TWI263050B - Power current micro sensor - Google Patents

Power current micro sensor Download PDF

Info

Publication number
TWI263050B
TWI263050B TW94102054A TW94102054A TWI263050B TW I263050 B TWI263050 B TW I263050B TW 94102054 A TW94102054 A TW 94102054A TW 94102054 A TW94102054 A TW 94102054A TW I263050 B TWI263050 B TW I263050B
Authority
TW
Taiwan
Prior art keywords
power current
substrate
current micro
sensor
micro
Prior art date
Application number
TW94102054A
Other languages
Chinese (zh)
Other versions
TW200626911A (en
Inventor
Nan-Ming Chen
Yuan-Pin Tsai
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW94102054A priority Critical patent/TWI263050B/en
Publication of TW200626911A publication Critical patent/TW200626911A/en
Application granted granted Critical
Publication of TWI263050B publication Critical patent/TWI263050B/en

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

A power current micro sensor includes a substrate, a two dimensional lattice film, and a cathode. The substrate includes pores as waveguides. The two dimensional lattice film in on top and bottom of the substrate, enabling the standing wave of the induced magnetic field to be formed. The cathode is on the two dimensional lattice film, extending through the two dimensional lattice film to the substrate. The cathode is used for measuring the Hall voltage generated by the induced magnetic field.

Description

1263050 玖、發明說明 【發明所屬之技術領域】 本發明係關於一種感測器裝置,且更具體地, 一種電力電流微感測器。 【先前技術】 在傳統電力設備中,電力電流感測器, 比流器(Current Transformer,CT)是用於 顯示通過電力設備電流的重要元件。比流器 於電力設備,例如電纜導線外部,用以監測 電流,於電力供應中扮演重要角色。比流器 用矽鋼片鐵芯繞線方式,使電纜中之電流磁 鐵芯感應至二次側線圈,再由二次側線圈傳 關保護及顯示設備。 第1 A圖與第1 B圖乃繪示傳統比流器之 意方塊圖示。於第1A圖中,比流器1 0 0乃 電纜1 0 2之外部,比流器1 0 0係可感測流經1 上之電流I,並產生一感應電流Ib,藉由測 電流IB,以及感應電流IB與電流I間之對應 便可推得通過電纜1 〇 2上之電流I。比流器 進一步連接至一數位電驛 1 〇 4,同時數位電 乃連接至斷路器108,當通過電纜102之電 過大時,數位電驛1 0 4便可藉由斷路器1 0 8 過電纜1 0 2之電流,而達到電力保護之目的 係關於1263050 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor device, and more particularly, to a power current microsensor. [Prior Art] In a conventional power device, a power current sensor, a Current Transformer (CT) is an important component for displaying current through a power device. Current comparators are used outside of electrical equipment, such as cable conductors, to monitor current and play an important role in the power supply. The current-flowing device uses a silicon steel core winding method to induce the current magnetic core in the cable to the secondary side coil, and then the secondary side coil relay protection and display device. Figures 1A and 1B show the block diagrams of a conventional current comparator. In Fig. 1A, the current transformer 100 is the outside of the cable 1 0 2 , and the comparator 1 0 0 senses the current I flowing through 1 and generates an induced current Ib by measuring the current IB. And the correspondence between the induced current IB and the current I can be used to push the current I through the cable 1 〇2. The current transformer is further connected to a digital power port 1 〇4, and the digital power is connected to the circuit breaker 108. When the power through the cable 102 is too large, the digital power cable 1 0 4 can pass through the circuit breaker 1 0 8 through the cable. 1 0 2 current, and the purpose of achieving power protection is about

亦稱為 保護及 乃裝設 通過之 通常使 場精由 送至相 西己f $ 配置於 :纜 1 0 2 量感應 關係, 100乃 驛 1 04 流負載 切斷通 。此外, 1263050 如第1 B圖所示,比流器1 0 0亦可連接至一數位電 錶1 0 6,以作為電力顯示之用。直流電源1 1 0則提 供數位電驛1 0 4與數位電錶1 0 6所需之電源。 然而,傳統之比流器乃由鐵芯元件所構成,不 僅體積龐大,且極易受磁飽和及磁滯因素而影響感 測靈敏度。當通過電流為交變電流時,鐵芯的磁化 曲線來回震盪形成磁滯迴線(hysteresis loop)。在 交流狀態下,鐵芯中之能量密度等於磁滯曲線内所 〇 包圍之面積,此為電源所供給之淨能量,其中部分 能量會轉為熱損失,稱為磁滯損失(hysteresis 1 〇 s s ),使得電流偵測受到限制,而無法達到迅速保 護與正確顯示之目的。以下將詳細說明比流器產生 磁滯現象之成因。 « 如第2 A圖所示,考慮電纜1 0 2通以電流/時, 通過比流器 1 00 環狀(torous)鐵芯之磁力線(flux line) 1 1 2 呈環形。其所產生之磁化曲線 (magnetization curve)如第 2B 圖所示,於第 2B 圖 • 中,橫軸係表示磁場強度丑,且縱軸係表示磁通量 密度/3 。 因磁場強度丑為連續的,故磁通量密度/3的散 度為零: 由斯托克斯定理(Stoke’s theorem)得知:Also known as protection and installation is usually passed to the field to send to the opposite phase f $ Configured in: cable 1 0 2 volume sensing relationship, 100 is 驿 1 04 flow load cut off. In addition, 1263050, as shown in Fig. 1B, the comparator 1 0 0 can also be connected to a digital meter 106 for use as a power display. The DC power supply 1 1 0 provides the power required for the digital power 1 0 4 and the digital meter 1 0 6 . However, the conventional current transformer is composed of a core element, which is not only bulky, but also susceptible to magnetic saturation and hysteresis factors. When the passing current is an alternating current, the magnetization curve of the core oscillates back and forth to form a hysteresis loop. In the AC state, the energy density in the iron core is equal to the area enclosed by the hysteresis curve. This is the net energy supplied by the power supply, and some of the energy is converted into heat loss, called hysteresis loss (hysteresis 1 〇ss ), so that the current detection is limited, and can not achieve the purpose of rapid protection and correct display. The cause of the hysteresis caused by the flow comparator will be described in detail below. « As shown in Fig. 2A, consider that the cable 1 0 2 is connected to the current line by the flux line 1 1 2 of the toroidal core of the flow vessel 1 00. The magnetization curve produced is shown in Fig. 2B. In Fig. 2B, the horizontal axis indicates that the magnetic field strength is ugly, and the vertical axis indicates the magnetic flux density /3. Since the magnetic field strength is ugly, the dispersion of magnetic flux density /3 is zero: It is known by Stoke's theorem:

ν·Η 二 JΗ·Η II J

[iy-H\ds=[j-ds 1263050 其中/表示電流密度。 磁場強度丑與電流/成正比,當電流/由初值 遞增時,隨磁場強度//之增加,磁通量密度/3沿第 2 B圖所示之磁化曲線a增加。當磁場強度//值增 大,因鐵芯内集中的磁化強度Μ使磁通量密度/5快 速的上升。當磁化強度Μ到達一定值時,磁化曲線 斜率漸小而平緩,此時即為徵芯飽和(s a t u r a t e )。此 φ 時曲線似呈水平,但磁通量密度/3仍緩慢上升,斜 率於很大值時,磁通量密度/3正比於磁場強度丑, 此時磁化強度Μ不再增加,但若所用的物質為非磁 性物質時,磁化強度Μ之值為零、磁通量密度/3永 遠等於磁場強度。 • 磁化曲線a非線性的達到飽和後,若電流/值 _ 減低使磁場強度丑回到零值,但磁通量密度/3將沿 磁化曲線b降低。至磁場強度//= 0時,雖無電流 /,仍存在著剩餘磁通量密度(residual flux densi ty)凡。當電流/為負值時通過磁場強度5 矯頑磁力(coerctive force)使磁通量密度/3為零。沿 磁化曲線b至負飽和,當電流/再由負值降低,延 磁化曲線c移動,並因正電流/回至正飽和點,因 此發現電流I值位於正負間變化之交變電流,鐵芯 的磁化曲線即介於磁化曲線b、c間,來回振盪形 成迴線,此稱為磁滯迴線(hysteresis loop)。在交 流狀態下,磁通量密度/5非磁場強度丑之單一函數 7 1263050 (single-valued function),在鐵芯中能里逸度專於 磁滯曲線内所包圍的面積,此即為電源一週所供給 之淨能量,其中部份能量會轉為熱損失’此即為磁 滞損失(h y s t e r e s i s 1 〇 s s )。故為使損失減小則須使石兹 滯迴線窄化,因此鐵芯多為矽鋼片材料。[iy-H\ds=[j-ds 1263050 where / represents current density. The magnetic field strength is ugly proportional to the current/current. When the current is increased by the initial value, the magnetic flux density /3 increases along the magnetization curve a shown in Fig. 2B as the magnetic field strength increases. When the magnetic field strength/value is increased, the magnetic flux density /5 is rapidly increased due to the concentrated magnetization in the core. When the magnetization Μ reaches a certain value, the slope of the magnetization curve becomes smaller and gentler, and this is the core saturation (s a t u r a t e ). The curve of φ seems to be horizontal, but the magnetic flux density /3 still rises slowly. When the slope is at a large value, the magnetic flux density /3 is proportional to the magnetic field strength. At this time, the magnetization Μ does not increase, but if the substance used is non- In the case of a magnetic substance, the value of the magnetization Μ is zero, and the magnetic flux density / 3 is always equal to the magnetic field strength. • After the magnetization curve a is nonlinearly saturated, if the current/value _ is reduced, the magnetic field strength will return to zero, but the magnetic flux density /3 will decrease along the magnetization curve b. When the magnetic field strength / / = 0, although there is no current /, there is still residual flux density (residual flux density). When the current / is negative, the magnetic flux density /3 is zero by the magnetic field strength 5 coerctive force. Along the magnetization curve b to negative saturation, when the current / again decreases by a negative value, the extension magnetization curve c moves, and because of the positive current / back to the positive saturation point, it is found that the current I value is located between the positive and negative alternating current, the iron core The magnetization curve is between the magnetization curves b and c, and oscillates back and forth to form a return line. This is called a hysteresis loop. In the AC state, the magnetic flux density / non-magnetic field strength ugly single function 7 1263050 (single-valued function), in the iron core energy fugacity is dedicated to the area enclosed in the hysteresis curve, this is the power supply week The net energy supplied, some of which will be converted into heat loss 'this is the hysteresis loss (hysteresis 1 〇 ss ). Therefore, in order to reduce the loss, it is necessary to narrow the hysteresis loop, so the iron core is mostly a silicon steel sheet material.

當導磁性矽鋼材在磁通量密度点下’原子内層 (inner shell)電子磁化,沿磁場方向排列,但此時 彼此間將因熱運動(thermal motion)撞擊而破壞其 排列,導磁性材内磁化強度Μ將變為:When the magnetically conductive niobium steel is magnetized at the magnetic flux density point 'inner shell', it is arranged along the direction of the magnetic field, but at this time, the arrangement will be destroyed by thermal motion, and the magnetization in the magnetic conductive material will be broken. Μ will become:

M = NU tanh^ μ kT 其中凡表示作用於原子上之磁場,表示波茲曼能 量(Boltzmanenergy),NM表示電子濃度,且#表示 導磁係數。 考慮磁化強度Μ及磁化飽和強度Μ”,比值: Μ μΗ 二 μβ 此處L為臨界溫度(critical temperature)。由上式 可得知,當電流/上升,且鐵芯所流通之磁通量密 度冷上升時,此時鐵芯溫度:Γ亦上升,Γ〉且持續 上升,而鐵芯之磁化強度 Μ 因熱撞擊使之下降, M/Μ〃,值下降’此結果將使得電力電流在偵測上因 此受限,且無法更有效達到迅速保護及正確顯示目 的0 8 1263050M = NU tanh^ μ kT where the magnetic field acting on the atom represents Boltzmannenergy, NM represents the electron concentration, and # represents the magnetic permeability coefficient. Consider magnetization Μ and magnetization saturation strength Μ”, ratio: Μ μΗ 2μβ where L is the critical temperature. It can be seen from the above equation that when the current/rise, and the magnetic flux density of the iron core rises coldly At this time, the core temperature: Γ also rises, Γ> and continues to rise, and the magnetization of the core 下降 is reduced by thermal shock, M / Μ〃, the value drops 'this result will make the power current detected Therefore limited, and can not be more effective to achieve rapid protection and correct display purposes 0 8 1263050

