112 and the second guiding channel 1113 enter the mixing track. In the figure, the line segment represents computer simulation data, and the symbol system represents an experiment. ,, the result, where the symbol is called OHz, 〇 represents 1 Hz, △ represents 2 Hz, and ten represents 10 Hz. In the direct alternate mode of operation of an embodiment, a voltage is applied to one of the inlets, and the other is an open end, thereby causing the potential to be only slightly lower than the potential of the applied voltage terminal, so that the fluid oscillation obtained by using this mode of operation is more Small, but still can be mixed in a short distance. When the operating frequency is 0 Hz, the fluid flow presents laminar flow, only local mixing due to diffusion. When the operating frequency is set at 1 ^ 2, you can see When the fluid is disturbed, it causes obvious mixing. When the frequency is increased to 2HZ, the mixing effect is more obvious because the frequency of the disturbance is faster.

O:\91\91651.DOC -11 - 1271213 頻率設定於4 Hz時,其擺動頻率雖然更快,但由於流體本 身慣性力之影響,造成流體振動之擺幅顯著減小,因此其 混合之效果因而下降。而當頻率增加為1〇 ^以寺,則由於 擾動之頻率加快,因此其混合作用更為明顯。由圖中可看 出,在第一實施例中,混合效率最高者為操作頻率為1〇Hz。 參考圖6,顯示第二實施例在不同切換頻率下,混合距 離與混合效率之關係圖。此實驗所使用之電阻之電阻值為 200M Ω,其餘操作條件與圖5相同。在本圖中,線段係代 表電腦模擬數據,符號係代表實驗結果,其中符號▲代表 2Hz’ ◊代表4Hz,#代表7Hz。本實施例之係為箝位交替 之操作模式,其主要是在未施加電場的入口電位設定於較 低於驅動電位,因此施加電場端之流體將往該未施加電場 之入口以及該出口流動,如此則可以增加電場切換時流體 擺動之振幅。由圖中可看出,在第二實施何中,混合效率 取局者為操作頻率為4Hz,且其混合效率較第一實施例高。 參考圖7,顯示第二實施例在不同操作電壓下,切換頻 率與混合效率之關係圖。此實驗之操作條件與圖6相同。 在本圖中,線段係代表電腦模擬數據,符號係代表實驗結 果,其中符號〇代表6〇 V/Cm,△代表9〇 v/cm,◊代表12〇 V/cm’ ▼代表18〇 v/cm。由圖中可看出,在第二實施例中, 不同操作電壓在不同切換頻率具有不同之混合效率。 上述實轭例僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及 i化仍不脫本發明之精神。本發明之權利範圍應如後述之O:\91\91651.DOC -11 - 1271213 When the frequency is set at 4 Hz, the swing frequency is faster, but due to the inertial force of the fluid itself, the swing of the fluid vibration is significantly reduced, so the effect of mixing Thus falling. When the frequency is increased to 1 〇 ^ to the temple, the mixing effect is more obvious because the frequency of the disturbance is accelerated. As can be seen from the figure, in the first embodiment, the highest mixing efficiency is the operating frequency of 1 Hz. Referring to Figure 6, there is shown a plot of the mixing distance and mixing efficiency for the second embodiment at different switching frequencies. The resistance of the resistor used in this experiment was 200 M Ω, and the rest of the operating conditions were the same as in Fig. 5. In this figure, the line segment represents the computer simulation data, and the symbol system represents the experimental result, where the symbol ▲ represents 2 Hz' ◊ represents 4 Hz, and # represents 7 Hz. In this embodiment, the operation mode of the clamp alternately is that the inlet potential of the unapplied electric field is set lower than the driving potential, so that the fluid applied to the electric field end will flow to the inlet of the unapplied electric field and the outlet. This can increase the amplitude of the fluid oscillation when the electric field is switched. As can be seen from the figure, in the second embodiment, the mixing efficiency is that the operating frequency is 4 Hz, and the mixing efficiency is higher than that of the first embodiment. Referring to Fig. 7, there is shown a graph showing the relationship between switching frequency and mixing efficiency at different operating voltages of the second embodiment. The operating conditions of this experiment are the same as in Fig. 6. In this figure, the line segment represents computer simulation data, and the symbol system represents experimental results, where the symbol 〇 represents 6〇V/Cm, △ represents 9〇v/cm, and ◊ represents 12〇V/cm′ ▼ represents 18〇v/ Cm. As can be seen from the figure, in the second embodiment, different operating voltages have different mixing efficiencies at different switching frequencies. The above exemplified examples are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can modify and imitate the above embodiments without departing from the spirit of the invention. The scope of rights of the present invention should be as described later.

