TWI271022B - Reliable bi-directional driving circuit for wide supply voltage and output range - Google Patents

Reliable bi-directional driving circuit for wide supply voltage and output range Download PDF

Info

Publication number
TWI271022B
TWI271022B TW94128986A TW94128986A TWI271022B TW I271022 B TWI271022 B TW I271022B TW 94128986 A TW94128986 A TW 94128986A TW 94128986 A TW94128986 A TW 94128986A TW I271022 B TWI271022 B TW I271022B
Authority
TW
Taiwan
Prior art keywords
differential amplifier
power
voltage
load current
input
Prior art date
Application number
TW94128986A
Other languages
Chinese (zh)
Other versions
TW200709543A (en
Inventor
Tsz-Lang Chen
Ben-Mau You
Original Assignee
Wise Life Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wise Life Technology Co Ltd filed Critical Wise Life Technology Co Ltd
Priority to TW94128986A priority Critical patent/TWI271022B/en
Application granted granted Critical
Publication of TWI271022B publication Critical patent/TWI271022B/en
Publication of TW200709543A publication Critical patent/TW200709543A/en

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

The present invention provides a bi-directional driving circuit for wide supply voltage and output range, which includes a power supply voltage, a bridge circuit containing a first switch, a second switch, a third switch and a fourth switch, in which the power supply voltage provides the power supply, the first, second, third and fourth switches are electrically connected to form two vertical arms respectively each having a first output terminal and a second output terminal, and the first output terminal and the second output terminal are electrically connected with a load; a first power controller containing an output terminal electrically connected with an input terminal of the first switch; a second power controller containing an output terminal electrically connected with an input terminal of the second switch; a third power controller containing an output terminal electrically connected with an input terminal of the third switch; a fourth power controller containing an output terminal electrically connected with an input terminal of the fourth switch; a first loopback network electrically connected with a differential amplifier and a second differential amplifier; a second loopback network containing a control voltage electrically connected therewith and electrically connected with the first differential amplifier, the second differential amplifier and the first output terminal of the bridge circuit; a third loopback network electrically connected with a third differential amplifier, a fourth differential amplifier, and the first output terminal and second output terminal of the bridge circuit; and a fourth loopback network electrically connected with the third differential amplifier and the fourth differential amplifier. A current that flows through the load is substantially independent of the power supply voltage and is proportional to the control voltage.

Description

1271022 九、發明說明: 【發明所屬之技術領域】 本發明係關於一 一種單電源橋式電路 驅動電路。 雙向控制負載電流驅動電路,尤扣 (H-bddge)之雙向控制負載電^ 【先前技術】 對一具有雙向電流操控之負載元件,如 熱電元件(Thermal Electric Cooler)等,其通過達、 之其物理特性者,如直流馬達電=向方 ㈡負端,馬達之旋轉方向為順時針, 另-例子如熱電元件,若電流方向為== 。負端,代表正端為熱接面,負端代表冷接面,各反 向時則冷熱接面互換,因此必須有可雙向控制 負載電w之電路,才能充分發揮此類負載元件之應用。 對於操控此類元件且使其具有雙向電流操作^之 路,依習知之方式可分為兩種: 一、雙電源供電方式 如第1圖所示,一正電源Vcc接於一 NPN型之功 率電晶體101之集極(C〇llect〇r),一負電源Vee接於一 PNP型功率電晶體1〇2之集極。一負載元件接於該 NPN型之功率電晶體上〇丨與該pNp型功率電晶體1们 之射極(Emitter),而該負載元件1〇3之另一端接地。 一控制器1 04依其輸入而推動該npn型之功率電 晶體1〇1及該PNP型功率電晶體102,藉由該NpN型 =功率電晶體101及該PNP型功率電晶體1〇2傳輸所 需之電力給該負載元件103。該負載元件103之電流流 =依違控制器104之輸入,可由該正電源vcc提供而 流入該負載元件103,或由該負電源vEE提供而流出該 1271022 負載元件103,其缺點為: • 需2組獨立電壓源(正電源Vcc、負電源1271022 IX. Description of the Invention: [Technical Field] The present invention relates to a single power bridge circuit driving circuit. Bidirectional control load current drive circuit, H-bddge bidirectional control load power ^ [Prior Art] For a load component with bidirectional current control, such as Thermal Electric Cooler, etc. For physical characteristics, such as DC motor = square (2) negative, motor rotation direction is clockwise, another example is thermoelectric element, if the current direction is ==. The negative terminal represents the hot junction, the negative terminal represents the cold junction, and the cold and hot junctions are interchanged in each reverse direction. Therefore, a circuit capable of bidirectionally controlling the load power w must be used to fully utilize the application of such a load component. For the manipulation of such components and to have a bidirectional current operation ^, according to the conventional method can be divided into two types: First, the dual power supply mode as shown in Figure 1, a positive power supply Vcc connected to an NPN type power The collector of the transistor 101 (C〇llect〇r), a negative power supply Vee is connected to the collector of a PNP type power transistor 1〇2. A load element is connected to the NPN-type power transistor and the emitter of the pNp-type power transistor 1 and the other end of the load element 1〇3 is grounded. A controller 104 pushes the npn-type power transistor 1〇1 and the PNP-type power transistor 102 according to the input thereof, and transmits the NpN type=power transistor 101 and the PNP-type power transistor 1〇2. The required power is supplied to the load element 103. The current flow of the load component 103 is dependent on the input of the controller 104, can be supplied by the positive power supply vcc, flows into the load component 103, or is supplied by the negative power supply vEE and flows out of the 1271102 load component 103. The disadvantages are: • 2 Group independent voltage source (positive power supply Vcc, negative power supply

Vee )以提供該負載元件1 03所需之電流極 性變化。 2, 電源利用率低,該負載元件103之端電壓 最大擺幅VRL,Max = 士(Vi - V be),目前存在 功率電晶體v be約0.7V壓降,不利於低電 壓操作的場合。 二、單電源橋式(H_bridge)型 # = 4,功率電晶體及負載組成,其幾何結構圖恰如 =文字母”H”,因而稱之為橋式(H-bridge );依其電晶 一極性連接方式,可分為金氧半場效電晶體(MOSFET) 、、且L 一如第2圖所示;或雙極電晶體(b JT),如第3 圖所不。第2圖或第3圖之結構,其負載元件2〇5、3〇5 係連接於4顆金氧半場效電晶體(m〇sfet)之源極 (Source)或雙極電晶體(BJT)之射極,其缺點是電源 利用率低,負載το件205、305之端電壓最大擺幅VRL Max 土(Vl 一 2 Vgs)或 VRL,MaX=±(Vi - 2 Vbe),其中 VGS、 Vbe為功率電晶體壓降。 橋式(H-bridge)電路亦可變化為如第4圖所示之 金氧半場效電晶體(M0SFET)(或雙極電晶體(6汀)) 、,’口構,其負載係連接於4顆金氧半場效電晶體 (MOSFET) 401、402、403、404 之汲極(Drain)或雙 極電晶體(BJT)之集極,如此其負載端電壓最大擺幅 可達理想的vRL,Max = vcc,但四個電晶體4〇1、4〇2、 403、404的栅極(Gate)或基極(Base)必須分別控制,就 習知技術而言,其控制電路仍有以下缺點: 1· 因個別四個電晶體401、402、403、404的 柵極端之直流控制電位不同,無法如第2圖 6Vee) to provide a change in the polarity of the current required for the load element 103. 2, the power utilization is low, the voltage of the terminal of the load component 103 is the maximum swing VRL, Max = Shi (Vi - V be), there is currently a power transistor v be about 0.7V voltage drop, which is not conducive to low voltage operation. Second, single power bridge type (H_bridge) type # = 4, power transistor and load composition, its geometric structure is just like the text "H", so it is called bridge (H-bridge); The polarity connection method can be divided into a gold oxide half field effect transistor (MOSFET), and L is as shown in Fig. 2; or a bipolar transistor (bJT), as shown in Fig. 3. In the structure of Fig. 2 or Fig. 3, the load elements 2〇5, 3〇5 are connected to the source of the four gold oxide half field effect transistors (m〇sfet) or the bipolar transistor (BJT). The emitter has the disadvantage of low power utilization, the maximum voltage of the terminal voltage of the load 205, 305, VRL Max (Vl - 2 Vgs) or VRL, MaX = ± (Vi - 2 Vbe), of which VGS, Vbe For power transistor voltage drop. The bridge (H-bridge) circuit can also be changed to a metal oxide half field effect transistor (M0SFET) (or bipolar transistor (6 s)) as shown in Fig. 4, and a 'mouth structure, the load system is connected to 4 gold oxide half field effect transistor (MOSFET) 401, 402, 403, 404 Drain or bipolar transistor (BJT) collector, so that the maximum voltage of the load terminal can reach the ideal vRL. Max = vcc, but the gates or bases of the four transistors 4〇1, 4〇2, 403, 404 must be controlled separately. As far as the prior art is concerned, the control circuit still has the following disadvantages. : 1· Since the DC control potentials of the gate terminals of the four individual transistors 401, 402, 403, and 404 are different, they cannot be as shown in Figure 2

曰曰 1271022 或第3圖方式直接在柵極端(Gate)或基極端 (Base)連接,因此控制電路較為複雜。 2. 如果控制電路設計不當,有可能產生如第4 圖所示之垂直向電流Iver 1與lver2,該電流 係由電源端Vcc流經該金氧半場效電晶體 (MOSFET ) 401、402而至接地端,或由電 源端 Vcc流經該金氧半場效電晶體 (MOSFET ) 403、404而至接地端,因電源 功率直接加於該金氧半場效電晶體 (MOSFET ) 401、402或該金氧半場效電晶 體(MOSFET ) 403、404而毀:損電晶體。 3· 如果控制電路設計不當,即使'在驅動負 載狀況下,有可能因功率散逸不對稱分配於 橋式(H-bridge)之對角線電晶體:該金氧 半%效電晶體(MOSFET) 401、404或該金 氧半場效電晶體(MOSFET) 402、403,造 成功率散逸集中於某一電晶體而毀損該功 率電晶體,繼而摧毀整個電路。 【發明内容】 動雷跋 乂n— R 芰间徑制負載電 與控制電壓成正比。 〜電源電屋無關 本發明之另一目的俜 動電路,雷愿承的八 & 雙向控制負載電洁 對角線電晶體,亦即功率 ^路(H_bndge) 體上。 相耗可平均分配於對角線曰曰 1271022 or Figure 3 is connected directly at the gate or base, so the control circuit is more complicated. 2. If the control circuit is not properly designed, it is possible to generate vertical currents Iver 1 and lver2 as shown in Fig. 4, which flow from the power supply terminal Vcc through the MOSFETs 401, 402. The ground terminal, or the power supply terminal Vcc flows through the metal oxide half field effect transistor (MOSFET) 403, 404 to the ground terminal, because the power supply power is directly applied to the metal oxide half field effect transistor (MOSFET) 401, 402 or the gold Oxygen half field effect transistor (MOSFET) 403, 404 destroyed: damage to the transistor. 3. If the control circuit is not properly designed, even under the condition of driving load, it may be asymmetrically distributed to the diagonal transistor of the bridge (H-bridge) due to power dissipation: the MOS half-effect transistor (MOSFET) 401, 404 or the MOS half-effect transistor (MOSFET) 402, 403 causes power dissipation to concentrate on a certain transistor to destroy the power transistor, which in turn destroys the entire circuit. SUMMARY OF THE INVENTION The dynamic Thunder 乂n-R inter-turn path load power is proportional to the control voltage. ~ Power supply house has nothing to do with the other purpose of the present invention, the 电路 电路 雷 & & & & & & & & & & & & & & & & & & & & & & & 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对Phase loss can be evenly distributed across the diagonal

1271022 本發明之另—目的係提供 動電路,使得該雙向控制負載 且具有低漂移電壓之特性。 一雙向控制負載電流驅 電流驅動電路結構對稱 本發明之另一目的係提供一 動電路,使得該雙向控制負載電 操作。 雙向控制負載電流驅 流驅動電路可低電壓 ^ 你〜外祕的係提供一雙向控制負載電流驅a — i制負載電流驅動電路係為一係 為單電,原結構且線路处娃雜w /甘兩,w 钎& A旦认το 略、、、〇構間早僅需十幾個電晶體便 可兀成,易於1C化。 因此,為了完成上 制負載電流驅動電路, 一電源電壓; 述目標,本發明提供一雙向控 包含: 橋式 第三開關、 應,且該第 四開關分別 一第四開關,係由 一開關與該第二開 電連接以形成二垂 出端與一第二輸出 第二輸出端電連接一負栽; 差動放大器,包含 包含—第一開關、一第二開關、 有一第一輸 一第 輸入端以及 電連接該第 一第二 輸入端以及 電連接該第 該電源電壓提供電源供 關及該第三開關與該第 直臂,二垂直臂分別具 端,該第一輸出端與該 一第一輸入端、一第二 差動放大器之輸出端係 輸出端,該第一 一開關之一輪入端 差動放大器,包含 一輸出端,該第二差動放大器之輸出端係 一開關之一輪入端; 一第一輸入端 第二 一第三差動放大器,包含一第一輸入端、一第二 輸入端以及一輸出端,該第三差動放大器之輸 電連接該第三開關之-輪入端; 、係 8 1271022 ^ 一第四差動放大器,包含一第一輸入端、一第二 輸入端以及一輸出端,該第四差動放大器之輸出端係 * 電連接该弟四開關之一輸入端; 一第一迴授網路,電連接該第一差動放大器之該 1 第一輸入端以及該第二差動放大器之該第一輸入端; 一第一迴授網路,包含一控制電壓,電連接該第 二迴授網路’且該第二迴授網路電連接該第一差動放 大器之該第二輸入端以及該第二差動放大器之該第二 輸入端’以及電連接該橋式電路之該第一輸出端; # 一第三迴授網路,電連接該第三差動放大器之該 第一輸入端以及該第四差動放大器之該第一輸入端, 且電連接該橋式電路之該第一輸出端以及該第二輸出 端;以及 • 一第四迴授網路,電連接該第三差動放大器之該 第二輸入端以及該第四差動放大器之該第二輸入端; 其中,使得流過該負載之一電流為與該電源電壓實質 上無關,與该控制電壓成正比。 為使本發明上述之目的、特徵以及優點更為明顯 _ 易懂,將由下述之詳細說明、圖式以及申請專利範圍 做一更清楚說明。 【實施方式1 -請參閱第5圖俦為本案較佳實施例之一雙向控制 負載電流驅系電路示意圖。如第5圖所示,該驅動電 路由一主要電路結構500與附屬電路結構610與620 • 所構成。 、 該主要電路結構500係由一橋式電路(H-bridge ) 510,四組增益單元520、530、540、550,四組迴授 網路560、5 70、5 80與590及一控制電壓vc所組成。 一負載511橫跨於該橋式電路(H_bridge) 5 1〇之兩垂 9 1271022 該等增益單元520、530、540、550預先進入穩態,而 迫使流過該橋式電路(H-bHdge ) 5 1 0之各功率電晶體 5 12、5 1 3 ' 5 14、5 1 5之初始電流皆為零,待延遲時間 過後’整個迴授控制系統可使得第5圖之結構達到下 述之效果: 1 ·無垂直分向電流流過橋式電路(H_bridge)之 二垂直臂; 2·流過負載之電流為|/J= 與電源電壓vcc1271022 Another object of the present invention is to provide a dynamic circuit that allows the bidirectional control of the load and has the characteristics of a low drift voltage. A bidirectional control load current drive current drive circuit structure is symmetrical. Another object of the present invention is to provide a dynamic circuit that allows the bidirectional control load to operate electrically. Bidirectional control load current drive drive circuit can be low voltage ^ You ~ secret system provides a bidirectional control load current drive a - i load current drive circuit is a series of single electricity, the original structure and the line at the w / w / Gan two, w brazing & A recognizing το slightly,,, and 〇 structure only need a dozen crystals to form, easy to 1C. Therefore, in order to complete the upper load current driving circuit, a power supply voltage; the object, the present invention provides a bidirectional control comprising: a bridge type third switch, and the fourth switch is respectively a fourth switch, which is controlled by a switch The second power-on connection is electrically connected to form a second output end and a second output second output end; the differential amplifier includes a first switch, a second switch, and a first input and a first input. And electrically connecting the first second input end and electrically connecting the first power supply voltage to provide power supply off and the third switch and the first straight arm, and the two vertical arms respectively have ends, the first output end and the first An input end, an output end of a second differential amplifier, an input end of the first switch, the differential amplifier of the first input switch includes an output end, and the output end of the second differential amplifier is one of the switches a first input second second differential amplifier, comprising a first input terminal, a second input terminal and an output terminal, wherein the third differential amplifier is electrically connected to the third switch - a wheeled terminal; a system 4 1271022 ^ a fourth differential amplifier comprising a first input terminal, a second input terminal and an output terminal, the output terminal of the fourth differential amplifier is electrically connected to the fourth One input end of the switch; a first feedback network electrically connecting the first input end of the first differential amplifier and the first input end of the second differential amplifier; a first feedback network The second feedback network is electrically connected to the second feedback network and the second feedback network is electrically connected to the second input of the first differential amplifier and the second input of the second differential amplifier End 'and electrically connecting the first output of the bridge circuit; # a third feedback network electrically connecting the first input of the third differential amplifier and the first of the fourth differential amplifier An input terminal electrically connected to the first output end of the bridge circuit and the second output end; and a fourth feedback network electrically connected to the second input end of the third differential amplifier and the first a second input of the four differential amplifier; wherein One of the load current of the power supply voltage regardless of the substance is proportional to the control voltage. The above described objects, features, and advantages of the present invention will become more apparent from the following detailed description, drawings and claims. [Embodiment 1 - Please refer to Fig. 5 is a schematic diagram of a bidirectional control load current drive circuit of a preferred embodiment of the present invention. As shown in Fig. 5, the drive circuit is constructed by a main circuit structure 500 and an auxiliary circuit structure 610 and 620. The main circuit structure 500 is composed of a bridge circuit (H-bridge) 510, four sets of gain units 520, 530, 540, 550, four sets of feedback networks 560, 5 70, 5 80 and 590 and a control voltage vc. Composed of. A load 511 straddles the bridge circuit (H_bridge) 5 1 两 2 9 9 1271022 The gain units 520, 530, 540, 550 enter the steady state in advance, forcing the bridge circuit (H-bHdge) to flow through 5 10 0 of each power transistor 5 12, 5 1 3 ' 5 14 , 5 1 5 initial current is zero, after the delay time has passed 'the entire feedback control system can make the structure of Figure 5 achieve the following effect : 1 · No vertical split current flows through the two vertical arms of the bridge circuit (H_bridge); 2. The current flowing through the load is |/J= and the power supply voltage vcc

無關,僅與控制電壓Vc成正比; 3·電壓平均分配於該橋式電路(H_bridge) 51〇之 對角線電晶體5 12與5 1 5或5 13與5 14亦即功 率損耗可平均分配於對角線上。 4·對稱性的增益器(Gain Block)結構可輕易將 輸出級推到全電壓範圍(rail_t〇_rail),亦即從 〇 至 Vcc 〇 結構對稱且具有低漂移電壓之特性 6_可低電壓操作如3v 7·線路結構簡單僅需十幾個電晶體便可完成,易 於1C化。 8 ·單電源結構。 請參閱第6圖係為第5圖之主要電路結構5〇〇簡 ,電路不,5圖。在第5圖中,該迴授網路遍包含兩 個電阻561、562,其電阻值為2R。因此取出一半之電 源電壓1/2 Vcc饋入第人上、μ ι咕 頭八弟6圖之一合成節點031之正端, 而第5圖之該迴授網路57〇之電阻57ι、η〕、, 其電阻值為3R分別取出-八々 ._ 枷& + r 刀〜取出二分之一之電源電壓Vcc/3, 控制電壓Vc/3與負φ^阿、 „ C ”貝戰鸲電壓VRL1/3於第6圖之一合成 郎點632相加之後餹人赞 < 门》A 口取 和力冬傻饋入第6圖該合成節點63ι之負 ^。而第5圖之該迴授锢饮 ’路590之電阻591、592其電 π 1271022Irrelevant, only proportional to the control voltage Vc; 3. The voltage is evenly distributed to the bridge circuit (H_bridge) 51〇 diagonal transistor 5 12 and 5 1 5 or 5 13 and 5 14 that is, the power loss can be evenly distributed On the diagonal. 4. Symmetrical Gain Block structure can easily push the output stage to the full voltage range (rail_t〇_rail), that is, from 〇 to Vcc 〇 structure symmetrical and with low drift voltage characteristics 6_ low voltage The operation is as simple as 3v 7. The circuit structure is simple and requires only a dozen transistors to complete, and it is easy to 1C. 8 · Single power supply structure. Please refer to Fig. 6 for the main circuit structure of Figure 5, which is simplified, not circuitized, and 5 is shown. In Figure 5, the feedback network includes two resistors 561, 562 having a resistance of 2R. Therefore, half of the power supply voltage 1/2 Vcc is fed into the positive end of the synthesis node 031 of the first person, and the feedback power of the feedback network 5757, η of FIG. 〕,, its resistance value is 3R separately - gossip._ 枷 & + r knife ~ take out one-half of the power supply voltage Vcc / 3, control voltage Vc / 3 and negative φ ^ A, „ C ” The 鸲 voltage VRL1/3 is added to the synthetic point 632 in one of the six figures. The 赞人赞<门》A 口取和力冬傻 into the sixth figure of the composite node 63ι negative ^. And in Figure 5, the feedback of the sipping ‘road 590 resistance 591, 592 its electric π 1271022