信由比 因樣久 以器 比經類滯取長 得測 類再 |礙, , ,感 一需此及中制 器小 為,,和程限 測縮 係時而飽過性 感時 &備然磁號特。流同 ^設。受信理展電, t>護用已位物發力差。 P 保應便數些的電誤容 k 及以,為這統之測相 須示h時換。系進量錶 感顯可測轉著護改之電 所位P偵於顯保種成位 器數1初故形型一造數 >JT至 y 最,更慧要所與 奐 一 比送 } 於差將智需象可 ,傳 值誤題了, 現並 外欲 U流成問限此滞 , 此若/#1電造差侷因磁積 , 比號而誤來 善體 號類信素率以 改之 【發明内容】 . 因此本發明之一目的在於提供一種電力電产& 、 -器’係藉由量測通過電纜之電流產生之一感應碌::认感 測通過電纜之電流大小。 每’以 ® 本發明之另一目的在於提供一種電力電流微感測 統’係用以>f貞測通過電境之電流。 本發明之再另一目的在於提供一種電力電流微感測 之製造方法。 根據本發明之上述目的’提出一種電力電流微咸 器,含有^一基板、一 一維晶格薄膜與一引接電極。基板 具有作為波導之孔隙,且二維晶格薄膜位於基板頂部與 部,以使感應磁場於二維晶格薄膜内產生駐波。引接電 乃位於二維曰β格薄膜上,並向下延伸通過二維晶格薄膜 1263050 基板中’以量測感應磁場產生之一霍爾電壓。 ^根據本發明之另一目的,提出一種電力電流微感測系 統,含有一電力電流微感測器與一驅動電路。電力電流微 感測器乃用於量測通過電繞之電流產生之一感應磁場,電 力電流微感測器進一步含有一基板、—二維晶格薄膜與一 引接電極。基板内具有作為波導之孔隙,且二維晶格薄膜 位於基板頂部與底部,以使感應磁場於二維晶格薄膜内產 生駐波。引接電極乃位於二維晶格薄膜上,並向下延伸通 過二維晶格薄膜至基板中’以量測感應磁場產生之一霍爾 電壓。驅動電路乃用以驅動電力電流微感測器,並將電力 電流微感測器量測之霍爾電壓,轉換為對應之一電流值。 根據本發明之再另一目的,提出一種電力電流1微感測 益之製造方法。首先,於一基板頂部形成一遮罩層。接著, 移除部分遮罩層,以使部分基材頂部露出。隨後,於基材 形成作為波導之用之孔隙。下一步則為移除遮罩層之1餘 部分。接著,於基板頂部與底部形成一二維晶格薄膜:、隨 後,移除基材頂部之部分二維晶格薄膜與部分基材,以形 成一引接電極接觸孔,引接電極接觸孔乃由二維晶格薄膜 延伸至基板内。進-步地,於基材頂部之二維晶格薄膜盘 引接電極接觸孔’形成一金屬層。最後,移除部分金屬層二 以形成引接電極。 曰 根據本發明之電力電流微感測器,提供較佳之靈敏 度,可降低因磁滯現象所造成之量測誤差,且與傳統比流 器相比,大幅度降低量測器之體積。此外,根據本發明: 10 1263050 電力電流微感測11 ’ 一步地對於量測之電流 可便利地耦接至數位裝置, ,進行進一步之數位處理。 可進 【實施方式】 比流器之上述缺陷,長久侷限了電力系統 慧的發展,所以我們考慮電力電流交變的物 性,在電纟覽導線週圍將產生日令麦電磁場,此電 將隨電流波形變化,因此為肥感測此波形變化 9 希望元件的材質能減小其體積’並使飽和現 低。故採用目前半導體製程技術加以運用,選 當材料加工製作成電力電流微感測裝置。 根據本發明之電力電流微感測器,乃利用 體元件中之霍爾效應原理進行感測’由於磁場 件運動中的載子產生勞徐兹力(L〇renz force), 會因磁場影響其原電流路徑’使電荷堆積於不 壓的兩端,電荷堆積的多寡會與材料中載子 (concentration),遷移率(mobility)及電流磁場 成比例,藉由測量所產生之霍爾電壓,以間接 通過電纜導線之電流。 此外,於製造根據本發明之電力電流微感 時,為降低未來製作成本及製程程序簡化,因 用矽(S i)為主要材料,且因一般電纜導線之電 約為60〜300赫兹(Hz)間之極低頻率(Supper Frequency 5 SLF)電磁場,故使用不同變化之 以提高微感測器之感應靈敏度。同時,結合微 器與導磁矽鋼薄片,將電力電流磁場集中並轉 電壓信號,藉由放大電路或轉換光纖信號傳送 更智 理特 磁場 ,且 象降 擇適 半導 對元 電荷 加電 濃度 強度 測得 測器 此選 磁場 Low 結構 感測 換成 ,供 11 1263050 應至電驛保護或電錶顯示。以下將詳述本發明之 力電流微感測器測量原理,結構,製造方法,裝 配置,以及其應用。 一、電力電流微感測器測量原理 根據本發明之電力電流微感測器,係利用畢 沙瓦定律與霍爾效應,對於通過電纜導線之電流 φ 行量測。首先,當電流通過電纜導線時,根據畢 沙瓦定律,於電纜導線周圍將產生一感應磁場。 感應磁場大小,乃為通過電纜導線電流之函數, 可藉由測量此感應磁場,進而計算得知通過電纜 線之電流大小。 然而,因感應磁場大小不易測量,故進一步 用霍爾效應,亦即,電力電流微感測器於此感應 - 場中,將產生一霍爾電壓,此霍爾電壓大小係為 應磁場之函數,故藉由測量產生之霍爾電壓,並 Φ 據霍爾電壓與感應磁場間之函數關係,以及感應 場與電纜導線電流間之函數關係,便可計算求得 過電纜導線之電流大小。以下將針對電纜導線 流,感應磁場,以及霍爾電壓三者間之關係詳細 明。 1 .電纟覽導線電流與感應磁場關係 第3 A圖與第3 B圖乃說明計算通過電纜導線 電流’於電纟覽導線周圍產生之感應磁場大小不 電 ax 奥 進 奥 此 故 導 利 磁 感 根 磁 通 電 說 之 意 12 1263050 圖。於第3A圖中,電纜導線102乃位於Z軸,且 有電流I通過。已知當電流流過導體時,為量測導 體表面某一點所通過磁場強度,則以向量磁位 d (vector magnetic potential),沿表面封閉曲線之 總磁場強度·值為基準。 4π 4π R mThe letter is longer than the cause of the instrument, and the length of the test is longer than that of the stagnation, and the sense is that it needs to be small and the medium is small, and the limit is shrinking and sometimes it is sexy. No. The flow is the same as ^. Trusted by the exhibition, t> P should be able to count the number of electrical errors k and then, for this system of measurement must show h when changing. Into the meter, the sensibility of the meter can be measured and transferred to the protection of the electric station. P is detected in the display of the number of the number of the position of the device. 1 The first shape of a type of number> JT to y The most, more Huizhi and Yiyi than to send } In the case of the difference, the intelligence needs to be like the value, the value is misunderstood, and now the desire to flow into the limit of this lag, this if / #1 electric production due to the magnetic product, the number is wrong and come to the good body letter Therefore, it is an object of the present invention to provide an electric power generator & "the device" is measured by measuring the current generated by the cable: Current size. Another object of the present invention is to provide a power current micro-sensing system for >f to measure the current through the electrical environment. Still another object of the present invention is to provide a method of manufacturing a power current micro-sensing. According to the above object of the present invention, a power current porter is provided which comprises a substrate, a one-dimensional lattice film and a lead electrode. The substrate has pores as waveguides, and the two-dimensional lattice film is located at the top and the bottom of the substrate to cause the induced magnetic field to generate standing waves in the two-dimensional lattice film. The lead-in electricity is located on the two-dimensional 曰β lattice film and extends downward through the two-dimensional lattice film 1263050 in the substrate to measure the induced magnetic field to generate one of the Hall voltages. According to another object of the present invention, a power current micro-sensing system is provided, comprising a power current micro-sensor and a driving circuit. The power current micro-sensor is used to measure an induced magnetic field generated by the electric current. The electric current micro-sensor further comprises a substrate, a two-dimensional lattice film and a lead electrode. The substrate has pores as waveguides, and the two-dimensional lattice film is located at the top and bottom of the substrate to cause the induced magnetic field to generate standing waves in the two-dimensional lattice film. The lead electrode is located on the two-dimensional lattice film and extends downward through the two-dimensional lattice film into the substrate to measure the induced magnetic field to generate one of the Hall voltages. The driving circuit is configured to drive the power current micro-sensor and convert the Hall voltage measured by the power current micro-sensor to a corresponding one of the current values. According to still another object of the present invention, a method of manufacturing a power current 1 micro-sensing benefit is proposed. First, a mask layer is formed on top of a substrate. Next, a portion of the mask layer is removed to expose a portion of the top of the substrate. Subsequently, a void for the waveguide is formed on the substrate. The next step is to remove more than 1 part of the mask layer. Next, a two-dimensional lattice film is formed on the top and bottom of the substrate: and then, a part of the two-dimensional lattice film and a part of the substrate are removed from the top of the substrate to form a contact electrode contact hole, and the contact electrode contact hole is formed by two The Victorian lattice film extends into the substrate. Further, a two-dimensional lattice film disk on the top of the substrate is connected to the electrode contact hole' to form a metal layer. Finally, a portion of the metal layer 2 is removed to form a lead electrode.电力 The power current micro-sensor according to the present invention provides better sensitivity, reduces the measurement error caused by hysteresis, and greatly reduces the volume of the detector compared with the conventional comparator. Furthermore, in accordance with the invention: 10 1263050 Power Current Microsensing 11 ' One step for measuring the current can be conveniently coupled to the digital device for further digital processing. Can be advanced [implementation] The above-mentioned defects of the current comparator have long limited the development of the power system, so we consider the physical properties of the alternating current, the solar magnetic field will be generated around the electric wire, this electricity will follow the current The waveform changes, so this waveform is changed for the fertilizer. 9 It is hoped that the material of the component can reduce its volume' and make the saturation low. Therefore, it is applied by the current semiconductor process technology, and the material is processed into a power current micro-sensing device. The power current microsensor according to the present invention utilizes the Hall effect principle in the body element to sense 'the L〇renz force due to the carrier in the motion of the magnetic field member, which is affected by the magnetic field The original current path 'accumulates the charge at both ends of the non-pressure, and the amount of charge accumulation is proportional to the concentration, mobility, and current magnetic field in the material. By measuring the Hall voltage generated, Indirect current through the cable conductor. In addition, in order to reduce the future manufacturing cost and process procedure simplification when manufacturing the power current micro-sensing according to the present invention, 矽(S i ) is used as the main material, and the electric power of the general cable wire is about 60 to 300 Hz (Hz). Supper Frequency 5 SLF electromagnetic field, so different changes are used to improve the sensitivity of the micro sensor. At the same time, combined with the micro-machine and the magnetic galvanized steel sheet, the electric current and magnetic field are concentrated and converted into a voltage signal, and the more precise magnetic field is transmitted by the amplifying circuit or the converted optical fiber signal, and the concentration of the electric charge is increased by the appropriate semi-conducting pair. The measuring device selects the magnetic field Low structure sensing and replaces it for 11 1263050 to the electric power protection or the electric meter display. The measurement principle, structure, manufacturing method, assembly configuration, and application thereof of the force current micro-sensor of the present invention will be described in detail below. I. Power Current Micro-Sensor Measurement Principle The power-current micro-sensor according to the present invention measures the current φ passing through the cable wire by using the Bishua law and the Hall effect. First, when current is passed through the cable conductor, an induced magnetic field is generated around the cable conductor according to Bishua's law. The magnitude of the induced magnetic field is a function of the current through the cable conductor. By measuring the induced magnetic field, the current through the cable is calculated. However, since the magnitude of the induced magnetic field is not easy to measure, the Hall effect is further used, that is, the power current micro-sensor is used to generate a Hall voltage in the induction field, and the Hall voltage is a function of the magnetic field. Therefore, by measuring the Hall voltage generated, and according to the function relationship between the Hall voltage and the induced magnetic field, and the relationship between the induction field and the cable lead current, the current of the cable lead can be calculated. The following is a detailed description of the relationship between cable conductor flow, induced magnetic field, and Hall voltage. 1. The relationship between the electric current and the induced magnetic field is shown in Fig. 3A and Fig. 3B. It is shown that the current through the cable conductor current 'the induced magnetic field generated around the electric wire is not electrically ax. The sense of root magnetic power says the meaning of 12 1263050. In Figure 3A, the cable conductor 102 is on the Z-axis and a current I passes. It is known that when a current flows through a conductor, in order to measure the strength of the magnetic field passing through a point on the surface of the conductor, the vector magnetic potential d is used as a reference for the total magnetic field strength value along the surface closed curve. 4π 4π R m

φ = (^Α·άΐ(\νδ) 微感測器位於電纜導線 1 〇 2側某一小段區間 dl、= azdz、中,對其週邊之量測點 P (r,0,0 ),位於量測 點P所量測的向量磁位d如下:φ = (^Α·άΐ(\νδ) The micro-sensor is located in a small interval dl, = azdz, in the side of the cable conductor 1 〇 2, and is measured at the surrounding point P (r, 0, 0). The vector magnetic position d measured by the measurement point P is as follows:

μ〇Ι_ ^ dzy MQI'」L2+r2 +L〇Ι _ ^ dzy MQI'" L2+r2 +L

"^V(zf+,L2+r^L β = ^χ(αζΑζ) ( \ =αΦ μ0ΙΣ wb ^r1 ym , 依畢奥沙瓦定律(Bio-Savartlaw): R = arr - azz’ dVxR = a2dz'x(arr-a2z')= αφνάζ} 13 1263050"^V(zf+,L2+r^L β = ^χ(αζΑζ) ( \ =αΦ μ0ΙΣ wb ^r1 ym , Bio-Savartlaw: R = arr - azz' dVxR = a2dz 'x(arr-a2z')= αφνάζ} 13 1263050

當量測點P與電纜導線1 0 2距離為r,且Γ < < L L係為電纜導線1 Ο 2之長度,該量測點P所受 量密度/3為: 時, 磁通The distance between the equivalent measuring point P and the cable conductor 1 0 2 is r, and Γ << L L is the length of the cable conductor 1 Ο 2, and the measured density P of the measuring point P is: when, the magnetic flux

μ0Ι f wb^ 2m\m2, A=a^lnΙ0Ι f wb^ 2m\m2, A=a^ln

λ! L2 + r2 + L λ/l2 +r2 -L 因此由電纜導線1 0 2之對稱性,並根據r << 得常數之磁通量密度/3值: β = νχΑ = αφ^-(τ) 第3 Β圖乃繪示若為時變電源1 1 4,振幅 角頻率ω ,& = ^ sin砍連接至負載ζ 1 1 6,並通 流I ’計算距離電纟覽導線1 0 2側r處之磁場強肩 採用廣義安培迴路定律,由積分路徑c得到電 線1 0 2側!·處之磁場強度丑彡。選擇邊線同為c 及S 2曲面討論,因積分路徑對稱性使得為常 -dl — 27ττΗφ 得到 ,獲 V〇、 以電 :乂。 纜導 之S i •數: 14 1263050λ! L2 + r2 + L λ/l2 +r2 -L Therefore the symmetry of the cable conductor 1 0 2 and according to r << constant constant magnetic flux density / 3 value: β = νχΑ = αφ^-(τ The third diagram shows that if the time-varying power supply 1 1 4, the amplitude angular frequency ω, & = ^ sin is chopped to the load ζ 1 1 6, and the current I 'calculates the distance electric traction wire 1 0 2 The strong magnetic shoulder at the side r uses the generalized ampere circuit law, and the integral path c gets the wire 1 0 2 side! · The magnetic field strength is ugly. The selection of the edge is the same as the c and S 2 surfaces. The symmetry of the integral path is obtained by the constant -dl - 27ττΗφ, which is V〇 and 乂: 乂. Cable guide S i • Number: 14 1263050