O:\91\91651.DOC -12- 1271213 申睛專利範圍所列。 【圖式簡單說明】 圖1、顯示本發明第一實施例之微流體混合器之立體示意 圖; 圖2顯示本發明第二實施例之微流體混合器之立體示意 圖; " 圖3顯示本發明第三實施例之微流體混合器之立體示意 圖; 圖4a至4f顯示本發明第一實施例之混合器本體加上一 上板之製程示意圖; 圖5顯示本發明第一實施例之微流體混合器在不同切換 頻率下,混合距離與混合效率之關係圖; 圖6顯示本發明第二實施例之微流體混合器在不同切換 頻率下,混合距離與混合效率之關係圖;及 圖7顯示本發明第二實施例之微流體混合器在不同操作 電壓下,切換頻率與混合效率之關係圖。 【圖式元件符號說明】 1 微流體混合器 11 混合器本體 111 主管道 mi 混合道 1112 第一導引道 1113 第二導引道 112 第一入口 O:\91\91651.DOC -13- 1271213 113 114 12 13 2 21 211 212 213 214 22 23 24 3 312,312a 3112,3112a 313,313a 3113,3113a 32 20 22 24 241 242 243 第二入口 出口 電壓切換裝置 電源供應器 微流體混合器 混合器本體 主管道 第一入口 第二入口 出口 電壓切換裝置 電源供應器 電阻 微流體混合器 第一入口 第一導引道 第二入口 第二導引道 該電壓切換裝置 正光阻薄膜 光罩 上板 第一通道 第二通道 第三通道 O:\9I\91651.DOC -14-O:\91\91651.DOC -12- 1271213 The scope of the patent is listed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a microfluidic mixer according to a first embodiment of the present invention; FIG. 2 is a perspective view showing a microfluidic mixer according to a second embodiment of the present invention; 3A to 4f are schematic views showing the process of adding the upper body of the mixer body of the first embodiment of the present invention; and Fig. 5 is a view showing the microfluid mixing of the first embodiment of the present invention. Figure 2 shows the relationship between the mixing distance and the mixing efficiency at different switching frequencies; Figure 6 shows the relationship between the mixing distance and the mixing efficiency of the microfluidic mixer of the second embodiment of the present invention at different switching frequencies; A diagram showing the relationship between switching frequency and mixing efficiency of the microfluidic mixer of the second embodiment at different operating voltages. [Graphic Symbol Description] 1 Microfluidizer 11 Mixer body 111 Main pipe mi Mixing lane 1112 First guiding channel 1113 Second guiding channel 112 First inlet O: \91\91651.DOC -13- 1271213 113 114 12 13 2 21 211 212 213 214 22 23 24 3 312, 312a 3112, 3112a 313, 313a 3113, 3113a 32 20 22 24 241 242 243 Second inlet outlet voltage switching device power supply microfluidic mixer mixer body main pipe First inlet second inlet outlet voltage switching device power supply resistor microfluidic mixer first inlet first guide channel second inlet second guide channel voltage switching device positive photoresist film mask upper plate first channel second Channel third channel O:\9I\91651.DOC -14-

Claims (1)

1271213 拾、申請專利範圍: 1 · 一種微流體混合器,係用以混合二種以上不同之微流 體,、該微流體混合器至少包括: 一混合器本體,具有連通之一主管道、至少一第一入 口、至少一弟二入口及一出口,該第一入口及第二入口 係用以分別導入所欲混合之至少一第一流體及至少一 第二流體’該出口係用以導出混合後之微流體; 電壓切換裝置,具有一輸入端、一第一輸出端及一 第二輸出端’該第一輸出端電氣連接該第一入口,該第 二輸出端電氣連接該第二入口,用以交替地切換不同微 流體之驅動電壓;及 一電源供應器,係電氣連接該電壓切換裝置之該輸入 端及該出口,以提供該等微流體之驅動電壓。 2. 如申請專利範圍第1項之微流體混合器,更包括一電 阻’其係用以構成分壓電路,以提高混合的效率。 3. 如申請專利範圍第2項之微流體混合器,其中該電阻係 為一固定電阻。 4·如申請專利範圍第2項之微流體混合器,其中該電阻係 為一可變電阻。 5.如申請專利範圍第1項之微流體混合器,其中該電壓切 換裝置係為一單刀雙閘高壓繼電器。 6·如申請專利範圍第1項之微流體混合器,其中該電壓切 換裝置係為一雙刀雙閘高壓繼電器。 7·如申請專利範圍第1項之微流體混合器,其中該主管道 O:\91\91651.DOC 1271213 之外型係選自由τ型、γ型、丨型及Τ型所組成之群。 8. 9· 10. 11. 12. 13. 14. 15. 如申請專利範圍第1項之微流體混合器,其中該混合器 本體之材質係選自由玻璃·、矽及高分子材料所組成之 群。 如申睛專利範圍第1項之微流體混合器,其中該混合器 本體係為一晶片。 如申凊專利範圍第1項之微流體混合器,其中該混合器 本體係為一生物晶片。 如申睛專利範圍第1項之微流體混合器,更包括一上 板,其係位於該混合器本體之上,該上板具有複數個通 道,該等通道係分別對應該第一入口、該第二入口及該 出Π。 如申請專利範圍第11項之微流體混合器,其中該上板及 該混合器本體係熔融成一體。 一種晶片,係用以混合不同之微流體,其至少包括·· 至少二入口,係用以分別導入所欲混合之微流體; 主I道’係與該等入口相連通,以作為該等微流體 混合之用;及 一出口,係與該主管道連通,用以導出混合後之微流 體。 如申請專利範圍第13項之晶片,更包括一電壓切換裝 置,其係用以提供且交替地切換不同微流體之驅動電 壓。 如申請專利範圍第13項之晶片,其中該主管道係為方形 O:\91\91651.DOC -2- 1271213 之凹槽。 16·如申請專利範圍第13項之晶片,其中該主管道係為半圓 形之凹槽。 17·如申請專利範圍第13項之晶片,其中該主管道之外型係 選自由T型、Y型、t型及T型所組成之群。 18•如申請專利範圍第13項之晶片,其中該晶片之材質係選 自由玻璃、矽及高分子材料所組成之群。 19·如申請專利範圍第13項之晶片,其中該晶片係為一生物 晶片。 20. 如申請專利範圍第13項之晶片,更包括一上板,其係位 於該晶片之上,該上板具有複數個通道,該等通道係分 別對應該等入口及該出口。 21. 如申請專利範圍第2〇項之晶片,其中該上板及該晶片係 溶融成一體。 O:\91\91651.DOC1271213 Picking up, patent application scope: 1 · A microfluidic mixer for mixing two or more different microfluids, the microfluidic mixer comprising at least: a mixer body having one main pipe connected, at least one a first inlet, at least one second inlet, and an outlet, the first inlet and the second inlet are respectively configured to introduce at least one first fluid and at least one second fluid to be mixed respectively. The microfluidic device has an input terminal, a first output terminal and a second output terminal. The first output terminal is electrically connected to the first inlet, and the second output terminal is electrically connected to the second inlet. The driving voltages of the different microfluids are alternately switched; and a power supply is electrically connected to the input end of the voltage switching device and the outlet to provide driving voltages of the microfluids. 2. The microfluidic mixer of claim 1, further comprising a resistor for forming a voltage dividing circuit to improve mixing efficiency. 3. The microfluidic mixer of claim 2, wherein the resistor is a fixed resistor. 4. The microfluidic mixer of claim 2, wherein the resistor is a variable resistor. 5. The microfluidic mixer of claim 1, wherein the voltage switching device is a single pole double gate high voltage relay. 6. The microfluidic mixer of claim 1, wherein the voltage switching device is a double pole double gate high voltage relay. 7. The microfluidic mixer of claim 1, wherein the main pipe O:\91\91651.DOC 1271213 is selected from the group consisting of a τ type, a γ type, a 丨 type, and a Τ type. 8. 9· 10. 11. 12. 13. 14. 15. The microfluidic mixer of claim 1, wherein the material of the mixer body is selected from the group consisting of glass, tantalum and polymer materials. group. The microfluidic mixer of claim 1, wherein the mixer system is a wafer. The microfluidic mixer of claim 1, wherein the mixer system is a biochip. The microfluidic mixer of claim 1, further comprising an upper plate disposed on the mixer body, the upper plate having a plurality of channels respectively corresponding to the first inlet, the The second entrance and the exit. The microfluidic mixer of claim 11, wherein the upper plate and the mixer are melted into one body. A wafer for mixing different microfluids, comprising at least two inlets for respectively introducing a microfluid to be mixed; a main channel 'connecting to the inlets as the micro The fluid is mixed; and an outlet is connected to the main conduit for deriving the mixed microfluid. The wafer of claim 13 further includes a voltage switching device for providing and alternately switching the driving voltages of the different microfluids. The wafer of claim 13 wherein the main pipe is a groove of a square O:\91\91651.DOC -2- 1271213. 16. The wafer of claim 13 wherein the main conduit is a semi-circular recess. 17. The wafer of claim 13 wherein the main pipe is selected from the group consisting of T, Y, t and T. 18• The wafer of claim 13 is the material of the wafer selected from the group consisting of glass, germanium and polymer materials. 19. The wafer of claim 13 wherein the wafer is a biochip. 20. The wafer of claim 13 further comprising an upper plate positioned above the wafer, the upper plate having a plurality of channels, the channels corresponding to the inlet and the outlet, respectively. 21. The wafer of claim 2, wherein the upper plate and the wafer are melted into one. O:\91\91651.DOC
TW93111002A 2004-04-20 2004-04-20 A microfluidic mixer utilizing electroosmotic flow TWI271213B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93111002A TWI271213B (en) 2004-04-20 2004-04-20 A microfluidic mixer utilizing electroosmotic flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93111002A TWI271213B (en) 2004-04-20 2004-04-20 A microfluidic mixer utilizing electroosmotic flow

Publications (2)

Publication Number Publication Date
TW200534916A TW200534916A (en) 2005-11-01
TWI271213B true TWI271213B (en) 2007-01-21

Family

ID=38435062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93111002A TWI271213B (en) 2004-04-20 2004-04-20 A microfluidic mixer utilizing electroosmotic flow

Country Status (1)

Country Link
TW (1) TWI271213B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041879A (en) * 2012-12-31 2013-04-17 苏州汶颢芯片科技有限公司 Micro-fluidic chip for micro/nano liter quota-sampling and preparation method thereof
CN103071554A (en) * 2012-12-31 2013-05-01 苏州汶颢芯片科技有限公司 Microfluidic chip for circularly driving solution and preparation method thereof
US11235328B2 (en) 2017-04-21 2022-02-01 Hewlett-Packard Development Company, L.P. Coplanar microfluidic manipulation
WO2018194665A1 (en) 2017-04-21 2018-10-25 Hewlett-Packard Development Company, L.P. Microfluidic chip
WO2018194635A1 (en) 2017-04-21 2018-10-25 Hewlett-Packard Development Company, L.P. Chip to chip fluidic interconnect
US11364496B2 (en) 2017-04-21 2022-06-21 Hewlett-Packard Development Company, L.P. Coplanar fluidic interconnect

Also Published As

Publication number Publication date
TW200534916A (en) 2005-11-01

Similar Documents

Publication Publication Date Title
TWI276462B (en) Microfluidic device including a microchannel on which a plurality of electromagnets are disposed, and methods of mixing a fluidic sample and lysing cells using the microfluidic device
US20070263477A1 (en) Method for mixing fluids in microfluidic channels
US20020176802A1 (en) Microfluid driving device
US20120115189A1 (en) Microfluidic and nanofluidic devices, systems, and applications
Aracil et al. Portable Lab-on-PCB platform for autonomous micromixing
TWI510296B (en) Droplet manipulations on ewod microelectrode array architecture
TWI230683B (en) The micromixer with overlapping-crisscross entrance
CN109847817B (en) Micro-fluidic chip and preparation method thereof
US6902313B2 (en) Micro chaotic mixer
Xu et al. Droplet coalescence in microfluidic systems
Wu et al. Modular microfluidics for life sciences
TWI271213B (en) A microfluidic mixer utilizing electroosmotic flow
Shoji et al. Flow control methods and devices in micrometer scale channels
Lee et al. AC EWOD-induced asymmetric droplet oscillation and manipulation
JP2010227735A (en) Microchannel device
TWI296608B (en) Microscale heating module
JP2004156964A (en) Liquid mixing apparatus
KR100767277B1 (en) Fluid mixing method in micro channel and system thereof
KR100818788B1 (en) Lab-on-a-chip system having micro mixer
TWI268804B (en) The impinging micromixer with swirling inlet ports
CN109304094A (en) A kind of active electric diacolation takes the integrating device and its extraction integrated approach of microring array
TW507046B (en) Micro-fluid conduction device
JP7178012B2 (en) Liquid mixing device and liquid mixing method
WO2022134035A1 (en) Microfluidic substrate, and microfluidic apparatus and driving method therefor
TWI220014B (en) Micro-fluid chip with multifunctional feeds and feed system thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees