TWI262601B - High tunable and high Q factor variable capacitor - Google Patents

High tunable and high Q factor variable capacitor Download PDF

Info

Publication number
TWI262601B
TWI262601B TW93113424A TW93113424A TWI262601B TW I262601 B TWI262601 B TW I262601B TW 93113424 A TW93113424 A TW 93113424A TW 93113424 A TW93113424 A TW 93113424A TW I262601 B TWI262601 B TW I262601B
Authority
TW
Taiwan
Prior art keywords
capacitor
fixed
electrode plate
movable
control
Prior art date
Application number
TW93113424A
Other languages
English (en)
Other versions
TW200537697A (en
Inventor
Jung-Tang Huang
Cheng-Yeh Lee
Ching-Kong Chen
Original Assignee
Chien Hui Chuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien Hui Chuan filed Critical Chien Hui Chuan
Priority to TW93113424A priority Critical patent/TWI262601B/zh
Publication of TW200537697A publication Critical patent/TW200537697A/zh
Application granted granted Critical
Publication of TWI262601B publication Critical patent/TWI262601B/zh

Links

Landscapes

  • Micromachines (AREA)

Description

1262601 五、發明說明(1) 【發明所屬之技術領域】 本發明為一種有關於使用微機電技術或加上標準積體 電路製程來設計與製作微型可變電容的方法,特別是指一 種接觸式可變電容的設計與製作方法。該可變電容具有低 驅動電壓、高Q值、高可控性、高的變化率、與較廣的操 作頻率,並利用標準製程的多層結構達到自我封裝的方 法’可廣泛應用於通訊領域,或整合於通訊的積體電路晶 片中。 【先前技術】 近年來’由於許多通訊頻段及網路的開放,再加上半 導體CMOS製程的發達,使得無線通訊系統朝向輕、薄、 短、小及多頻段(Multi-Band)、多模(Multi-Mode)、容 易大量生產,且生產成本能夠降低的方向發展。特別是個 人無線通訊系統發展日益增加,舉凡手機應用GSM 9 0 0MHz 與 1800MHz的工作頻率,藍芽(Bluet00th)和 IEEE8〇211b 操作在2· 4GHz的頻段,無線區域網路(WLNA) IEEE8〇2. Ua 操作在5· 2GHz的頻段,以往使用傳統(^〇3可變電容 (V a r a c t 〇 r )’由於半導體平面製程限制,使得電容變化範 圍及Q值不甚理想,因此利用標準CM0S製程配合MEMS幾項 後製程’將可製作出具有體積小、價格低及性能佳等特性 的可變電容’甚至於可製作出其它微波無線通信元件。 已知的微型可變電容大致可分為三種形式:丨· PN Varactor 2.M0S Varactor 3.MEMS Tuning Capacitor9
第7頁 1262601 五、發明說明(2)
前兩者參考 Thomas H. Lee, The Design of CMOS radio-frequency Integrated Circuits, Cambridge University Press, 1988,或 TSMC RF Spice Models手 冊,後者參考 Aleksander Dec and Ken Suyama,nRF
Micromachined Varactors With Wide Tuning Range," IEEE MTT-S Digest 1998,如圖一所示,有鑑於已知微型 可變電容有三項主要的缺點: (1 )電容變化率太小,約3 0 %〜2 0 0 %。 (2) Q值過低,頻率在2. 4GHz以下約1〇〜3〇。 (3) 製程相容性差,特別是以託託製程製作的微型可變電 容’須獨立封裝再另外使用於電路板上,辩加成本。 型可變電容具有上述三項主要“點,近年來 方式:L的:究ί果是針對其改善,不過可變電容作動 ΐ = 卻不見有相關的研究,使得可變 冤谷的性能無法有太大的改善, 製作出高Q值、高可控性、高的變口化此/發明以微機電—技術 以自我封裝的技術,只需購買後:所之微型可變電谷輔 昂貴設備的成本支出,…义:需設備可減少購買 其他如CMOS、MUMP…等製程,並變電容更可相容於 兀传以改善以上之問題。 【發明内容】 本發明之主要目的係提供 以使許多電路可有大變化率的 盈器、變頻功率放大器、變頻 —大變化率的微型可變電容 應用’如匹配電路、壓控震 低雜訊放大器等。
1262601 五、發明說明(3) 本發明之另一目的係提供一高Q值微型可變電容以應 用在需要高Q值的可變共振電路。 、, 本發明之另一目的係提供一低驅動電壓微型可變電容 並具自我封裝功能,以利於整合至積體電路中。 本發明之最後目的在提高積體電路的相容性,利用標 準積體電路製程配合微機電後製程完成可變電容,成為積 體電路的元件之_。
如圖二所示的微型可變電容等效模型,電容值的改變 乃疋利用電容C的特性參數,改變其電容的間距d、電容互 相搞合的面積A與其介電係數er ,在可變電容方面通常分為 面積调變電谷(Area-tuning capacitors)與間距調變電容 (Gap-tuning capacitors)這兩種方式,本發明之可變電 容結構,是採用間距改變的方式,達到電容值可以調變的 功能。若施加電壓於控制用的可動與固定兩平行電極時,
會使控制用可動電極10受到靜電力的影響而產生位移,由 於以靜電力驅動傳統的可變雷交 古! /9 Μ店仏一由 」支冤谷可控制的作動行程大約只 有1 / 3的原始南度,使得電容的 ^ L L ΑΛ ^ ¥ " j A值變化盔法有太大的改 善,故此,本發明利用懸臂樺牲 义 $ 邊界後漸次變形的形式來產生雷^ W 4曲支办^ j从 ^ ^各值的變化,因此稱之為
1262601 五、發明說明(4) 接觸型高變化率可變電容。 如圖三所示,接觸型高變化率可變電容包含至少一個 電壓敏感的電容,其中一個電極是由含導電性質的薄板與 薄膜所組成之懸臂結構1 0,另一電極1 2則形成於固定的基 板上,薄膜會因兩電極之間隔的靜電壓作用而變形,因此 其電容會改變。 本發明以微機電技術製作高變化率可變電容,亦可以 標準CMOS製程,如1P5M,配合微機電後製程來製作高變化 率可變電容,如圖三所示。上層為可動之懸浮結構部分, 其中懸臂式支撐結構1 0即為控制用可動電極與電容可動電 極板所組成,下層結構為為控制用固定電極1 1與電容固定 電極12。介電層使用的是超薄氧化層24,可使電容變化率 提昇數倍。固定結構除了控制用固定電極11、電容固定電 極1 2與超薄氧化層2 4外,另有固定埠1 3。懸臂式支撐結構 可以設計成不同形式的長、寬、厚度比例與結構形狀以獲 得高Q值、低電壓與縮小整體的面積。圖四為以標準CMOS 製程為設計規範之不同懸臂式支撐結構與作動電壓關係及 其相對應之C-V圖之示意圖。 如圖五所示,本發明的接觸型高變化率可變電容曲線可以 分成四個區域: 1正常區域〔Normal Region〕:這個區域電壓小因此薄 膜變形小,相較於薄膜厚度與電容兩極板的間距,稱其為 正常區域是因這區域是一般傳統的微機電可變電容操作的
第10頁 1262601 五、發明說明(5) 區域。 2轉換區域〔Transition Region〕:在這個區域,懸臂 薄膜的一端開始接觸電容的下電極,此時的電壓稱之為 〔接觸點電壓〕,這個區域是電容由正常模式過渡至接觸 模式’設計上應盡量讓此區域有二次連績。 3接觸區域〔Touching Region〕:這是本接觸式可變電 容變化率較大的操作區域,因為它有高增益與大的變化範 圍,此乃是薄膜在接觸點之後,其電容的變化並非取決於 電容兩電極之間的距離,而是取決於受靜電電壓作用而使 接觸面積漸次對應的改變,設計上應盡量讓此區域有較線 性或三次連續。 4飽和區域〔Saturation Region〕:受限於電容重疊面 積的尺寸,電容即使在靜電壓繼續增加仍舊會達到飽和, 甚至因可動電極的翹曲,接觸面積減少而使電容值下降, 設計與操作上應盡量讓此區域有較大裕度。 為了解接觸型高變化率可變電容的變形過程,特將作 動行程以數學形式做一番推導,其詳細討論如下,在此僅 以懸臂樑的型式為例說明,其餘型式的薄膜為相關從業人 員可容易據此推廣,在此不再贅述: 〔一〕接觸點電壓之推算,如圖六 已知懸臂樑位移函式為
第11頁 電 為 即 積離 面距 用之 作端 ,定 力固 電與 靜心 勻中 均板 之極 上壓 標電 臂為 懸a 在, 用小 作大 為之 P板 中極 其壓 為 量 形 變 之 a 端 定 固 0 距 知 得 以 可尸 式 上 由 3λ + 3is 1262601 五、發明說明(6) 7㈠=卜β)3 一 X3+3丄 1 同時亦可求出懸臂標端點變化量為 1 657以d---( 1 ) 由於此變化量即為電容極板之最大間距 二匕 故由(1 )式即可推導出靜電力公式 ρ = __6Ε1^_ a\3L-a)---(2) 另外,靜電力與電壓之關係為 机2 一 V---(3) 其中 &為最初電壓極板與懸臂樑之間距,與靜電力之關係 為下:
Pa3 sv = sw ~ y(a) ^ Sy = sw ~ ___ ( 4 ) 由(2 )、( 3 )式可推出當懸臂樑端點達最大變化量之瞬間, 所須之電壓為 =f Ugv2Elge ^k~ia\3L-a)sA ---( 5 ) 〔二〕接觸前之作動推導,如圖七
第12頁 1262601 五、發明說明(7) 當懸臂樑尚未接觸時,前段因未受力,變化量視為線性, 故可以積分形式表示其電容值 ;ln(ga+&) 其中 ^為介電層相對於空氣之介電係數 %為懸臂樑之寬度
2ΞΙ s,·
Pa\3L-a) ^ 6ΞΙ 為接觸前懸臂樑的前端與接觸面
之距離 〔三〕瞬間接觸前之作動推導,如圖八 當懸臂樑瞬間碰到介電層時 一 6他 a2(3L-a) 2Ξ1
則可推導瞬間接觸時電容值為: (6) ~ EWc
第13頁 1262601 五、發明說明(8) 其中~為介電層厚度 假設懸臂樑在瞬間碰觸狀態,則僅有力矩Μ 1與固定端施予 的作用力R 1 其邊界條件為 q = 0, for R2 = 0 其中q為懸臂樑與介電層之接觸面積 R 2為懸臂樑接觸到介電層後,介電層所施之作用力 將(1 )式代入,可得 q= AP (L-a) 3Pt-AP^ ;---( 7 )
其中 lp = p - 由(7 )式知,疊加面積q,會隨 增加 〔四〕接觸區段之作動推導,如圖九 若懸臂樑接觸到介電層後,電壓以線性增加,則電容值的 變4匕為
η _ ε _lC &咕 一 . τ “wn-t⑽k 其中,C non_touc狎為第(6 )式之延伸
第14頁 1262601 五、發明說明(9) 〔五〕飽和狀態之作動推導,如圖十 當上下電容極板完全密和時 pZ我入(7)式,可得到 4 =
AP
因此可整理得 L-\- Lc — ct
由 姐即可推導出,當懸臂樑與介電層完全重疊 時所需的電壓值 L 【實施方式】 〔本發明實施例一〕
首先要根據所需的接觸型高變化率可變電容的規格與 積體電路標準製程,如CMOS,以判斷是否能以標準製程製 作,接著依所要求之設計規格進行細部設計模擬,再經由 Cadence進行晶片佈局驗證,下線給晶圓代工廠如TSMC製 作晶片,最後將製作完成晶片進行微機電後製程製作及量 測封裝,整個流程如圖十一所示。 以台積電之CMOS 0.25um 1P5M標準製程為例來設計接 觸型高變化率可變電容。圖十二所示為CMOS標準製程的可 變電容剖示圖,其中懸臂式支撐結構10使用Metal5 ;可變 電容之介電層使用MI Μ之ο X i d e層;控制用之固定電極1 1使
第15頁 1262601 五、發明說明(10) 用Metal3;電容之固定電極12使用Metal4;另外Metal5、 ^^七&14、^^七313與¥丨&4、\^3 3為可變電容之固定埠13部 分。其中各層厚度與材料如下表所示: 0.99 um 0.57 um 0.57 um 1 um 1 um 0.038 um
Metal5 Meta 1 4 Meta 1 3 Via4 Via3 Μ I M oxide 姜呂碎銅合金 I呂石夕銅合金 在呂石夕銅合金 鎢 姜鳥 二氧化矽 將晶圓代工廠完成回來的裸晶進行所需的MEMS後製 程,先以等向性化學濕蝕刻將鋁矽銅合金〔蝕刻液為 16H3P04+1HN03+1CH3C00H+2H20〕、鈦〔蝕刻液為 H2O:HF:H2O2 = 20:l:l〕、鎢〔蝕刻液為H202〕等金屬層犧 牲層移除如圖十三所示,再利用非等向性r丨E乾蝕刻〔氣 體為CF4,壓力6.5Pa,RF Power:l〇〇w〕將金屬犧牲層上 的二氧化矽(Oxide)層移除,即可完成可變電容的製作, 如圖十四所示。
當製程部分完成後,接著對可變電容進行電容值、位移、 應力、電壓進行分析量測,以幾種結構類型作為範例,其 量測結果分析如下表所示: 型式 結構 接觸點電壓 電容變化率
第16頁 1262601 五 、發明說明(11) 及 飽和電 壓 C a〕 電壓上電 8v 91.52 極寬1 4 0 u m 1 7v 〔面積為 16000〕 C b〕 電壓上電極 7v 91.52 寬 lOOum 1 6 v 〔面積為 16000〕 [ c〕 電壓上電極 6 v 91.52 末端挖空30x40 15v 〔面積為 16000〕 [ d〕 下電容極板 7v 91.36 以階梯式表現 15v 〔面積為 14000〕 [ e〕 縮小下電容 7v 91.52 極板中段面積 18v 〔面積為 16000〕 C f〕 再縮小下電容 7v 91.91 極板中段面積 18v 〔面積為 13000〕 表 中之電容極板間距為 1 um,其 中a i r = 0. 9 6 2um ; oxide: 0. 0 3 8um控制用固定電極板皆為 120 um x 100 um o
由圖十五〔a〜c〕可明顯看出懸臂結構之彈性係數K值
第17頁 1262601
五、發明說明(12) 越低,其接觸點電壓及飽和電壓亦越低。圖十五〔d~f〕 表示當可變電容作動在接觸區域時,有一小段大變化之電 容值,則可採用變化下電容極板的方式,使本設計之電容 值變化較為趨緩,使C-V圖更接近可控狀態。圖十五〔g〕 為C— V曲線比較圖。 一另外亦針對可變電容之高頻特性作分析量測進而瞭解 其高頻的效應與Q值,分別針對圖十五〔a、b、c、d、e、 f〕,其Smith Chart上的si 1各別如圖十六所示。由結果 可發現高頻效應及Q值遠較其他型式的微型可變電容理 想,由於標準CM0S之〇.25um製程中Metai5的阻值為 _似^而本可變電容其懸臂結構寬度在8〇um〜14〇um, 故阻值甚低,因此其S1 1參數值變化不大,也因為如此本 設計之可變電容才會具有彳艮大之q值。 〔本發明實施例二〕 不以CMOS標準製程為基礎的方式:
萝作本!x 3因結構簡單’故十分適合使用微機電技術自 ϋ’Λ十七所示。先在晶圓上沉積—層二氧化石夕
柃制用固二鑛;層金屬’分別定義出電容固定電極板112 ^用=電,丨"、及,定埠113,金屬材料視 :直/是以濺鑛塾高電容固定電極板112及 容固ί Λ其南視所需的控制電壓而定。第四步在謂 =:!12區域沉積一層介電層,其厚度依所需電 疋。接者沉積犧牲層丨14,材料以容易蝕刻為主,
第18頁 1262601 五、發明說明(13) ----- 並定義出固定璋1 1 3區域,其厚度視柝鈿田& ?工刺用電極板1 1 1及雷 容固定電極板1 1 2間距而定。最後在犧蛙爲L 、 俄狂層上沉積金屬作 為結構之懸臂樑,完成後巍刻掉犧牲層即可完成并構釋 放。 、σ 當製程設計部分完成後’接著利用C〇Vent〇rWare模擬 軟體内的模組對可變電容進行模擬,首先以有限元素法將 可變電容網格化,接著對可變電容進行電容值、位移、應 力、電壓進行分析模擬’透過軟體的模擬建立可變電容的 各項參數,以分析暸解其特性,最後將做好之晶片進行量 測驗證模擬結果與實際完成的結果是否一致。 〔本發明實施例三〕 將實施例一之單邊支撐式懸臂樑結構更改為兩端固定 (two end cl amp)簡支樑形式的可變電容,如圖十八所 示。兩端固定的支撐結構2 1 0與懸臂樑結構有類似的變 化,其變形是由電容可動電極中心2 1 3開始變形,當電壓 逐漸增加時,電容可動電極2 1 3依次接觸到電容固定電極 2 1 2直到飽和為止,此種可變電容其面積較大、變化率較 不高,但仍具有高功率處理能力〔high power handling〕 ° 另外控制用可動電極可設置於簡支樑兩側,由簡支樑 側邊向外延伸一固定距離,控制用固定電極也設置於控制 用可動電極之下方,電容固定電極則置於簡支樑下方,電 容固定電極位置較控制用固定電極高,其作動方式仍由電
第19頁 1262601 五、發明說明(14) 此 處 容可動極板中〜開始接觸並作漸次變化直到飽和為 種結構面積會較大,但具有較大之電容變化率與^止, 理能力。 % 1 力率 若利用CMOS製程,先利用Cadence軟體進行晶 和驗證,再下線給晶圓代工廠如TSM(^p可進行晶佈局 接著將晶圓代工廠回來的裸晶進行所需的mems後樂i作, 保護層之開孔以濕蝕刻將犧牲層去除,再將保護由 去除,即可完成可變電容之製作如圖十九〔a,b〕^rie 〔本發明貫施例四 如圖二十所示 將實施例 兩平行電極互相更換,以達到更佳T = 31〇與固定312 3 1 0自由端作為控制用電極時,利縣二,旎力,當懸臂樑 隨固定端距離而減少之特性,&摩樑之彈性係數£值 容極板產生之靜電力的影響; ^ =抑制交流訊號在電 極板會先做部分接觸,但自由端Ϊ壓逐漸升高,電容 計之電壓值後即停止變化。 )θ持續變形,達到所設 〔本發明實施例五〕 低驅動電壓之最佳化設計: 應(pu 為了要達到低驅動電壓的目 、,
Pull — in effect)造成的吸雷^先需瞭解受吸附效 v〇ltage)與介電係數、電壓極 变(Pun-in 積、電壓極板間距有
1262601 五、發明說明(15) 關。由於面積關係於製造成 不合乎我們整合於積體電路=,因此增加電壓極板面積並 間距會使吸附效應太明顯,枯要求,再者,降低電壓極板 低驅動電壓的最佳化設計便可變電容變化率降低,因此 以CMOS 0.25um 1P5M製二1介電係數的增加。
Metal3為控制用固定電極j/為例,如圖二十一。若 1 η ^ m ^ U、Metal5為懸臂式支撐結構 1 0,在控制用固定電極丨彳μ + if ^ U上方之Metal 4、Vi a3以二氧化矽 2 5代替空軋,因此計I技^ ^ ^ , ^ T异接觸點電壓便需考慮介電係數的變 化。將則述第二式、第三式變化如下: ^-AV2 g〇g + 2(gy ~g〇^ — nBI^dL 其中 pt :接觸點靜電力 接觸點電壓 電壓極板間距 一氣化秒厚度 電壓極板面積 懸臂樑長度 電壓極板中心與固定端距 電容極板間距 ••空氣介電係數 二氧化矽介電係數 V :g : td a Sc ε ε 離
1262601 五、發明說明(16) 舉一實施例來說,若二氧化矽之厚度為157um、空氣 間隙為lum,由上述之公式可知’多了 157麗厚的二氧化 石夕’其接觸點電壓降為原先的〇. 46倍。需注意設計可變電 容之低驅動電壓應注意需在不產生吸附效應(PU 1卜土 Η e f f e c t)情況下,取適當比例的空氣間隙與二氧化矽厚 度’以達成低驅動電壓的設計。 其他如 Smart、MUMPs、 該公式做一簡單的驅動 本數學模型不僅是CMOS製程, 甚至是標準半導體製程都可以使用 電壓之最佳化設計。 〔本發明實施例六〕 具自我封裝功能之CMOS-MEMS可變電容: 對可變電容而言封裝是一個非常關鍵的步驟,因為可 變電容對水氣很敏感,因此要在密閉的空間中 以增加可靠度與響應速度。目前工章展 、 # 菜界用來封裝微機電元 件(MEMS device)常見的有三種方法有· (1) 南分子黏劑接合(Epoxy seals) (2) 陽極接合(anodic bonding) (3) 共金接合(Gold to gold bonding) 但以上三種方法都有兩個主要的問題 (1 )在接合(bonding)過程中加入濕式化合铷 σ 物在 epoxy、 glass、gold上,會產生有機氣體在空腔中,這對開關的
1262601 五、發明說明(17) 可靠度有嚴重的影響。 (2)在接合(bonding)過程中需加熱至3〇 〇〜4〇(rc以得到較 好的密封效果,但這對一般厚度只有〇 5〜15um,長度為 2 5〇11111〜3 5〇11111的薄膜(11161111^8116)或懸臂((^111^16”1^會產 生± 1〜5um的彎曲,使可變電容無法使用。 為了使可變電容更具有實用性,我們可採用自我封裝 ^ = Self —PackMe)以降低後段製程對可變電容的干擾 以及降低製作成本。
構剖面圖如圖二十二所示。 —— u 作為姓刻通道與内部腔體的連結,此 鹤)移除,使ί=濕姓刻將金屬犧牲層(紹石夕銅合名 陈使…構旎被釋放。 〇 ^接著,沉積—層氮化石夕,因為Metai 4的厚产口 ^ ^ Hm ^ ^ 積的方法為主,| :::有^ : : ’基本上是以低江
真空封裝的效J =VD或PVD或旋塗等都可以HI 體内,沉積的材料:然也可以因此填入特定氣體於封艮 電容而言,可依需要選擇金屬或非金屬,以石 馬非金屬,例如厚光阻SU8等。 、 以上的實施例 上並不僅限於此, 雖然以台積電的CMOS製程為例, 本發明之微型可變電容其製程相 但實際 容性上
第23頁 1262601 五、發明說明(18) 不侷限於CMOS製程或其他標準半導體積體電路製程,對於 使用其它製程如:MUMPS、SMart、MPMC···等,也能實現。 〔本發明實施例七〕 非連續性接觸式可變電容: 本發明之可變電容亦可設計為非連續性的接觸式可變 電容。利用從0· 25um製程開始有的MIM電容,如圖二十三 所示,將Μ I Μ電容4 1 0設置於電容固定電極4 11上,其Μ I Μ電 容4 1 0的大小、數量、排列方式可依照所需的電容變化值 設計’並在其上方設置一懸臂式支撐結構4 1 2,利用懸臂 樑的漸進式變形依序觸發Μ I Μ電容4 1 0,以達到電容變化的 效果。以台積電之CMOS 0. 25um 1Ρ5Μ標準製程為例,如圖 二十四所示為MI Μ電容的結構,其上方為一 cTM( capacitor top metal)418,因此懸臂式支撐結構412在未接觸每一個 Μ I Μ電容的CTM 4 18前,可變電容是不會有所變化,一旦開 始接觸,則電容值的變化就依照接觸的Μ I μ電容數量與面 積的總和來決定。在製程上,M e t a 1 5 4 1 3為懸臂式支撐結 構412,Metal 4 41 4及Metal 3 41 5則作為固定極板,進行 後製程時只需將V i a4 4 1 6姓刻即可。如圖二十五所示,為 MIM多種的排列方式。如圖二十六所示,為懸臂式支撐結 構依序接觸Μ I Μ電容示意圖。 此形式的可變電容製程相當簡單,只需要將一層插銷 層姓刻且其製私相谷性上不侷限於製程或其他標準半 導體積體電路製程,對於使用其它製程如:MUMPS/、
1262601 五、發明說明(19) SMart、MPMC···等,也能實現 liHii 第25頁 1262601 圖式簡單說明 【圖式簡單說明】 圖一 習知之微型可變電容(a)PN可變電容(PN Varactor ) (b)MOS可變電容(MOS Varactor)(c)微機電可變電 容(MEMS Tuning Capacitor)〕 圖二 本發明之微型可變電容等效模型 圖三 本發明之之標準CMOS製程可變電容結構剖面圖 圖四 本發明之不同型式懸臂支撐結構示意圖 圖五 本發明之電容變化區段之分佈圖 〔橫軸為電壓,縱軸為電容值〕 圖六 本發明之接觸點電壓推算示意圖 圖七 本發明之接觸前作動推導示意圖 圖八 本發明之瞬間接觸前作動推導示意圖 圖九 本發明之線性區段作動推導示意^ 圖十 本發明之飽和狀態作動推導示意圖 圖十一微型可變電容設計與製造方=流程圖 圖十二 CMOS標準製程的微型可變電容剖示目 ^十三*發明微型▼變電容後製程二意圖 圖十四本發明微型可變電容後製程濕式蝕对六音圖 圖十五 (a)本發明微型可變電容的結構一、x y心 (b) 本發明微型可變電容的^構二: (c) 本發明微型可變電容的“構=: (d) 本發明微型可變電容的:構:: (e )本發明微型可變電容的結構五、 (f )本發明微型可變電容的^構六:
1262601
圖式簡單說明 (g)本發明微型可變電容的各種結構變化與其電 容一電壓比較圖 、”电 圖十六本發明微型可變電容的S1 1參數量測結果圖 圖十七 本發明之微機電製程示意圖 圖十八本發明之兩端固定的支撐結構變形示意圖 圖十九本發明之兩端固定的支撐結構蝕刻示意圖(a)蝕 刻前(b )蝕刻後 圖二十本發明之懸臂支撐結構另一變化型式示意圖 圖二十一本發明之微型可變電容於電壓極板上^ —氧化砍之剖面圖 圖二十二本發明之微型可變電容用於自我封裝之 製程示意圖 圖二十三本發明之非連續性接觸式可變電容示意圖 圖二十四本發明之TSMC CMOS 〇.25iim 1Ρ5Μ ΜΙΜ 電谷結構不意圖 圖二十五 本發明之ΜI Μ多種的排列方式 圖二十六本發明之懸臂式支撐結構依序接觸 Μ IΜ電容示意圖
圖號 名稱 20 Via3 21 Meta14 圖號對照表 圖號 名稱 10 懸臂式支樓結構 11 控制用固定電極
1262601 圖式簡單說明 12 電容固定電極 22 Via4 13 固定埠 23 Meta 1 5 14 Contact 24 超薄氧化層 15 Meta 1 1 25 二氧化矽 16 Vial 26 Ρ ο 1 y多晶石夕 17 Meta 1 2 27 Passivatio η保護層 18 Via2 28 氮化矽 19 Me t a 1 3 圖號 名稱 110 懸臂式支撐結構 111 控制用固定電極 112 電容固定電極 113 固定埠 114 犧牲層 115 超薄氧化層 116 二氧化矽 圖號 名稱 圖號 名稱 210 兩端固定之支撐結構 219 Meta 1 2 211 控制用固定電極 220 Via2 212 電容固定電極 221 Meta13 213 電容可動電極 222 Via3 214 固定琿 223 Meta 1 4
第28頁
1262601 圖式簡單說明 215 超薄氧化層 224 Via4 216 contact 225 M e t a 1 5 217 Meta 1 1 226 Po 1 y多晶石夕 218 Vial 圖號 名稱 310 懸臂式支撐結構 31 1 控制用固定電極 312 電容固定電極 313 固定埠 3 1 5 超薄氧化層 圖號 名稱 410 MIM電容 411 電容固定電極 4 1 2 懸臂式支撐結構 413 Metal5
414 MetaU 415 Metal3 416 Via4 417 Via3
418 CTM 419 0.038um二氧化石夕
第29頁

Claims (1)

1262601 六、申請專利範圍 1. 一種接觸式可變電容,係包含 一控制用的可動與固定兩平行電極板; 一可變間隙的電容之可動與固定兩平行電極板,電容 之固定電極板上被覆一層介電層,電容之兩電極板之 間距,要較小於控制用的兩電極板之間距; 控制用可動電極板與電容的可動電極板可連成一懸臂, 其中一端為固定埠,而另一端為自由端,懸臂其上的 控制用可動電極,受控制用固定電極的靜電壓作用, 懸臂漸次變形,設於懸臂自由端的電容可動電極板即 使在接觸電容固定電極板後,仍可繼續變形,直至電 容可動電極板完全與電容固定電極板上的介電層接觸 後停止其電容變化。 的 中 其 容 變 可 式 觸 接 的 述 所 項έ 1被 第上 圍極 範電 利定 專固 請之 申容 如電 2 層 介 層 一 覆 微 數 是 以 可 度 厚 其 及 率 化 變 的 容 電 變 可 加 增 以 可 愈 薄 愈 〇 米值 奈容 十電 數的 至大 米最 的 中 其 容 電 變 可 式 觸 接 的 述 所 項, y距 第間 圍之 範極 利電 專兩 請之 申容 口f?g> 3 間 之 極 電 兩 的 用 制 控 於 \ 較 要 於 倍 三 至 兩 為 距 間 之 極 兩 用 制 控。 是距 圍間 範之 的極 佳電 較兩 其之 ’容 距電 的 中 其 容 一^6- 變 可 式 觸 接 的 述 所 項 11 第 圍 範 利 專 請 中 如 第30頁 1262601 六、申請專利範圍 控制用的可動與固定兩平行電極,其位置可與電容的可 動與固定兩平行電極互相更換。 5. —種接觸式可變電容,係包含 一控制用的可動與固定兩平行電極板; 一可變間隙的電容之可動與固定兩平行電極板;電容之 固定電極板上被覆一層介電層;電容之兩電極板之間 距,要較小於控制用的兩電極板之間距; 控制用可動電極板與電容的可動電極板可連成一簡支 樑,其中兩端為固定埠,而中央部分可自由形變; 簡支樑其上的控制用可動電極,受控制用固定電極的靜 電壓作用,簡支樑漸次變形,設於簡支樑中央部分的 電容可動電極板即使在接觸電容固定電極板後,仍可 繼續變形,直至電容可動電極板完全與電容固定電極 板上的介電層接觸後停止其電容變化。 6. 如申請專利範圍第5項所述的接觸式可變電容,其中的 電容之固定電極板上披覆一層介電層,其厚度可以是數 微米至數十奈米,愈薄愈可以增加可變電容的變化率, 及最大的電容值。 7. 如申請專利範圍第5項所述的接觸式可變電容,其中的 電容之兩電極板之間距,要較小於的控制用的兩電極之 間距,其較佳的範圍是控制用兩電極板之間距為兩至三
第31頁 1262601 六、申請專利範圍 倍於電容之兩電極板之間距。 8. —種非連續性接觸式可變電容,係包含 一控制用的可動與固定兩平行電極板; 數個標準 CΜ0S製程特有的 MIM(Metal-Insulator-Metal) 電容,設置於控制用的可動電極板之下,並相隔一間 隙,其中Μ I Μ電容的大小、個數、排列方式可以不 同;
控制用可動電極板延伸成一懸臂,其中一端為固定埠, 而另一端為自由端,懸臂其上的控制用可動電極板’ 受控制用固定電極板的靜電壓作用,懸臂漸次向下變 形,依序接觸Μ I Μ電容,使電容有不連續的變化。
第32頁
TW93113424A 2004-05-13 2004-05-13 High tunable and high Q factor variable capacitor TWI262601B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93113424A TWI262601B (en) 2004-05-13 2004-05-13 High tunable and high Q factor variable capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93113424A TWI262601B (en) 2004-05-13 2004-05-13 High tunable and high Q factor variable capacitor

Publications (2)

Publication Number Publication Date
TW200537697A TW200537697A (en) 2005-11-16
TWI262601B true TWI262601B (en) 2006-09-21

Family

ID=37987781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93113424A TWI262601B (en) 2004-05-13 2004-05-13 High tunable and high Q factor variable capacitor

Country Status (1)

Country Link
TW (1) TWI262601B (zh)

Also Published As

Publication number Publication date
TW200537697A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
US8503157B2 (en) MEMS device
US9018717B2 (en) Pull up electrode and waffle type microstructure
US9580298B2 (en) Micro-electro-mechanical system (MEMS) structures and design structures
JP4744449B2 (ja) 電子デバイスの製造方法及び電子デバイス
US9843303B2 (en) Switchable filters and design structures
JP2008182134A (ja) 可変キャパシタ
WO2008047563A1 (en) Electronic element, variable capacitor, micro switch, method for driving micro switch, and mems type electronic element
Bakri-Kassem et al. Novel High-$ Q $ MEMS Curled-Plate Variable Capacitors Fabricated in 0.35-$\mu {\hbox {m}} $ CMOS Technology
JP2004518290A (ja) 高qのマイクロメカニカルデバイス及びその同調方法
TW200539204A (en) Variable capacitor and manufacturing method thereof
US8854149B2 (en) MEMS resonator, manufacturing method thereof, and signal processing method using MEMS resonator
Zine-El-Abidine et al. Tunable radio frequency MEMS inductors with thermal bimorph actuators
TWI262601B (en) High tunable and high Q factor variable capacitor
Pu et al. Stable zipping RF MEMS varactors
Hailu High quality factor RF MEMS tunable capacitor
Elshurafa et al. Modeling and fabrication of an RF MEMS variable capacitor with a fractal geometry
US10475713B2 (en) Controllable integrated capacitive device
Akhtar et al. Design and simulation of MEMS based varactor with high tunability for digital communication systems
US6600644B1 (en) Microelectronic tunable capacitor and method for fabrication
McFeetors et al. Performance and operation of stressed dual-gap RF MEMS varactors
TWI477434B (zh) 一種多功能微機電系統元件暨多功能微機電系統與金氧半導體的整合製造方法
Ramli et al. Design and modelling of a digital MEMS varactor for wireless applications
TWI224344B (en) Highly tunable contact-mode inductor
Chang et al. A tunable RF MEMS transformer on silicon
JP2009212541A (ja) 可変キャパシタ