V0 siru^i z 對時變的磁場而言,須滿足電荷守恆原理,且 表示式為連續方程式,因此修正方程式才能符合:V0 siru^i z For a time-varying magnetic field, the principle of conservation of charge must be satisfied, and the expression is a continuous equation, so the equation can be corrected to:

VxHVxH

dD ~dtdD ~dt

[H-dl = I + 每.ds[H-dl = I + per .ds

PP

^D-ds-Q 其中p為自由電荷密度。 此稱為馬克斯威爾方程式(Maxwell’s equations)。依馬克斯威爾方程式得知,r處無論 在S 1或S 2曲面範圍内,所得的磁場強度結果一樣:^D-ds-Q where p is the free charge density. This is called Maxwell's equations. According to Maxwell's equation, the resulting magnetic field strength results in the same range of S 1 or S 2 surfaces:

Ηφ=ψ^ ( 1) Δτντ-ζ 上式(1 )即為當電流通過電纜導線時,於周 圍產生之感應磁場大小。一般電力電纟覽之電流範圍 約為1安培至2000安培,故產生之感應磁場範圍 為1 (T5 特斯拉至0.0 2特斯拉。 2 .感應磁場與霍爾電壓關係 元件運動中的載子,將因磁場而產生勞倫茲力 15 1263050 (L 〇 r e n z f 〇 r c e ),電荷會因磁場影響其原電流路 使電荷堆積於不加電壓的兩端,電荷堆積的多 與材料中載子濃度(concentration), 遷; (m 〇 b i 1 i t y)及磁場強度成比例。 如第4圖所示,微感測器2 0 0置於待測電 線旁,寬度為 W,且厚度為t。沿著微感測器 之X方向外加均勻驅動電流/,其中驅動電流 於電流密度與截面面積之乘積。當通過 _ 導線之電流產生感應磁場/3 ζ時,使感應磁海 沿ζ軸方向垂直通過微感測器2 0 0,並因磁偶 產生向量磁位/,且於微感測器 2 0 0上產生等 流密度,並產生阻礙X方向之電洞或電子行徑 方向電磁力,即所謂勞倫茲力:Ηφ=ψ^ ( 1) Δτντ-ζ The above equation (1) is the magnitude of the induced magnetic field generated when current passes through the cable conductor. The current range of electric power is about 1 ampere to 2000 amps, so the induced magnetic field range is 1 (T5 Tesla to 0.0 2 Tesla. 2. The relationship between the induced magnetic field and the Hall voltage in the motion of the component. The child will generate the Lorentz force 15 1263050 (L 〇renzf 〇rce ) due to the magnetic field. The charge will affect the original current path due to the magnetic field, so that the charge will accumulate at the two ends of the uncharged voltage. Concentration, migration; (m 〇bi 1 ity) and magnetic field strength proportional. As shown in Figure 4, the micro-sensor 200 is placed next to the wire to be tested, width W, and thickness t. A uniform drive current / is applied along the X direction of the micro-sensor, wherein the drive current is the product of the current density and the cross-sectional area. When the induced magnetic field is generated by the current of the _ wire, the induced magnetic sea is perpendicular to the x-axis direction. Passing the micro-sensor 200, and generating a vector magnetic position/ due to the magnetic couple, and generating an equal current density on the micro-sensor 200, and generating a hole or electron-direction electromagnetic force that hinders the X direction, that is, The so-called Lorentz force:

Fy = -νχβζ) ' 其中q為電荷電量,h為電荷速度。 為維持X方向穩定微感測器2 0 0,須產生 _ 向電場以平衡因應:Fy = -νχβζ) ' where q is the charge charge and h is the charge rate. In order to maintain the X-direction stable micro-sensor 200, a _-direction electric field must be generated to balance the response:

Ey=vJz 此效應稱為霍爾效應(Hall effect),所建 電埸五稱為霍爾電埸(Hall field),相對建立 位差稱為霍爾電壓(Hall voltage)^。 上式可進一步表示為:Ey=vJz This effect is called Hall effect. The built-up 埸5 is called Hall field, and the relative setup difference is called Hall voltage^. The above formula can be further expressed as:

Ey-^PZ-RHJJZ qp〇 徑, 寡會 多率 纜導 200 /等 電纜 1 β ζ 極矩 效電 的y y方 立之 的電 16 1263050Ey-^PZ-RHJJZ qp〇 Diameter, oligopoly rate cable guide 200 /etc. cable 1 β ζ pole moment power y y side of the electricity 16 1263050

Rh = 9P〇 其中及//稱為隹爾係數(Hall coefficient)。 而巧"計异得到霍爾電壓尸# ·· 其中L為通過感測器之驅動電流,点z為電纜導線 於z軸之、磁通量密度,及#為霍爾係數,^為微感測 • 器厚度。 故根據本發明之電力電流微感測器,乃是首先 藉由量測霍爾電壓,並根據式(2 )計算感應磁 碭0 z之強度。隨後,再進一步藉由式(1 )以計算 通過電纜導線之電流。 二、電力電流微感測器結構 • 第5A圖與第5B圖乃繪示根據本發明一較佳具體實施 例之電力電流微感測器裝置500,其中第5 a圖乃繪示電力 電流彳放感測500之剖面圖。根據本發明之電力電流微感 測器500含有一基板5! 〇 ’,以及引接電極5 3 〇。基板5! 〇 内具有夕個用以作為波導之孔隙54〇。二維晶格薄膜520乃 位於基板5 1 0之頂部與底部,以使感應磁場於其中產生駐 波。引接電極530乃位於二維晶格薄膜520上,並延伸通 過二維晶格薄膜520向下進入基板510。引接電極乃用於量 測電纟覽電流產生之感應磁場’於電力電流微感測器5 〇 〇虞 17 1263050 生之霍爾電壓。 使用電力電流微感測器裝置5〇〇進 、 測里之感應磁場垂直通過引接電⑮53 使 由引接電極53。量測感應磁場產生之霍爾電^ 522,精 第5B圖乃繪示根據本發明之電力電流微感測器俯 …根據本發明之電力電流微感測器、5〇〇較佳地為十字Rh = 9P 〇 where and / / is called the Hall coefficient. And Qiao "Differentially get Hall voltage corpse # ·· where L is the drive current through the sensor, point z is the cable wire on the z-axis, magnetic flux density, and # is the Hall coefficient, ^ is the micro-sensing • Thickness. Therefore, the power current microsensor according to the present invention first calculates the Hall voltage and calculates the intensity of the induced magnetism according to equation (2). Subsequently, the equation (1) is further used to calculate the current through the cable conductor. 2. Power Current Micro-Sensor Structure • FIGS. 5A and 5B are diagrams showing a power current micro-sensor device 500 according to a preferred embodiment of the present invention, wherein FIG. 5 a is a diagram showing power current彳A cross-sectional view of the sensing 500. The power current microsensor 500 according to the present invention comprises a substrate 5! 〇 ', and a lead electrode 5 3 〇. The substrate 5! 具有 has an aperture 54 用以 for use as a waveguide. The two-dimensional lattice film 520 is located on the top and bottom of the substrate 510 to cause an induced magnetic field to generate standing waves therein. The lead electrode 530 is located on the two-dimensional lattice film 520 and extends through the two-dimensional lattice film 520 down into the substrate 510. The lead electrode is used to measure the induced magnetic field generated by the electric current. The Hall voltage generated by the power current micro-sensor 5 〇 12 17 1263050. Using the power current micro-sensor device 5, the induced magnetic field in the measurement is vertically passed through the lead-in electrode 1553 to be connected to the electrode 53. Measuring the Hall Electric Power generated by the induced magnetic field 522, Figure 5B shows the power current micro-sensor according to the present invention. The power current micro-sensor according to the present invention, preferably 5

測…、長方形等其他形狀。電力電流微感 可使用—定錢驅動電路或-定電流驅動電路加 以*動。 二維晶格薄膜520乃位於基板51〇之頂部與底部,分 別為頂部二維晶格薄膜52〇與底部二維晶袼薄膜52〇,乃用 :使電、、見電流產生之感應磁場,於二維晶格薄膜内形 成駐波,以防止感應磁場進入微感測器5 〇 〇時產生衰 ~減。二維晶格薄膜520例如可為二氧化矽層,可藉由化學 氣相/儿積(CVD )、電漿增強化學氣相沉積(pECVD ),或 φ 其他半導體製程方式形成。 電繞電流產生之感應磁場,可於二維晶格薄膜 5 2 〇形成駐波,乃因在一般晶體中,電磁耦合場的 月色量可以是量子化,它的能量量子稱為電磁耦合場 量子(polarition)。於二維晶格薄膜520,準二維 M格波虿子稱為表面聲子(transverse optical),亦 稱表面電磁聲子。在理論中表面電磁聲子將與電磁 幸田射_合形成搞合場量子,即表面電磁耦合場的一 種量子(surface polarition)。 18 1263050 5 2 0之介電係 如第6A圖所示,二維晶格薄膜 數6,電磁場乃沿z軸方向行進: £Measure..., other shapes such as rectangles. Power current micro-sensing can be used - fixed money drive circuit or - constant current drive circuit plus * move. The two-dimensional lattice film 520 is located at the top and bottom of the substrate 51, respectively, and is a top two-dimensional lattice film 52 〇 and a bottom two-dimensional crystal film 52 〇, which are used to: generate electricity, and induce an electric field generated by current. A standing wave is formed in the two-dimensional lattice film to prevent the induced magnetic field from entering and exiting the micro-sensor 5 〇〇. The two-dimensional lattice film 520 may be, for example, a ceria layer, which may be formed by chemical vapor/inclusion (CVD), plasma enhanced chemical vapor deposition (pECVD), or φ other semiconductor processes. The induced magnetic field generated by the electric current can form a standing wave in the two-dimensional lattice film 5 2 ,, because in a general crystal, the monthly color of the electromagnetic coupling field can be quantized, and its energy quantum is called an electromagnetic coupling field. Quantum. In the two-dimensional lattice film 520, the quasi-two-dimensional M-wave dipole is called a transverse optical, also called a surface electromagnetic phonon. In theory, the surface electromagnetic phonon will be combined with the electromagnetic field to form a field quantum, that is, a surface polarition of the surface electromagnetic coupling field. 18 1263050 5 2 0 Dielectric system As shown in Figure 6A, the number of two-dimensional lattice films is 6, and the electromagnetic field travels along the z-axis: £

=£11=£11

其中表示X軸向介電係數’ 表示 數,〜表示平行向介電係數,匕表示 數,且q表示垂直向介電係數。 如第 6 B 圖所示,假設橫向磁 magnetic wave,TM)沿X軸向傳播波 表表面電磁耦合量子平行於表面的波 度比例按指數衰減,得知在介質I之 之基板510為衰減場,但位於介質Π 膜5 2 0内則非為衰減場,依馬克斯威 判斷,電磁波在二維晶格薄膜5 20内难 然而,因當感應磁場通過不同介 感應磁場之量值將產生變化,故於基 二維晶格薄膜5 2 0後,實際進入基板 場大小將產生改變,故需對式(1 ) 場大小加以修正,以下將說明如何計 格5 2 0進入基板5 1 0之感應磁場大小 考慮感應磁場於電力電流微感測丨 連續條件’電窥電流所產生之感應磁 期性的時間函數,可用固定頻率弦 6 0〜3 0 0 赫茲(Η z )間之極低頻率 Frequency,SLF)電磁場。並考慮波 相同,排除相位不匹配現象,且不考 y軸向介電係 z軸向介電係 波(transverse 向量K”,K"代 數,依z軸厚 空氣及介質Π 之二維晶格薄 爾方程組中可 f形成駐波場。 質之介面時, 板5 1 0上沉積 5 1 0之感應磁 計鼻所得之磁 算通過二維晶 〇 筹5 0 0的邊界 場,為具有週 波描述,約為 (Supper Low 形與電力頻率 慮電力電流微感 19 1263050 率相異之 測器5 0 0所偵測的電磁場頻率與電源處 都卜勒效應(Doppler effect)。 在電力電流微感測器5 0 0上: V2Ax - μσHere, the X-axis dielectric coefficient ' represents a number, ~ represents a parallel dielectric constant, 匕 represents a number, and q represents a vertical dielectric constant. As shown in Fig. 6B, assuming that the transverse magnetic magnetic wave, TM) propagates along the X-axis, the electromagnetic coupling quantum of the surface of the wave surface is exponentially attenuated, and the substrate 510 of the medium I is an attenuation field. However, it is not a decay field in the dielectric film 520. According to Maxwell, the electromagnetic wave is difficult in the two-dimensional lattice film 520, because the magnitude of the induced magnetic field through different dielectric induced magnetic fields will change. Therefore, after the base two-dimensional lattice film is turned on, the actual field size of the substrate will change. Therefore, the field size of the equation (1) needs to be corrected. The following describes how to enter the substrate 5 1 0 into the substrate. The size of the magnetic field takes into account the time constant function of the induced magnetic field in the continuous sense of the electric current. The continuous magnetic condition of the electro-oscillation current can be used. The very low frequency of the fixed frequency string 6 0~3 0 0 Hz (Η z ) can be used. , SLF) electromagnetic field. Considering the same wave, eliminating the phase mismatch phenomenon, and not considering the y-axis dielectric system z-axis dielectric wave (transverse vector K), K" algebra, z-axis thick air and medium Π two-dimensional lattice In the thin equations, f can form a standing wave field. When the interface is qualitative, the magnetic field obtained by depositing 5 1 0 on the plate 5 10 is calculated by the two-dimensional crystal field to form the boundary field of 500, which has a cycle. Description, about (Supper Low shape and power frequency considering the power current micro-sensing 19 1263050 rate is different from the frequency of the electromagnetic field detected by the detector 500 and the Doppler effect at the power source. Detector 5 0 0 on: V2Ax - μσ

▽ •為=0▽ • = 0

在自由空間: 在界面上: —X V X ylj = — xVxA2 ▽ · 乂2 = 0 μ μ〇 由上式中可得知在電力電流微感測器5 0 0 及界面上的向量磁位相等且連續。 如第 6C圖中所示,考慮不同物理 討論在二維晶格薄膜5 2 0與基板5 1 0間 /3向量及//向量在界面不連續的現象, 示二維晶格薄膜5 2 0之導磁係數,// 2表 之導磁係數,Η 1表示進入二維晶格薄膜 磁場大小,Η 1表示進入基板5 1 0之感應 由於/3場具無散度特性,因此我們可了 /3的法向分量為連續。 β\η = βΐη β\= Ρ\Η\ 5 βΐ = /^2^2 Μ\^\η = ΜΐΗ2η 在封閉路徑a、b、c、d之積分路徑 、自由空間 特性材質, ,是否發生 其中# 1表 示基板5 1 0 5 2 0之感應 磁場大小。 解在界面上 令 bc(Ah) 20 1263050In free space: On the interface: —XVX ylj = — xVxA2 ▽ · 乂2 = 0 μ μ〇 From the above equation, the vector magnetic bits on the power current micro-sensor 500 and the interface are equal and continuous. . As shown in FIG. 6C, considering the phenomenon of discontinuity at the interface between the two-dimensional lattice film 520 and the substrate 5 10 /3 vector and / / vector in different physical discussions, a two-dimensional lattice film 5 2 0 is shown. The magnetic permeability coefficient, / 2, the magnetic permeability coefficient, Η 1 indicates the size of the magnetic field entering the two-dimensional lattice film, Η 1 indicates that the induction into the substrate 5 10 is due to the /3 field with no divergence characteristics, so we can The normal component of /3 is continuous. β\η = βΐη β\= Ρ\Η\ 5 βΐ = /^2^2 Μ\^\η = ΜΐΗ2η In the closed path a, b, c, d integral path, free space characteristic material, whether it occurs #1 indicates the magnitude of the induced magnetic field of the substrate 5 1 0 5 2 0. Solution on the interface, let bc(Ah) 20 1263050

\Hdl = HrAW + H2 (~ AW) = JmsAW\Hdl = HrAW + H2 (~ AW) = JmsAW

Hu 一 Η it S 0 / 中 其 b界面中且垂直邊線C之電流密度 αη2Χ[Η' - H2) = Jn A \rn) 1 因, Efe 面但值 r場 有,限4磁 當續有流應 連為電感 不均面之 :流存在時5在界面處感應磁場將產生 二維晶格薄膜5 2 0與基板5 1 0導電率 因此界面處電流只有體電流人不會有 3而·^二〇 ’在電力電流微感測器 5〇〇 7線方向分量為連續。 Η2 ήηα2 = Hx sina^ tana〇 在基板5 1 0戶/ tmax μλ f得之感應磁場好2如下 H2 :=^ι f \ 2 一 sin2 ax + —cosax \^2 )Hu 一Η it S 0 / The current density αη2Χ[Η' - H2) = Jn A \rn) in the boundary of the vertical boundary C. In the Efe surface, the value of the r field is limited to 4 magnetic. Should be connected to the inductance of the uneven surface: when the flow is present, the induced magnetic field at the interface will produce a two-dimensional lattice film 5 2 0 and the substrate 5 1 0 conductivity, so the current at the interface is only the body current, people will not have 3 and ^ The second 〇 'in the power current micro-sensor 5 〇〇 7 line direction component is continuous. Η2 ήηα2 = Hx sina^ tana〇 On the substrate 5 1 0 / tmax μλ f, the induced magnetic field is good as follows: H2 :=^ι f \ 2 sin2 ax + —cosax \^2 )

Yl (3) 故於計 接電極 5 3 Ο 以求得基板 算電纜電流大小時,首先乃是利用引 所測得之霍爾電壓,代入式(2 )中, 5 1 0處之感應磁場Η 2。接者’將感應磁 21 1263050 場H2代入式(3 ),以电γ、隹λ 一她曰从如 衣侍進入一維晶袼薄膜520 之感應磁場Η |。隨後,脾代座 θ ^ 將感應磁% Η丨數值代入式 1 ),便可求得通過電纜之電流。 -二極530乃用於測量當電力電流微感測器500置於 ^見、、本產生之感應磁場中時,產生之霍爾電壓大小。引 接電極530位於頂部二維晶袼薄膜52〇上,並向下延伸通 過頂部二維晶格薄膜52〇至基板51〇。引接電極53〇可由具Yl (3) Therefore, when measuring the electrode current of the substrate, the first step is to use the Hall voltage measured by the reference, and substitute the induced magnetic field at the 5 1 0 in the equation (2). 2. The receiver's inductive magnetic 21 1263050 field H2 is substituted into equation (3), and the electric field γ, 隹λ, and her induced magnetic field Η from the clothing into the one-dimensional wafer film 520. Subsequently, the spleen generation θ ^ substitutes the value of the induced magnetic % 代 into the equation 1 ), and the current through the cable can be obtained. The diode 530 is used to measure the magnitude of the Hall voltage generated when the power current micro-sensor 500 is placed in the induced magnetic field generated by the present invention. The lead electrode 530 is located on the top two-dimensional crystal film 52A and extends downward through the top two-dimensional lattice film 52 to the substrate 51A. Lead electrode 53 can be

導電性質之金屬,例如銅、鋁等所構成。其中,引 接電極530較佳地為以鋁所構成,鋁具有低電阻率, 且與二氧化矽附著良好,並且具有製程簡單等優 點。引接電極530可藉由電鍍,或其他半導體製程方式形 成0 此外,於基板510中,具有多個作為波導之圓形孔隙 54〇。由於感應磁場介於60〜3 〇〇Ήζ之間,故使用圓 形孔隙,利用截止頻率使感測範圍在某一定值後截 it 〇 "、A metal of conductive nature, such as copper, aluminum, or the like. Among them, the lead electrode 530 is preferably made of aluminum, which has a low electrical resistivity and adheres well to the cerium oxide, and has advantages such as a simple process. The lead electrode 530 can be formed by electroplating or other semiconductor processing. Further, in the substrate 510, a plurality of circular apertures 54 as waveguides are provided. Since the induced magnetic field is between 60 and 3 〇〇Ήζ, the circular aperture is used, and the cut-off frequency is used to cut the sensing range after a certain value.

已知在一圓形孔隙内 及電場強度須滿足下式 時間諧和的磁場強度 ▽2丑吻=〇 考慮圓形均勻橫截面孔如第7圖所示,孔軸 在Z軸上,感應磁場//為橫向分量及軸向分量和。It is known that in a circular aperture and the electric field strength must satisfy the magnetic resonance strength of the following time harmonic ▽ 2 ugly kiss = 〇 consider a circular uniform cross-sectional face as shown in Figure 7, the hole axis on the Z-axis, the induced magnetic field / / is the sum of the lateral component and the axial component.

H^HT+a2HH^HT+a2H

“ Z" Z

E=zET+azE z z 22 1263050 (/c)rM01E=zET+azE z z 22 1263050 (/c)rM01

Wtm01 _ 0.383 αΛ[μεWtm01 _ 0.383 αΛ[με

(Hz ) 其 中 Η 丁與 五Γ分 別 表示感 應磁場與 電 場 之 二 維 的 橫 向 分 量 ο 孔 隙 内 : 不 考慮 橫電磁 波 (t r an s 1 verse el | e c 1 tro mag n e t i c W ave,TEM)傳送。 在 孔 隙 内 僅 考 慮 橫 磁 波 (transve rse magn e t i c wave 5 TM) 及 橫 電 波 (tr an s v er s e e 1 e c t r i c wav e,TE)傳: 运 5 對 橫 磁 波 而 言 j Hz =0 ,Ez 0 ,所有 場分量& = :E °e-r- z c Z 對 橫 電 波 而 -a- Ez =0, Hz 0 ,所有場分量A = • Η VZ 〇 若 孔 隙 半 徑 為 a ,以 z軸 為 中心軸 ,其周圍J 11 • 8 之 η 型 矽 半 導 體, 圓形 波 導管中 之橫磁波 及 橫 電 波 之 截 止 頻 率 ( fc) 如下 : 橫磁模態(TM)截止頻率(/c): • 橫電模態(TE)截止頻率(fc): (Hz) … _ (hhEu _ 0.293 感測器量測目標值為 60Hz,在孔隙内傳播之導波 模態: (fc)TEu =60他 故藉由上式,並根據電力電流微感測器5 0 0量測之 目標值為 60Hz,可計算求得波導孔隙540較佳之 23 1263050 孔隙半徑為 1 1 · 2微米。且基板 5 1 0頂部之孔隙 540A,設計為具有不同深度,較佳地為25微米、 3 5微米、4 5微米或5 5微米。基板5 1 0底部之孔隙 5 4 0 B深度,較佳地為1 〇 〇微米。孔隙5 4 〇可藉由 電感柄合餘刻(Inductively Coupled Plasma,ICP) 方式形成’亦可使用其他半導體敍刻技術形成。 孔隙540除作為波導之外’亦具有提升電力電流微感測器 Φ 500靈敏度之功能,已知電力電流微感測器500之靈敏度 \qt 其中G為霍爾係數,心為霍爾電壓,夂為通過之乂方 向電流,万為通過之感應磁場,…為通過之載子濃度,《為 電何為電力電流微感測器5 〇 〇之厚度。 • 由上式可知,當電力電流微感測器500之厚度^越小 時’所測得之霍爾電壓心越大,且靈敏度$亦提高。故於 • 基板51〇中所形成之孔隙54 ,不僅可作為波導,亦可降低 基板510厚度,達到增加電力電流微感測器5〇〇靈敏度之 作用。 基板510較佳地由矽所構成,亦可為其他半導體材料, 例如銦化篩(InSb)或砷化鎵(GaAs)。基板之厚度較佳地 約為525微米,並較佳地,藉由孔隙54〇,使基板51〇厚产 降至權微米以下,以提升電力電流微感測器500靈敏度二 二、電力電流微感測器製造方法 24 1263050 本务明亦提出一種電力電流微感測器之製 8圖乃給千钿城丄 衣k万泛弟 一 9 /、根據本發明之電力電流微感測器製造方法流程 圖不 〇 ^ ,於一基板頂部形成一遮罩層(步驟802 )。接 =^移除部分遮罩層,以使部分基材頂部露出(步驟804 )。 ^後’於基材形成作為波導之用之孔隙(步驟806 )。下一 步則為移除遮罩層之其餘部分(步驟8〇8 )。接著,於基板 頂邛與底部形成一二維晶格薄膜(步驟8 1 〇 )。隨後,移除 基材頂部之部分二維晶格薄膜與部分基材,以形成一引接 電極接觸孔(步驟812),引接電極接觸孔乃由二維晶格薄 膜延伸至基板内。進一步地,於基材頂部之二維晶格薄膜 與引接電極接觸孔,形成一金屬層(步驟8 14 )。最後,移 除部分金屬層,以形成引接電極(步驟816)。 弟9 A圖至弟9 F圖乃繪示根據本發明一較佳具體實施 例之電力電流微感測器製造方法剖面圖示。首先,如第9 A 圖所示,於基板900頂部形成遮罩層9〇2。基板9〇〇較佳 地例如可為晶向< 1〇0>之矽基板。遮罩層9〇2乃作 為隨後形成孔隙906時所需之遮蔽之用,較佳地例 如可為二氧化矽(S i Ο2 ),厚度較佳地約為1 2 〇 〇 〇 埃(人)。遮罩層902可藉由化學氣相沉積(cvD) 或電漿增強化學氣相沉積(PECVD ),或是其他習 知之半導體製程技術形成。 接著’移除部分遮罩層9〇2,以形成一感測區 9 0 4。形成感測區9 0 4之步驟,例如可藉由於遮罩 25 1263050 層902上塗覆一層光阻,並利用一光罩對於光阻進 行顯影,使得欲形成感測區9 0 4之遮罩層9 0 2上, 未具有光阻,同時利用習知之濕式蝕刻或乾式蝕 刻,移除感測區9 0 4之遮罩層9 0 2。 隨後,如第9 C圖所示,於感測區9 0 4下方之 基板9 0 0頂部,與整個基板9 0 0底部,形成作為波 導用之圓形孔隙9 0 6,其半徑較佳地為1 1 · 2微米。 φ 且頂部孔隙 9 0 6 A之深度較佳地為 2 5微米、3 5微 米、4 5微米或 5 5微米。底部孔隙 9 0 6 B之深度則 較佳地為1 0 0微米。孔隙9 0 6可藉由電感耦合蝕刻 (ICP )方式形成,亦可使用其他半導體蝕刻技術 形成。 * 隨後乃移除遮罩層9 0 2。接著,於基板9 0 0頂 部與底部形成二維晶格薄膜9 0 8。二維晶格薄膜較 佳地為由二氧化矽所構成,厚度較佳地為1 2 0 0 0埃。 ^ 隨後,如第9 D圖所示,對於感測區9 0 4外之 頂部二維晶格薄膜 9 0 8 A與基板 9 0 0進行部分蝕 刻,以形成引接電極接觸井9 1 0。引接電極接觸井 9 1 0可利用濕式蝕刻方式形成,例如利用氫氧化鉀 (KOH )進行等向性蝕刻。引接電極接觸井9 1 0之 深度較佳地為6 0微米。 接著,如第 9 E圖所示,於頂部二維晶格薄膜 90 8 A與引接電極接觸井 9 1 0沉積一導電金屬層 9 1 2。金屬層 9 1 2較佳地為鋁所構成,厚度較佳地 26 1263050 為5 6 0 0埃,可利用蒸鍍方式形成。 此外,於沉積金屬層912後,可進行一回火步 驟,以提升金屬層之歐姆接觸降低空乏現象。回火 步驟例如可於一攝氏4 0 0度之高溫爐進行。(Hz) where Η and Γ represent the two-dimensional transverse component of the inductive magnetic field and the electric field. ο Within the aperture: transverse electromagnetic waves (t r an s 1 verse el | e c 1 tro mag n e t i c W ave, TEM) are not considered. Only transve rse magn etic wave 5 TM and transverse wave (tr an sv er see 1 ectric wav e, TE) are considered in the pores: 5 for the transverse magnetic wave, j Hz =0 , Ez 0 , all Field component & = :E °er- zc Z For transverse waves and -a- Ez =0, Hz 0 , all field components A = • Η VZ 〇 If the aperture radius is a, with the z axis as the central axis, around it The J 11 • 8 n-type germanium semiconductor, the cutoff frequency (fc) of the transverse magnetic wave and the transverse electric wave in the circular waveguide is as follows: Transverse magnetic mode (TM) cutoff frequency (/c): • Transverse mode (TE) ) cutoff frequency (fc): (Hz) ... _ (hhEu _ 0.293 sensor measurement target value is 60Hz, guided wave mode propagating in the pore: (fc) TEu = 60, so by the above formula, and According to the target value of the power current micro-sensor 500 measured, 60 Hz, the calculated aperture 540 of the waveguide aperture 540 is preferably 12 1263050, and the aperture radius is 141 μm. The aperture 540A at the top of the substrate 5 10 is designed as Having different depths, preferably 25 microns, 35 microns, 45 microns or 5 5 microns. The pores at the bottom of 5 1 0 5 4 0 B, preferably 1 μm. The pores 5 4 〇 can be formed by Inductively Coupled Plasma (ICP). The technology is formed. In addition to the waveguide 540, it also has the function of improving the sensitivity of the power current micro-sensor Φ 500. The sensitivity of the power current micro-sensor 500 is known. \qt where G is the Hall coefficient, and the heart is Hall. The voltage, 夂 is the current through the , direction, the induced magnetic field is passed through, ... is the concentration of the carrier through which it is passed, “What is the thickness of the electric current micro-sensor 5 〇〇. • From the above formula, when the power is The thickness of the current micro-sensor 500 is smaller, and the measured Hall voltage is larger, and the sensitivity is also increased. Therefore, the aperture 54 formed in the substrate 51 can be used not only as a waveguide but also as a waveguide. The thickness of the substrate 510 is used to increase the sensitivity of the power current micro-sensor 5. The substrate 510 is preferably composed of germanium, and may be other semiconductor materials such as indium nitride (InSb) or gallium arsenide (GaAs). Thickness of the substrate Preferably, the ground is about 525 microns, and preferably, the substrate 51 is reduced in thickness by less than a micron by the aperture 54 , to improve the sensitivity of the power current micro-sensor 500, and the manufacture of the power current micro-sensor Method 24 1263050 The present invention also proposes a system for producing a power current micro-sensor, which is a flowchart of the manufacturing method of the power current micro-sensor according to the present invention. ^, a mask layer is formed on top of a substrate (step 802). A portion of the mask layer is removed to expose a portion of the top of the substrate (step 804). The pores are formed on the substrate as a waveguide (step 806). The next step is to remove the rest of the mask layer (steps 8〇8). Next, a two-dimensional lattice film is formed on the top and bottom of the substrate (step 8 1 〇 ). Subsequently, a portion of the two-dimensional lattice film and a portion of the substrate at the top of the substrate are removed to form a contact electrode contact hole (step 812), and the contact electrode contact hole is extended into the substrate by the two-dimensional lattice film. Further, a two-dimensional lattice film on the top of the substrate contacts the contact hole of the electrode to form a metal layer (step 814). Finally, a portion of the metal layer is removed to form a landing electrode (step 816). BRIEF DESCRIPTION OF THE DRAWINGS FIG. 9A to FIG. 9F are cross-sectional views showing a method of manufacturing a power current microsensor according to a preferred embodiment of the present invention. First, as shown in FIG. 9A, a mask layer 9〇2 is formed on the top of the substrate 900. The substrate 9 is preferably, for example, a substrate of a crystal orientation <1〇0>. The mask layer 9 is used as a mask for the subsequent formation of the apertures 906, preferably for example cerium oxide (S i Ο 2 ), preferably having a thickness of about 1 2 〇〇〇 (human) . Mask layer 902 can be formed by chemical vapor deposition (cvD) or plasma enhanced chemical vapor deposition (PECVD), or other conventional semiconductor processing techniques. A portion of the mask layer 9〇2 is then removed to form a sensing region 904. The step of forming the sensing region 904 can be formed, for example, by applying a layer of photoresist on the layer 902 1263050 layer 902 and developing the photoresist by using a mask to form a mask layer of the sensing region 904. On the 902, there is no photoresist, and the mask layer 902 of the sensing region 904 is removed by conventional wet etching or dry etching. Subsequently, as shown in FIG. 9C, a circular aperture 906 as a waveguide is formed at the top of the substrate 9000 below the sensing region 904, and at the bottom of the entire substrate 9000. It is 1 1 · 2 μm. The depth of φ and the top pores 9 0 6 A is preferably 25 μm, 35 μm, 45 μm or 5 5 μm. The depth of the bottom pores 9 0 6 B is preferably 100 μm. The voids 906 can be formed by inductively coupled etch (ICP) or can be formed using other semiconductor etch techniques. * The mask layer 9 0 2 is subsequently removed. Next, a two-dimensional lattice film 908 is formed on the top and bottom of the substrate 90. The two-dimensional lattice film is preferably composed of cerium oxide and has a thickness of preferably 1,200 Å. ^ Subsequently, as shown in Fig. 9D, the top two-dimensional lattice film 9 0 8 A outside the sensing region 904 is partially etched with the substrate 9000 to form the spigot electrode contact well 910. The lead electrode contact well 910 can be formed by wet etching, for example, isotropic etching using potassium hydroxide (KOH). The depth of the lead electrode contact well 910 is preferably 60 microns. Next, as shown in Fig. 9E, a conductive metal layer 9 1 2 is deposited on the top two-dimensional lattice film 90 8 A and the contact electrode contact well 9 10 . The metal layer 9 1 2 is preferably made of aluminum, and has a thickness of preferably 26 1263050 of 560 angstroms, which can be formed by evaporation. In addition, after depositing the metal layer 912, a tempering step can be performed to enhance the ohmic contact of the metal layer to reduce the depletion. The tempering step can be carried out, for example, in a high temperature furnace at 400 degrees Celsius.

接著,如第 9 F圖所示,移除部分金屬層 9 1 2 以形成引接電極 914。可藉由硝酸(ΗΝ〇3 )、乙酸 (ch3cooh )、填酸(η3ρο4 )與水之混合溶液,對 於金屬層9 1 2進行部分蝕刻,以形成引接電極9 1 4。 四、電力電流微感測器配置 第1 0 Α圖至第1 0 Ε圖乃繪示一電力電流微感測 系統,說明利用根據本發明之電力電流微感測器, 配置於一電纜,以對於通過電纜之電流進行量測。 如第1 0 A圖所示,根據本發明之電力電流微感測系 統1 0 0 0,含有一電力電流微感測組件1 0 1 0與驅動 電路1020。驅動電路1020乃固定於電力電流微感 測組件1 0 1 0,用以提供驅動電力電流微感測組件 1 0 1 0所需之電路。如第1 0 B圖所示,電力電流微 感測組件1 0 1 0則藉由固定帶1 0 3 0,纏繞固定於欲 進行測量之電纜1 〇 9 0上。固定帶1 0 3 0例如可為雙 面塗佈鐵磁性導磁塗料、或導磁鋼帶等。 第1 0 C圖為電力電流微感測組件1 0 1 0與驅動 電路 1 0 2 0之局部放大圖。於電力電流微感測組件 1010之底部具有一固定帶孔 1012,使得固定帶 1 0 3 0得以穿過其中。藉此,可使電力電流微感測組 27 1263050 件1010與驅動電路1020固定於電纜1090。此外, 電力電流微感測組件1 0 1 0與驅動電路1 0 2 0底部, 具有一隔熱墊片1040。隔熱墊片1040例如可為一 陶瓷隔熱墊片,用以隔絕電纜 1 0 9 0產生之熱能, 以防止對於電力電流微感測組件 1 0 1 0與驅動電路 1 0 2 0造成損害。Next, as shown in Fig. 9F, a portion of the metal layer 9 1 2 is removed to form the lead electrode 914. The metal layer 9 1 2 may be partially etched by a mixed solution of nitric acid (ΗΝ〇3), acetic acid (ch3cooh), acid (η3ρο4) and water to form the lead electrode 9 1 4 . Fourth, the power current micro-sensor configuration 10th to 10th is a power current micro-sensing system, illustrating the use of the power current micro-sensor according to the present invention, configured in a cable, For current measurement through the cable. As shown in FIG. 10A, the power current micro-sensing system 100 according to the present invention includes a power current micro-sensing component 1001 and a driving circuit 1020. The driving circuit 1020 is fixed to the power current micro-sensing component 1001 for providing a circuit required to drive the power current micro-sensing component 100. As shown in Fig. 10B, the power current micro-sensing component 1 0 1 0 is wound and fixed on the cable 1 〇 90 to be measured by the fixing tape 1 0 3 0 . The fixing tape 1 0 3 0 may be, for example, a double-sided coated ferromagnetic magnetic conductive coating or a magnetically conductive steel strip. Figure 10C shows a partial enlarged view of the power current micro-sensing component 1 0 1 0 and the drive circuit 1 0 2 0. At the bottom of the power current micro-sensing assembly 1010 is a fixed strap hole 1012 through which the strap 1 0 30 is passed. Thereby, the power current micro-sensing group 27 1263050 1010 and the driving circuit 1020 can be fixed to the cable 1090. In addition, the power current micro-sensing component 1001 and the bottom of the driving circuit 1 0 2 0 have a heat insulating spacer 1040. The heat insulating gasket 1040 can be, for example, a ceramic heat insulating gasket for isolating the heat energy generated by the cable 1 0 90 to prevent damage to the power current micro-sensing component 1 0 1 0 and the driving circuit 1 0 2 0.

第10D圖與第10E圖分別為電力電流微感測組件 1 0 1 0之内部構造透視圖與剖面圖。電力電流微感測 組件1 0 1 0乃由電力電流微感測器1 0 1 4與導磁矽鋼 薄片1 0 1 6所構成。導磁矽鋼薄片1 0 1 6可進一步防 止電纜 1 0 9 0產生之感應磁場,於進入電力電流微 感測組件1 0 1 0前產生衰減。 第1 0 F圖乃繪示根據本發明之電力電流微感測 系統 1 0 0 0 之電路方塊圖示。電力電流微感測器 1 0 1 4乃由驅動電路1 0 2 0驅動,驅動電路1 0 2 0例如 可為一定電流驅動器,或一定電壓驅動器。電力電 流微感測器 1 0 1 4 乃進一步連接至一增益放大器 1 0 2 2,用以放大所測得之霍爾電壓信號,放大後之 霍爾電壓信號,乃進一步傳遞至一類比/數位轉換 器 1 024,以進行類比/數位轉換。隨後,轉換成為 類比信號之霍爾電壓,乃透過光纖傳送介面1026, 經由光纖 1 0 2 8,可傳遞至一可程式電驛或數位電 錶。 第10G圖為一電路方塊圖示,乃進一步繪示根 28 1263050 據本發明之電力電流微感測系統1 ο ο ο,耦接至一可 程式電驛1 0 5 0或數位式電錶1 0 7 0。當電力電流微 感測系統1 0 0 0耦接至可程式電驛1 0 5 0時,可作為 電路保護之用。直流電源供應器1 0 5 1提供可程式 電驛1 0 5 0所需之電力來源。直流電源供應器1 0 5 1 所提供之電流,乃透過一輸入介面 1052輸入至可 程式電驛1 0 5 0。來自電力電流微感測系統1 0 0 0之 數位霍爾電壓信號,乃傳遞至可程式電驛1 0 5 0之 光纖傳送介面1 〇 5 3,並傳送至微處理器1 0 5 4進行 處理。微處理器 1 0 5 4由計時器 1 0 6 2提供時間信 號,並具有一儲存用之記憶體1056。並可傳遞至面 板顯示單元1 〇 5 5進行顯示。此外,可程式電驛1 0 5 0 具有控制器1 0 5 7與鍵盤1 0 5 8,使得使用者得以輸 入。此外,亦可進一步具有額外輸入裝置1059與 額外輸出裝置1060,藉由輸入/輸出介面單元1061 與微處理器1 0 5 4溝通。 此外,電力電流微感測系統1 0 0 0亦可麵接至一 數位式電錶1 0 7 0,以顯示通過電纟覽之電流大小。 直流電源供應器1 0 5 1經由輸入介面1 0 7 2提供 數位式電錶 1 0 7 0所需之電力來源。直流電源供應 器1051所提供之電流,乃透過一輸入介面1072輸 入至數位式電錶 1 0 7 0。來自電力電流微感測系統 1 0 0 0之數位霍爾電壓信號,乃傳遞至數位式電錶 1 0 7 0 之光纖傳送介面 1 0 7 3,並傳送至微處理器 29 1263050 1 0 7 4進行處理。微處理器1 0 7 4由計時器1 0 7 9提供 時間信號,並具有一儲存用之記憶體1 0 7 6。並可傳 遞至面板顯示單元 1 0 7 5進行顯示。此外,數位式 電錶1 0 7 0具有控制器1 0 7 7與鍵盤1 0 7 8,使得使用 者得以輸入。 五、電力電流微感測器應用 對於各種電力保護型式,均有其不同的接線及 保護電驛,為能了解根據本發明之電力電流微感測 器之應用,將列舉下列應用,包含目前主要電力設 備的保護,但在此僅以交流保護範例說明,本產品 仍可配合直流供電線路型式,連接各式電驛及電 錶0 應用範例1 : 一般線路過電流及接地保護 一般線路包含輸電線路、輸配電線路及配電線 路等各種不同功能分類,且電壓等級不同時其保護 設計則須考慮線路特性、結構、長度及相對等因 素,來決定採用的保護型式,但不論是否為方向性 或非方向性、瞬時過電流或延時過電流、測距或接 地等方式,均須配合比流器來感應故障電流。 如第 1 1Α圖所示,電力電流微感測系統 1110 30 1263050 乃配置於電力電纜1 1 2 0,用以量測通過之電流,並 對於電纜 1 1 2 0進行過載保護。電力電流微感測系 統1 1 1 0所量測之電流,乃經由光纖1 1 4 0,傳送至 一保護電驛1 2 0 0。保護電驛1 2 0 0則連接至斷路器 1 1 5 0,以便於通過電纜 1 1 2 0之電流超過負載時, 得以切斷加以保護。10D and 10E are respectively a perspective view and a cross-sectional view of the internal structure of the power current micro-sensing component 100. The power current micro-sensing component 1 0 1 0 is composed of a power current micro-sensor 1 0 1 4 and a magnetic conductive silicon steel sheet 1 0 16 . The magnetically conductive silicon steel sheet 1 0 16 further prevents the induced magnetic field generated by the cable 1 0 90 from attenuating before entering the power current micro-sensing component 1 0 1 0. Figure 10F is a block diagram of a circuit of a power current micro-sensing system 100 in accordance with the present invention. The power current micro-sensor 1 0 1 4 is driven by the driving circuit 1 0 2 0, and the driving circuit 1 0 2 0 can be, for example, a constant current driver or a certain voltage driver. The power current micro-sensor 1 0 1 4 is further connected to a gain amplifier 1 0 2 2 for amplifying the measured Hall voltage signal, and the amplified Hall voltage signal is further transmitted to an analog/digital Converter 1 024 for analog/digital conversion. Subsequently, the Hall voltage converted to the analog signal is transmitted through the fiber optic transmission interface 1026 to the programmable electric or digital meter via the optical fiber 102. FIG. 10G is a circuit block diagram, further illustrating the root 28 1263050. The power current micro-sensing system 1 according to the present invention is coupled to a programmable battery 1 0 5 0 or a digital meter 10 7 0. When the power current micro-sensing system 1 0 0 0 is coupled to the programmable voltage 1 0 5 0, it can be used for circuit protection. The DC power supply 1 0 5 1 provides the power source required for programmable power supply 1 0 5 0. The current supplied by the DC power supply 1 0 5 1 is input to the programmable battery 1 0 50 through an input interface 1052. The digital Hall voltage signal from the power current micro-sensing system 1 0 0 is transmitted to the optical fiber transmission interface 1 〇 5 3 of the programmable battery 1 0 50 and transmitted to the microprocessor 1 0 5 4 for processing. . The microprocessor 1 0 5 4 provides a time signal from the timer 1 0 6 2 and has a memory 1056 for storage. It can be transferred to the panel display unit 1 〇 5 5 for display. In addition, the programmable battery 1 0 5 0 has a controller 1 0 5 7 and a keyboard 1 0 5 8 so that the user can enter. In addition, an additional input device 1059 and an additional output device 1060 may be further provided, and the input/output interface unit 1061 communicates with the microprocessor 105. In addition, the power current micro-sensing system 100 can also be connected to a digital meter 1 0 7 0 to display the magnitude of the current through the power. The DC power supply 1 0 5 1 provides the required power source for the digital meter 1 0 7 0 via the input interface 1 0 7 2 . The current supplied by the DC power supply 1051 is input to the digital meter 1 0 7 0 through an input interface 1072. The digital Hall voltage signal from the power current micro-sensing system 1000 is transmitted to the optical fiber transmission interface 1 0 7 3 of the digital meter 1 0 7 0 and transmitted to the microprocessor 29 1263050 1 0 7 4 deal with. The microprocessor 1 0 7 4 provides a time signal from the timer 1 0 7 9 and has a storage memory 1 0 7 6 . It can be transferred to the panel display unit 1 0 7 5 for display. In addition, the digital meter 1 0 7 0 has a controller 1 0 7 7 and a keyboard 1 0 7 8 so that the user can input. V. Power Current Micro-Sensor Application For various power protection types, there are different wiring and protection devices. In order to understand the application of the power current micro-sensor according to the present invention, the following applications will be listed, including the current main Protection of power equipment, but here only the AC protection example, this product can still be matched with the DC power supply line type, connecting various types of electric rafts and electricity meters. Application Example 1: General line overcurrent and ground protection General lines include transmission lines, When various types of functions such as transmission and distribution lines and distribution lines are classified, and the voltage levels are different, the protection design must consider the characteristics, structure, length and relative factors of the line to determine the protection type, but whether it is directional or non-directional. Directional, transient overcurrent or delayed overcurrent, ranging or grounding must be combined with the current transformer to sense the fault current. As shown in Figure 1, the power current micro-sensing system 1110 30 1263050 is configured on the power cable 1 1 2 0 to measure the current passing through and to protect the cable 1 120 from overload protection. The current measured by the power current micro-sensing system 1 1 10 is transmitted to a protective power port 1 2 0 0 via the optical fiber 1 1 40. The protective switch 1 2 0 0 is connected to the circuit breaker 1 1 50, so that when the current through the cable 1 1 2 0 exceeds the load, it can be cut off and protected.

電源供應器1 1 6 0透過輸入介面1 2 0 2,提供保 護電驛1 2 0 0所需之電力來源。 來自電力電流微感測系統1 1 1 〇之量測信號,乃 傳遞至保護電驛1 2 0 0之光纖傳送介面1 2 0 4,並傳 送至微處理器1 2 0 6進行處理。微處理器1 2 0 6由計 時器1 2 0 8提供時間信號,並具有一儲存用之記憶 體 1 2 1 0,並可傳遞至面板顯示單元 1 2 1 2進行顯 示。此外,保護電驛1 2 0 0具有控制器1 2 1 4與鍵盤 1 2 1 6,使得使用者得以輸入。亦可進一步具有額外 輸入裝1218與額外輸出裝置1220,藉由輸入/輸出 介面單元1222與微處理器1206溝通。 應用範例二:變壓器保護 電力變壓器為電力設備中重要的設備,應用於 各種不同電壓、容量等階層,依需求及功能有不同 結線方式’因此比流裔的接線方式須配合各種不同 條件調整,但根據本發明之電力電流微感測系統並 31 1263050 無此影響因素,經由可程式設備既可達保護及顯示 作用。 第1 1 B圖乃繪示根據本發明之電力電流微感測 系統1 1 1 0,結合保護電驛1 2 0 0,應用於保護Y- △ 接線變壓器1 1 2 2之電路方塊圖示。電力電流微感 測系統1 1 1 0乃安裝於Y-△接線變壓器1 1 22,以對 於Y-△接線變壓器1 122進行過載保護。 若使用習知比流器,須配合變壓器接線設定為 △ - Y,再由保護電驛中之差電流線圈動作保護,但 會受到電流匹配偏差率影響。然而,根據本發明之 電力電流微感測系統1 1 1 0經由光纖1 1 4 0傳送至保 護電驛 1 2 0 0,可減少匹配偏差率所產生的誤差動 作。 應用範例三··發電機保護 發電機纟且有水力、火力、核能、天然氣及燃油 等不同的原動力方式,但僅以發電機的保護原理而 言,基本上是相同的,比流器在此應用上可為差 動、過載、失磁及接地等各項目。 第11 C圖乃繪示根據本發明之電力電流微感測 系統1 1 1 0,結合保護電驛1 2 0 0,應用於保護發電 機1 1 2 4之電路方塊圖示。電力電流微感測系統1 1 1 0 乃安裝於發電機Π 2 4,以對於發電機1 1 2 4進行過 32 1263050 載保護。 於習知技藝中,發電機内部繞組亦可區分有γ 接及△接等方式,因此比流器亦須配合結線方式調 整。然而,根據本發明之電力電流微感測系統1 1 1 0 不僅可減少匹配誤差率,亦可達靈敏動作及輕巧體 積的運用。The power supply 1 1 60 provides a source of power required to protect the power supply through the input interface 1 2 0 2 . The measurement signal from the power current micro-sensing system 1 1 1 传递 is transmitted to the optical fiber transmission interface 1 2 0 4 of the protection battery 1 2 0 and transmitted to the microprocessor 1 2 0 6 for processing. The microprocessor 1 2 0 6 provides a time signal from the timer 1 2 0 8 and has a memory 1 2 1 0 for storage and can be passed to the panel display unit 1 2 1 2 for display. In addition, the protection device 1 2 0 0 has a controller 1 2 1 4 and a keyboard 1 2 1 6 so that the user can input. Further, an additional input device 1218 and an additional output device 1220 can be further provided, and the input/output interface unit 1222 communicates with the microprocessor 1206. Application example 2: Transformer protection Power transformer is an important equipment in power equipment. It is applied to various voltages and capacities, and has different connection methods according to requirements and functions. Therefore, the wiring method of the migrants must be adjusted according to various conditions, but According to the power current micro-sensing system of the present invention and 31 1263050, there is no such influencing factor, and the protection and display functions can be achieved through the programmable device. Figure 1 1 B is a block diagram showing the circuit of the power current micro-sensing system 1 1 1 0 in combination with the protection device 1 2 0 0 for protecting the Y-Δ wiring transformer 1 1 2 2 according to the present invention. The power current micro-sensing system 1 1 1 0 is mounted on the Y-Δ wiring transformer 1 1 22 to protect the Y-Δ wiring transformer 1 122 from overload. If a conventional current comparator is used, it must be set to △ - Y in conjunction with the transformer wiring, and then protected by the differential current coil action in the protection battery, but it will be affected by the current matching deviation rate. However, the power current micro-sensing system 1 1 1 0 according to the present invention transmits to the protection device 1 2 0 0 via the optical fiber 1 1 40, which can reduce the error action caused by the matching deviation rate. Application example III··The generator protects the generator and has different motive power modes such as hydraulic power, firepower, nuclear energy, natural gas and fuel oil, but only in terms of the protection principle of the generator, it is basically the same, the flow controller is here. Applications can be differential, overload, loss of magnetism and grounding. Figure 11C is a block diagram showing the circuit of the power current micro-sensing system 1 1 1 0 in combination with the protection device 1 2 0 0 for protecting the generator 1 1 2 4 in accordance with the present invention. The power current micro-sensing system 1 1 1 0 is installed in the generator Π 2 4 to protect the generator 1 1 2 4 from 32 1263050. In the conventional technique, the internal winding of the generator can also be distinguished by γ connection and △ connection, so the current comparator must also be adjusted in accordance with the connection method. However, the power current micro-sensing system 1 1 1 0 according to the present invention can not only reduce the matching error rate, but also achieve sensitive operation and light volume.

應用範例四:匯流排母線保護 匯流排母線(BUS )連結負載及輸電線於一 點,故若在匯流排母線發生故障時,其故障電流通 常較其他故障電流面,在電力糸統中屬脆弱的一 環,因此常需要快速的將故障隔離,以減低故障損 失程度始能維持系統的穩定度。於習知技藝中,差 動保護為常用的匯流排母線保護,但由於涉及回線 數目及外部故障時比流器飽和程度不同等因素,使 差動保護產生問題,也因此常發生外部故障時不正 確的差動電流誤動作。 第1 1 D圖乃繪示根據本發明之電力電流微感測 系統 1 1 1 0,結合保護電驛 1 2 0 0,應用於保護匯流 排母線 1 1 2 6之電路方塊圖示。電力電流微感測系 統1 1 1 0乃安裝於匯流排母線1 1 2 6,以對於匯流排 母線11 2 6進行過載保護。 根據本發明之電力電流微感測系統,可減少磁 33 1263050 飽和的偏差率,抑制變動比例及微處理器的綜合調 整降低以往的誤差行為,也因為以光纖傳送更可降 低因連線電抗衍生的阻抗匹配問題。 應用範例五:電容器保護 在電力系統中的配電端及負載端,常因電感性 φ 負載使有效電力降低,並因而造成受電端電壓浮 動,因此常在靠近負載變動側外加電容器,以穩定 電壓改善無效電力損失提高系統功率因素等。 如第1 1 E圖所示,根據本發明之電力電流微感 測系統 1 1 1 0,亦可結合保護電驛 1 2 0 0,應用於電 - 容器 1 1 2 8。根據本發明之電力電流微感測系統 1110,可對電容器作有效的保護,使供電品質更加 完備。 I 根據本發明之電力電流微感測器本身體積輕 巧,且無磁滯迴線及磁滯損失等問題,可直接固定 .於電線電纜側,並傳送數位信號或光纖信號,結合 新型可程式數位顯示及保護設備達到完整系統架 構。 雖然本發明已以數個較佳具體實施例揭露如上,然其 並非用以限定本發明,任何熟習此技藝者,在不脫離本發 明之精神和範圍内,當可作各種之更動與潤飾,因此本發 明之保護範圍當視後附之申請專利範圍所界定者為準。 34 1263050 【圖式簡單說明】 由以上本發明中較佳具體實施例之細節描述,可以 對本發明之目的、觀點及優點有更佳的了解。同時參考 下列本發明之圖式加以說明: 第1A圖與1B係分別繪示習知技藝之比流器與電驛與 電錶配置之方塊圖。 第2 A圖係繪示電流通過電纜時產生之感應磁場磁力線 示意圖。 第2B圖係繪示感應磁場之磁場強度與磁通量密度關係 圖。 第3 A圖與第3 B圖乃說明計算通過電纜之電流 大小之示意圖。 第4圖係繪示根據本發明之電力電流微感測器 於感應磁場下產生霍爾電壓之不意圖。 第5 A圖係繪示根據本發明之電力電流微感測 器截面圖。 第5 B圖係繪示根據本發明之電力電流微感測 器俯視圖。 第6A圖係繪示感應磁場通過二維晶格薄膜内 之示意圖。 第6B圖係繪示感應磁場於二維晶格薄膜產生 駐波之示意圖。 第6 C圖係繪示感應磁場於二維晶格薄膜與基 35 1263050 材間產生變化之示意圖。 第7圖係繪示電力電流微感測器内作為波導之 孔隙之示意圖。 第8圖係繪示根據本發明之電力電流微感測器 製造方法流程圖。 第9 A圖至9 F圖乃繪示根據本發明一較佳具體 實施例之電力電流微感測器製造方法截面圖示。 第1 0 A至1 0 E圖乃繪示根據本發明之電力電流 微感測器配置於電纜之示意圖。 第1 0 F圖乃繪示根據本發明之電力電流微感測 系統電路方塊圖。 第 1 0 G圖乃繪示根據本發明之電力電流微感 測系統耦接至一可程式電驛或數位式電錶之電路 方塊圖。 第11A圖至11E圖乃繪示根據本發明之電力電 流微感測系統之各種應用之電路方塊圖。 【元件代表符號簡單說明】 I 0 0 :比流器 102、1120 :電纜 104 :數位電驛 106 :數位電錶 108 :斷路器 II 0 :直流電源 36 1263050 112 :磁力線 114 :時變電源 2 00、5 00、1014 :電力電流微感測器裝置 510、900 :基板 520、902 :二維晶格薄膜 5 30 :引接電極 540 ' 540A、540B :孔隙Application example 4: Busbar busbar protection Busbar busbar (BUS) connects the load and the transmission line to one point. Therefore, if the busbar busbar fails, its fault current is usually weaker than other fault currents. A ring, so it is often necessary to quickly isolate the fault to reduce the degree of fault loss to maintain the stability of the system. In the conventional art, differential protection is a commonly used busbar busbar protection. However, due to factors such as the number of return lines and the degree of saturation of the comparator in the case of external faults, differential protection causes problems, and therefore external faults often occur. The correct differential current is malfunctioning. FIG. 1 1D is a block diagram showing the circuit of the power current micro-sensing system 1 1 1 0 according to the present invention combined with the protection power 驿 1 2 0 0 for protecting the bus bar 1 1 2 6 . The power current micro-sensing system 1 1 1 0 is mounted on the bus bar 1 1 2 6 to protect the bus bar 11 2 6 from overload. According to the power current micro-sensing system of the present invention, the deviation rate of the saturation of the magnetic 33 1263050 can be reduced, the variation ratio of the suppression and the comprehensive adjustment of the microprocessor can reduce the previous error behavior, and the transmission by the optical fiber can reduce the derivative due to the connection reactance. Impedance matching problem. Application example 5: Capacitor protection In the power distribution system and the load end of the power system, the effective power is often reduced due to the inductive φ load, and thus the voltage at the power receiving end is floating. Therefore, a capacitor is often added near the load fluctuation side to stabilize the voltage. Invalid power loss increases system power factor, etc. As shown in Fig. 1 1 E, the power current micro-sensing system 1 1 1 0 according to the present invention can also be applied to the electric-container 1 1 2 8 in combination with the protective electric 驿 1 2 0 0. According to the power current micro-sensing system 1110 of the present invention, the capacitor can be effectively protected to make the power supply quality more complete. I The power current micro-sensor according to the present invention is compact in size, has no hysteresis loop and hysteresis loss, and can be directly fixed on the side of the wire and cable, and transmits digital signal or fiber signal, combined with a new programmable digital position. Display and protect devices to a complete system architecture. While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The objects, aspects and advantages of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention. At the same time, reference is made to the following drawings of the present invention: Figs. 1A and 1B are block diagrams showing the configuration of a conventional art current comparator and an electric power meter and an electric meter, respectively. Figure 2A is a schematic diagram showing the magnetic field lines of the induced magnetic field generated when the current passes through the cable. Figure 2B is a graph showing the relationship between the magnetic field strength of the induced magnetic field and the magnetic flux density. Figures 3A and 3B illustrate a schematic diagram of the magnitude of the current through the cable. Figure 4 is a schematic diagram showing the generation of a Hall voltage in an induced magnetic field by a power current microsensor according to the present invention. Figure 5A is a cross-sectional view of a power current microsensor in accordance with the present invention. Figure 5B is a top plan view of a power current microsensor in accordance with the present invention. Figure 6A is a schematic diagram showing the induction magnetic field passing through a two-dimensional lattice film. Figure 6B is a schematic diagram showing the generation of a standing wave by an induced magnetic field in a two-dimensional lattice film. Figure 6C is a schematic diagram showing the variation of the induced magnetic field between the two-dimensional lattice film and the base 35 1263050. Figure 7 is a schematic diagram showing the apertures in the power current microsensor as waveguides. Figure 8 is a flow chart showing a method of manufacturing a power current micro-sensor according to the present invention. 9A to 9F are cross-sectional views showing a method of manufacturing a power current microsensor according to a preferred embodiment of the present invention. 10A to 10E are diagrams showing the arrangement of a power current microsensor according to the present invention on a cable. Figure 10F is a block diagram of a power current micro-sensing system in accordance with the present invention. Figure 10G is a block diagram showing the circuit of a power current micro-sensing system coupled to a programmable electronic or digital meter in accordance with the present invention. 11A through 11E are circuit block diagrams showing various applications of the power current micro-sensing system in accordance with the present invention. [Simple description of component symbol] I 0 0 : Current transformer 102, 1120 : Cable 104 : Digital power 106 : Digital meter 108 : Circuit breaker II 0 : DC power supply 36 1263050 112 : Magnetic line 114 : Time-varying power supply 2 00, 5 00, 1014: power current micro-sensor device 510, 900: substrate 520, 902: two-dimensional lattice film 5 30: lead electrode 540 ' 540A, 540B: pore

904 :感測區 9 06、906A、9 0 6B :孔隙 9 1 0 :引接電極接觸井 912 :金屬層 9 1 4 :引接電極 1 0 0 0:電力電流微感測系統 1 0 1 0 :電力電流微感測組件 1 0 1 2 :固定帶孔 1 0 1 6 :導磁矽鋼薄片 1 020:驅動電路 1 022 :增益放大器 1 024 :類比/數位轉換 1 026 :光纖傳送介面 1028、 1140:光纖 1030 :固定帶 1 040 :隔熱墊片 1 05 0 :可程式電驛 37904: Sensing area 9 06, 906A, 9 0 6B: Pore 9 1 0: Lead electrode contact well 912: Metal layer 9 1 4: Lead electrode 1 0 0 0: Power current micro-sensing system 1 0 1 0 : Power Current micro-sensing component 1 0 1 2 : Fixed hole 1 0 1 6 : Magnetically conductive silicon steel sheet 1 020: Drive circuit 1 022 : Gain amplifier 1 024 : Analog/digital conversion 1 026 : Optical fiber transmission interface 1028, 1140: Optical fiber 1030: fixing strap 1 040 : heat insulating spacer 1 05 0 : programmable electric power 37

1263050 1 0 5 1 :直流電源供 1052' 1072 :輸入 1053、 1073 :光纖 1054、 1074 :微處 1055、 1075 :面板 1056、 1076 :記憶 1057、 1077 :控制 1058、 1078 :鍵盤 1 05 9 :額外輸入裝 1060:額外輸出裝 1061 :輸入/輸出乂 1062 、 1079 :計時 1 070 :數位式電錶 1090 :電纜 1 1 1 0 :電力電流微 1120:電力電纜 112 2 : Υ - △接線變 112 4 :發電機 112 6:匯流排母線 112 8 :電容器 1 1 4 0 :光纖 1150:斷路器 116 0:電源供應器 1 200 :保護電驛 應器 介面 傳送介面 理器 顯示單元 體 器 置 置 -面單元 器 感測系統 壓器 38 12630501263050 1 0 5 1 : DC power supply for 1052' 1072: Input 1053, 1073: Fiber 1054, 1074: Micro 1055, 1075: Panel 1056, 1076: Memory 1057, 1077: Control 1058, 1078: Keyboard 1 05 9 : Extra Input Pack 1060: Extra Output Pack 1061: Input/Output 乂1062, 1079: Timing 1 070: Digital Meter 1090: Cable 1 1 1 0 : Power Current Micro 1120: Power Cable 112 2 : Υ - △ Wiring Change 112 4 : Generator 112 6: Bus bar 112 8 : Capacitor 1 1 4 0 : Fiber 1150: Circuit breaker 116 0: Power supply 1 200 : Protection device interface interface Transfer device display unit body device placement - surface unit Sensing system pressure device 38 1263050

1202 :輸入 1204:光纖 1206 :微處 1208 :計時 1 2 1 0 :記憶 1 2 1 2 :面板 1 2 1 4 :控制 1 2 1 8 :額外 1 2 20 :額夕卜 1222 :輸入 介面 傳送介面 理器 器 體 顯示單元 器 輸入裝 輸出裝置 /輸出介面單元1202: Input 1204: Fiber 1206: Micro 1208: Timing 1 2 1 0: Memory 1 2 1 2: Panel 1 2 1 4 : Control 1 2 1 8 : Extra 1 2 20 : Eve 1222: Input interface interface Processor body display unit input and output device/output interface unit

3939

Claims (1)

1263050 拾、申請專利範圍 夕—1 · 種電力電流微感測器,係藉由量測通過一雷俨 電流產生之一 7=¾庵2:并JLH 、覓 ,f 感應磁%,以偵測通過該電纜之該雷、、六 大小,該電力電流微感測器至少包含: 電机 一基板’係具有作為波導之複數個孔隙; 一維晶格薄膜,係位於該基板頂部與底部,以 擊 感應磁場於该二維晶袼薄膜内產生駐波;以及 一引接電極,係位於該二維晶格薄膜上,並向下 延伸通過該二維晶格薄膜至該基板中,以量測該感應磁場 產生之一霍爾電壓。 2_ 如申請專利範圍第1項所述之電力電流微感測 器,其中該基板係由矽所構成。 φ 3 · 如申請專利範圍第1項所述之電力電流微感測 器,其中該基板係由銦化錄(InSb )所構成。 4· 如申請專利範圍第1項所述之電力電流微感測 器,其中該基板係由砷化鎵(GaAs )所構成。 5. 如申請專利範圍第1項所述之電力電流微感測 器,其中該基板之厚度實質上約為525微米。 1263050 6. 如申請專利範圍第1項所述之電力電流微感測 器,其中該些孔隙之半徑實質上約為11.2微米。 7. 如申請專利範圍第1項所述之電力電流微感測 器,其中該些孔隙係位於該基板之頂部。 8. 如申請專利範圍第7項所述之電力電流微感測 φ 器,其中該些孔隙係位於該些引接電極間之該基板頂部。 9. 如申請專利範圍第7項所述之電力電流微感測 器,其中位於該基材頂部之該些孔隙之深度實質上約為 35微米。 _ 1 0.如申請專利範圍第1項所述之電力電流微感測 器,其中該些孔隙係位於該基板之底部。 11.如申請專利範圍第10項所述之電力電流微感測 器,其中位於該基材底部之該些孔隙之深度實質上約為 100微米。 1 2.如申請專利範圍第1項所述之電力電流微感測 器,其中該二維晶格薄膜係由二氧化矽所構成。 1 3.如申請專利範圍第1項所述之電力電流微感測 41 1263050 器 ,其中該二維晶格薄膜之厚度實質上約為12〇〇〇埃 14·如中請專利範圍第1項所述之電力電流微感測 器,其中a亥些引接電極係由金屬所構成。 15. 如中請㈣範圍第14項所述之電力電流微感測 器,其中遺些引接電極係由鋁所構成。 Φ 16. 如中請專利範圍第1項所述之電力電流微感測 器,其中該電力電流微感測器實質上為十字形。 π.如中請㈣範㈣丨項所述之電力電流微感測 器,其中該電力電流微感測器係藉由一定電流驅動電路驅 動0 42 1 8 · —種電力電流微感測系統,係用以偵測通過一電 纜之一電流,該電力電流微感測器系統至少包含: 一電力電流微感測器,係用以量測通過該電纜之 該電流產生之一感應磁場,該電力電流微感測器包含: 一基板’係具有作為波導之複數個孔隙; 一二維晶格薄膜,係位於該基板頂部與底 部’以使該感應磁場於該二維晶格薄膜内產生 駐波; 一引接電極,係位於該二維晶格薄膜上, 1263050 系統,其中該基板係由石夕所構成。 25 ·如申請專利範圍第丨8項所述之電力電流微感測 系統,其中該基板係由銦化諦(InSb )所構成。 26.如申請專利範圍第1 8項所述之電力電流微感測 系統,其中該基板係由砷化鎵(GaAs )所構成。 27·如申請專利範圍第1 8項所述之電力電流微感測 系統,其中該基板之厚度實質上約為525微米。 2 8 ·如申請專利範圍第1 8項所述之電力電流微感測 系統,其中該些孔隙之半徑實質上約為11.2微米。 29.如申請專利範圍第1 8項所述之電力電流微感測 系統,其中該些孔隙係位於該基板之頂部。 30·如申請專利範圍第29項所述之電力電流微感測 系統,其中該些孔隙係位於該些引接電極間之該基板頂 部。 3 1 ·如申請專利範圍第29項所述之電力電流微感測 系統,其中位於該基材頂部之該些孔隙之深度實質上約為 35微米。 44 1263050 3 2.如申請專利範圍第1 8項所述之電力電流微感測 系統,其中該些孔隙係位於該基板之底部。 33.如申請專利範圍第32項所述之電力電流微感測 系統,其中位於該基材底部之該些孔隙之深度實質上約為 100微米。 34_如申請專利範圍第1 8項所述之電力電流微感測 系統,其中該二維晶格薄膜係由二氧化矽所構成。 3 5.如申請專利範圍第18項所述之電力電流微感測 • 系統,其中該二維晶格薄膜之厚度實質上約為12000埃。 3 6.如申請專利範圍第18項所述之電力電流微感測 | 系統,其中該些引接電極係由金屬所構成。 3 7.如申請專利範圍第36項所述之電力電流微感測 系統,其中該些引接電極係由鋁所構成。 3 8.如申請專利範圍第18項所述之電力電流微感測 系統,其中該電力電流微感測器實質上為十字形。 3 9.如申請專利範圍第1 8項所述之電力電流微感測 45 1263050 系統’其中该電力電流微感測器係藉由一定電流驅動電路 驅動。 4 0 · —種電力電流微感測器之製造方法,該電力電流 微感測器之製造方法至少包含: 於一基板頂部形成一遮罩層; 移除部分該遮罩層,以使部分該基材頂部露出; 於該基材形成複數個孔隙; 移除該遮罩層之其餘部分; 於該基板頂部與底部形成一二維晶格薄膜; 移除該基材頂部之部分該二維晶格薄膜與部分該 基材,以形成一引接電極接觸孔,該引接電極接觸孔係由 該二維晶格薄膜延伸至該基板内; 於该基材頂部之該二維晶格薄膜與該引接電極接 觸孔’形成一金屬層;及 移除部分該金屬層,以形成一引接電極。 41 ·如申請專利範圍第4〇項所述之電力電流微感測 器製造方法,其中該基板係由矽所構成。 42.如申請專利範圍第40項所述之電力電流微感測 恭製造方法’其中該基板係由姻化錄(InSb )所構成。 43·如申請專利範圍第40項所述之電力電流微感測 46 1263050 器製造方法,其中該基板係由砷化鎵(GaAs )所構成。 44.如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該基板之厚度實質上約為525微米。 45 .如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該些孔隙之半徑實質上約為11.2微米。 46. 如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該些孔隙係位於該基板之頂部。 47. 如申請專利範圍第46項所述之電力電流微感測 器製造方法,其中該些孔隙係位於該些引接電極間之該基 板頂部。 48. 如申請專利範圍第46項所述之電力電流微感測 器製造方法,其中位於該基材頂部之該些孔隙之深度實質 上約為35微米。 49. 如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該些孔隙係位於該基板之底部。 5 0.如申請專利範圍第49項所述之電力電流微感測 器製造方法,其中位於該基材底部之該些孔隙之深度實質 47 1263050 上約為100微米。 5 1.如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該二維晶格薄膜係由二氧化矽所構成。 5 2.如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該二維晶格薄膜之厚度實質上約為 12000 埃。 5 3 .如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該金屬層係由鋁所構成。 54.如申請專利範圍第40項所述之電力電流微感測 器製造方法,其中該電力電流微感測器實質上為十字形。1263050 Picking up, patent application scope ——1 · A kind of electric current and micro sensor is generated by measuring one of the lightning currents by one of 7=3⁄4庵2: and JLH, 觅, f The power current micro-sensor comprises at least: the motor-substrate' has a plurality of apertures as waveguides; the one-dimensional lattice film is located at the top and bottom of the substrate, Generating a standing wave in the two-dimensional crystal film; and a lead electrode on the two-dimensional lattice film and extending downward through the two-dimensional lattice film into the substrate to measure the The induced magnetic field produces a Hall voltage. 2_ The power current micro-sensor of claim 1, wherein the substrate is made of tantalum. Φ 3 The power current micro-sensor of claim 1, wherein the substrate is composed of InSb. 4. The power current micro-sensor of claim 1, wherein the substrate is made of gallium arsenide (GaAs). 5. The power current micro-sensor of claim 1, wherein the substrate has a thickness of substantially 525 microns. The power current micro-sensor of claim 1, wherein the apertures have a radius of substantially 11.2 microns. 7. The power current micro-sensor of claim 1, wherein the apertures are located on top of the substrate. 8. The power current micro-sensing device according to claim 7, wherein the holes are located at the top of the substrate between the lead electrodes. 9. The power current micro-sensor of claim 7 wherein the depth of the apertures at the top of the substrate is substantially about 35 microns. _ 1 0. The power current micro-sensor of claim 1, wherein the holes are located at the bottom of the substrate. 11. The power current micro-sensor of claim 10, wherein the apertures at the bottom of the substrate have a depth of substantially about 100 microns. 1 2. The power current micro-sensor of claim 1, wherein the two-dimensional lattice film is composed of cerium oxide. 1 3. The power current micro-sensing 41 1263050 according to claim 1, wherein the thickness of the two-dimensional lattice film is substantially about 12 14 14 · as in the first patent scope The power current micro-sensor, wherein the a plurality of lead electrodes are made of metal. 15. The power current micro-sensor as described in item (4) of the scope of (4), in which the lead electrodes are made of aluminum. Φ 16. The power current micro-sensor of claim 1, wherein the power current micro-sensor is substantially cruciform. π. The power current micro-sensor described in (4), (4), wherein the power current micro-sensor is driven by a certain current driving circuit, and the power current micro-sensing system is The system is configured to detect a current through a cable, the power current micro-sensor system comprising: at least one power current micro-sensor for measuring an induced magnetic field generated by the current of the cable, the power The current micro-sensor comprises: a substrate 'having a plurality of apertures as a waveguide; a two-dimensional lattice film located at the top and bottom of the substrate to cause the induced magnetic field to generate a standing wave in the two-dimensional lattice film A lead electrode is located on the two-dimensional lattice film, 1263050 system, wherein the substrate is composed of Shi Xi. 25. The power current micro-sensing system according to claim 8, wherein the substrate is made of indium bismuth (InSb). 26. The power current micro-sensing system of claim 18, wherein the substrate is comprised of gallium arsenide (GaAs). The power current microstimulation system of claim 18, wherein the substrate has a thickness of substantially 525 microns. The power current micro-sensing system of claim 18, wherein the apertures have a radius of substantially 11.2 microns. 29. The power current microstimulation system of claim 18, wherein the apertures are located on top of the substrate. 30. The power current microstimulation system of claim 29, wherein the apertures are located at a top of the substrate between the lead electrodes. The power current microstimulation system of claim 29, wherein the depth of the apertures at the top of the substrate is substantially about 35 microns. The power current micro-sensing system of claim 18, wherein the holes are located at the bottom of the substrate. 33. The power current microstimulation system of claim 32, wherein the apertures at the bottom of the substrate have a depth of substantially about 100 microns. 34. The power current micro-sensing system of claim 18, wherein the two-dimensional lattice film is composed of cerium oxide. 3. The power current micro-sensing system of claim 18, wherein the two-dimensional lattice film has a thickness of substantially 12,000 angstroms. 3. The power current micro-sensing system of claim 18, wherein the lead electrodes are made of metal. 3. The power current micro-sensing system of claim 36, wherein the lead electrodes are made of aluminum. 3. The power current micro-sensing system of claim 18, wherein the power current micro-sensor is substantially cruciform. 3 9. Power current micro-sensing as described in claim 18 of the patent scope 45 1263050 system 'where the power current micro-sensor is driven by a certain current drive circuit. a method for manufacturing a power current micro-sensor, the method for manufacturing the power current micro-sensor includes at least: forming a mask layer on a top of a substrate; removing a portion of the mask layer to make a portion Forming a top of the substrate; forming a plurality of pores on the substrate; removing the remaining portion of the mask layer; forming a two-dimensional lattice film on the top and bottom of the substrate; removing the portion of the top portion of the substrate a film and a portion of the substrate to form a lead electrode contact hole extending from the two-dimensional lattice film into the substrate; the two-dimensional lattice film on the top of the substrate and the lead The electrode contact hole 'forms a metal layer; and a portion of the metal layer is removed to form a lead electrode. The method of manufacturing a power current microsensor according to the fourth aspect of the invention, wherein the substrate is made of tantalum. 42. The method of manufacturing a power current micro-sensing method according to claim 40, wherein the substrate is composed of InSb. 43. The method of manufacturing a power current micro-sensing 46 1263050 according to claim 40, wherein the substrate is made of gallium arsenide (GaAs). 44. A method of fabricating a power current microsensor according to claim 40, wherein the substrate has a thickness of substantially 525 microns. 45. A method of fabricating a power current microsensor as described in claim 40, wherein the apertures have a radius of substantially 11.2 microns. 46. A method of fabricating a power current micro-sensor as described in claim 40, wherein the apertures are located on top of the substrate. 47. A method of fabricating a power current micro-sensor as described in claim 46, wherein the apertures are located on top of the substrate between the lead electrodes. 48. A method of making a power current microsensor as described in claim 46, wherein the depth of the apertures at the top of the substrate is substantially about 35 microns. 49. A method of fabricating a power current microsensor according to claim 40, wherein the apertures are located at the bottom of the substrate. The method of manufacturing a power current micro-sensor according to claim 49, wherein the depth of the pores at the bottom of the substrate is substantially 100 μm on a substantially 47 1263050. 5. The method of manufacturing a power current microsensor according to claim 40, wherein the two-dimensional lattice film is composed of ruthenium dioxide. 5. The method of manufacturing a power current microsensor according to claim 40, wherein the thickness of the two-dimensional lattice film is substantially about 12,000 angstroms. The method of manufacturing a power current microsensor according to claim 40, wherein the metal layer is made of aluminum. 54. A method of manufacturing a power current microsensor according to claim 40, wherein the power current microsensor is substantially cruciform. 4848
TW94102054A 2005-01-24 2005-01-24 Power current micro sensor TWI263050B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94102054A TWI263050B (en) 2005-01-24 2005-01-24 Power current micro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94102054A TWI263050B (en) 2005-01-24 2005-01-24 Power current micro sensor

Publications (2)

Publication Number Publication Date
TW200626911A TW200626911A (en) 2006-08-01
TWI263050B true TWI263050B (en) 2006-10-01

Family

ID=37966240

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94102054A TWI263050B (en) 2005-01-24 2005-01-24 Power current micro sensor

Country Status (1)

Country Link
TW (1) TWI263050B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421439B2 (en) 2010-06-18 2013-04-16 I-Shou University Current detecting and indicating device
TWI408383B (en) * 2010-04-08 2013-09-11 Univ Nat Taipei Technology Saturation detectors and measuring devices
CN105588968A (en) * 2014-09-16 2016-05-18 财团法人工业技术研究院 Non-contact double-line power line voltage sensor and mounting position change compensation method thereof
TWI566260B (en) * 2011-12-21 2017-01-11 3M新設資產公司 Sensored cable for a power network

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067863A (en) * 2017-12-14 2020-06-12 미쓰비시덴키 가부시키가이샤 Draw-out circuit breaker
CN111751593A (en) * 2019-03-28 2020-10-09 Tdk株式会社 Current sensor
TWI838902B (en) * 2022-10-06 2024-04-11 台灣電力股份有限公司 Protection logic planning based on goose application strategy and power supply system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408383B (en) * 2010-04-08 2013-09-11 Univ Nat Taipei Technology Saturation detectors and measuring devices
US8421439B2 (en) 2010-06-18 2013-04-16 I-Shou University Current detecting and indicating device
TWI566260B (en) * 2011-12-21 2017-01-11 3M新設資產公司 Sensored cable for a power network
US9640904B2 (en) 2011-12-21 2017-05-02 3M Innovative Properties Company Sensored cable for a power network
CN105588968A (en) * 2014-09-16 2016-05-18 财团法人工业技术研究院 Non-contact double-line power line voltage sensor and mounting position change compensation method thereof
US9970962B2 (en) 2014-09-16 2018-05-15 Industrial Technology Research Institute Non-contact type voltage sensor for dual-wire power cable and method for compensating installation position variation thereof
CN105588968B (en) * 2014-09-16 2018-08-28 财团法人工业技术研究院 Non-contact double-line power line voltage sensor and mounting position change compensation method thereof
US10261112B2 (en) 2014-09-16 2019-04-16 Industrial Technology Research Institute Non-contact type voltage sensor for dual-wire power cable and method for compensating installation position variation thereof

Also Published As

Publication number Publication date
TW200626911A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
TWI263050B (en) Power current micro sensor
Clem et al. Vortex dynamics in a type-II superconducting film and complex linear-response functions
BR112012026073B1 (en) method and apparatus for the detection of a magnetic parameter and its applications
US8669762B2 (en) Electromagnetic wave detection methods and apparatus
JP5998824B2 (en) AC loss measurement method for superconducting coils
Kunii et al. Electronic and magnetic properties of GdB6
Hattori et al. Spin susceptibility in the superconducting state of the ferromagnetic superconductor UCoGe
Liu et al. Experimental and numerical study of high frequency superconducting air-core transformer
JP2007078500A (en) Method and apparatus for measuring critical current density of superconductive film
Zhang et al. Nonintrusive current sensor for the two-wire power cords
Zhou et al. Shielding of perpendicular magnetic fields in metal layers of REBCO superconducting tapes and Roebel cables
Lei et al. Improved performance of integrated solenoid fluxgate sensor chip using a bilayer Co-based ribbon core
JP2016505834A (en) Wide dynamic range magnetometer
Paperno et al. A tube-core orthogonal fluxgate operated in fundamental mode
Sun et al. High-Current Sensing Technology for Transparent Power Grids: a Review
Liu et al. Improved performance of the micro planar double-axis fluxgate sensors with different magnetic core materials and structures
CN115968246A (en) Anomalous Nernst specific effect thermoelectric device based on magnetic multilayer film structure
TW200523552A (en) Beam current sensor
Kim et al. Planar Hall resistance sensor for monitoring current
Guo et al. Orthogonal micro-fluxgate with S-shape excitation wire and 3D solenoid detection coil
TW434598B (en) Enhancement Hall sensor
Lei et al. Ultra low power solenoid MEMS fluxgate sensor with amorphous alloy core
JP4310431B2 (en) Method and apparatus for measuring critical current density and current / voltage characteristics of superconducting thick film
JP3704549B2 (en) Method and apparatus for evaluating superconducting critical current characteristics of superconducting film
JP5476584B2 (en) Current direction and density measurement method, display method, and measurement display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees