TWI263343B - Non-volatile memory and fabrication and operation of the same - Google Patents

Non-volatile memory and fabrication and operation of the same Download PDF

Info

Publication number
TWI263343B
TWI263343B TW94108907A TW94108907A TWI263343B TW I263343 B TWI263343 B TW I263343B TW 94108907 A TW94108907 A TW 94108907A TW 94108907 A TW94108907 A TW 94108907A TW I263343 B TWI263343 B TW I263343B
Authority
TW
Taiwan
Prior art keywords
layer
source
memory cell
semiconductor layer
charge trapping
Prior art date
Application number
TW94108907A
Other languages
Chinese (zh)
Other versions
TW200635050A (en
Inventor
Hao-Hsun Lin
Len-Yi Leu
Chun-Hsing Shih
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW94108907A priority Critical patent/TWI263343B/en
Application granted granted Critical
Publication of TW200635050A publication Critical patent/TW200635050A/en
Publication of TWI263343B publication Critical patent/TWI263343B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A non-volatile memory device and fabrication and operation of the same are described. A cell of the memory device includes a semiconductor layer with a charge-trapping layer thereon, a central gate and two side gates each spanning the semiconductor layer interposed with the charge-trapping layer, and two S/D regions in the semiconductor layer outside the two side gates.

Description

1263343 14692twf. doc/006 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種半導體元件 法,且特別是有關於-種使用電荷 二乍: 制的非揮細職购ile)記憶單元與記憶“二: 私,以及其寫入、抹除與讀取等操作方法。 【先前技術】 =的可電程式化非揮發記憶體係使用浮置閘儲存電 —5己憶胞僅能儲存1位元。為提高此種非揮發記 十思體的早位容量,記情偷的尺+ $人 合里胞的尺寸當愈小愈好。然而,當記 ,胞的尺寸過小時,其製程及電性皆不易掌控,而使其發 展遇到觀頸。 又 提南記憶體單位容量的另一方向則是增加單一記憶 的儲存容量。例如,此Β·咖㈣1999年提出一種新 ^的非揮發性記憶體,稱氮化⑦唯讀記憶體(NR〇M),其 ^一記憶胞可儲存2位元的資料,且儲存每一位元所需面 和約為2·5〜3I?2 (F為圖形尺寸[feature size])。一個NR〇m 陣列包括多條埋人式位元線、位元線之_多個條狀〇助 層,以及横越各位元線及各條狀〇N〇層的多條字元線, ^中y子元線與一 〇N〇層的重疊部分作為一記憶胞。在 寫入選定之記憶胞時,係控制其通道電流方向,以分別將 電子注入記憶胞左側及右側的氮化矽層中,故可存入2位 元的資料。 然而,由於此種NROM記憶胞僅具單一通道,故其次1263343 14692twf. doc/006 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a semiconductor element method, and particularly relates to a type of non-volatile purchase using the charge tantalum: Memory unit and memory "two: private, and its operation methods of writing, erasing and reading. [Previous technology] = can be electrically programmed non-volatile memory system using floating gate to store electricity - 5 memory cells can only Store one bit. In order to improve the early capacity of this non-volatile note, the size of the sneak peek + $ squad is as small as possible. However, when the size of the cell is too small, The process and electrical properties are not easy to control, and its development encounters the neck. The other direction of the unit capacity of the South memory is to increase the storage capacity of a single memory. For example, this Β 咖 (4) proposed a new ^ in 1999 Non-volatile memory, called nitriding 7 read-only memory (NR 〇 M), its memory cell can store 2 bits of data, and store the required face of each bit and about 2. 5~ 3I?2 (F is the [feature size]). An NR〇m array consists of multiple buried people. Bit line, bit line _ a plurality of strip-shaped help layers, and a plurality of word lines crossing each of the element lines and each strip of 〇N〇 layers, ^ y sub-element lines and a 〇N 〇 layer The overlapping portion acts as a memory cell. When writing the selected memory cell, the channel current direction is controlled to inject electrons into the tantalum nitride layer on the left and right sides of the memory cell, respectively, so that the 2-bit data can be stored. However, since this NROM memory cell has only a single channel, the second

1263343 14692twf.doc/006 臨界擺幅(sub-threshold swing)不易降低。 另外,由於此種記憶胞的兩位元係儲存在同一氮化石夕 層中’所以會有電子橫向遷移(electr〇n lateral如以此㈣的 問題;再加上埋入式位元線的摻質也會橫向擴散,所以記 憶胞及陣列尺寸不易縮小。 再者,由於習知埋入式位元線是形成在半導體基底中 的濃摻雜區,其電阻值有其極限,所以位元線的電阻無法 降低,而使元件速度難以提升。 【發明内容】 因此,本發明目的之一即是提供一種非揮發記憶單元 之結構,以解決習知技術的各項問題。 本發明另一目的是提供一種非揮發記憶體陣列的結 構,其係基於本發社轉發記憶單元結構而得者。 本發明再-目的是提供一種非揮發記憶單元的製造方 法,其係用以製作本發明之非揮發記怜 本發明又-目的是提供一種非體製程,其係 用以製作本發明之非揮發記憶體陣列。 ^月再目的疋提供本發明之非揮發記憶單元的寫 入、抹除及讀取方法。 本^明又:目的是提供本發明之非揮發記憶體陣列的 寫入、抹除及讀取方法。 、本毛明之非揮發#憶單兀包括:—半導體層、一電荷 捕捉層、分離之一中閘極盥-铜門 ^ ^ ^ , /、—側閘極,以及二源/汲極區。 其中,笔荷捕捉層位於半導體層上,中間極與侧閉極皆跨 1263343 ]4692twf.doc/006 越此半導m,且每-_與半導體狀咖有上述 捕捉層。二源/沒顧驗於二侧極外側的半導體層中。 可包括二源/汲極接觸層,其係分別與該二/汲 極&接觸,以提供電性連接。 本發明之非揮發記憶體陣列包括··走向為第-方向的 導體層、走向為第二方向的多條字元線與控制 間線、多個源級極區,以及走向為第-方向的多條位元 線。其中,字元線與控㈣線係以—字元線及其兩側之二 控制間線為一3線組,各3線組間隔排列,其中每一 3 、=白,過各半導體層,且與各半導體層之間隔有電荷捕捉 層。各源/汲極區係位於各3、線組之間的半導體層中,其中 - 3線組與一半導體層之重疊部分、此重疊部分之電荷捕 捉層及’、兩伯i之—源/汲極區構成—記憶單元。位元線鱼上 述源/汲極區電性連接,其中任—記憶單元的二源/没極區 分別電性連接至相鄰之二條位元線。另外,更可包括多個 源//及極接觸層’其係與各源、/汲極區接觸以提供電性連接。 本發明之非揮發記憶單元的製造方法,係先於絕緣基 底上形成—半導體層,再於此半導體層巾形成二源/沒極 區:亚於半導體層上形成電荷捕捉層。接著形成一中間極 與一侧閘極,此三閘極係位於二源/汲極區之間。另外,本 方法更可㊉賴/錄接觸層,其健二源級極區接觸以 提供電性連接。 接著’上述本發明之非揮發記憶體陣列的寫入方法略 述如下。為方便起見,此陣列中一記憶單元所對應之二控 1263343 , 14692twf.doc/〇〇6 制閘線及二源/汲極區以左右區分’且字元線與二控制閘線 對應之記憶胞分別以中、左、右區分。其中,中(左、右) 記憶胞之抹除悲/寫入悲啟始電堡為VtEc/Vtpc (VtEL/VtpL、 VtER/VtPR),左、右源/没極區分別連接至左、右位元線BLL、 BLr。另外,下文中記憶單元對應之字元線、左及右控制 閘線上施加之電壓為Vw、VcGL及VcGR,半導體層之電壓 為VB,且位元線BLl、BLR電壓為VI、Vr。 在寫入選定之記憶單元的左記憶胞時,係設定 Vw>Vtpc、VCGR>VtPR、VCGL>VtEI^以打開三閘極下的通道, 且Vl〉Vr以使電子朝左流動。其中,%與Vr之差足以產 生通道熱電子’且VCGL足使熱電子注入左記憶胞中。在寫 入中記憶胞時,係設定VB,vCGR,vCGL<〇v、Vw>VtEC,並 使一源及極區浮置。其中,vw足使電子注入中記憶胞中。 在寫入右記憶胞時,則設定Vw>Vtpc、V^pvtpL、 VCGR>VtER以打開三閘極下的通道,且vr>vi以使電子流 向右。其中,VI與Vr之差足以產生通道熱電子,且VcGR 足使熱電子注入右記憶胞中。 >發明之非揮發記憶體陣列的抹除方法,係使選定之 :己&單元所_接的二位元線浮置,在對應此記憶單元的字 元線及二控侧線上施加貞電壓,並在制此記憶單元之 半導體層上施加正糕,此正負電壓之差值足以將記憶單 元中的電子排出。 ^…在本毛明之非揮發記憶體陣列的讀取方法中,於讀取 k疋之记fe單元的左記憶胞時,係設定、 1263343 fH /006 14692twf.doc/006 VCGR>VtPR、VtPL>VCGL>VtEL 且 Vl<Vr,並以流經記憶單元 的電流大小來判斷左記憶胞呈抹除態或寫入態。在讀取中 記憶胞時,係設定 VCGL>VtPL、VC(}R>VtPR、VtPC>Vw>VtE(: 且Vi^Vl,並以向左或向右流經記憶單元的電流大小來判 斷中記憶胞王抹除態或寫入態。在讀取右記憶胞時,則設 定 Vw>VtPC、VCGL>VtpL、VtPR>VCGR>VtERa Vl>Vr,並以 流經記憶單元的電流大小判斷右記憶胞呈抹除或寫入態。 此外,本發明之非揮發記憶單元的寫入、抹除及讀取 • 方法類似上述本發明之非揮發記憶體陣列,前者之中閘極 電壓vc對應後者的字元線電壓^^,左、右二側閘極的電 壓VL、VR對應後者的左、右控制閘線電壓Vd , 而左、右二源/汲極區之電壓V卜Vr則對應後者之位元線 BLl、BLr的電壓Vh Vr。寫入、抹除及讀取中、左、右 記憶胞時的電壓施加模式可依上述對應關係,由上述本發 明之非揮發記憶體陣列操作方法的敘述替換而得。 x 在本赉明之纪憶單元(或陣列)中,由於中閘極(或字元 鲁 、4)%過半體層’所以可在半導體層的頂部及兩側壁部分 中形成通道。因此,記憶單元的次臨界擺幅得以降低。另 外,由於2源/汲極之間相隔三個閘極寬度的距離,所以不 必擔心其推質橫向擴散的問題。 另外,在-較佳實施例中,上述本發明之記憶單元(或 陣列^的電荷捕捉層包括位於中間極(或字元線)下的第 電荷捕捉層,以及位於側閘極(或控制閘線)下的第二電 荷捕捉層。其中,中問極(或字元線)係以間隙壁與側閉極 1263343 14692twf.d〇c/〇〇6 ======:,_與 橫向擴散== 尺二=向遷移問題皆可解決’故有利於記憶體陣列 切再Γ由於本發明之記龍_鱗採轉雜之埋入 ί。::是ΐ摻雜形成源/汲極區,再形成外接式位元 ^ 位7"線可以條值的金屬製作,使其阻值大幅 尸牛低、,而得以提升元件之操作速度。 為讓本發日狀上述和其他目的、概和伽能更明顯 ,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 、 【實施方式】 [非揮發記憶單元的結構及製程】 月 >,、、、圖1,其係緣示本發明較佳實施例之非揮發性 吕己憶單7L的上視圖。請同時參照圖2(A)、(B)、(c)、①), 其分別繪示圖1之非揮發性記憶單元之a_a,、b_b,、c_c,、 D-D’剖面的剖面圖。 如圖1、2所示,非揮發記憶單元1〇係配置在一絕緣 基底100上,基本上包括一半導體層11〇及其上之電荷捕 捉層122與132、分離之中閘極130與二侧閘極140a與 140b、間隙壁135,以及二源/汲極區116&與116b。其中, 絕緣基底100例如是一絕緣層上有矽(SOI)基板的絕緣 層’半導體層110例如是一淡P型摻雜之複晶石夕層,且例 1263343 14692twf.doc/006 如呈長條狀。前述SOI基板例如是在表面形成 =曰曰圓上沈積複晶矽層而得者,其氧 : 基底,峨晶韻職被定義鱗導朗為、、、巴緣 、-入:荷Ϊ捉層122例如是氧化矽-氮化矽_氧化矽(0N0) 稷合層。中間極130跨越半導體層η〇,並以() 122與半導體層11G相隔,以在半導體層110^部及二 中形成通道(圖2B),其係、為—三重通道㈣^1263343 14692twf.doc/006 Sub-threshold swing is not easy to reduce. In addition, since the two-dimensional system of such a memory cell is stored in the same layer of nitriding stone, there is electron lateral migration (electr〇n lateral such as the problem of (4); plus the doping of the buried bit line The quality also spreads laterally, so the memory cell and the array size are not easily reduced. Furthermore, since the conventional buried bit line is a heavily doped region formed in a semiconductor substrate, its resistance value has its limit, so the bit line The electrical resistance cannot be lowered, and the component speed is difficult to increase. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a structure of a non-volatile memory unit to solve the problems of the prior art. A structure of a non-volatile memory array is provided, which is based on the structure of the present invention for forwarding memory cells. The present invention further provides a method for fabricating a non-volatile memory unit for making the non-volatile matter of the present invention. The present invention is also directed to providing a non-systematic process for making the non-volatile memory array of the present invention. The method of writing, erasing and reading the element. The purpose of the invention is to provide a method for writing, erasing and reading the non-volatile memory array of the present invention. : a semiconductor layer, a charge trapping layer, a gate 盥-copper gate ^ ^ ^ , /, a side gate, and a two source/drain region, wherein the pen-trap layer is located on the semiconductor layer. The middle pole and the side closed pole both span 1263343] 4692 twf.doc/006 The more the semi-conductance m, and the above-mentioned capture layer per-_ and the semiconductor-like coffee. The two sources/not in the semiconductor layer on the outer side of the two-sided pole. A two source/drain contact layer may be included, which is in contact with the two/drain electrodes, respectively, to provide an electrical connection. The non-volatile memory array of the present invention includes a conductor layer that is oriented in the first direction and The plurality of word lines and control lines in the second direction, the plurality of source level polar regions, and the plurality of bit lines that are oriented in the first direction. wherein the word line and the control (four) line are in the word line And the two control lines on both sides are a 3-wire group, and each 3-line group is arranged at intervals, wherein each 3, = white, and each semiconductor a layer and a charge trapping layer spaced apart from each of the semiconductor layers. Each source/drain region is located in a semiconductor layer between each of the 3 lines, wherein the overlapping portion of the -3 line group and a semiconductor layer, the overlapping portion The charge trapping layer and the 'source, the bungee area of the two sub-i--the memory unit. The bit line fish is electrically connected to the source/drain region, and the two-source/no-polar region of the memory cell is separately Optionally, it is connected to two adjacent bit lines. In addition, a plurality of source// and contact layers are further included to contact the respective source/drain regions to provide electrical connection. The non-volatile memory unit of the present invention. The manufacturing method is to form a semiconductor layer on the insulating substrate, and then form a two-source/no-polar region on the semiconductor layer: a charge trapping layer is formed on the semiconductor layer, and then an intermediate pole and a gate are formed. This three gates are located between the two source/drain regions. In addition, the method can further contact/record the contact layer, and the second source-level polar region contacts to provide an electrical connection. Next, the writing method of the above nonvolatile memory array of the present invention is as follows. For the sake of convenience, the two control 1263343, 14692twf.doc/〇〇6 gate line and the two source/dual pole area corresponding to one memory unit in the array are distinguished by left and right 'and the word line corresponds to the second control gate line. The memory cells are distinguished by middle, left and right. Among them, the middle (left, right) memory cell erases the sadness / writes the grief of the beginning of the electric Fort for VtEc / Vtpc (VtEL / VtpL, VtER / VtPR), left and right source / no pole area respectively connected to the left and right Bit lines BLL, BLr. In addition, the voltages applied to the word lines, the left and right control gate lines of the memory cell are Vw, VcGL, and VcGR, the voltage of the semiconductor layer is VB, and the voltages of the bit lines BL1 and BLR are VI and Vr. When writing to the left memory cell of the selected memory cell, Vw > Vtpc, VCGR > VtPR, VCGL > VtEI^ is set to turn on the channel under the three gates, and Vl > Vr to cause the electrons to flow to the left. Among them, the difference between % and Vr is sufficient to generate channel hot electrons' and VCGL is sufficient to inject hot electrons into the left memory cells. When writing a memory cell, VB, vCGR, vCGL < 〇 v, Vw > VtEC are set, and a source and a polar region are floated. Among them, vw is enough to make electrons in the memory cells. When writing to the right memory cell, Vw > Vtpc, V^pvtpL, VCGR > VtER is set to open the channel under the three gates, and vr > vi to cause the electrons to flow to the right. Among them, the difference between VI and Vr is enough to generate channel hot electrons, and VcGR is enough to inject hot electrons into the right memory cells. > The method for erasing the non-volatile memory array of the invention is such that the selected two-bit line of the unit is floated, and is applied to the word line and the second control side line corresponding to the memory unit. The voltage is applied to the semiconductor layer of the memory cell, and the difference between the positive and negative voltages is sufficient to discharge the electrons in the memory cell. ^... In the reading method of Ben Maoming's non-volatile memory array, when reading the left memory cell of the unit of the k疋, the system is set, 1263343 fH / 006 14692twf.doc / 006 VCGR > VtPR, VtPL >VCGL>VtEL and Vl<Vr, and judge the left memory cell as an erased state or a write state by the magnitude of the current flowing through the memory cell. When reading the memory cell, VCGL>VtPL, VC(}R>VtPR, VtPC>Vw>VtE(: and Vi^Vl are set, and the current flowing through the memory cell to the left or right is judged. The memory cell erases or writes. When reading the right memory cell, Vw>VtPC, VCGL>VtpL, VtPR>VCGR>VtERa Vl>Vr is set, and the right memory is judged by the current flowing through the memory cell. The cell is erased or written. Further, the method for writing, erasing, and reading the non-volatile memory cell of the present invention is similar to the non-volatile memory array of the present invention, wherein the gate voltage vc corresponds to the latter The word line voltage ^^, the left and right gate voltages VL, VR correspond to the latter left and right control gate voltage Vd, and the left and right source/drain regions voltage V Bu Vr corresponds to the latter The voltage Vh Vr of the bit lines BL1 and BLr. The voltage application mode when writing, erasing, and reading the middle, left, and right memory cells can be according to the above corresponding relationship, and the above-described nonvolatile memory array operation method of the present invention The narrative is replaced by x. In the memory unit (or array) of this book, The middle gate (or the word ru, 4)% over half of the body layer 'so can form a channel in the top of the semiconductor layer and in the two sidewall portions. Therefore, the sub-critical swing of the memory cell is reduced. In addition, due to the 2 source / drain There is a distance between the three gate widths, so there is no need to worry about the lateral diffusion of the pusher. Further, in the preferred embodiment, the memory cell of the present invention (or the charge trapping layer of the array) is located at the middle pole. a charge trapping layer under (or a word line) and a second charge trapping layer under the side gate (or control gate), wherein the middle (or word line) is separated by a gap and a side Pole 1263343 14692twf.d〇c/〇〇6 ======:, _ and lateral diffusion == ruler = migration problem can be solved 'so it is beneficial to memory array cutting and then due to the invention of the dragon _ 鳞 采 转 埋 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : , and the operating speed of the component can be improved. It will be more apparent that the preferred embodiments are described below in detail with reference to the accompanying drawings, and are described in detail below. [Embodiment] [Structure and Process of Non-volatile Memory Unit] Month>,,, Figure 1, The top view of the non-volatile Luiyi Yi 7L of the preferred embodiment of the present invention is shown in the accompanying drawings. Please refer to FIG. 2 (A), (B), (c), and 1), respectively, which illustrate the non- A cross-sectional view of the a_a, b_b, c_c, and D-D' sections of the volatile memory unit. As shown in FIGS. 1 and 2, the non-volatile memory unit 1 is disposed on an insulating substrate 100, and basically includes a The semiconductor layer 11A and the charge trapping layers 122 and 132 thereon, the separated gate 130 and the two side gates 140a and 140b, the spacer 135, and the two source/drain regions 116 & and 116b. The insulating substrate 100 is, for example, an insulating layer having a germanium (SOI) substrate on an insulating layer. The semiconductor layer 110 is, for example, a pale P-doped polycrystalline layer, and the example 1263343 14692twf.doc/006 is long. Strip. The SOI substrate is obtained, for example, by depositing a polycrystalline germanium layer on the surface formation = 曰曰 circle, and its oxygen: base, 峨 韵 被 被 被 被 被 被 被 被 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 122 is, for example, a tantalum oxide-niobium nitride-yttria (0N0) bonding layer. The intermediate pole 130 spans the semiconductor layer η〇 and is separated from the semiconductor layer 11G by () 122 to form a channel in the semiconductor layer 110 and 2 (FIG. 2B), which is a triple channel (four)^

二源/汲極區116a與116b係位於二侧_ i他鱼 1働外側的半導體们1〇巾,且例如是位在半導體層 的頂部及兩個侧壁部分中(圖2D)。此二源級極區⑽與 116b處更可分別配置二源/汲極接觸層12〇&與口㈨,其^ 1與二源/汲極區116a與116b接觸以提供電性連接,且材 質例如是摻雜複晶⑪。此源/祕接觸層·/b例如是跨 過半導體層110,且與後者之間隔有之前用蚊義後者的 硬罩幕層112的-部分,而在半導體層n〇的兩侧壁上與 對應之源/汲極區116a/b接觸。另外,二源/汲極區116&與 116b之位在半導體層11〇侧壁的部分例如是僅由源/汲極 接觸層120a與120b中的摻質擴散而得者,而其位在半導 體層110頂部之部分的形成方法將於稍後說明。 另外’如圖2(A)、(B)、(D)所示,中閘極130上例如 是留有其定義時所用的硬罩幕層128,且源/汲極接觸層 120a與120b上例如是留有其定義時所用的硬罩幕層118c3 間隙壁135例如是形成在電荷捕捉層122、中閘極13〇與 11 1263343 14692twf.doc/006 硬罩幕層128的側壁,以及源/汲極接觸層12〇a/12〇b與硬 罩幕層118的側壁上,並形成在半導體層11〇之未被中閘 • 極130與源/汲極接觸層120a/120b所覆蓋的側壁上。電荷 捕捉層132例如是全面形成在以上各構件之上,使其與電 荷捕捉層122之間以間隙壁135相隔(圖2(A)),且與半導 體層110的侧壁之間亦以間隙壁135相隔,如圖!、2(c) _ 所示。側閘極14〇a/b則填入中閘極13〇 (或再加上硬罩幕 層128)與源/沒極接觸層i20a/b (或再加上硬罩慕声1⑻夕 •間,㈣電荷概層㈣b與半㈣層相隔^ 2(a)),且以電荷捕捉層132及間隙壁135與半導體層 的側,相隔,如圖2(c)所示。因此,側閘極14〇a/b及其下 之電荷捕捉層132a/b所構成的記憶胞17〇a/17〇b的通道僅 形成在半導體層110的頂部。 在本較佳實施例之非揮發記憶單元10中,中閘極130 及其下之電荷捕捉層122構成了記憶胞160,其係以間隙 壁135與二側閘極14此與14%及其下之電荷捕捉層132& • 與13沘相隔。由於有間隙壁135之阻隔,故儲存在記怜胞 與_中的位元不會有習知電子橫向遷移的問題。 寫入記憶胞160及170a/b之方法將於稍後說明。 [非揮發記憶體陣列的結構] .杯照® 3,其料示本發明触實施例之非揮發性 記憶體陣列的佈局圖。請同時參照圖4,其係繞示圖3之 非揮發性記憶體陣列的上半部的電路簡圖。 12 1263343 14692twf.doc/006 如圖3、4所示,此非揮發性記憶體陣列包括q黃向的 平行條狀半導體層310、縱向的平行字元線33〇與控制閘 線340a/b、多個源/汲極區316 (圖4),以及橫向的平行位 凡線350,其中源/汲極區316未繪於圖3中以簡化圖式。 其中,子元線330與控制閘線34〇a/b係以—字元線330及 其兩側之二控制閘線為-3線組345,且各3線組345間 隔排列。每- 3線組345皆跨過各半導體層31〇,並以電 荷捕捉層(未繪示)與各半導體層31〇相隔。此處3線組345 跨過半導體層310及電荷捕捉層的局部結構例如可愈圖 1、2所示者類似,故省略未緣示。另外,上述平行條狀半 導體層310例如可以4條為一單位,而 半導體層3池互相電性連接,並藉由—接觸窗3 = 接至其電壓提供電路。 請續見圖3、4,並同時比對圖)、2,源娜區316 係位於各3線組345之間的半導體層以 345與一半導體層31〇重疊部分、 阳、,果、、且 ^ ^ ^ 此重豐部分之電荷捕捉 1及其兩侧之二源/祕區316構成—記憶單元糊。位元 、、泉35〇係與源/没極區m電性連接,其中任—記憶單元的 —源/汲極區316分別電性連接至相鄰 兩橫排的記憶單元360例如是丘用—凡、、泉’而相卻 疋/、用—位元線35〇。 另外’此記憶體陣列更可句扭夕 320a/b,其係位於各3線組345之n ^ s固源/沒極接觸層 接觸以提供電性連接。其中,如自間圖^各祕極區316 源/汲極賴層偷互㈣齊,偶^ ^起’奇數縱列的 1馬數^列的源/汲極接觸層 13 1263343 14692twf.doc/006 320b互相對:^目鄰兩縱列的3施與3娜相差半個單 :才一每源/汲極接觸層32_係同時接觸在 :口目:之己憶單元360之同側的-對源/汲極區 3 6,亚例如以—接觸窗仍冑性連接至一位元線35〇。另 立^35G之材質較佳為銅等低阻值的金屬,以提升 兀件的速度。 v 加士 2圖^ ’在此佈局中,1個記憶單元360係與3 相㈣記憶單元36〇共用_接觸窗,並 單元360共用另一接觸窗,故i個記憶單元3“ ^/4+1嗣_接觸窗。由於前述】個記憶單元遍可儲 ^位凡的*料’故換算1個接觸窗對應6個位元,其空 間利用效率甚高。 [非揮發記憶體製程】 <第一例> u歸請參照圖从〜5E ’其鱗林發明難實施例之 ^ 非揮發性記憶體的製程的一例。 請參照目5A,首先於絕緣基底5〇〇上形成第一方向走 向的平行條狀半導體層510,其材質例如是摻雜複晶石夕, 且其形成時例如有使用氧化矽層等硬罩幕層512。形成半 導體層510之方法例如是先提供由1)具絕緣表層之石夕基底 舁沈積於絕緣表層上之複晶矽層所構成的s〇I基底,再 以微影蝕刻法將此複晶矽層圖案化為半導體層51〇。接著 進行選擇性離子植入,穿過硬罩幕層512而在半導體層51〇 14 1263343 14692twf.doc/006 的頂部中形成源/汲極區51如與51牝。 請茶照圖5B,接著形成跨過半導體層51〇的源/汲極 接觸層52加與520b,其係與源/汲極區514a與514b接觸, _ 且材貝例如疋摻雜複晶石夕,而其定義時例如使用硬罩幕層 522,從而形成堆疊結構523a與523b (=520a/b+522)。由於 源Μ極接觸層52〇a/b直接與半導體層510的側壁接觸, 故前者中的摻質可在後續各熱製程中擴散進入半導體層 510的側壁邛为中,使得源/汲極區的範圍擴及半導 • 體層510的侧壁部分(被52〇a/b遮住,故未緣出),此時源 /汲極接觸層52〇a/b即與對應之源/汲極區在半導體 層51〇的兩側壁上相接觸。接著,除去暴露於源/汲極接觸 層520a/b之外的硬罩幕層512。 在圖5B中,源/汲極接觸層52〇b係與繪出之二半導體 層M0之同一侧的二源/汲極區接觸;源/沒極接觸層別& 有二,分別與另一侧之二源/汲極區接觸,而每-源/汲極 接觸層520a更與相鄰之另一半導體層(未緣出)中位置相對 • 應的一源/没f區接觸’正如圖示源級極接觸層520b的情 幵7另外第—方向上相鄰之二源/汲極接觸層(以緣示之 520a為例)的間距較小於二半導體層训之間距,其 將於稍後說明。 請參照圖^:,接著於基底彻上方形成電荷捕捉層 526 (此全面覆盍狀態未繪示),其例如是—〇斯複合層, 再於兩排源/汲極接觸層520a與52〇b之間形成走向^ ^二 方向的如複㈣等導體所構成之字元線53q,其定義時^ 15 可使用硬罩幕層532,從而形成堆疊結構533。接著,去除 未被字元線530覆蓋的電荷捕捉層526,而得圖5〇之結構。 請參照圖5D,接著於堆疊結構523a之側壁、堆疊結 構533與電荷捕捉層526之侧壁,以及半導體層51〇之未 被堆疊結構523a/b與533所覆蓋的側壁上形成間隙壁 537,其方法例如是先沉積大致共形的絕緣層,其材質例如 是氧化物或氮化物,再進行非等向性蝕刻。此時如第二方 向上相鄰之二源/汲極接觸層(以出之52〇a為例)的間距足 夠小’二者間的空隙即可在間隙壁537製程的絕緣層沉積 步驟中為該絕緣材料所填充。如此後續形成之各控制問線 即可互相隔離,而不必再以圖案化方式分開。 。月錄、圖5E’接著於基底上形成另—電荷捕捉層 539,其例如是覆蓋之前步驟所形成的所有構件 字(或堆疊結構533)與第二方向走向之㈣雜 ,=層520a/b (或堆疊結構523a/b)之間填入如複晶石夕等 V體層,以形成控制間線,其係跨過 1〇, 且以電荷捕捉層539與半導體層510的頂部相隔。日不過, 由於控制_ 54_與半導體層51() J5r〇 的側壁,而只會形成在其頂部。 ^下盾來未日^的步驟則是去除部分的硬罩幕詹522與 =5=崎5屬切纽蝴_、在字 、,泉 瓜成更上層内連線等步驟,由於熟習此技藝者應 16The two source/drain regions 116a and 116b are semiconductors located on the outer side of the two sides, and are, for example, in the top of the semiconductor layer and in the two side wall portions (Fig. 2D). The two source-level polar regions (10) and 116b are respectively configured with two source/drain contact layers 12〇& and port (nine), which are in contact with the two source/drain regions 116a and 116b to provide an electrical connection, and The material is, for example, doped polycrystal 11. The source/secret contact layer /b is, for example, spanned over the semiconductor layer 110, and is spaced apart from the latter by a portion of the hard mask layer 112 that was previously used by the latter, and on both sidewalls of the semiconductor layer n〇 The corresponding source/drain regions 116a/b are in contact. In addition, the portions of the two source/drain regions 116 & and 116b at the sidewalls of the semiconductor layer 11 are, for example, diffused only by the dopants in the source/drain contact layers 120a and 120b, and are located in the semiconductor. The method of forming the portion of the top of layer 110 will be described later. Further, as shown in FIGS. 2(A), (B), and (D), the middle gate 130 is, for example, a hard mask layer 128 which is used for definition, and the source/drain contact layers 120a and 120b are provided. For example, the hard mask layer 118c3 used for the definition is provided, for example, a sidewall formed on the charge trap layer 122, the middle gate 13A and the 11 1263343 14692twf.doc/006 hard mask layer 128, and the source/ The drain contact layer 12A/12〇b and the sidewall of the hard mask layer 118 are formed on the sidewall of the semiconductor layer 11 which is not covered by the gate electrode 130 and the source/drain contact layer 120a/120b. on. The charge trap layer 132 is formed over the above members, for example, so as to be spaced apart from the charge trap layer 122 by the spacers 135 (FIG. 2(A)), and also with the sidewalls of the semiconductor layer 110. Walls 135 are separated, as shown! , 2(c) _ is shown. The side gates 14〇a/b are filled in the middle gate 13〇 (or plus the hard mask layer 128) and the source/dead contact layer i20a/b (or plus the hard cover 1 (8) •• (4) The charge layer (4) b is separated from the half (four) layer by 2 (a)), and is separated from the side of the semiconductor layer by the charge trap layer 132 and the spacer 135, as shown in Fig. 2(c). Therefore, the channels of the memory cells 17〇a/17〇b formed by the side gates 14A/b and the charge trapping layers 132a/b thereunder are formed only on the top of the semiconductor layer 110. In the non-volatile memory unit 10 of the preferred embodiment, the middle gate 130 and the underlying charge trapping layer 122 constitute a memory cell 160 which is separated by a spacer 135 and a two-sided gate 14 and 14% thereof. The lower charge trapping layer 132 & • is separated from the 13 沘. Due to the barrier of the spacers 135, the bits stored in the cells and the _ do not have the problem of lateral migration of the conventional electrons. The method of writing to the memory cells 160 and 170a/b will be described later. [Structure of Non-volatile Memory Array]. Cup Photo® 3, which shows a layout of a non-volatile memory array of the embodiment of the present invention. Referring also to Figure 4, there is shown a circuit diagram of the upper half of the non-volatile memory array of Figure 3. 12 1263343 14692twf.doc/006 As shown in FIGS. 3 and 4, the non-volatile memory array includes a q-direction parallel strip-shaped semiconductor layer 310, a longitudinal parallel word line 33〇 and a control gate line 340a/b, A plurality of source/drain regions 316 (FIG. 4), and lateral parallel bits 350, wherein source/drain regions 316 are not depicted in FIG. 3 to simplify the drawing. The sub-line 330 and the control gate 34〇a/b are connected by a word line 330 and two control lines on both sides thereof are a -3 line group 345, and each of the three line groups 345 are arranged at intervals. Each of the 3-wire groups 345 spans each of the semiconductor layers 31, and is separated from the respective semiconductor layers 31 by a charge trapping layer (not shown). Here, the partial structure of the 3-wire group 345 across the semiconductor layer 310 and the charge trap layer can be similar, for example, as shown in Figs. Further, the parallel strip-shaped semiconductor layers 310 may be, for example, four units, and the cells of the semiconductor layer 3 are electrically connected to each other, and connected to the voltage supply circuit by the contact window 3 = . Please continue to see Figures 3 and 4, and at the same time, compare the graphs, 2, the source layer 316 is located between each of the 3-wire groups 345, and the semiconductor layer overlaps with a semiconductor layer 31, yang, fruit, And ^ ^ ^ The charge trap 1 of the heavy part and the two source/secret area 316 on both sides constitute a memory cell paste. The bit element, the spring 35 〇 is electrically connected to the source/no-pole region, wherein the - source/drain region 316 of the memory cell is electrically connected to the adjacent two horizontal memory cells 360, for example, for the mound. - Fan, Spring, but the phase is 疋 /, with - bit line 35 〇. In addition, the memory array is more sinister 320a/b, which is located at the n^s solid source/no-polar contact layer of each 3-wire group 345 to provide an electrical connection. Among them, as in the picture ^ each secret pole area 316 source / 汲 赖 偷 偷 ( ( 四 四 四 四 , , , , , 偶 偶 ' ' ' ' 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 奇 源 源 源 源 源 源006 320b are mutually opposite: 3 and 3 are different from each other in the two columns: only one source/dual contact layer 32_ is simultaneously in contact with: the mouth: the same side of the unit 360 - For the source/drain region 3 6, for example, the contact window is still connected to a single bit line 35〇. The material of the other 35G is preferably a low-resistance metal such as copper to increase the speed of the element. v 加士2图^ 'In this layout, one memory unit 360 is shared with the 3-phase (four) memory unit 36〇_contact window, and unit 360 shares another contact window, so i memory unit 3 "^/4 +1嗣_contact window. Since the above-mentioned memory cells can store all the materials, the conversion of one contact window corresponds to 6 bits, and the space utilization efficiency is very high. [Non-volatile memory system] < The first example > u is referred to the figure from ~5E 'the scale of the invention is difficult to implement an example of a non-volatile memory process. Please refer to item 5A, first form the first on the insulating substrate 5〇〇 The direction parallel parallel strip-shaped semiconductor layer 510 is made of, for example, doped clutter, and is formed by using a hard mask layer 512 such as a hafnium oxide layer. The method of forming the semiconductor layer 510 is, for example, provided by a s〇I substrate formed of a polycrystalline ruthenium layer having an insulating surface layer deposited on the insulating surface layer, and then patterned into a semiconductor layer 51 by lithography. Ion implantation, through the hard mask layer 512 and on the semiconductor layer 51〇14 1263343 14692 The source/drain regions 51 are formed in the top of twf.doc/006, such as 51 牝. Please look at Figure 5B, then form a source/drain contact layer 52 and 520b across the semiconductor layer 51, the source and source. The / drain regions 514a are in contact with 514b, and the material is, for example, doped with a single crystallite, and is defined, for example, by using a hard mask layer 522, thereby forming stacked structures 523a and 523b (= 520a/b+522). Since the source drain contact layer 52A/b is in direct contact with the sidewall of the semiconductor layer 510, the dopant in the former can diffuse into the sidewall of the semiconductor layer 510 in subsequent thermal processes, so that the source/drain region The range extends to the semi-conductor • the sidewall portion of the bulk layer 510 (covered by 52〇a/b, so it is not edged out), at which point the source/drain contact layer 52〇a/b is corresponding to the source/drain The regions are in contact on both sidewalls of the semiconductor layer 51. Next, the hard mask layer 512 exposed to the source/drain contact layer 520a/b is removed. In Figure 5B, the source/drain contact layer 52〇b Contacting the two source/drain regions on the same side of the two semiconductor layers M0; the source/dipole contact layer & two, respectively, in contact with the two source/drain regions on the other side, and The source/drain contact layer 520a is further in contact with a source/n-f region of the adjacent semiconductor layer (not edged out). As shown by the source-level contact layer 520b, The spacing between the adjacent two source/drain contact layers in the first direction (take 520a as an example) is smaller than the distance between the two semiconductor layers, which will be described later. Please refer to FIG. A charge trapping layer 526 is formed over the substrate (this is not fully illustrated), which is, for example, a muse composite layer, and then forms a strike between the two rows of source/drain contact layers 520a and 52B. A character line 53q composed of a conductor such as a complex (four) or the like may be formed using a hard mask layer 532 to form a stacked structure 533. Next, the charge trap layer 526 which is not covered by the word line 530 is removed, and the structure of Fig. 5 is obtained. Referring to FIG. 5D, a spacer 537 is formed on the sidewall of the stacked structure 523a, the sidewalls of the stacked structure 533 and the charge trapping layer 526, and the sidewalls of the semiconductor layer 51 that are not covered by the stacked structures 523a/b and 533. The method is, for example, to deposit a substantially conformal insulating layer, such as an oxide or a nitride, and then anisotropically etch. At this time, the spacing of the adjacent two source/drain contact layers in the second direction (in the case of 52 〇 a as an example) is sufficiently small that the gap between the two can be in the insulating layer deposition step of the spacer 537 process. Filled with this insulating material. The control lines thus formed can be isolated from each other without having to be separated by patterning. . The monthly record, FIG. 5E', then forms another charge-trapping layer 539 on the substrate, which covers, for example, all the component words (or stacked structures 533) formed by the previous steps and the fourth direction (four), the layer 520a/b (or the stacked structures 523a/b) are filled with a V-body layer such as a polycrystalline stone to form a control line which spans 1 〇 and is separated from the top of the semiconductor layer 510 by the charge trap layer 539. However, since the side wall of the control layer _ 54_ and the semiconductor layer 51 () J5r , is formed only on the top. ^The next step of the shield is to remove the hard mask Mashan 522 and =5=Saki 5 is a cut-off butterfly _, in the word, the spring melon into the upper layer, etc., due to familiar with this artist Should be 16

1263343 l4692twf.d〇c/〇〇6 可自行推想該些步驟,故不在此贅。 <第二例> 、 圖6A〜6D繪示本發明較佳實施例之非揮發性記憶體 衣程的另一例的前半段製程。 巧茶照圖6A,本例係在絕緣基底6⑽上全面形成一層 半導體材料6l〇a之後,於半導體材料_上形成罩幕層 二2 ’其中有走向為第二方向⑽後將形成之條狀半導體層 由走向為第-方向)的溝渠6〇4,暴露出半導體材料 610a 預定形成源/汲極區的部分。接著例如以離子植入之方 二在溝渠6G4所暴露出之半導體材料61Ga中形成長條狀 的摻雜區614。 請參照目6B,接著去除罩幕層通,再於半導體材料 覆*硬罩幕層m—方向連續定義硬罩幕 二12與半導體材料61Ga,以形成平行條狀的半導體層 ’同時將每一長條狀摻雜區614分割成多個源/汲極區 614a 與 614b。 明糾目6C ’接著去除硬罩幕層612,再於基底6〇〇 面形成電荷捕捉層626。紐,在電荷捕捉層626 中二圖案化之罩幕層606,例如是-圖案化光阻層,其 第方向走向的溝渠608暴露出源/汲極區014a/b所 在之部分半導體層_上的電荷捕捉層626。接著,去除 暴露,溝渠_中的電荷捕捉層626,以暴露出源區 614a 與 614b。 π芩妝圖6D,接著去除罩幕層6〇6,再同時形成字元 17 1263343 14692twf.doc/0〇6 線530與源/汲極接觸層52〇a/b。由於源/汲極區η切匕带 成處的電荷捕捉層626已在前一步驟中去除,故源/汲極接 觸層520a/b可與源/;;及極區6i4a/b接觸。當然,如同第— 例之情形,此第二例中源/汲極接觸層52〇a/b内的摻質仍 可在後續熱製程中擴散進入半導體層610中,而令源/二極 區614a/b的範圍延伸至半導體層61〇的兩側壁部分。接; 來的步驟則例如是去除未被字元線530覆蓋的電荷捕捉層 610,以得圖5C之結構,而後續之步驟例如可為之 二 例所述者。1263343 l4692twf.d〇c/〇〇6 These steps can be inferred on their own, so they are not here. <Second Example> Figs. 6A to 6D illustrate a first half process of another example of the non-volatile memory process of the preferred embodiment of the present invention. Fig. 6A, in this example, after a layer of semiconductor material 6l〇a is formed on the insulating substrate 6(10), a mask layer 2' is formed on the semiconductor material_, and a strip is formed after the direction is the second direction (10). The semiconductor layer is formed by a trench 6〇4 that is oriented in the first direction, exposing a portion of the semiconductor material 610a that is intended to form a source/drain region. Next, an elongated doped region 614 is formed in the semiconductor material 61Ga exposed by the trench 6G4, for example, by ion implantation. Please refer to item 6B, and then remove the mask layer pass, and then define the hard mask 2 and the semiconductor material 61Ga continuously in the m-direction of the semiconductor material covering * hard mask layer to form a parallel strip-shaped semiconductor layer 'at the same time The elongated doped region 614 is divided into a plurality of source/drain regions 614a and 614b. The correction layer 6C' then removes the hard mask layer 612 and forms a charge trapping layer 626 on the surface of the substrate 6. In the charge trapping layer 626, the second patterned mask layer 606 is, for example, a patterned photoresist layer, and the first direction trench 608 exposes a portion of the semiconductor layer where the source/drain regions 014a/b are located. Charge trapping layer 626. Next, the exposed charge trapping layer 626 in the trench _ is removed to expose the source regions 614a and 614b. The pattern 6D is removed, and then the mask layer 6〇6 is removed, and at the same time a character 17 1263343 14692twf.doc/0〇6 line 530 is connected to the source/drain contact layer 52〇a/b. Since the charge trapping layer 626 of the source/drain region η tantalum strip has been removed in the previous step, the source/drain contact layer 520a/b can be in contact with the source/; and the polar regions 6i4a/b. Of course, as in the case of the first example, the dopant in the source/drain contact layer 52〇a/b in the second example can still diffuse into the semiconductor layer 610 in a subsequent thermal process, and the source/diode region The range of 614a/b extends to both side wall portions of the semiconductor layer 61〇. The subsequent steps are, for example, to remove the charge trapping layer 610 that is not covered by the word line 530 to obtain the structure of FIG. 5C, and the subsequent steps can be, for example, the two examples.

[非揮發記憶體陣列的操作I 圖7繪示本發明較佳實施例之非揮發性記憶體之局 上視圖,用以說明該非揮發性記憶體的操作方法。請參; 圖7,如欲操作選定之記憶單元700,則須在對應之 530、對應之控制閘線54加與54〇b及對應之半導體層$⑺ 上施加電壓,同時在與對應之二源/汲極接觸層52^與 520b連接的二位元線上施加電壓或將其浮置。此處為敘述 方便起見,該記憶單元7〇〇所對應之二控制閘線顺與观 及二源極區(在對應之520a及屬下的半導體層中,故 未緣不)係以左(L)右(R)區分,且與左、右源/汲極區電性連接 的相鄰二位元線亦以左右區分出!^與81^)。同時,以控制 線540a與540b下之電荷捕捉層539a與53% (未繪示 存單元的兩個記憶胞亦以左右區分,稱左、右記憶胞,而以字 元線530下之電荷捕捉層526 (未繪示)為儲存單元之記憶胞則 18 1263343 14692twf.doc/006 稱為中記憶胞。 另在下文中,於對應之字元線53〇、左押 與右控制閘線5働上所加電壓為Vw、%:二泉5,: 對應之半導體層51G上所加電壓為Vb,而對應之: BLl與BLR上電壓分別為V1與Vr。再者,; 胞之抹除態/寫入態啟始電壓分別為v / VWVtPR) 〇 Bc/VtPC (VtEL/VtPL ^[Operation of Non-volatile Memory Array I] Fig. 7 is a top view of a non-volatile memory of a preferred embodiment of the present invention for explaining the operation of the non-volatile memory. Please refer to FIG. 7. If the selected memory cell 700 is to be operated, the voltage must be applied to the corresponding 530, the corresponding control gate 54 plus 54〇b and the corresponding semiconductor layer $(7), and at the same time A voltage is applied or floated on the two bit lines of the source/drain contact layer 52^ and 520b. For the convenience of description, the two control gates corresponding to the memory unit 7〇〇 and the two source regions (in the corresponding 520a and the subordinate semiconductor layer, so the edge is not) are left. (L) Right (R) distinction, and adjacent two-dimensional lines electrically connected to the left and right source/drain regions are also distinguished by left and right! ^ and 81^). At the same time, the charge trapping layers 539a and 53% under the control lines 540a and 540b (the two memory cells not shown in the memory cell are also distinguished by left and right, called left and right memory cells, and captured by the charge under the word line 530. The memory cell of layer 526 (not shown) is a memory cell. 18 1263343 14692twf.doc/006 is called a medium memory cell. In addition, hereinafter, on the corresponding character line 53〇, left-handed and right control gate line 5働The applied voltage is Vw, %: Erquan 5,: the voltage applied to the corresponding semiconductor layer 51G is Vb, and correspondingly: the voltages on BL1 and BLR are V1 and Vr respectively. Furthermore, the erased state of the cell/ The write state start voltage is v / VWVtPR) 〇Bc/VtPC (VtEL/VtPL ^

再者,以下操作方法之說明的辅助圖式8Am 10A〜10C係纷出圖7結構的A-A,剖面簡圖,其中省略了 幕層、間隙壁及源/汲極區514a/b上的源/汲極接觸 八, 以簡化圖式。 曰、。刀 <寫入操作> 請參照圖8A、8B、8C,其係分別繪示上述中、右、 左記憶胞的寫入方法,此圖係分別以中、右、左記情胞之 電荷捕捉層的標號526、53%、539a作為中、右、胞 的代號。 工。心已 如圖8Α所示’在寫入選定之記憶單元的中記憶胞 時,係設定 VB,VCGR,VCGL<0V、Vw»VtEC,並使二源/汲 極區514a/b浮置,其中Vw足夠高,以使電子能藉由 Fowler-Nordheim穿隧效應注入中記憶胞526中。在使用此 種寫入機制時,中記憶胞526中可儲存1位元的資料。 接著,如圖8B所示,在寫入選定之記憶單元的右記 憶胞539b時,可採用通道熱電子注入(Channel ElectronFurther, the auxiliary patterns 8Am 10A to 10C described in the following operation methods are the AA of the structure of Fig. 7, a schematic sectional view in which the source on the curtain layer, the spacer, and the source/drain region 514a/b is omitted/ Bungee contacts eight to simplify the drawing. Oh,. Knife <Write Operation> Referring to Figures 8A, 8B, and 8C, the method for writing the above-mentioned middle, right, and left memory cells is shown, respectively, which captures the charge of the middle, right, and left cells respectively. The labels 526, 53%, and 539a of the layers are used as the codes for the middle, right, and cell. work. The heart has been set to VB, VCGR, VCGL <0V, Vw»VtEC and the two source/drain regions 514a/b are floated when writing to the memory cells of the selected memory cell, as shown in FIG. Vw is high enough that electrons can be injected into the memory cell 526 by the Fowler-Nordheim tunneling effect. When such a writing mechanism is used, the 1-bit data can be stored in the middle memory cell 526. Next, as shown in Fig. 8B, channel hot electron injection (Channel Electron) can be employed when writing to the right memory cell 539b of the selected memory cell.

Injection,CHEI)機制,其係設定 Vw>VtPC、VCGL>VtPL、 19 VCGR》VtER、νΒ:〇ν 且 Vr>V:l,其中 V1 可為 〇v,且 Vr 小於等於VCGr (〇V<VrSVCGR)。由於中、左記憶胞526、53% 之閘極電壓設定Vw>VtPC且VCGL>VtPL,所以不論其之前 有無經過寫入’中、左a己丨思胞526、539a的通道都會打開; 同時,由於右記憶胞539b之閘極電壓VcGR»VtER,所以 右記憶胞539b之通道也會打開,而在左右源/汲極區514a 與514b之間產生一連續通道。同時,由於Vr>Vl,故通 道中的電子向右流動。VI與Vr之差必須足夠大以產生足 夠的電埸,而在右記憶胞539b下的通道中產生熱電子;又 VCGR亦須足夠高,以使部分的熱電子穿隧注入右記憶胞 539b 中。 如圖8C所示,在寫入選定之記憶單元的左記憶胞539a 時,亦可採用通道熱電子注入機制,其係設定¥%>¥4〇:、 VcGR〉VtpR、VcGL〉〉VtEL、Vb=OV 且 Vl>Vr ’ 其中 Vr 可為 OV,且VI小於等於VCGL (〇V<VKVCGL)。由於中、右記憶 胞526、539b之閘極電壓設定Vw>VtPC且VCGR>VtPR,所 以不論其之前有無經過寫入,中、右記憶胞526、53%的 通道都會打開;同時,由於左記憶胞539a之電壓 VCGL»VtEL,所以左記憶胞539a之通道也會打開,而在左 右源/汲極區514a與514b之間產生一連續通道。同時,由 於Vl>Vr,故通道中的電子向左流動。VI與Vr之差必須 足夠大以產生足夠的電埸,而在左記憶胞539a的通道中產 生熱電子;又VCGL亦須足夠高,以使部分的熱電子穿隧注 入左記憶胞539a中。 20 1263343 14692twf.doc/006 <抹除操作> 睛苓照圖9A〜9B,其係繪示本發明較佳實施例之非揮 發性記憶體的抹除方法,其中圖9B繪示一次抹除整個區 塊的方法。 如圖9A所示,此例係同時抹除選定之記憶單元的3 個記憶胞539a、526與539b,其方法為使源/没極區514a 與514b (位元線BLl與BLr)浮置,並設定Vcgl、Vw與Vcgr 遠小於GV ’同時設定Vb遠大於Gv,則丨發m穿随效應 而同時將3個記憶胞539a、526與53%中的電子排出。 μ 一再者,如圖9B所示,如欲一次抹除整個區塊的記憶 單兀,則可使所有記憶單元所耦接的各位元線浮置,並在 對應該區塊的所有字元線33〇及所有控制閑線 340a 與 3^〇b上施加遠低於〇v的電壓,同時在對應之所有條狀半 V體1 310上施加遠高於0V的電壓,以引aFN穿隧效應 而同時將該區塊中所有記憶單元所儲存的電子排出。 <讀取操作> π苓照圖10A、10B、10C,其係分別繪示上述中、右、 左圮憶胞526、539b、539a的讀取方法。 =圖10A所示,在讀取選定之記憶單元的中記憶胞 526 日守’係設定 VCGL〉VtPL、VCGR>VtPR、VtPC>Vw>VtEC、 VB 0V且Vr^Vl,並以向左或向右流經記憶單元的電流大 小來判斷中記憶胞526呈抹除態或寫入態。由於左右記憶 胞^39a與539b的閘極電壓VCGL>VtPL且VCGR>VtPR,所以 不_有無儲存電子,左右記憶胞539a與539b的通道都會 21 1263343 14692twf.doc/006 打開。當中圮―> 一、、、工π向八而存有電子時,士Injection, CHEI) mechanism, which sets Vw>VtPC, VCGL>VtPL, 19 VCGR"VtER, νΒ: 〇ν and Vr>V:l, where V1 can be 〇v, and Vr is less than or equal to VCGr (〇V<VrSVCGR ). Since the gate voltages of the middle and left memory cells 526 and 53% are set to Vw > VtPC and VCGL > VtPL, the channels that are written to the middle, left, and right cells 526 and 539a will be opened regardless of whether they are previously or not; Due to the gate voltage VcGR»VtER of the right memory cell 539b, the channel of the right memory cell 539b is also turned on, and a continuous channel is generated between the left and right source/drain regions 514a and 514b. At the same time, due to Vr > Vl, the electrons in the channel flow to the right. The difference between VI and Vr must be large enough to generate enough power to generate hot electrons in the channel under right memory cell 539b; and VCGR must be high enough to allow some of the hot electron tunneling into right memory cell 539b. . As shown in FIG. 8C, when writing to the left memory cell 539a of the selected memory cell, a channel hot electron injection mechanism can also be used, which is set to ¥%>¥4〇:, VcGR>VtpR, VcGL>〉VtEL, Vb = OV and Vl > Vr ' where Vr can be OV and VI is less than or equal to VCGL (〇V<VKVCGL). Since the gate voltages of the middle and right memory cells 526 and 539b are set to Vw > VtPC and VCGR > VtPR, 526 and 53% of the channels of the middle and right memory cells are turned on regardless of whether they have been written before or not; The voltage of cell 539a is VCGL»VtEL, so the channel of left memory cell 539a will also open, and a continuous channel will be created between left and right source/drain regions 514a and 514b. At the same time, due to Vl > Vr, the electrons in the channel flow to the left. The difference between VI and Vr must be large enough to generate sufficient power to generate hot electrons in the channel of left memory cell 539a; and VCGL must be high enough to allow some of the hot electrons to tunnel into left memory cell 539a. 20 1263343 14692twf.doc/006 <Erasing Operation> The lenses are shown in Figures 9A to 9B, which illustrate a method of erasing non-volatile memory according to a preferred embodiment of the present invention, wherein Figure 9B shows a wipe. A method other than the entire block. As shown in FIG. 9A, in this example, three memory cells 539a, 526 and 539b of the selected memory cell are simultaneously erased by floating the source/drain regions 514a and 514b (bit lines BL1 and BLr). And it is set that Vcgl, Vw and Vcgr are much smaller than GV', and Vb is set to be much larger than Gv, and the electrons in the three memory cells 539a, 526 and 53% are simultaneously discharged. μ again, as shown in FIG. 9B, if you want to erase the memory block of the entire block at a time, all the bit lines coupled to the memory cells can be floated, and all the word lines corresponding to the block are 33〇 and all control idle lines 340a and 3^〇b apply a voltage much lower than 〇v, while applying a voltage much higher than 0V on all corresponding strip-shaped half V bodies 1 310 to induce aFN tunneling effect At the same time, the electrons stored in all the memory cells in the block are discharged. <Reading Operation> π Referring to Figs. 10A, 10B, and 10C, the reading methods of the above-described middle, right, and left memory cells 526, 539b, and 539a are respectively shown. = as shown in Fig. 10A, in reading the selected memory cell, the memory cell 526 is set to "set VCGL" VtPL, VCGR > VtPR, VtPC > Vw > VtEC, VB 0V and Vr^Vl, and to the left or to the left The amount of current flowing through the memory cell is judged to be in the erased state or the written state. Since the gate voltages VCGL>VtPL and VCGR>VtPR of the left and right memory cells 39a and 539b are not stored, the channels of the left and right memory cells 539a and 539b are turned on 21 1263343 14692twf.doc/006. When the middle -> one, the, the work π to eight and the existence of electrons, Shishi

Vw<VtPC ’所以§己憶胞526的通道不會打門 、 於 憶胞539a與遍的通道無法連通,;只:產己 流ID;反之,當中記憶胞526未經寫入而不存有電子j电 由於Vw>VtEC,所以中記憶⑯526的通道會打開:連心 右記憶胞539a與539b白勺通道,因此可產生正常的通道^ 流Id。Vw<VtPC 'So the channel of PASS 526 does not hit the door, and the channel of 539a and the channel cannot be connected; only: the ID of the stream is produced; otherwise, the memory cell 526 is not written without Since the electronic j power is due to Vw > VtEC, the channel of the memory 16526 will be opened: the channels of the right memory cells 539a and 539b are connected, so that the normal channel stream Id can be generated.

另外,如欲使記憶胞電流向左,則須Vr>vl,其組合 可為V1=0V且OV<VGVw ;如欲使記憶胞電流向右,則 Vl>Vr,其組合可為Vr二0V且0V<V1SVW。 … 如圖10B所示,在讀取選定之記憶單元的右記憶胞 539b 時,係設定 Vw>VtPC、VCGL>VtPL、VtpR>VcGR>VtER、 VB=OV且Vl>Vr,並以流經記憶單元的電流大小判斷^^己 憶胞539b呈抹除或寫入態。此例中讀取電流方向與寫入電 流方向相反,所以是一種逆向讀取(reverse reading)模式。 由於左、中記憶胞539a與526的閘極電壓vCGL>VtPL且 Vw>VtPC,戶斤以不論有無儲存電子,左、中記憶胞539a與 526的通道都會打開。當右記憶胞539b已經過寫入而存有 電子時,由於VCGR<VtPR,所以右記憶胞539b的通道不會 打開,致使左、中記憶胞539a與526的通道無法與右源/ >及極區514b連通’而只能產生报小的電流lD ;反之,當 右記憶胞53%未經寫入而不存有電子時,由於 Vcgr〉VtER ’所以右記憶胞5 3 9b的通道會打開而連通中記 憶胞526的通道與右源/汲極區514b,因此可產生正常的 22 1263343 14692twf.d〇c/006 通道電流ID。另外,V:l、Vr(Vl>Vr)的組合可以是Vr=z〇v, 且 〇V<Vl幺Vcgr 〇 如圖10C所示,在讀取選定之記憶單元的左記憶胞 時’係設定 Vw>VtPc、VCGR>VtPR、VtpL>vCGL>vtEL、vB=〇v 且Vl<Vr,並以流經記憶單元的電流大小來判斷左記憶胞 呈抹除態或寫入態。由於右、中記憶胞539b與526的閘極 電壓Vcgr>Vi:pr且vw〉VtPC ’所以不論有無儲存電子,右、 中冗憶胞539b與526的通道都會打開。當左記憶胞539a 已經過寫入而存有電子時,由於VCGL<VtPL,所以左記憶 皰539a的通道不會打開,致使右、中記憶胞53%與526 的通道無法與左源/没極區514a連通,而只能產生很小的 電流ID ;反之,當左記憶胞539a未經寫入而不存有電子 時,由於vCGL>vtEL,所以左記憶胞539a的通道會打開而 連通中記憶胞526的通道與左源/汲極區514a,因此可產生 正常的通道電流ID。 另外,此例所述者仍為逆向讀取模式,且vl、Vr (vl<Vr) 的組合可以是vbov,且0v<VgVa^。 [非揮發記憶單元的操作] 本發明之非揮發記憶單元的寫入、抹除及讀取方法類 似上述本發明之非揮發記憶體陣列的操作,而可參照圖 8A〜8C、9A及10A〜UK:所繪之三閘極結構。 詳言之,此記憶單元之中閘極電壓對應記憶體陣 列的字元線電壓Vw,左、右二側閘極的電壓Vl、Vr對應 1263343 14692twf.doc/006 後者的左、右控制閘線電壓Vcgl、I,而左、 ,極區之㈣V1、Vr則對應後者之位元線叫、bLr= [VI Vr。寫人、抹除及讀取巾、左、右記憶胞時的 施加模式可依上述對應_,由上述本發明 體陣列操作方法的敘述替換而得。 仏 中:之記憶^(或陣列) T由於中閘極(或子凡線)隔著電荷捕捉層跨過 所=可在半導體層的頂部及兩㈣部分巾形成通道。_ 因此,,、次臨界擺幅得以降低。另外,由於二 ^個閘極寬度的距離,所以不必擔4質㈣擴散的^ 再者’於上述本發明較佳實施例之記憶單 ’由於巾祕(或料線)下㈣荷敝層如1 與側閘極(或控制閘線)下的電荷捕捉層相隔,所以可避$ =NRQM的電子橫向遷移問題。由於助及極間的推質 =向擴散f摘與相鄰儲存位置間的電顿向财比可 解決,故有利於記憶體陣列尺寸的縮小化。 白In addition, if the memory cell current is to be left, then Vr > vl, the combination may be V1 = 0V and OV <VGVw; if the memory cell current is to be right, Vl > Vr, the combination may be Vr 2V And 0V < V1SVW. As shown in Fig. 10B, when the right memory cell 539b of the selected memory cell is read, Vw > VtPC, VCGL > VtPL, VtpR > VcGR > VtER, VB = OV, and Vl > Vr are set and flow through the memory. The current magnitude of the cell is judged to be erased or written. In this example, the direction of the read current is opposite to the direction of the write current, so it is a reverse reading mode. Since the gate voltages vCGL > VtPL and Vw > VtPC of the left and middle memory cells 539a and 526, the channels of the left and middle memory cells 539a and 526 are opened regardless of the presence or absence of electrons. When the right memory cell 539b has been written and there is electrons, the channel of the right memory cell 539b does not open due to VCGR<VtPR, so that the channels of the left and middle memory cells 539a and 526 cannot be connected to the right source/> The polar region 514b is connected to 'only generates a small current lD; conversely, when 53% of the right memory cell is not written without electrons, the channel of the right memory cell 5 3 9b is opened because Vcgr>VtER ' The channel connecting the middle memory cell 526 and the right source/drain region 514b can thus generate a normal 22 1263343 14692 twf.d〇c/006 channel current ID. In addition, the combination of V:l, Vr(Vl>Vr) may be Vr=z〇v, and 〇V<Vl幺Vcgr 〇 as shown in FIG. 10C, when reading the left memory cell of the selected memory cell Vw > VtPc, VCGR > VtPR, VtpL > vCGL > vtEL, vB = 〇v and Vl < Vr are set, and the left memory cell is judged to be erased or written by the magnitude of the current flowing through the memory cell. Since the gate voltages Vcgr>Vi:pr and vw>VtPC' of the right and middle memory cells 539b and 526, the channels of the right and middle redundant cells 539b and 526 are opened regardless of the presence or absence of electrons. When the left memory cell 539a has been written and there is electrons, the channel of the left blister 539a will not open due to VCGL<VtPL, so that the channels of the right and middle memory cells 53% and 526 cannot be combined with the left source/deep pole. The area 514a is connected, and only a small current ID can be generated; conversely, when the left memory cell 539a is not written without electrons, the channel of the left memory cell 539a is opened and the memory is connected due to vCGL>vtEL. The channel of cell 526 is connected to left source/drain region 514a, thus producing a normal channel current ID. In addition, the example described in this example is still the reverse read mode, and the combination of vl, Vr (vl < Vr) may be vbov, and 0v < VgVa^. [Operation of Nonvolatile Memory Unit] The writing, erasing and reading method of the nonvolatile memory unit of the present invention is similar to the operation of the above nonvolatile memory array of the present invention, and can be referred to Figs. 8A to 8C, 9A and 10A. UK: The three gate structure depicted. In detail, the gate voltage of the memory cell corresponds to the word line voltage Vw of the memory array, and the voltages Vl and Vr of the left and right gates correspond to 1263343 14692twf.doc/006. The latter left and right control gate lines The voltage Vcgl, I, and the left, and the (4) V1 and Vr of the polar region correspond to the bit line of the latter, and bLr = [VI Vr. The application mode for writing, erasing, and reading the towel, left and right memory cells can be replaced by the above description of the method of operating the array of the present invention.仏 Medium: The memory ^ (or array) T is formed by the middle gate (or the spur line) across the charge trapping layer. The channel can be formed at the top of the semiconductor layer and the two (four) portions. _ Therefore, the sub-threshold swing is reduced. In addition, due to the distance of the width of the gates, it is not necessary to carry out the four-quality (four) diffusion of the memory sheet of the preferred embodiment of the present invention as a result of the towel layer (or the material line) under the (four) load layer. 1 Separated from the charge trapping layer under the side gate (or control gate), so avoid the lateral migration problem of electrons with $=NRQM. The size of the memory array can be reduced by the help of the push-to-pole push-to-peak ratio of the diffusion f and the adjacent storage location. White

、再者,由於本發明之記憶體陣列並非採用摻雜之埋入 式位元線,而是先摻雜形成源/汲極區,再形成外接式位元 線。因此,位元線可以銅等低阻值的金屬製作,使^阻: 大幅降低,而得以提升元件之操作速度。 A —雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之^護 24 1263343 14692twf.doc/006 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1纷示本發明較佳實施例之非揮發性記情_ 一 視圖。 α早兀勺上 圖2Α、2Β、2C、2D分別繪示圖1之非揮發性記情單 元之Α-Α’、B_B,、C_C,、D-D,剖面的剖面圖。 心、早 圖3繪示本發明較佳實施例之非揮發性記情體 佈局圖。 〜平夕丨J的 _ 圖4繪示圖3之非揮發性記憶體陣列的上半 簡圖。 叫的電路 圖5A〜5E繪示本發明較佳實施例之非揮發性 製程的一例。 圖6A〜6D繪示本發明較佳實施例之非揮發性 製程的另一例的前半段製程。 °思 圖7繪示本發明較佳實施例之非揮發性記憶體的局部 上視圖,用以說明該非揮發性記憶體的操作方法。" • 圖8Α〜8C繪示本發明較佳實施例之非揮發性記憔體 的寫入方法。 。思 圖9Α〜9Β繪示本發明較佳實施例之非揮發性記憶體 的抹除方法,其中圖9Β繪示一次抹除整個區塊的方法。 •圖10Α〜10C繪示本發明較佳實施例之非揮發性記憶 . 體的讀取方法。 ° “ 【主要元件符號說明】 10 :非揮發性記憶單元 25 1263343 14692twf.doc/006 100、300、500、600 :絕緣基底 110、310、510、610 :半導體層 _ 112、512、612 :硬罩幕層 116a/b、316、514a/b、614a/b :源/汲極區 ’ 118、128、522、532 :硬罩幕層 120a/b、320a/b、520a/b :源/汲極接觸層 122、132(a/b)、526、539(a/b)、626 ··電荷捕捉層 130 :中閘極 • 135、537 :間隙壁 140a、140b :侧閘極 160 :中記憶胞 170a、170b :侧記憶胞 310a :半導體層310的連接層 312、323 :接觸窗 330、530 :字元線 340a、340b、540a、540b :控制閘線 鲁 345 : 3線組 350 :位元線 360 :記憶單元 523a/b : 520a/b+522 之堆疊結構 - 533 : 530+532之堆疊結構 602、606 :罩幕層 604、608 :溝渠 610a :半導體材料 26 1263343 14692twf.doc/006 614 :長條狀摻雜區 700 :選取之記憶單元 A-A,、B_B,、C-C,、D-D,:剖面線 WL :字元線 CGL :控制閘線 BL :位元線 IF、2F、4F :長度標示Furthermore, since the memory array of the present invention does not use a doped buried bit line, it is first doped to form a source/drain region, and then an external bit line is formed. Therefore, the bit line can be made of a low-resistance metal such as copper, so that the resistance can be greatly reduced, and the operating speed of the component can be improved. A. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and it is to be understood that those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a non-volatile statistic view of a preferred embodiment of the present invention. Fig. 2Α, 2Β, 2C, 2D respectively show the cross-sectional views of the Α-Α', B_B, C_C, and D-D of the non-volatile symmetry unit of Fig. 1, respectively. Heart, early Fig. 3 is a diagram showing the layout of a non-volatile grammar of a preferred embodiment of the present invention. 〜平夕丨J _ Figure 4 shows the upper half of the non-volatile memory array of Figure 3. Circuits shown in Figures 5A to 5E illustrate an example of a non-volatile process in accordance with a preferred embodiment of the present invention. 6A to 6D illustrate the first half of the process of another example of the non-volatile process of the preferred embodiment of the present invention. Figure 7 is a partial top elevational view of a non-volatile memory in accordance with a preferred embodiment of the present invention for illustrating the operation of the non-volatile memory. " • Figs. 8A to 8C illustrate a method of writing a nonvolatile mark in accordance with a preferred embodiment of the present invention. . Figure 9A to 9B illustrate a method of erasing a non-volatile memory in accordance with a preferred embodiment of the present invention, wherein Figure 9A illustrates a method of erasing the entire block at a time. • Figures 10A to 10C illustrate a method of reading a non-volatile memory of a preferred embodiment of the present invention. ° " [Main component symbol description] 10 : Non-volatile memory unit 25 1263343 14692twf.doc / 006 100, 300, 500, 600: Insulating substrate 110, 310, 510, 610: Semiconductor layer _ 112, 512, 612: Hard Mask layer 116a/b, 316, 514a/b, 614a/b: source/drain region '118, 128, 522, 532: hard mask layer 120a/b, 320a/b, 520a/b: source/汲Pole contact layers 122, 132 (a/b), 526, 539 (a/b), 626 · Charge trapping layer 130: Middle gates 135, 537: Clearance walls 140a, 140b: Side gates 160: Medium memory Cells 170a, 170b: side memory cells 310a: connection layers 312, 323 of semiconductor layer 310: contact windows 330, 530: word lines 340a, 340b, 540a, 540b: control gates 345: 3-line group 350: bits Line 360: memory unit 523a/b: stack structure of 520a/b+522 - 533: 530+532 stack structure 602, 606: mask layer 604, 608: trench 610a: semiconductor material 26 1263343 14692twf.doc/006 614 : Long strip doped region 700: selected memory cells AA, B_B, CC, DD,: hatching WL: word line CGL: control gate BL: bit line IF, 2F, 4F: length indication

2727

Claims (1)

1263343 14692twf.doc/〇〇6 十、申請專利範圍: 1·一種非揮發記憶單元,包括·· 一半導體層; 一電荷捕捉層,位於該半導體層上; 辦活刀離之一中閘極與二側閘極,該3閘極皆跨越該半導 體層與該t導體層之間隔有該電荷捕捉層=及 「r申及ϋ’位於該二側開極外側的該半導體層中。 中該電=:=圍第1項所述一 ^ 一^-電荷捕捉層,位於該巾祕下;以及 電荷:苡::捕捉層’位於該二側閘極下,且與該第, 中每3-利範圍第2項所述之非揮發記憶單元,其 間隙壁與該中閘極相隔,且該第二電 與該第—電荷捕捉層相隔。 包括如申請專利範圍第3項所述之非揮發記憶單元,更 別與該二源/汲觸其係位於i側閘極之外側,並分 中兮5門第4項所述之非揮發記憶單元,其 層 =中更接:層的側壁及該半㈣ 中 中每一源/汲極區位在該半導體層的頂部:侧壁部; 28 1263343 14692twf.doc/006 中,且每一源/汲極接觸層皆跨過該 體層的兩側壁上與對應之該源/汲極區接觸:叫該半導 7.如申請專利範圍第〗項所 中該半導體層呈條狀,其走向與該三閉極^T方早其 中該半導體層係配置在一絕緣層上。早元,其 9.—種非揮發記憶體陣列,包括: 多個條狀之半導體層,其走向為一第一方向; 1字ίίί 一第二方向的多條字元線與控制開線发係以 間隔排側之23,問線為一 3線組,各該3線組 些半導辦届/、中母一 3線組皆跨過該些半導體層,且與該 體層之間隔有電荷捕捉層; 中,汲極區’位於各3線組之間的該些半導體層 該電iiL—I線組與一半導體層重叠部分、該重疊部分之 及捕捉層及其兩側之2源/汲極區構成一記憶單元;以 電性Ϊ i為該第一方向的多條位元線,其與該些源/沒極區 鄰之、:任—§己憶單元的2源/汲極區分別電性連接至相 條位元線。 如申請專利範圍第9項所述之非揮發記憶體陣 ’其中該電荷捕捉層包括: —第一電荷捕捉層,位於每一字元線下;以及 —第二電荷捕捉層,位於每一控制閘線下,且與該第 29 1263343 14692twf.doc/006 一電荷捕捉層分離。 11.如申请專利範園第項戶斤述之非揮發記憶體陣 列,其中在一 3線組中,該字元線.以一間隙壁與任一控 制閘線相隔,且該第一電荷捕捉層係以該間隙壁與該第二 電荷捕捉層相隔。 12·如申請專利範圍第11項戶斤述之非揮發記憶體陣 列,更包括: 夕個源/’及極接觸層,位於各該3線組之間,且與該些 源/汲極區接觸,其中每一源/汲極换觸層同時接觸在該第 二方向上相鄰之2記憶單元之同側的/對源/汲極區,並電 性連接至1條位元線。 13·如申請專利範圍第12項所述之非揮發記憶體陣 列,其中該間隙壁更位於每一源/汲極接觸層的侧壁及每一 半導體層之未被該些字元線與該些源/汲極接觸層所覆蓋 的侧壁。 14·如申請專利範圍第丨2項所述之非揮發記憶體陣 列’其中每一源/汲極接觸層皆係以一接觸窗電性連接至一 位元線。 15.如申請專利範圍第12項所述之非揮發記憶體陣 列’其中母一源/;:及極區位在對應之該半導體層的頂部及兩 侧壁部分中,且每一源/汲極接觸層皆跨過相鄰之2半導體 層,而與對應之2源/汲極區之任一者在對應之該半導體層 的兩侧壁上接觸。 16·如申請專利範圍第9項所述之非揮發記憶體陣 30 1263343 14692twf.doc/006 列’其中4第-方向走向的相鄰兩排記憶單元共用"条位 元線。 17·如申請專利範圍第9項所述之非揮發記憶體陣 列,其中該些位元線之材質為金屬。 18·如申凊專利範圍第9項所述之非揮發記憶體陣 列’其中3些條狀之半導體層係配置在一絕緣層上。 19·-種非揮發記憶單元的製造方法,包括: 於一絕緣基底上形成一半導體層; 於該半導體層中形成2源/汲極區; 於"亥半$體層上形成一電荷捕捉層;以及 形成一中問極與二側閘極,該3閘極係位於該2源/ >及極區之間’其巾每_閘極皆跨過該半導體層,且與該半 導體層之間隔有該電荷捕捉層。 20·如申請專利範圍第19項所述之非揮發記憶單元的 製造方法’其巾該電荷捕捉層包括分卿成的第—與第二 電荷捕捉層,且該、第二電荷捕捉層與該3閘極的形 成步驟包括: 於該半導體層上形成該第-電荷捕捉層; 形成跨過該半導體層的該中閘極; 去除未被4巾卩雜覆蓋的部分該第—電荷捕捉層; 於。亥中閘極與该第一電荷捕捉層的侧壁及該半導體層 之未被該中閘極所覆蓋的侧壁形成一間隙壁; 於"亥半‘體層上形成該第二電荷捕捉層;以及 於該中閘極兩側形成該二侧閘極,該二侧閘極與該中 31 1263343 14692twf.doc/006 閘極之間隔有該間隙壁。 21. 如申請專利範圍第19項所述之非揮發記憶單元的 製造方法,更包括於該絕緣基底上形成2源/汲極接觸層, 其係分別與該2源/汲極區接觸。 22. 如申請專利範圍第21項所述之非揮 製造方法’其中該半導體層呈長條狀,且有—第u 該電荷捕捉層包括先後形成的第一與第二電荷捕捉層,且 «亥半$體層、5亥2源/汲極區、該第—電荷捕捉層、該中 極與該2源/汲極接觸層的形成步驟包括: 甲 於該絕緣基底上形成一層半導體材料; 一从於該層半導體材料巾形成長條狀的二摻雜區,其 一第二走向; 〃 定義該層半導體材料以形成該半導體層,如此即 一長條狀摻雜區定義成一源/汲極區; 、 於"亥半導體層上形成該第-電荷捕捉層; 除去该2源/;;及極區所在之部分該半導 一電荷捕捉層;以及 曰上自%亥弟 同時形成該中閘極與該2源/汲極接觸層。 制圍第21項所述之非揮發記憶單元的 源/汲極接觸層係形成在該2源/沒極 區之後,且在邊中閘極與該二侧閘極之前。 制迭2方4.ί申^專鄕圍第23項所述之非揮發記憶單元的 =tβ母—源你極接觸層皆跨過該半導體層而血 斜導體層的兩侧壁_,使得對應之該源/汲極區的範圍 32 1263343 14692twf.doc/006 因該源/汲極接觸層 侧壁。 之推質擴散而擴及該半導體層的該兩 制、二二申:3槐圍第23項所述之非揮發記憶單元的 步S包括3 μ弟―、第二電荷捕捉層與該3閘極的形成1263343 14692twf.doc/〇〇6 X. Patent application scope: 1. A non-volatile memory unit comprising: a semiconductor layer; a charge trapping layer on the semiconductor layer; a two-side gate, wherein the three gates span the semiconductor layer and the t-conductor layer with the charge trapping layer = and "r and ϋ" are located in the semiconductor layer outside the two side open electrodes. =:= Around the first item, a ^ ^ ^ - charge trapping layer, located under the secret of the towel; and the charge: 苡:: the capture layer 'is located under the two side gates, and with the third, each of the three The non-volatile memory unit according to Item 2, wherein the spacer is spaced apart from the middle gate, and the second electric is separated from the first charge trapping layer, and includes the non-volatile as described in claim 3 The memory unit, and the second source/toucher are located on the outer side of the i-side gate, and are divided into the non-volatile memory unit of the fifth item of the fifth item, and the layer=the middle layer is connected to the side wall of the layer and Each of the source/drain regions in the half (four) is at the top of the semiconductor layer: sidewall portion; 28 1263343 14692 In twf.doc/006, and each of the source/drain contact layers is in contact with the corresponding source/drain region across the two sidewalls of the bulk layer: the semi-conductor 7. As claimed in the patent application The semiconductor layer has a strip shape, and the direction of the semiconductor layer is earlier than the three closed electrodes, wherein the semiconductor layer is disposed on an insulating layer. In the early element, the non-volatile memory array includes: a plurality of strips a semiconductor layer having a direction of a first direction; a word line of a second direction and a control line of the opening line are spaced apart from each other by 23, and the line of question is a 3-line group, each of which is 3 Each of the semi-conductor/the middle-mother-three-wire group of the line group spans the semiconductor layers, and has a charge trapping layer spaced apart from the body layer; wherein the bungee region is located between the three line groups a semiconductor layer, the overlapping portion of the iiL-I line group and a semiconductor layer, the overlapping portion and the 2 source/drain regions of the capturing layer and the two sides thereof constitute a memory unit; the electrical Ϊ i is the first direction a plurality of bit lines, which are adjacent to the source/no-polar regions, respectively: the two source/drain regions of the unit are respectively electrically connected to the phase strip A non-volatile memory array as described in claim 9 wherein the charge trapping layer comprises: - a first charge trapping layer under each word line; and - a second charge trapping layer, located Each of the control gates is separated from the charge trapping layer of the 29th 1263343 14692twf.doc/006. 11. As described in the patent specification, the non-volatile memory array is described in a 3-wire group. The word line is separated from any of the control gates by a spacer, and the first charge trapping layer is separated from the second charge trap layer by the spacer. 12. The non-volatile memory array of the 11th item of the patent application scope includes: a source/' and a contact layer, located between each of the 3-line groups, and with the source/drain regions Contact, wherein each source/drain contact layer simultaneously contacts the same/source/drain region on the same side of the two memory cells adjacent in the second direction, and is electrically connected to one bit line. The non-volatile memory array of claim 12, wherein the spacer is located further on a sidewall of each source/drain contact layer and each of the semiconductor layers is not associated with the word line The sidewalls covered by the source/drain contact layers. 14. A non-volatile memory array as described in claim 2, wherein each source/drain contact layer is electrically connected to a bit line by a contact window. 15. The non-volatile memory array of claim 12, wherein the mother-source/;:-polar region is in the top portion and the two sidewall portions of the corresponding semiconductor layer, and each source/drainage The contact layer spans the adjacent two semiconductor layers and contacts either of the corresponding two source/drain regions on the corresponding sidewalls of the semiconductor layer. 16. A non-volatile memory array as described in claim 9 of the patent scope 30 1263343 14692 twf.doc/006 column wherein the adjacent two rows of memory cells in the 4th-direction direction share a "slot line. 17. The non-volatile memory array of claim 9, wherein the bit lines are made of metal. 18. A non-volatile memory array as recited in claim 9 wherein three of the strip-shaped semiconductor layers are disposed on an insulating layer. 19. A method of fabricating a non-volatile memory cell, comprising: forming a semiconductor layer on an insulating substrate; forming a 2-source/drain region in the semiconductor layer; and forming a charge trapping layer on the "Hai half body layer And forming a middle and two gates, the 3 gates being located between the 2 source/gt; and the pole regions, wherein each of the pads extends across the semiconductor layer and the semiconductor layer The charge trapping layer is spaced apart. 20. The method of fabricating a non-volatile memory cell according to claim 19, wherein the charge trapping layer comprises a first and a second charge trapping layer, and the second charge trapping layer The step of forming the gate includes: forming the first charge trapping layer on the semiconductor layer; forming the middle gate across the semiconductor layer; removing a portion of the first charge trapping layer not covered by the 4 doped dopant; to. a gate in the middle of the sea and a sidewall of the first charge trap layer and a sidewall of the semiconductor layer not covered by the gate; forming the second charge trapping layer on the "Half' body layer And forming the two side gates on both sides of the middle gate, and the two side gates are spaced apart from the gate of the middle 31 1263343 14692twf.doc/006. 21. The method of fabricating a non-volatile memory cell according to claim 19, further comprising forming a source/drain contact layer on the insulating substrate, which is in contact with the 2 source/drain regions, respectively. 22. The non-volatile manufacturing method according to claim 21, wherein the semiconductor layer is elongated and has - the u charge trapping layer comprises first and second charge trapping layers formed successively, and « The forming process of the first half of the body layer, the 5th hole 2 source/drain region, the first charge trapping layer, the middle electrode and the 2 source/drain contact layer comprises: forming a layer of semiconductor material on the insulating substrate; Forming a strip of the second doped region from the layer of semiconductor material, a second direction; 〃 defining the layer of semiconductor material to form the semiconductor layer, such that a long doped region is defined as a source/drain Forming the first-charge trapping layer on the "Her semiconductor layer; removing the portion of the semiconductor source; and; and the portion of the semiconductor region where the polar region is located; and forming the middle portion from The gate is in contact with the 2 source/drain electrodes. The source/drain contact layer of the non-volatile memory cell described in item 21 is formed after the source/drain region and before the gate and the two gates.制 申 4 4 4 4 4 ^ ^ 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 你 你 你 你 你 你 你 你 你 你 你 你 你Corresponding to the source/drain region range 32 1263343 14692twf.doc/006 due to the source/drain contact layer sidewall. The step S of the non-volatile memory unit described in Item 23 of the third embodiment includes the 3 μ-di, the second charge trapping layer and the 3 gate. Polar formation 在該2源/汲極接觸層形成之後 该第一電荷捕捉層; ,於該半導體層上形成 开y成%過该半導體層的該中閘極; 去除未被该中閘極覆蓋的部分該第一電荷捕捉層; 於該中閘極與該第_電荷捕捉層的側 壁、該2源/汲極 、、蜀層的侧壁’以及!詩導體層之未被該巾閘極與該2源/ 及極接觸層所覆蓋的侧壁形成一間隙壁; ㈣半導體層上形成該第二電荷捕捉層;以及 护於该中閘極及一源/汲極接觸層之間形成一側閘極,同 日樣该中閘極及另—源級極接觸層之間形成另—側間極。 制、&26·如申請專利範圍第25項所述之非揮發記憶單元的 衣造方法,其中在形成該2源/汲極接觸層時係使用一硬罩 幕層,且在形成該中閘極時使用另一硬罩幕層。 27·—種非揮發記憶單元的寫入方法,包括: 提供如申請專利範圍第1項所述之非揮發記憶 單元, 其中该中閘極對應一中記憶胞,該2侧閘極為一左/ 一右閘 極對應一左7一右記憶胞,且該2源/汲極區為一左/一右源/ 及極區,其中該中(左、右)記憶胞之一抹除態/寫入態啟始 33 1263343 14692twf.doc/006 電壓為 VtEc/Vtpc (VtEL/VtpL、VtER/VtPR), 寫入該左記憶胞(該中/左/右閘極上所加電壓為 Vc/Vj/Vr,該左/右源/没極區上戶斤力口電壓為Vl/Vr,且該半 導體層上所加電壓為vB),包括:設定vc>vtpc、vR>vtpR、 VL>VtEd Vl>Vr,其中VI與Vr之差足以產生通道熱電 子,且VL足使其注入該左記憶胞中; 寫入該中§己憶胞,包括:設定vB,vl,vr<〇v且 vc>vtEC,同時使該二源/:及極區浮置,其中vc足使電子穿 隧注入該中記憶胞中;以及 寫入该右6己胞’包括.設定Vc>vtpC、\^>Vtp、 VR>VtERX Vr>Vl,其中V1與Vr之差足以產生‘道=電 子’且VR足使熱電子注入該右記憶胞中。 28.如申請專職圍第27項所述之轉發記憶單元的 寫入方法,其中 在寫入6亥左a己憶胞時’係令Vb=〇v vr=uv OV<VKVL ;並且 寫入該右記憶胞時,令VBK)V、Vl=〇v、〇v<V]r<v。 29·—種非揮發記憶單元的抹除方法,包括:R 提供如申請專利範圍第1項所述之非揮一· 令該2源/没極區浮置;以及 X心早70, 在該中、左、右閘極上施加負電壓,並在該 上施加正電壓,該正負電壓之差足以將 曰 電子排出。 何捕捉層中的 30·—種非揮發記憶單元的讀取方法,包括· 34 1263343 14692twf.doc/〇〇6 提供如申請專利範圍第丨項所述之非揮發記憶單元, 其中該中’對應-巾記憶胞,該2側閘極為—左右閘 極對應一左/一右記憶胞,且該2源/汲極區為一左/一右源/ 没極區,其中該中(左、右)記憶胞之-抹除態/寫入態啟始 電壓為 VtEC/VtPC (VtEL/VtpL、VtER/VtPR); 讀取該左記憶胞(該中/左/右閘極上所加電壓為 VC/VL/VR,該左/右源/汲極區上所加電麗為V1/Vr,且該半 導體層上所加電壓為VB),包括:設定Vc>Vtpc、VR>VtpR、 VtpL>VL>VtEL且Vl<Vr,並以流經該記憶單元的電流大小 來判斷該左記憶胞呈抹除態或寫入態; 讀取該中記憶胞,包括:設定vL>VtpL、vR>vtpR、 VtPC>Vc>VtEC且Vi^v卜並以向左或向右流經該記憶單元 的電流大小來判斷該中記憶胞呈抹除態或寫入態;以及 讀取該右記憶胞,包括:設定vc>vtpc、vL>vtpL、 VtPR>VR>VtERa Vl>Vr,並以流經該記憶單元的電流大小 來判斷該右記憶胞呈抹除態或寫入態。 31·如申請專利範圍第3〇項所述之非揮發記憶單元的 讀取方法,其中 在讀取該左記憶胞時,係令vB=ov、νι=ον且 OV<Vr<VL ; 在讀取該右記憶胞時,係令VB=〇V、Vr=OV且 OV<VlSVR ;並且 在讀取該中記憶胞時,係令VB二ον,並令Vr二0V、 0V<VKVc 或是 Vl=〇V、〇v<Vr^Vc。 35a first charge trapping layer after the formation of the 2 source/drain contact layer; forming the middle gate of the semiconductor layer on the semiconductor layer; removing a portion not covered by the middle gate a first charge trapping layer; the sidewall of the first gate/charge trapping layer, the sidewall of the 2 source/drain, the sidewall of the germanium layer, and the layer of the poem conductor are not covered by the pad and the 2 The sidewalls covered by the source/pole contact layer form a spacer; (4) forming the second charge trap layer on the semiconductor layer; and forming a gate between the gate and a source/drain contact layer On the same day, the other side interpole is formed between the middle gate and the other source-level contact layer. The method of fabricating a non-volatile memory unit according to claim 25, wherein a hard mask layer is used in forming the 2 source/drain contact layer, and in the formation Use another hard mask layer for the gate. A method for writing a non-volatile memory unit, comprising: providing a non-volatile memory unit as described in claim 1 wherein the middle gate corresponds to a middle memory cell, and the two side gates are extremely left/ A right gate corresponds to a left 7-right memory cell, and the 2 source/drain regions are a left/right source/pole region, wherein one of the middle (left and right) memory cells is erased/written State start 33 1263343 14692twf.doc/006 The voltage is VtEc/Vtpc (VtEL/VtpL, VtER/VtPR), written to the left memory cell (the voltage applied to the middle/left/right gate is Vc/Vj/Vr, The voltage of the left/right source/no-polar region is Vl/Vr, and the voltage applied to the semiconductor layer is vB), including: setting vc>vtpc, vR>vtpR, VL>VtEd Vl>Vr, Wherein the difference between VI and Vr is sufficient to generate channel hot electrons, and VL is sufficient to inject into the left memory cell; writing the § memory, including: setting vB, vl, vr < 〇 v and vc > vtEC, Floating the two source/: and polar regions, wherein vc is sufficient for electron tunneling to be injected into the memory cell; and writing the right 6 cells 'includes. Setting Vc>vtpC, \^>Vt p, VR > VtERX Vr > Vl, wherein the difference between V1 and Vr is sufficient to generate 'dao=electron' and VR is sufficient to inject hot electrons into the right memory cell. 28. The method for writing a forwarding memory unit as claimed in claim 27, wherein when writing a 6-left cell, the command is Vb=〇v vr=uv OV<VKVL; and writing When the right memory cell is used, let VBK)V, Vl=〇v, 〇v<V]r<v. 29. A method for erasing a non-volatile memory unit, comprising: R providing a non-volatile one as described in claim 1 of the patent application; and causing the 2 source/no-polar region to float; and X-heart early 70, in the A negative voltage is applied to the middle, left and right gates, and a positive voltage is applied thereto, the difference between the positive and negative voltages being sufficient to discharge the germanium electrons. A method for reading a non-volatile memory unit in a capture layer, comprising: 34 1263343 14692 twf.doc/〇〇6 providing a non-volatile memory unit as described in the scope of the patent application, wherein the corresponding - towel memory cell, the 2 side gates are extremely - the left and right gates correspond to a left/right cell, and the 2 source/drain regions are a left/right source/no-polar region, where the middle (left and right) The memory cell-erase/write state start voltage is VtEC/VtPC (VtEL/VtpL, VtER/VtPR); read the left memory cell (the voltage applied to the middle/left/right gate is VC/ VL/VR, the voltage applied to the left/right source/drain region is V1/Vr, and the voltage applied to the semiconductor layer is VB), including: setting Vc>Vtpc, VR>VtpR, VtpL>VL> VtEL and Vl<Vr, and determining, by the magnitude of the current flowing through the memory unit, that the left memory cell is in an erased state or a written state; reading the memory cell includes: setting vL>VtpL, vR>vtpR, VtPC&gt Vc>VtEC and Vi^v and determine the amount of current flowing through the memory unit to the left or right to determine whether the memory cell is erased or written; and read The right memory cell, comprising: setting vc > vtpc, vL > vtpL, VtPR > VR > VtERa Vl > Vr, and to flow through the memory magnitude of the current cell to determine the the right memory cell was erased state or write state. 31. The method of reading a non-volatile memory unit according to claim 3, wherein when reading the left memory cell, the command is vB=ov, νι=ον, and OV<Vr<VL; When taking the right memory cell, let VB=〇V, Vr=OV, and OV<VlSVR; and when reading the memory cell, make VB two ον, and let Vr 2V, 0V<VKVc or Vl =〇V, 〇v<Vr^Vc. 35
TW94108907A 2005-03-23 2005-03-23 Non-volatile memory and fabrication and operation of the same TWI263343B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94108907A TWI263343B (en) 2005-03-23 2005-03-23 Non-volatile memory and fabrication and operation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94108907A TWI263343B (en) 2005-03-23 2005-03-23 Non-volatile memory and fabrication and operation of the same

Publications (2)

Publication Number Publication Date
TW200635050A TW200635050A (en) 2006-10-01
TWI263343B true TWI263343B (en) 2006-10-01

Family

ID=37966342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94108907A TWI263343B (en) 2005-03-23 2005-03-23 Non-volatile memory and fabrication and operation of the same

Country Status (1)

Country Link
TW (1) TWI263343B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385791B (en) * 2009-09-21 2013-02-11 Ememory Technology Inc Mask-defined read-only memory array and method of transforming a one-time programmable memory into a coded non-volatile memory on a substrate
US8466519B2 (en) 2009-08-06 2013-06-18 Ememory Technology Inc. Read-only memory device with contacts formed therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466519B2 (en) 2009-08-06 2013-06-18 Ememory Technology Inc. Read-only memory device with contacts formed therein
US8497172B2 (en) 2009-08-06 2013-07-30 Ememory Technology Inc. Method of manufacturing a read-only memory device with contacts formed therein
TWI385791B (en) * 2009-09-21 2013-02-11 Ememory Technology Inc Mask-defined read-only memory array and method of transforming a one-time programmable memory into a coded non-volatile memory on a substrate

Also Published As

Publication number Publication date
TW200635050A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
TWI305947B (en) A novel low power non-volatile memory and gate stack
TWI433302B (en) Integrated circuit self aligned 3d memory array and manufacturing method
TWI451562B (en) Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
CN102610615B (en) Memory architecture of 3d nor array
JP5466421B2 (en) Floating gate memory device with interpoly charge trap structure
US8501609B2 (en) Method for generating a three-dimensional NAND memory with mono-crystalline channels using sacrificial material
TWI220316B (en) Flash memory cell, flash memory cell array and manufacturing method thereof
US8599616B2 (en) Three-dimensional NAND memory with stacked mono-crystalline channels
TWI270199B (en) Non-volatile memory and manufacturing method and operating method thereof
US10957703B2 (en) Method of reducing charge loss in non-volatile memories
US20030157763A1 (en) Semiconductor memory and its production process
KR20200094222A (en) Memory arrays and methods of forming memory arrays
JP2004015051A (en) Non-volatile memory cell, memory element, and method for manufacturing non-volatile memory cell
US20060108629A1 (en) Multi-bit non-volatile memory device, method of operating the same, and method of fabricating the same
CN103180952B (en) Getter in memorizer charge storage structure
TWI266389B (en) Non-volatile memory and manufacturing method and operating method thereof
US10600794B2 (en) Twin bit non-volatile memory cells with floating gates in substrate trenches
US11201163B2 (en) High-density NOR-type flash memory
US8300448B2 (en) Semiconductor storage device, memory cell array, and a fabrication method and drive method of a semiconductor storage device
TW200834888A (en) Non-volatile memory and fabricating method thereof
TWI263343B (en) Non-volatile memory and fabrication and operation of the same
JP2002368140A (en) Non-volatile semiconductor memory device
TW200536060A (en) Method of manufacturing non-volatile memory cell
JP2004111892A (en) Flash memory device, its manufacturing method, and transistor for flash memory device
TWI271855B (en) Non-volatile memory and manufacturing method and operating method thereof