阻值,2R取出—半之電源電壓1/2 Vcc饋人第6圖之 之節點634之正端’又第5圖之該迴授網路580之 電阻581、582其電阻值為2R取出負載兩端之電壓 yRLi/2與vRL2/2於第6圖之一節點633相加之後饋入 第6圖#之該節點634之負端。概整體之效應可再以第 7圖之簡圖表不’其中641係由第5圖之該增益單元 520、該增盈單元53〇、該電晶體512與該電晶體513 組成,642係由第5圖之該增益單元54〇、該增益單元 550、該電晶體514與該電晶體515組成。第7圖清楚 顯:第5圖之主要電路結構5〇〇為一單電源之橋式放 大器(Bndge Amplifier),其閉迴路負載電流可由以下 分析而得。 依此結構可得閉迴路之方程式如下:Resistance, 2R is taken out - half of the power supply voltage 1/2 Vcc is fed to the positive end of node 634 of Figure 6 and the resistance of the feedback network 581, 582 of Figure 5 is the resistance of the 2R. The voltages yRLi/2 and vRL2/2 at both ends are added to the node 633 of Fig. 6 and fed to the negative terminal of the node 634 of Fig. 6. The overall effect can be further represented by the simplified diagram of FIG. 7 where 641 is composed of the gain unit 520 of FIG. 5, the gaining unit 53A, the transistor 512 and the transistor 513, and the 642 is composed of The gain unit 54A, the gain unit 550, the transistor 514, and the transistor 515 are shown in FIG. Figure 7 clearly shows that the main circuit structure of Figure 5 is a single-source bridge amplifier. The closed-loop load current can be analyzed by the following. According to this structure, the equation of the closed loop can be obtained as follows:

(1) (2) 由(1),(2)式,整理可得負載之端電壓分別為(1) (2) From (1), (2), the terminal voltages of the available loads are respectively

Vm=VccX-VcVm=VccX-Vc

VRL2=VCCX + VC JRL =VRL2=VCCX + VC JRL =

流經RL之電流為 (5) 由(5)式可知閉迴路之負載電流與電源電壓Vcc無 關’僅與控制電壓Vc成正比。且由(3)、(4)可知負載 兩端電壓對稱於電源電壓VCC之半,因而確保橋式電 路(H-bridge)對角線之電晶體512與515或513與The current flowing through RL is (5) It can be seen from equation (5) that the load current of the closed loop is independent of the power supply voltage Vcc' only proportional to the control voltage Vc. It can be seen from (3) and (4) that the voltage across the load is symmetrical to half of the power supply voltage VCC, thus ensuring the diagonal of the bridge circuit (H-bridge) to the transistors 512 and 515 or 513.

514不僅流經電流相同,電壓降也相同,不會發生^力 率散逸集中於某一電晶體的情形。 曰X 再依橋式電路(H_bridge )之各該金氧半場效電 12 1271022 晶體(MOSFET) 512、513、514與515操作狀況詳述 如下: 金氧半場效電晶體(M〇SFET )之特性方程式由 下式表示514 not only flows through the same current, but also has the same voltage drop, and does not occur when the force dissipation is concentrated in a certain transistor.曰X and then the bridge circuit (H_bridge) each of the MOS half-field power 12 1271022 crystal (MOSFET) 512, 513, 514 and 515 operating conditions are detailed as follows: characteristics of gold oxide half field effect transistor (M〇SFET) The equation is expressed by

ISD = K (VGS.VT)八2,VGS > VT ho = 〇5 vGS < VT Vr = 0.6V 其中Isd為通過該金氧半場效電晶體(mosfET ) 之電流’ VGS為該金氧半場效電晶體(M〇SFET )閘極 與源極電壓差’ ντ為該金氧半場效電晶體(MOSFET ) 啟動電壓。 做為控制器之該增益單元520、530、540、550之 輸出可合理假設能達到與電源或〇V相差在一輸出雙 極電晶體(BJT )飽和電壓左右,約0.2V,當控制電 壓Vc<〇時,橋式電路(H_bridge )之工作狀態如第8 圖所示,530與540之輸出雙極電晶體(BJT)處於飽 和狀態’因此心約為〇·2ν,遠小於VT,因此關閉5 13 與514,而520、5 50與512、515係在工作區,即t > ντ ’其閉迴路之負載電流為 Irl=2Vc/rl , 在此負載電流極性定義以5 14、5 1 5接點為正, 5 12、5 13接點為負,負載電流由正接點流向附接點為 正值,反之為負值。 當控制電壓Vc>0時,橋式電路(H-bridge )之工 作狀態如第9圖所示,工作原理同第8圖,但關閉者 為512、515,而53 0、540與513、514係在在工作區, 其閉迴路之負載電流為 irl==2Vc/Rl 〇 當控制電壓V c = 0時,如第10圖所示,因該增 13 1271022 =單元520 : 530、540、550之輸出雙極電晶體(BJT) 白在飽和狀態,四個該金氧半場效電晶體(M〇SFET ) L約為0.2V,亦即L < ντ而使得該金氧半場效電晶 體512、513、514、515關閉,此時負載電流Irl=〇。 再分析四個該金氧半場效電晶體(MqsfeT )之 功率損耗,當控制電壓v c < 0時,該金氧半場效電晶 體513與該金氧半場效電晶體514關閉而不損耗功 率’流經該金氧半場效電晶體5 12與5 13之電流 = = 512之汲極源極電壓差ISD = K (VGS.VT) 八2, VGS > VT ho = 〇5 vGS < VT Vr = 0.6V where Isd is the current through the MOS field-effect transistor (mosfET) 'VGS is the MOS half-field The gate-to-source voltage difference ' ντ of the effect transistor (M〇SFET) is the starting voltage of the metal-oxide half field effect transistor (MOSFET). The output of the gain unit 520, 530, 540, 550 as a controller can reasonably be assumed to be comparable to the power supply or 〇V difference at an output bipolar transistor (BJT) saturation voltage, about 0.2V, when the control voltage Vc< When 〇, the working state of the bridge circuit (H_bridge) is as shown in Fig. 8, and the output bipolar transistors (BJT) of 530 and 540 are in saturation state 'so the heart is about 〇·2ν, which is much smaller than VT, so it is turned off. 5 13 and 514, and 520, 5 50 and 512, 515 are in the working area, ie t > ντ 'the load current of the closed loop is Irl=2Vc/rl, where the load current polarity is defined as 5 14 , 5 1 5 The contact is positive, the 5 12, 5 13 contact is negative, the load current flows from the positive contact to the attachment point is positive, and vice versa. When the control voltage Vc > 0, the working state of the bridge circuit (H-bridge) is as shown in Fig. 9, the working principle is the same as that of the eighth figure, but the closing is 512, 515, and 53 0, 540 and 513, 514 In the working area, the load current of the closed loop is irl==2Vc/Rl. When the control voltage V c = 0, as shown in Fig. 10, the increase is 13 1271022 = unit 520: 530, 540, 550 The output bipolar transistor (BJT) is white in saturation, and the four gold oxide half field effect transistors (M〇SFET) L are about 0.2V, that is, L < ντ, so that the gold oxide half field effect transistor 512 , 513, 514, 515 are closed, at this time the load current Irl = 〇. The power loss of the MOS half-field effect transistor (MqsfeT) is analyzed. When the voltage vc < 0 is controlled, the MOS field 513 and the MOS field 514 are turned off without loss of power. The potential of the drain source flowing through the MOSFETs 5 12 and 5 13 == 512

Vdsi=Vcc-Vrl1=Vcc-(Vcc/2-Vc) = Vcc/2 + Vc (6), 该金氧半場效電晶體5 1 5之汲極源極電壓差Vdsi=Vcc-Vrl1=Vcc-(Vcc/2-Vc) = Vcc/2 + Vc (6), the gate-source voltage difference of the gold-oxygen half-field effect transistor 5 1 5

Vds4 = Vrl2 = VCc/2 + Vc= VDS1 ⑺, 因此該金氧半場效電晶體512與該金氧半場效電晶體 5 1 5之功率損耗皆為 p5i2= p5i5=l5i2VDsl=I515vDS4=iRL(vcc/2+vc) (8)。 當控制電壓Vc>〇時,該金氧半場效電晶體512 與该金氧半場效電晶體5 1 5關閉而不損耗功率,同理 可證該金氧半場效電晶體5 13與該金氧半場效電晶體 5 14之功率損耗皆為 P5i3= P514 = I513VDS2 = I514VDS3 = IRL(Vcc/2— Ve) (9)。 如此橋式電路(H-bridge )之功率損耗將平均分 布於導通之對角兩金氧半場效(MOS )電晶體,不會 因功率損耗集中其一而容易損毀該電晶體。 第5圖係為本發明主要電路結構5〇〇具體實施例 之一’橋式電路(H_bridge)由金氧半場效(MOS) 電晶體組成,而做為四個控制器之該增益單元520、 530、540、550由雙極電晶體(BjT)組成。本發明亦 可變化為皆由雙極電晶體(BJT )組成,如第11圖所 14 1271022 I °或橋式電路(H-bridge)由雙極電晶體(BJT)叙 四個控制器由金氧半場效(M〇s)電晶體組成, 圖所不。或皆由金氧半場效(MOS )電晶體組 ,如第13圖所示,因而可適用於各種ic化的製程。 Ϊ本發明應用方面,一般是利用一個感應器來檢 式電路(H-bridge)之負載輸出,再藉由一個轉 、〃路將感應器的訊號轉換為電壓,與控制設定電壓 文=較,透過一回授電路產生回授電壓,亦即本發明Vds4 = Vrl2 = VCc/2 + Vc = VDS1 (7), so the power loss of the MOS field 512 and the MOSFET 5 5 is p5i2 = p5i5 = l5i2VDsl = I515vDS4 = iRL (vcc / 2+vc) (8). When the control voltage Vc> 〇, the MOS field effect transistor 512 and the MOS field effect transistor 5 15 are turned off without loss of power, and the same can be proved that the MOS field device 5 13 and the gold oxide The power loss of the half field effect transistor 5 14 is P5i3 = P514 = I513VDS2 = I514VDS3 = IRL(Vcc/2 - Ve) (9). The power loss of such a bridge circuit (H-bridge) is evenly distributed over the turned-on diagonal two MOS field-effect (MOS) transistors, and the transistor is not easily damaged by the concentration of power loss. Figure 5 is a main circuit structure of the present invention. One of the specific embodiments of the 'bridge circuit (H_bridge) is composed of a metal oxide half field effect (MOS) transistor, and the gain unit 520 is used as four controllers. 530, 540, 550 consist of a bipolar transistor (BjT). The invention may also be changed to consist of a bipolar transistor (BJT), as shown in Fig. 11 14 1271022 I ° or a bridge circuit (H-bridge) by a bipolar transistor (BJT), four controllers by gold Oxygen half-field effect (M〇s) transistor composition, the figure does not. Or the gold oxide half field effect (MOS) transistor group, as shown in Fig. 13, so that it can be applied to various ic processes. In the application aspect of the invention, a sensor is generally used to check the load output of the circuit (H-bridge), and then the signal of the sensor is converted into a voltage by a turn or a circuit, and the control set voltage is compared with the control voltage. Generating a feedback voltage through a feedback circuit, that is, the present invention

$入電壓Vc’調整負載電流,使最終之感應器 值達到設定目標。The $input voltage Vc' adjusts the load current so that the final sensor value reaches the set target.

錄就白用之熱電元件溫度控制舉出一具體應用範 ^如第14圖及第15圖所示,本例中橋式電路 -bndge )之負載為熱電元件(τ}^.ι別⑽a ooler) ’其特性為利用電流方向,可提升或降低目標 之μ度,亦即正向電流降溫,逆向電流升溫,電流 阻^、則影響升溫或降溫的程度;感應器則為熱敏電 阻(Thermistor),其特性為電阻值隨溫度變化。第μ ,,用定電流源將熱敏電阻之電阻值(對應於溫度)轉 」=5虎電壓,再與數位/類比(D/A )轉換器輸出電壓 平衡達到控制設定。第15圖則利用橋式電阻 木:,、、、敏電阻之電阻值轉成訊號電壓,再與固定電 ^定電壓比較達到控制設定,第14圖與第15圖溫 度才欢測值與設定值若有U,則ϋ過積分電路調整 VC ’型成完整的控制迴路。 本案付由热知此技術之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。 【圖式簡單說明】 第1目係為-習用雙電源供電之可雙向 之電路示意圖。 執 15 1271022 :φ圖係為一習用金氧半場效電晶體(M〇SFET)組態 早二=橋式(H_bridge)之可雙向控制負載電流之電路 不思圖。 ^ 3圖係為一習用雙極電晶體(BJT )單電源橋式 ridge )之可雙向控制負載電流之電路示意圖。 ^圖係為另一習用之金氧半場效電晶體(MOSFET) ^雙極電晶體(B JT ))結構之單電源橋式(H_bridge ) 二向控制負載電流之電路示意圖。 =5圖係為本案第一較佳實施例之一雙向控制負載電 ^驅動電路示意圖。 ^ 6圖係為第5圖之主要電路結構之簡化電路示意圖。 囬7圖係為第5圖之主要電路結構之另一簡化電路示意 圖 〇 第8圖係為當控制電壓Vc<〇時,第5圖之主要電路結 ^冓之橋式電路(H-bridge)工作狀態示意圖。 第9圖係為當控制電壓Vc>〇時,第5圖之主要電路結 ,之橋式電路(H_bridge)工作狀態示意圖。 第!〇圖係為當控制電壓VC = 0時,第5圖之主要電路結 ,之橋式電路(H-bridge)工作狀態示意圖。 弟11圖係為本案第二較佳實施例之一雙向控制 流驅動電路示意圖。 貞戰 第12圖係為本案第三較佳實施例之一雙向控 流驅動電路示意圖。 貞戴 弟13圖係為本案第四較佳實施例之一雙向控制負載電 流驅動電路示意圖。 、 第14圖係為本案之一熱電元件溫度控制具體應用實施 例之雙向控制負載電流驅動電路示意圖。 $ 1 5圖係為本案之另一熱電元件溫度控制具體應用實 施例之雙向控制負載電流驅動電路示意圖。 16 1271022 【主要元件符號說明】 - 500主要電路結構 5 10橋式電路(H-bridge ) 511負載 512、 513、 514、 515 電晶體 520、 530、540、550 增益單元 521、 522、523、524 電晶體 525電流源 531 、 532 、 533 、 534 電晶體 φ 5 3 5電流源 541 、 542 、 543 、 544 電晶體 5 4 5電流源 551 、 552 、 553 、 554 電晶體 5 5 5電流源 * 5 60、5 70 ' 5 80、5 90 迴授網路 . 561 、 562 電阻 571 、 572 、 573 電阻 581 、 582 電阻 591 、 592 電阻 # 6 1 0電源延遲開關 620電流檢測與過電流保護電路 17The temperature control of the thermoelectric element for white use is given as a specific application example. As shown in Fig. 14 and Fig. 15, the load of the bridge circuit-bndge in this example is a thermoelectric element (τ}^.ι(10)a ooler ) 'The characteristic is to use the current direction to increase or decrease the target's μ degree, that is, the forward current temperature drop, the reverse current temperature rise, the current resistance ^, then affect the temperature rise or cool down; the sensor is the thermistor (Thermistor) ), its characteristic is that the resistance value changes with temperature. The first μ, the constant current source is used to convert the resistance value of the thermistor (corresponding to the temperature) to “=5 tiger voltage, and then the digital/analog ratio (D/A) converter output voltage balance reaches the control setting. The fifteenth figure uses the bridge resistor wood: the resistance value of the sense resistors, and the resistance value is converted into the signal voltage, and then the control setting is compared with the fixed voltage, and the temperature and the value are set in the 14th and 15th graphs. If there is a value of U, then the integral circuit is adjusted to adjust the VC' into a complete control loop. The case was modified by the people who know the technology, and they are all decorated as if they were protected by the scope of the patent application. [Simple description of the diagram] The first item is a schematic diagram of a bidirectional circuit that can be used for dual power supply. Executive 15 1271022: φ diagram is a conventional gold-oxygen half-field effect transistor (M〇SFET) configuration Early second = bridge (H_bridge) can control the load current circuit bidirectionally. ^ 3 is a circuit diagram of a bipolar transistor (BJT) single-supply bridge ridge that can control the load current bidirectionally. The figure is a circuit diagram of a conventional single-supply bridge (H_bridge) structure for controlling the load current of a gold-oxygen half-field effect transistor (MOSFET) ^ bipolar transistor (B JT ) structure. The figure of Fig. 5 is a schematic diagram of a bidirectional control load electric drive circuit of the first preferred embodiment of the present invention. ^ 6 is a simplified circuit diagram of the main circuit structure of Figure 5. Back to Figure 7 is another simplified circuit diagram of the main circuit structure of Figure 5. Figure 8 is the bridge circuit (H-bridge) of the main circuit of Figure 5 when the control voltage Vc < Schematic diagram of working status. Figure 9 is a schematic diagram showing the working state of the bridge circuit (H_bridge) of the main circuit of Figure 5 when the control voltage Vc > The first! The diagram is the schematic diagram of the working state of the bridge circuit (H-bridge) of the main circuit of Figure 5 when the control voltage VC = 0. Figure 11 is a schematic diagram of a bidirectional control flow drive circuit of a second preferred embodiment of the present invention.第战 Figure 12 is a schematic diagram of a bidirectional current-controlled drive circuit of the third preferred embodiment of the present invention.贞Dai Di 13 is a schematic diagram of a bidirectional control load current drive circuit according to a fourth preferred embodiment of the present invention. Figure 14 is a schematic diagram of a bidirectional control load current drive circuit for a specific application example of thermoelectric element temperature control in this case. The $1 5 diagram is a schematic diagram of the bidirectional control load current drive circuit of another thermoelectric element temperature control specific application embodiment of the present invention. 16 1271022 [Main component symbol description] - 500 main circuit structure 5 10 bridge circuit (H-bridge) 511 load 512, 513, 514, 515 transistor 520, 530, 540, 550 gain unit 521, 522, 523, 524 Transistor 525 Current Source 531, 532, 533, 534 Transistor φ 5 3 5 Current Source 541, 542, 543, 544 Transistor 5 4 5 Current Source 551, 552, 553, 554 Transistor 5 5 5 Current Source* 5 60, 5 70 ' 5 80, 5 90 feedback network. 561, 562 resistors 571, 572, 573 resistors 581, 582 resistors 591, 592 resistors # 6 1 0 power delay switch 620 current detection and overcurrent protection circuit 17

Claims (1)

1271022 — 一第三迴授網路,電連接該第三差動放大器之該第一 輸入端以及該第四差動放大器之該第一輸入端,且電連接 -5亥橋式電路之該第一輸出端以及該第二輸出端;以及 _ 一第四迴授網路,電連接該第三差動放大器之該第二 ,入端以及該第四差動放大器之該第二輸入端;其中,使 传流過該負載之一電流為與該電源電壓實質上無關,與該 控制電壓成正比。 2. 如申請範圍第1項所述之雙向控制負載電流驅動電 路,更包含: • 一電流檢測與過電流保護電路,係電連接該橋式電 路’回饋一電壓訊號,使得當該負載電流超過一設定值時, 提供一控制訊號;以及 “ 一電源延遲開關,係電連接該電流檢測與過電流保護 • 電路’當電源延遲開關接收該控制訊號,關閉該電源電壓 對該雙向控制負載電流驅動電路之供電。 3. 如申請範圍第1項所述之雙向控制負載電流驅動電 路’其中該橋式電路係由金氧半場效(MOS )電晶體組成。 4 ·如申請範圍第1項所述之雙向控制負載電流驅動電 # 路’其中該第一差動放大器、該第二差動放大器、該第三 差動放大器以及該第四差動放大器係由雙極電晶體(BjT ) 組成。 5 ·如申請範圍第3項所述之雙向控制負載電流驅動電 路,其中該第一差動放大器、該第二差動放大器、該第三 差動放大器以及該第四差動放大器係由雙極電晶體(Bjt) . 組成。 ' 6.如申請範圍第1項所述之雙向控制負載電流驅動電 路’其中該第一差動放大器、該第二差動放大器、該第三 差動放大器以及該第四差動放大器係由金氧半場效(M〇s) 電晶體組成。 19 127ϊ022 7 ·如申請範圍第3項所述之雙向控制負載電流驅動電 路,其中該第一差動放大器、該第二差動放大器、該第三 差動放大器以及該第四差動放大器係由金氧半場效(M〇s) 電晶體組成。 8 ·如申請範圍第1項所述之雙向控制負載電流驅動電 路,其中該橋式電路係由雙極電晶體(BJT )組成。 9 ·如申請範圍第8項所述之雙向控制負載電流驅動電 路’其中e亥弟一差動放大器、該第二差動放大器、該第三 差動放大器以及該第四差動放大器係由雙極電晶體(Bjt) 組成。 I 〇 ·如申請範圍第8項所述之雙向控制負載電流驅動電 路’其中該第一差動放大器、該第二差動放大器、該第三 差動放大器以及该第四差動放大器係由金氧半場效(M〇s) 電晶體組成。 II ·如申請範圍第1項所述之雙向控制負載電流驅動電 路,其中該第一迴授網路,係迴授該電源電壓提供之電壓 的一半值,輸入該第一差動放大器之該第一輸入端以及該 第二差動放大器之該第一輸入端。 12·如申請範圍第丨項所述之雙向控制負載電流驅動電 路’其中該第二迴授網路係迴授該電源電壓提供之電壓的 三分之一值,該控制電壓的三分之一值以及該橋式電路之 該第一輸出端提供之電壓的三分之一值,輸入該第一差動 放大器之該第二輸入端以及該第二差動放大器之該第二輸 入端0 I3·如申請範圍第11項所述之雙向控制負載電流驅動電 路’其中該第二迴授網路係迴授該電源電壓提供之電壓的 三f之一值,該控制電壓的三分之一值以及該橋式電路之 該第一輪出端提供之電壓的三分之一值,輸入該第一差動 20 1271022 輸出:::!率控制器’包含一_,該功率控制器之 出、係電連接該第一開關之一輸入端; 一第二功率控制器,包含一輸出端,該 益之輸,端係電連接該第二開關之一輸入端; ;、卫J 考夕二第三功率控制器,包含一輸出端,該第三功率杵制 之輸出端係電連接該第三開關之一輸入端; 卫 二第四功率控制器,包含一輸出^,該第四功 之輸出端係電連接該第四開關之一輸入端; 工 :第一迴授網路,電連接該第一功率控冑器以及 一功率控制器; 弟 迴授網路,包含一控制電壓 弟 4A m ^ 工 %咬丧琢第二迴 ^篦L i該第二迴授網路電連㈣第_工力率控制器以及 =弟一功率控制器,以及電連接該橋式電路之該第一輸出 一第三迴授網路,電連接該第三功率控制器以 m制器,且電連接該橋式電路之該第一輸出端:及 该弟二輸出端;以及 一第四迴授網路,電連接該第三功率控制器以 器;其中,使得流過該負載之-電流為與:電 原電Μ實貝上無關,與該控制電壓成正比。 19甘如申請範圍第18項所述之雙向控制負載電流驅動電 、,二中該第一迴授網路,係迴授該電源電壓提供之電壓 的一半值,輸入該第一功率控制器以及該第二功率控制器。 20甘如申請—範圍第18項所述之雙向控制負載電流驅動電 一二/、中該第二迴授網路係迴授該電源電壓提供之電壓的 之一值,該控制電壓的三分之一值以及該橋式電路之 该弟二輸出端提供之電壓的三分之一值,輸入該第一功 控制器以及該第二功率控制器。 22 ί271〇22 功率控制器,包含 輸出端’該第三功率控制 第 為之輪出端係電連接該第三開關之一輸入端 ^ 一第四功率控制器,包含一輸出端,該第四功率控制 °、之輸出知係電連接該第四開關之一輸入端;以及 八複數個迴授網路,包含一控制電壓,該複數個迴授網 # =別電連接該第一功率控制器、該第二功率控制器、該 =二功率控制器以及該第四功率控制器,使得流過該負g 一電流為與該控制電壓成正比。 路2,7·如申請範圍第%項所述之雙向控制負載電流驅動電 其中"亥複數個迴授網路係迴授該電源電壓提供之電壓 半值,輸入該第一功率控制器以及該第二功率控制器。 路2,8·置如申請範圍第26項所述之雙向控制負載電流驅動電 一二中邊複數個迴授網路係迴授該電源電壓提供之電壓 之^二之一值,該控制電壓的三分之一值以及該橋式電路 輸出端提供之電壓的三分之—值,負迴授輸入該 J率控制器以及該第二功率控制器。 路2,9·1如t範圍第27項所述之雙向控制負載電流驅動電 二二"亥複數個迴授網路係迴授該電源電壓提供之電壓 之;^之^值,該控制電壓的三分之一值以及該橋式電路 : = : =提供之電壓的三分之一值,負迴授輸入該 率控制器以及該第二功率控制器。 路3,0宜如中V:乾圍第26項所述之雙向控制負載電流驅動電 出端數個迴授網路係迴授該橋式電路之該第一輸 該第三功:iri出端之輸出電壓的一半值,負迴授輸入 人一工制器以及該第四功率控制器。 路其如中=圍第2:項所述之雙向控制負載電流驅動電 出端固迴授網路係迴授該橋式電路之該第一輸 及端之輸出電麼的-半值,負迴鄭 工制器以及該第四功率控制器。 241271022 - a third feedback network electrically connecting the first input end of the third differential amplifier and the first input end of the fourth differential amplifier, and electrically connecting the -5 bridge circuit An output terminal and the second output terminal; and a fourth feedback network electrically connecting the second input end of the third differential amplifier and the second input end of the fourth differential amplifier; The current flowing through one of the loads is substantially independent of the supply voltage and is proportional to the control voltage. 2. The bidirectional control load current drive circuit as described in item 1 of the application scope further includes: • a current detection and overcurrent protection circuit electrically connecting the bridge circuit to feedback a voltage signal such that when the load current exceeds a set value provides a control signal; and "a power delay switch electrically connected to the current sense and overcurrent protection circuit" when the power delay switch receives the control signal, turning off the power supply voltage to the bidirectional control load current drive 3. The power supply of the circuit 3. The bidirectional control load current drive circuit as described in the scope of claim 1 wherein the bridge circuit is composed of a metal oxide half field effect (MOS) transistor. 4 · As described in item 1 of the application scope The bidirectional control load current drive circuit #路' wherein the first differential amplifier, the second differential amplifier, the third differential amplifier, and the fourth differential amplifier are composed of a bipolar transistor (BjT). The bidirectional control load current drive circuit of claim 3, wherein the first differential amplifier, the second differential amplifier, the first The three differential amplifier and the fourth differential amplifier are composed of a bipolar transistor (Bjt). 6. The bidirectional control load current driving circuit of claim 1, wherein the first differential amplifier, The second differential amplifier, the third differential amplifier, and the fourth differential amplifier are composed of a gold oxide half field effect (M〇s) transistor. 19 127ϊ022 7 · Bidirectional control as described in claim 3 a load current driving circuit, wherein the first differential amplifier, the second differential amplifier, the third differential amplifier, and the fourth differential amplifier are composed of a gold oxide half field effect (M〇s) transistor. The bidirectional control load current driving circuit according to the first aspect of the application, wherein the bridge circuit is composed of a bipolar transistor (BJT). 9. The bidirectional control load current driving circuit as described in claim 8 The e-di differential amplifier, the second differential amplifier, the third differential amplifier, and the fourth differential amplifier are composed of a bipolar transistor (Bjt). Double Controlling a load current driving circuit 'where the first differential amplifier, the second differential amplifier, the third differential amplifier, and the fourth differential amplifier are composed of a gold oxide half field effect (M〇s) transistor. The bidirectional control load current drive circuit of claim 1, wherein the first feedback network returns a half of a voltage supplied by the power supply voltage, and is input to the first of the first differential amplifiers. The input terminal and the first input end of the second differential amplifier. 12. The bidirectional control load current driving circuit as described in the scope of the application, wherein the second feedback network is provided by the power supply voltage a third of the voltage, a third of the control voltage, and a third of the voltage provided by the first output of the bridge circuit, input to the second input of the first differential amplifier And the second input terminal of the second differential amplifier, and the bidirectional control load current driving circuit of the invention, wherein the second feedback network returns the voltage provided by the power supply voltage One of the three values of f, one third of the value of the control voltage and one third of the voltage provided by the first wheel of the bridge circuit, inputting the first differential 20 1271022 output::: ! The rate controller 'includes a _, the power controller is electrically connected to one of the input ends of the first switch; a second power controller includes an output terminal, and the end is electrically connected to the first The input terminal of one of the two switches; the third power controller of the Guardian J, includes an output end, and the output end of the third power clamp is electrically connected to one of the input ends of the third switch; The power controller includes an output ^, and the output of the fourth power is electrically connected to one of the input ends of the fourth switch; the first feedback network is electrically connected to the first power controller and a power control The brother feedback network, including a control voltage brother 4A m ^ worker% bite funeral second back ^ 篦 L i the second feedback network connection (four) _ power rate controller and = brother a power The controller, and the first output and the third feedback network electrically connected to the bridge circuit, electrically connect the third power controller to the m controller, and electrically connect the first output end of the bridge circuit: And the second output of the second; and a fourth feedback network, electrically connecting the third power The controller is configured to cause a current flowing through the load to be independent of, and proportional to, the control voltage. 19 is as claimed in claim 18, wherein the first feedback network drives the first feedback power network, and returns a half value of the voltage provided by the power supply voltage, and inputs the first power controller and The second power controller. 20 Ganru application - the two-way control load current driving electric power according to item 18 of the scope, the second feedback network is one of the voltages supplied by the power supply voltage, and the control voltage is three points. One value and one-third of the voltage provided by the output of the second of the bridge circuit are input to the first power controller and the second power controller. 22 ί271〇22 power controller, comprising an output terminal, the third power control first wheel output terminal is electrically connected to one of the third switch input terminals, and a fourth power controller includes an output end, the fourth The power control °, the output is electrically connected to one of the input ends of the fourth switch; and the eight complex feedback networks, including a control voltage, the plurality of feedback networks #= not electrically connected to the first power controller The second power controller, the =two power controller, and the fourth power controller are such that a current flowing through the negative g is proportional to the control voltage. Road 2, 7 · The bidirectional control load current drive power as described in item 5% of the application range, wherein the plurality of feedback networks return the voltage half value provided by the power supply voltage, and input the first power controller and The second power controller. The circuit 2, 8 · is set as described in the scope of the application of the two-way control load current drive power one or two of the plurality of feedback networks are feedback of the voltage provided by the power supply voltage, the control voltage A one-third value and a three-point value of the voltage provided at the output of the bridge circuit, a negative feedback input to the J rate controller and the second power controller. Road 2, 9·1, as described in item 27 of the t range, the bidirectional control load current drives the electric two-two "Hai number of feedback networks to feedback the voltage provided by the power supply voltage; ^^^ value, the control One-third of the voltage and the bridge circuit: = : = one-third of the voltage supplied, the negative feedback input to the rate controller and the second power controller. Road 3, 0 should be like V: dry circumference, as described in item 26 of the two-way control load current drive, the number of feedback networks is fed back to the bridge circuit, the first to lose the third work: iri out The half value of the output voltage of the terminal, the negative feedback input device and the fourth power controller. Lu Qiruzhong=Wei 2: The two-way control load current drive electric output fixed feedback network is to return the output of the first input and the end of the bridge circuit - half value, negative Return to the Zhenggong and the fourth power controller. twenty four
TW94128986A 2005-08-24 2005-08-24 Reliable bi-directional driving circuit for wide supply voltage and output range TWI271022B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94128986A TWI271022B (en) 2005-08-24 2005-08-24 Reliable bi-directional driving circuit for wide supply voltage and output range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94128986A TWI271022B (en) 2005-08-24 2005-08-24 Reliable bi-directional driving circuit for wide supply voltage and output range

Publications (2)

Publication Number Publication Date
TWI271022B true TWI271022B (en) 2007-01-11
TW200709543A TW200709543A (en) 2007-03-01

Family

ID=38430339

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94128986A TWI271022B (en) 2005-08-24 2005-08-24 Reliable bi-directional driving circuit for wide supply voltage and output range

Country Status (1)

Country Link
TW (1) TWI271022B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675539B (en) * 2018-12-18 2019-10-21 沈志隆 A power conversion device

Also Published As

Publication number Publication date
TW200709543A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP7488438B2 (en) Current sensing and control for transistor power switches.
TWI326974B (en) A current limited bilateral mosfet switch with reduced switch resistance and lower manufacturing cost
US8410826B2 (en) Load drive circuit with current bidirectional detecting function
TWI323087B (en) A novel comparator circuit with schmitt trigger hysteresis character
JP2019515641A5 (en)
TW201206041A (en) System and method for high precision current sensing
WO2006074989A2 (en) Hall sensor and method of operating a hall sensor
US6433637B1 (en) Single cell rail-to-rail input/output operational amplifier
US20080075142A1 (en) Methods and systems for protection from over-stress
JPH02304606A (en) Band gap threshold circuit having hysteresis
CN104204986A (en) Reference-voltage circuit
US7142436B1 (en) Reliable bi-directional driving circuit for wide supply voltage and output range
TWI231093B (en) One-way conduction device
TWI271022B (en) Reliable bi-directional driving circuit for wide supply voltage and output range
JPH04290965A (en) Bi-directional electric current detection for power mosfet
US7528634B2 (en) High voltage comparator using sliding input low voltage devices
JPH0348506A (en) Current variable circuit
TW200540745A (en) Light emitting diode driver using depletion transistor as current source
US7024864B2 (en) Bipolar current source based on a unipolar power supply
TW201517469A (en) Load control device
TW200926583A (en) Apparatus and method for low power rail-to-rail operational amplifier
US7432696B1 (en) Apparatus and method for low input voltage current mirror circuit
JPH04321307A (en) Temperature response circuit
TWI331265B (en) Bandgap reference circuit
TWI332133B (en) Power element protection circuit and semiconductor device incorporating it

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees