TWI261870B - Method of forming a polysilicon layer - Google Patents

Method of forming a polysilicon layer Download PDF

Info

Publication number
TWI261870B
TWI261870B TW91104833A TW91104833A TWI261870B TW I261870 B TWI261870 B TW I261870B TW 91104833 A TW91104833 A TW 91104833A TW 91104833 A TW91104833 A TW 91104833A TW I261870 B TWI261870 B TW I261870B
Authority
TW
Taiwan
Prior art keywords
gate oxide
stage
deposition process
semiconductor wafer
layer
Prior art date
Application number
TW91104833A
Other languages
Chinese (zh)
Inventor
Chao-Hu Liang
Chih-Hung Chen
Yu-Shan Tai
Po-Lun Cheng
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW91104833A priority Critical patent/TWI261870B/en
Application granted granted Critical
Publication of TWI261870B publication Critical patent/TWI261870B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A surface of a semiconductor wafer has a first gate oxide area and a second gate oxide area. A first gate oxide layer and a photoresist layer are formed on the surface of the semiconductor wafer. A wet etching process is performed to remove the first gate oxide layer not in the first gate oxide area on the surface of the semiconductor wafer. The photoresist layer is then removed. After performing a wet cleaning process, a second gate oxide layer is formed on the surface of the semiconductor wafer. Finally, a two-step polysilicon deposition process is performed, the resultant polysilicon layer covering the first gate oxide area and the second gate oxide layer. The two-step polysilicon deposition process involves a first-step low temperature amorphous silicon (alpha-Si) deposition process, and a second-step high temperature polysilicon deposition process so as to avoid the formation of particles and defects when forming the polysilicon layer.

Description

1261870 ^一一——————一〜〜一 _________ _ _______________ 五,,發明說明 發明之領域 本發明係提供—種多晶矽薄膜的製作方法。 背景説明 在半導體元件的製程中,多晶石夕(polysilicon)已是 不可或缺的一種材料。而依其製程條件的不同,多晶矽可 被製作成不同性質的材質且符合各種元件設計時的材質規 格,以分別應用於各種諸如電晶體的閘極、電容的上、下 電極、電阻以及記憶體的浮置與控制閘極等之半導體元件 中 〇 然而’多晶石夕材料的沈積製程對晶片的表面狀況十分 敏感’尤其是在進行所謂的雙閘極((11^1431^)製程時。 由於雙間極製程必需製作出不同厚度的閘極氧化層(gate oxide layer) ’所以相對來說,雙閘極製程是一種較容易 產生微粒(part icle)與殘餘物(residue)的製程。因為 在形成第二次閘極氧化層之前,必需進行一些相對來說較 容易,生微粒(particle)與殘餘物(residue)的製程, 例如黃光(photol i thography)製程中的光阻覆蓋 ( ing)顯影(develop)與光阻去除(photoresist strip)步驟、閘極氧化矽層的蝕刻製程。 1261870 五'發明說明(2) 因此在完成光阻去除步驟之後,一般均需要再進行超 音波刷洗(me gas on ic scrubbing)製程以及濕式的RC A清洗 製私’才能進行第《 —次閘極氧化層的沈積。而進行這些製 程的目的,除了要達到去除光阻、清洗晶圓以及酸鹼中和 的目的之外,還必需盡量去除晶圓上所附著的微粒子、有 機物、金屬粒子以及微粗糙(microroughness),以免產生 閘極氧化層崩潰電壓(breakdown voltage)降低、接面 (junction)漏電流(leakage current)增大、氧化速率改 變等問題。 請參考圖一至圖五,圖一至圖五為習知於半導體晶片 1 0上製作雙閘極的方法不意圖。如圖一所示,半導體晶片 10包含有一基底12,基底12的表面包含一第一閘極氧化區 1 3以及一第二閘極氧化區1 4。第一閘極氧化區1 3以及第二 閘極氧化區1 4内,另包含有複數個定義出β主動區域1 5之場 乳化層16’形成於基底1 2表面。習知方法首先利用一乾氧 化(dry oxidation)製程,於半導體基底12表面形成一厚 度約為5 7A之第一閘極氧化層1 8。接著如圖二所示,於基 底12的表面第一形成一光阻層22,然後進行一黃光製程, 利用光阻層2 2覆蓋住第一閘極氧化區1 3的主動區域1 5。 如圖三所示,隨後進行一濕蝕刻製程,’利用緩衝氧化 物蝕刻溶液(buffer oxide etchant, Β0Ε)作為钱刻溶 液’以去除未被光阻層2 2所覆蓋之第一閘極氧化層1 8,然1261870 ^一一——————一~~一 _________ _ _______________ V. OBJECTS OF THE INVENTION Field of the Invention The present invention provides a method for producing a polycrystalline germanium film. BACKGROUND OF THE INVENTION Polysilicon is an indispensable material in the fabrication of semiconductor components. Depending on the process conditions, polysilicon can be fabricated into materials of different properties and conform to the material specifications of various component designs for application to various gates such as transistors, upper and lower electrodes of capacitors, resistors, and memory. In the semiconductor components of the floating and control gates, etc., the deposition process of the polycrystalline material is very sensitive to the surface condition of the wafer, especially when the so-called double gate ((11^1431^) process is performed. Since the double-electrode process must produce gate oxide layers of different thicknesses, the double-gate process is relatively easy to produce parts and residues. Before the formation of the second gate oxide layer, it is necessary to perform some relatively easy processes, such as particles and residues, such as photoresist overlay in the photolithography process ( ing ) development and photoresist stripping step, etching process of the gate oxide layer. 1261870 5 'Inventive description (2) Therefore, the photoresist is completed After the step, it is generally necessary to perform the me gas on ic scrubbing process and the wet RC A cleaning process to perform the deposition of the second gate oxide layer. In order to achieve the purpose of removing photoresist, cleaning wafers and neutralizing acid and alkali, it is necessary to remove the microparticles, organic matter, metal particles and microroughness attached to the wafer as much as possible to avoid the breakdown voltage of the gate oxide layer. (breakdown voltage) reduction, junction leakage current increase, oxidation rate change, etc. Please refer to Figure 1 to Figure 5, Figure 1 to Figure 5 is a conventional double gate on the semiconductor wafer 10 The method is not intended. As shown in FIG. 1, the semiconductor wafer 10 includes a substrate 12 having a surface including a first gate oxide region 13 and a second gate oxide region 14. The first gate oxide region 1 3 and a second gate oxide region 14 4, further comprising a plurality of field emulsion layers 16' defining a beta active region 15 formed on the surface of the substrate 12. The conventional method first utilizes a A dry oxidation process is performed to form a first gate oxide layer 18 having a thickness of about 5 7 A on the surface of the semiconductor substrate 12. Then, as shown in FIG. 2, a photoresist layer 22 is first formed on the surface of the substrate 12. Then, a yellow light process is performed, and the active region 15 of the first gate oxide region 13 is covered by the photoresist layer 22. As shown in FIG. 3, a wet etching process is subsequently performed, 'using the buffer oxide etching solution. (buffer oxide etchant, Β0Ε) as a money engraving solution 'to remove the first gate oxide layer not covered by the photoresist layer 2 2

第7頁 1261870Page 7 1261870

後再去除光阻層22。在去除光阻層22時,通常是使用所謂 的 SPM(sulfuric acid hydrogen peroxide mixture)溶 液’而在進行去除光阻層22時,通常亦會先進行一 % 清 洗製私’再將半導體晶片1 〇旋乾(s p i n d r y )。這樣做的目 的 疋希望半導體晶片1 0在進入去光阻溶液之前,所有的 微粒/亏染’如破裂的氧化層、殘餘的钱刻溶液以及有機物 微粒’能夠盡量被去除,以免影響到光阻去除製程。 於光阻去除製程之後,接著進行一濕式清洗製程。通 书會先進行一超音波刷洗(megasonic scrubbing)製程, 利用超音波的震盪,去除晶片上的污染物,然後進行一 SC-1清洗製程。SC-1清洗製程係利用高PH值的 APM(ammonium hydrogen peroxide mixture)溶液,在 80 〜90 C的溫度之下,藉由氧化以去除有機污染與微粒。 隨後進行一 SC-2清洗製程,利用低PH值的. HPM(hydroch1 oric acid hydrogen peroxide mixture) 溶液,在8 0〜9 0° C的溫度之下,形成可溶性錯離子,而 去除金屬污染。 如圖四所示,接著利用另一乾氧化(dry oxidation) 製程,於半導體基底12表面形成一厚度約為33A之第二閘 極氧化層2 4。在形成第二閘極氧化層2 4時,會先消耗掉部 分厚度的第一閘極氧化層1 8,因此,最後所形成的第一閘 極氧化層1 8厚度,會大於第二閘極氧化層2 4的厚度,但會The photoresist layer 22 is then removed. When the photoresist layer 22 is removed, a so-called SPM (sulfuric acid hydrogen peroxide mixture solution) is usually used. When the photoresist layer 22 is removed, a % cleaning process is usually performed first, and then the semiconductor wafer 1 is removed. Spin dry. The purpose of this is to hope that before the semiconductor wafer 10 enters the photoresist solution, all the particles/loss dyes such as cracked oxide layer, residual money solution and organic particles can be removed as much as possible to avoid affecting the photoresist. Remove the process. After the photoresist removal process, a wet cleaning process is then performed. The book will first perform a megasonic scrubbing process, using ultrasonic vibration to remove contaminants from the wafer, and then perform a SC-1 cleaning process. The SC-1 cleaning process utilizes a high pH APM (ammonium hydrogen peroxide mixture) solution to remove organic contamination and particulates by oxidation at temperatures between 80 and 90 C. Subsequently, an SC-2 cleaning process is carried out, and a low pH value (HPM (hydroch1 oric acid hydrogen peroxide mixture) solution is used to form a soluble counter ion at a temperature of 80 to 90 ° C to remove metal contamination. As shown in Fig. 4, a second gate oxide layer 24 having a thickness of about 33 A is formed on the surface of the semiconductor substrate 12 by another dry oxidation process. When the second gate oxide layer 24 is formed, a portion of the first gate oxide layer 1 8 is first consumed, so that the thickness of the first gate oxide layer 18 formed is greater than the second gate. Oxide layer 2 4 thickness, but will

第8頁 1261870 五、發明說明u) 小於兩次氧化厚度的總和。Page 8 1261870 V. INSTRUCTIONS u) Less than the sum of the two oxidation thicknesses.

如圖五所示,利用一低壓化學氣相沈積(1 OW pressure chemical vapor deposition, LPCVD)來進行一 多晶矽(p ο 1 y s i 1 i c ο η)沉積製程,以於第一閘極氧化區1 3 以及第二閘極氧化區1 4之上形成一多晶矽層(未顯示)。該 LPCVD製程可以於批次形式(batch type)的設備中進行, 也可以在一次只處理單片晶片(single wafer)的設備中進 行。前者的製程條件為:以矽曱烷(si lane,Si Η 4)為反應 氣體’溫度設定在攝氏5 8 0度至6 3 0度之間,壓力約為〇 . 2 托耳(torr)。而後者的製程條件為··以矽甲烷(si lane, s 1 H J為反應氣體,溫度設定在攝氏6 8 0度至7丨〇度之間, 壓力約為40〜80托耳(torr)。後者具有沈積速率快的優 點’但一次只可以處理一片晶片。接著進行一黃光製程以 及一钱刻製程,以於半導體晶片丨〇之第一閘極氧化區丨3與 第一閘極氧化區1 4之上分別上形成形成第一閘極2 6與第二 閘極2 8。 、 然而,儘管在進行多晶 道又一道的各種清洗製程, 的目的。但是往往在多晶石夕 ^面發生局部或全面微粒污 乂針狀(needle)的形式存在 M及清洗製程,有其製程能 矽沉積製程之前,已經進行一 以期能達到去除各種微粒污染 沉積製程之後,又會發現晶片 染的情形,甚至於有些微粒是 。這種現象係因為現今的刷洗 力上的極限,因此清洗完的晶As shown in FIG. 5, a polycrystalline germanium (p ο 1 ysi 1 ic ο η) deposition process is performed by a low pressure chemical vapor deposition (LPCVD) to the first gate oxide region 13 And forming a polysilicon layer (not shown) over the second gate oxide region 14. The LPCVD process can be carried out in a batch type of apparatus or in a device that processes only a single wafer at a time. The process conditions of the former are as follows: using stanane (si lane (Si Η 4) as the reaction gas' temperature is set between 580 ° C and 630 ° C, and the pressure is about 〇 2 torr (torr). The latter process conditions are as follows: si lane (s 1 HJ is the reaction gas, the temperature is set between 680 ° C and 7 Torr, and the pressure is about 40 to 80 torr. The latter has the advantage of a fast deposition rate 'but only one wafer can be processed at a time. Then a yellow process and a etch process are performed for the first gate oxide region 丨3 and the first gate oxide region of the semiconductor wafer. The first gate 26 and the second gate 28 are formed on the upper surface of the first and second gates. However, although the purpose of performing various cleaning processes for the polycrystal track is repeated, the polycrystalline stone is often used. There is a partial or full particle contamination needle form in the presence of M and a cleaning process. Before the process can be carried out, the deposition process can be carried out to achieve the removal of various particle contamination deposition processes, and the wafer dyeing situation will be discovered. Even some particles are. This phenomenon is due to the limit of the current brushing power, so the washed crystal

1261870 五、發明說明(5) 圓上仍可能殘餘微量的微粒、金屬離子、有機物等,是以 在半導體業界大量生產的前提下,亦只能訂定洗淨標準, 用來作為各個生產線的流程控制之用,以使在進行多晶矽 沉積製程之前的微粒數量能符合檢測標準。此外,在形成 多晶矽層時,製程溫度愈高,沈積速率則愈快,其結晶性 (crystallinity)也將愈明顯,甚至於當製程溫度過高 時’反應會傾向以均勻性成核(homogeneous nucleation) 的方式進行,以形成較多的晶粒(g r a i n )。因此在多晶石夕 的沉積過程中,其結晶方向容易沿著之前已存在的微粒長 晶’使沉積後的多晶矽層表面發生局部或全面微粒污染的 情形。 如圖/、所示,圖六為習知於半導體晶片10上形成第一 閘極與第二閘極後的剖面立 便扪幻面不思圖。圖六中的突起物3 2即為 微粒,當多晶石夕層2 βόί)、、士 # A ^ 4 f w e 積厚度約為2kW,微粒的高度 少、 以111。请參考圖七,圖七為習知於半導體晶 片1 0上形成第一閘極盘筮_ /、第一閘極後的微粒分佈圖。 變得更繁瑣,並且不增 ,發展出一種新的多晶 沈積時,發生局部或全 成為一個十分重要的課 因此,如何能在不使清洗製程 加清洗製程所耗費成本的前提之下 矽薄膜製矛呈,以避免多晶矽薄膜在 面的微粒污染,以及針狀污染,便 題01261870 V. INSTRUCTIONS (5) There may still be traces of particulates, metal ions, organic matter, etc. on the circle. Under the premise of mass production in the semiconductor industry, only the cleaning standards can be set and used as the process of each production line. It is used for control so that the number of particles before the polysilicon deposition process can meet the test standards. In addition, in the formation of polycrystalline germanium layer, the higher the process temperature, the faster the deposition rate, the more obvious the crystallinity will be. Even when the process temperature is too high, the reaction tends to nucleate with uniformity (homogeneous nucleation). The way is to form more grains. Therefore, in the deposition process of the polycrystalline stone, the crystal orientation tends to cause local or total particulate contamination of the surface of the deposited polycrystalline germanium layer along the crystal grains which have existed before. As shown in FIG. 6 and FIG. 6, FIG. 6 is a cross-sectional view of a conventional sinusoidal surface after forming a first gate and a second gate on the semiconductor wafer 10. The protrusion 3 2 in Fig. 6 is a microparticle, and when the polycrystalline layer 2 βόί), the ±A 4 f w e product has a thickness of about 2 kW, the height of the microparticle is as small as 111. Referring to FIG. 7, FIG. 7 is a particle distribution diagram of the first gate pad / / / and the first gate formed on the semiconductor wafer 10 . It becomes more cumbersome and does not increase. When a new polycrystalline deposition is developed, it takes a part or a whole to become a very important lesson. Therefore, how can the film be produced without the cost of the cleaning process plus the cleaning process? Spears are formed to avoid particle contamination of the polycrystalline silicon film on the surface, as well as needle-like contamination.

I26l870 ----—I26l870 -----

五、發明說明(6) 發明概述 其製^此、,本發明之主要目的在於提供一種多晶矽薄膜及 方法,以解決微粒污染以及針狀污染的問題。 U在本發明之最佳實施例中,提供一種於一半導體晶片 =,作一多晶矽薄膜(p〇lysi丨ic〇n f i lm)的方法,該半導 品曰曰片表面包含一第一閘極氧化區以及一第二閘極氧化 =丄該方法包含有下列步驟··於該半導體晶片表面形成一 間極氧化層以及一光阻層,再進行一濕蝕刻製程,以 除該半導體晶片表面第一閘極氧化區以外之第一閘極氧 化層、然後去除該光阻層,在進行若干濕式清洗製程後, 於該半導體晶片表面形成一第二閘極氧化層,最後進行一 兩階段式的多晶矽沉積製程,並使該多晶矽層覆蓋於第一 閉,氧化區以及第二閘極氧化區之上,該兩階段式的多晶 夕/儿積氯程’包含一第一階段低溫式的非晶石夕(a m r p h 〇 u s si 1 icon,〇: -Si )沉積製程,以及一第二階段高溫式的多 晶石夕(polysi 1 iCOn)沉積製程,係用來避免於形成多晶矽 層時 同時形成微粒(particle )與缺陷(defect)的情形。 由於本發明係利用一兩階段式的多晶矽沈積製程,來 形成由非晶石夕層以及多晶矽層所複合構成的多晶矽層,因 此’可利用形成非晶石夕時結晶性(c r y s t a 1 1 i n i t y)不明顯 的特性’以有效抑制晶核的生成,進而避免在進行結晶V. INSTRUCTIONS (6) SUMMARY OF THE INVENTION The main object of the present invention is to provide a polycrystalline germanium film and method for solving the problems of particulate contamination and acicular contamination. In a preferred embodiment of the present invention, there is provided a method for forming a polycrystalline germanium film on a semiconductor wafer, the surface of the semiconductor wafer comprising a first gate Oxidation zone and a second gate oxidation=丄 The method comprises the steps of: forming a pole oxide layer and a photoresist layer on the surface of the semiconductor wafer, and performing a wet etching process to remove the surface of the semiconductor wafer a first gate oxide layer other than a gate oxide region, and then removing the photoresist layer, after performing a plurality of wet cleaning processes, forming a second gate oxide layer on the surface of the semiconductor wafer, and finally performing a two-stage process a polycrystalline germanium deposition process, and the polycrystalline germanium layer is overlaid on the first closed, oxidized region and the second gate oxide region, the two-stage polycrystalline/child chloride path comprises a first stage low temperature type The amorphous process (amrph 〇us si 1 icon, 〇: -Si ) deposition process, and a second-stage high temperature polylith 1 iCOn deposition process are used to avoid the formation of polycrystalline germanium layers simultaneously form Case of granules (Particle) and the defect (Defect) is. Since the present invention utilizes a two-stage polycrystalline germanium deposition process to form a polycrystalline germanium layer composed of a combination of an amorphous layer and a polycrystalline layer, it is possible to form amorphous crystals (crysta 1 1 inity). Insignificant characteristics 'to effectively inhibit the formation of crystal nuclei, thereby avoiding crystallization

1261870 五、發明說明(7) 時,晶粒沿著附著於晶片表面大小不一的微粒成長的情 形。因此本發明可在不增加前製程中清洗步驟所耗費成本 的前提下,明顯地改善習知技術中形成各種形狀之微粒以 及缺陷的情形。 發明之詳細說明 請參考圖八至十三,圖八至圖十三為為本發明中於半 導體晶片1 0 0上製作雙閘極的方法示意圖。如圖八所示, 半導體晶片100包含有一基底102,基底10 2的表面包含一 第 閘極氧化區1 0 3以及一第二閘極氧化區1 〇 4。第一閘極 氧化區1 0 3以及第二閘極氧化區1 〇 4内,另包含有複數個定 義出主動區域105之場氧化層106,形成於基底1〇2表面。 本發明方法首先利用一乾氧化(dry oxidation)製程,於 半導體基底1 〇 2表面形成一厚度約為5 7A之第一閘極氧化 層接著如圖九所示,於基底ι〇 2的表面第一形成一光 阻層1 1 2,然後進行一黃光製程,利用光阻層1 1 2覆蓋住第 一問極氧化區1 0 3之主動區域1 〇 5。 如圖十所示,隨後進行一濕钱刻製程,利用緩衝氧化 物钱刻溶液(buffer oxide etchant, B0E)作為钱刻溶 ^丄以去除未被光阻層n 2所覆蓋之第一閘極氧化層1 〇8。 f著進行一 SC—1清洗製程,再將半導體晶片100旋乾(spin ry ),以去除微粒污染源,如破裂的氧化層 '殘餘的蝕刻1261870 V. In the description of the invention (7), the crystal grains grow along the particles of different sizes attached to the surface of the wafer. Therefore, the present invention can significantly improve the formation of various shapes of particles and defects in the prior art without increasing the cost of the cleaning step in the prior art. DETAILED DESCRIPTION OF THE INVENTION Referring to Figures 8 through 13, Figures 8 through 13 are schematic views of a method of fabricating dual gates on a semiconductor wafer 100 in accordance with the present invention. As shown in FIG. 8, the semiconductor wafer 100 includes a substrate 102 having a surface including a first gate oxide region 103 and a second gate oxide region 1 〇 4. The first gate oxide region 1 0 3 and the second gate oxide region 1 〇 4 further comprise a plurality of field oxide layers 106 defining the active region 105 formed on the surface of the substrate 1〇2. The method of the present invention firstly forms a first gate oxide layer having a thickness of about 57 A on the surface of the semiconductor substrate 1 利用 2 by a dry oxidation process, and then first on the surface of the substrate ι 2 as shown in FIG. A photoresist layer 112 is formed, and then a yellow light process is performed to cover the active region 1 〇5 of the first inter-polar oxide region 103 by the photoresist layer 112. As shown in FIG. 10, a wet etching process is subsequently performed, and a buffer oxide etchant (B0E) is used as a solvent to remove the first gate not covered by the photoresist layer n 2 . Oxide layer 1 〇8. f performing an SC-1 cleaning process, and then spinning the semiconductor wafer 100 to remove particulate contamination sources, such as a broken oxide layer.

1261870 五、發明說明(8) 溶液以及有機物微粒,然後再使用SPM(sul furic acid - hydrogen peroxide mixture )溶液來去除光阻層 112° 去除光阻層11 2之後,接著進行一濕式清洗製程。通 常係先進行一超音波刷洗(megasonic scrubbing)製程, 利用超音波的震盪,去除晶片上的污染物,然後利用高PH 值的 APM(ammoniuin hydrogen peroxide mixture)溶液, 在8 0〜9 0° C的溫度之下,藉由氧化反應來去除有機污染 與微粒。最後再進行一 SC-2清洗製程,利用低PH值的 HPM(hydrochloric acid hydrogen peroxide mixture)溶 液,在8 0〜9 0° C的溫度之下,形成可溶性錯離子,以去 除金屬污染。 如圖Η 所示,接著進行另一乾氧化.(dry oxidation)製程,於半導體基底10 2表面形成一厚度約為 3 3A之第二閘極氧化層11 4。由於在形成第二閘極氧化層 1 1 4時,會先消耗掉部分厚度的第一閘極氧化層1 〇 8,因 此,最後所形成的第一閘極氧化層1 0 8厚度,會大於第二 閘極氧化層1 1 4的厚度,但會小於兩次沉積厚度的總和。 如圖十二所示,隨後利用一兩階段式的低壓化學氣相 沈積(low pressure chemical vapor deposition, LPCVD)製程,於第一閘極氧化區103以及第二閘極氧化區1261870 V. INSTRUCTION DESCRIPTION (8) Solution and organic fine particles, and then using SPM (sul furic acid - hydrogen peroxide mixture) solution to remove the photoresist layer 112° After removing the photoresist layer 11 2, a wet cleaning process is then performed. Usually, a megasonic scrubbing process is performed to remove contaminants from the wafer by ultrasonic vibration, and then a high-pH APM (ammoniuin hydrogen peroxide mixture) solution is used at 80 to 90 ° C. Under the temperature, organic pollution and particulates are removed by oxidation. Finally, an SC-2 cleaning process is performed to form a soluble counterion at a temperature of 80 to 90 ° C using a low-hydrogen HCM (hydrochloric acid hydrogen peroxide mixture) solution to remove metal contamination. As shown in FIG. ,, another dry oxidation process is then performed to form a second gate oxide layer 11 4 having a thickness of about 3 3 A on the surface of the semiconductor substrate 102. Since the first gate oxide layer 1 〇 8 is partially consumed when the second gate oxide layer 1 14 is formed, the thickness of the first gate oxide layer formed at the end is greater than The thickness of the second gate oxide layer 114 is less than the sum of the two deposition thicknesses. As shown in FIG. 12, a two-stage low pressure chemical vapor deposition (LPCVD) process is then used in the first gate oxide region 103 and the second gate oxide region.

第13頁 1261870 五、發明說明(9) ^04之上形成一多晶矽層116。此兩階段式的LPCVD製程, =於一次只處理單片晶片(singie Mkr)的設備中進行。 尸二階段的製程條件為··以矽甲烷(si iane,siH4)為反應 =體,溫度設定於攝氏55〇度至65〇度之間,壓力為4〇〜8〇 耳(torr) ’所沈積之第一非晶矽層丨丨以的厚度約為ι〇〇 ^ (angStr〇mS)。、接著再進行第二階段的多晶石夕沈積製 八製私條件為·以矽甲烷為反應氣體,溫度設定於攝 6 8 0度至710度之間,壓力為40〜80托耳(torr),所沈積 之第二多晶石夕層116b的厚度為2〇〇〇〜25〇〇angstr〇ms。第一 非晶矽層116a與第二多晶矽層n6b複合成為一多晶矽層 116〇 本發明進行兩階段式的多晶矽沈積製程的優點,在於 一開始時先以較低的溫度沈積,結晶性(crystal丨inity) Z明顯’傾向於形成非晶矽(amorph〇us si 1 icon,a —Si ) 結構,因此能有效抑制晶核的生成,進而避免在進行結晶 時’晶粒(grain)將沿著附著於晶片表面大小不一的微粒 成長(grow) ’而發生如圖六中所示的突起物以及缺陷的情 形。此外’本發明中的複合式多晶矽層,亦可藉由適當的 參數調整,以進行於批次式的LPCVD製程設備中。 最後如圖十三所示,進行一黃光製程以及一蝕刻製 ,’以於半導體晶片1⑽之第一閘極氧化區1 〇 3與第二閘極 氧化區1 04之上分別上形成第一閘極n 8與第二閘極1 22。Page 13 1261870 V. Description of the Invention (9) A polysilicon layer 116 is formed over ^04. This two-stage LPCVD process is performed in a device that processes only a single wafer (singie Mkr) at a time. The process conditions of the second stage of the corpse are: i methane (si iane, siH4) as the reaction = body, the temperature is set between 55 ° C and 65 ° C, the pressure is 4 〇 8 8 ears (torr) The deposited first amorphous germanium layer has a thickness of about ι〇〇^ (angStr〇mS). Then, the second stage of the polycrystalline stone deposition system is made up of 矽 methane as the reaction gas, the temperature is set between 680 degrees and 710 degrees, and the pressure is 40 to 80 Torr (torr The deposited second polycrystalline layer 116b has a thickness of 2 〇〇〇 25 〇〇 angstr 〇 ms. The first amorphous germanium layer 116a and the second polysilicon layer n6b are combined into a polysilicon layer 116. The advantage of the two-stage polycrystalline germanium deposition process of the present invention is that it is first deposited at a lower temperature, crystallinity ( Crystal丨inity) Z apparently tends to form an amorphous germanium (amorph〇us si 1 icon, a —Si ) structure, thus effectively inhibiting the formation of crystal nuclei, thereby avoiding the “grain” along the crystallization process. The case where the particles attached to the surface of the wafer are not the same grows, and the protrusions and defects as shown in Fig. 6 occur. Further, the composite polycrystalline germanium layer of the present invention can also be subjected to batch-type LPCVD process equipment by appropriate parameter adjustment. Finally, as shown in FIG. 13, a yellow light process and an etching process are performed to form a first surface on the first gate oxide region 1 〇3 and the second gate oxide region 104 of the semiconductor wafer 1 (10). Gate n 8 and second gate 1 22 .

第14頁 1261870Page 14 1261870

片100上形 發明說明(10) 4參考圖十四,圖十四為本發明中於半導體晶 成第一閘極與第二閘極後的微粒分佈圖。s曰 由 晶碎 ,缺 形成非 抑制晶 粒將沿 產生各 前製程 極氧化 成本的 缺陷的 多 層 於本發明 沈積製程 後再於較 晶矽時結 核的生成 者附者於 是不預期 中的清洗 層沈積之 前提之下 情形。 之多晶矽層的沈積方式,是一 ’即先於較低的製程溫度下形 南的製程溫度下形成一多晶石夕 日日性(crystallinity )不明顯 ,如此一來,即可避免在進行 晶片表面大小不一的微粒成長 之針狀(n e e d 1 e )微粒。即使不 製程,如濕餘刻、去光阻之後 前的清洗步驟,在不增加清洗 ’亦可明顯改善形成各種形狀 層。由於 ,故可有! 結晶時, 的情形, 改變或増 以及第二 製程所耗 之微粒以The sheet 100 is formed on the surface of the invention. (10) 4 Referring to Fig. 14, Fig. 14 is a diagram showing the distribution of particles in the semiconductor after the first gate and the second gate of the semiconductor are crystallized.曰 曰 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶Before the deposition, mention the situation. The polycrystalline germanium layer is deposited in such a way that a polycrystalline crystallinity is formed at a process temperature lower than the lower process temperature, so that the wafer surface can be avoided. Needle-shaped (need 1 e ) particles of different sizes. Even if it is not processed, such as wet residual, and the cleaning step before the photoresist is removed, the formation of various shape layers can be remarkably improved without increasing the cleaning. Because of it, it can be! In the case of crystallization, the change or enthalpy and the particles consumed in the second process are

pb p ΐ ί於習知製作下儲存電極的製作方法,本發明之兩 ^广式多晶石夕沈積製程,係先於較低的製程溫度下形成一 ^ Β曰石夕層,然後再於較高的製程溫度下形成一多晶矽層。 、 〉成非晶石夕時結晶性(c r y s t a 1 1 i n i t y )不明顯,故 =f效抑制晶核的生成,進而避免在進行結晶時,晶粒將 &著附著於晶片表面大小不一的微粒成長的情形。因此本 發明之工 心兩階段式多晶矽沈積製程可在不增加前製程中清洗 \驟之耗費成本的前提下,明顯改善習知技術中形成各種 形狀之微粒以及缺陷的情形。Pb p ΐ ί _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A polycrystalline germanium layer is formed at a higher process temperature. 〉Amorphous crystallinity (crysta 1 1 inity) is not obvious, so =f effect inhibits the formation of nucleation, and thus avoids the crystal grain attached to the surface of the wafer when crystallization is performed. The situation in which the particles grow. Therefore, the two-stage polycrystalline germanium deposition process of the present invention can significantly improve the formation of various shapes of particles and defects in the prior art without increasing the cost of cleaning in the prior process.

第15頁 1261870Page 15 1261870

1261870 圖式簡單說明 圖示之簡單說明 圖一至圖五為習知於半導體晶片上製作雙閘極的方法 示意圖。 圖六為習知於半導體晶片上形成第一閘極與第二閘極 後的剖面示意圖。 圖七為習知於半導體晶片上形成第一閘極與第二閘極 後的微粒分佈圖。 圖八至圖十三為為本發明中於半導體晶片上製作雙閘 極的方法示意圖。 圖十四為本發明中於半導體晶片上形成第一閘極與第 二閘極後的微粒分佈圖。 圖示之符號說明 10 半 導 體 晶 片 12 基 底 13 第 一 閘 極 氧 化 區 14 第 二 閘 極 氧化 區 15 主 動 區 域 16 場 氧 化 層 18 第 一 閘 極 氧 化 層 22 光 阻 層 24 第 二 閘 極 氧 化 層 26 第 閘 極 28 第 二 閘 極 32 突 起 物 100 半 導 體 晶 片 102 基 底 103 第 一 閘 極 氧 化 區 104 第 二 閘 極 氧化 區 105 主 動 區 域 106 場 氧 化 層1261870 Brief Description of the Drawings Brief Description of the Drawings Figures 1 to 5 are schematic views of a conventional method for fabricating double gates on a semiconductor wafer. Figure 6 is a schematic cross-sectional view showing the formation of a first gate and a second gate on a semiconductor wafer. Figure 7 is a diagram showing the distribution of particles after forming a first gate and a second gate on a semiconductor wafer. 8 to 13 are schematic views showing a method of fabricating a double gate on a semiconductor wafer in accordance with the present invention. Figure 14 is a diagram showing the distribution of particles after forming a first gate and a second gate on a semiconductor wafer in the present invention. Illustrated symbolic description 10 semiconductor wafer 12 substrate 13 first gate oxide region 14 second gate oxide region 15 active region 16 field oxide layer 18 first gate oxide layer 22 photoresist layer 24 second gate oxide layer 26 First gate 28 second gate 32 protrusion 100 semiconductor wafer 102 substrate 103 first gate oxide region 104 second gate oxide region 105 active region 106 field oxide layer

第17頁 1261870 圖式簡單說明 108 114 116b 118 第第第第 一閘極氧化層 112 光阻層 二閘極氧化層 116a 第一非晶矽層 二多晶矽層 116 多晶矽層 一問極 122 第二閘極Page 17 1261870 Schematic description 108 114 116b 118 First first gate oxide layer 112 Photoresist layer two gate oxide layer 116a First amorphous germanium layer two polysilicon layer 116 Polycrystalline germanium layer one pole 122 Second gate pole

第18頁Page 18

Claims (1)

1261870 六'申請專利範圍 1 · 一種於一半導體晶片上製作一多晶矽薄膜 (polysilicon film)的方法,且該半導體晶片表面包含有 複數個微粒(p a r t i c 1 e ),該方法包含有下列步驟: 進行一兩階段式(t wo - s t e p )的多晶矽沉積製程,且該 兩階段式的多晶矽沉積製程包含有: 一第一階段低溫式的非晶石夕(amorphous silicon,α -Si )沉積製程;以及 一第二階段高溫式的多晶矽沉積製程; 其中該第一階段低溫式的非晶矽(a -S i)沉積製程係 用來避免該多晶矽薄膜之晶核沿著該半導體晶片表面之複 數個微粒(p a r t i c 1 e )長晶,以抑制該多晶矽薄膜表面發生 針狀(needle-like)微粒與缺陷(defect)的情形。 2 · 如申請專利範圍第1項之方法,其中在進行該兩階段 式(two-step)的多晶矽沉積製程之前,該-半導體晶片表面 至少進行過一黃光(lithography)製程、一溼钱刻製程、 一去除光阻、一濕式清洗製程以及一熱氧化製程。 3. 如申請專利範圍第2項之方法,其中該溼蝕刻製程包 含有一緩衝氧化物餘刻溶液(buffer oxide etchant, Β0Ε)蝕刻製程,以及一 SC-1清洗製程。 4. 如申請專利範圍第2項之方法,其中該濕式清洗製程 包含有一超音波刷洗(megasonic scrubbing)製程、一1261870 6 'Patent Patent Scope 1 · A method for fabricating a polysilicon film on a semiconductor wafer, and the surface of the semiconductor wafer comprises a plurality of particles (partic 1 e ), the method comprising the following steps: A two-stage (two-step) polycrystalline germanium deposition process, and the two-stage polycrystalline germanium deposition process comprises: a first stage low temperature amorphous silicon (α-Si) deposition process; a second stage high temperature polycrystalline germanium deposition process; wherein the first stage low temperature amorphous germanium (a-S i) deposition process is used to prevent a plurality of particles of the crystal nucleus of the polycrystalline germanium film along the surface of the semiconductor wafer ( Partic 1 e ) crystal growth to suppress the occurrence of needle-like particles and defects on the surface of the polycrystalline silicon film. 2. The method of claim 1, wherein the semiconductor wafer surface is subjected to at least one lithography process and a wet etching process prior to performing the two-step polysilicon deposition process. Process, a photoresist removal, a wet cleaning process, and a thermal oxidation process. 3. The method of claim 2, wherein the wet etching process package comprises a buffer oxide etchant (Β0Ε) etching process and an SC-1 cleaning process. 4. The method of claim 2, wherein the wet cleaning process comprises a megasonic scrubbing process, 1261870 六、申請專利範圍 SC-1清洗製程以及一 SC - 2清洗製程。 5. 如申請專利範圍第1項之方法,其中該微粒 (particle)包含有附著於該半導體晶片表面的微粒子、有 機物、金屬粒子以及微粗糙(microroughness)。 6. 如申請專利範圍第1項之方法,其中該第一階段低溫 式的非晶矽沉積製程的製程溫度範圍為5 5 0〜6 5 0°C,且該 非晶矽沉積製程所生成的非晶矽層厚度約為1 0 0A。 7. 如申請專利範圍第1項之方法,其中該第二階段高溫 式的多晶矽沉積製程的製程溫度範圍為6 8 0〜7 1 0°C。 8. 如申請專利範圍第1項之方法,其中該兩階段式的多 晶石夕沉積製程,係於單片晶片式(single-wafer type)的 低壓化學氣相沉積(L P C V D )設備中進行。1261870 6. Patent application scope SC-1 cleaning process and an SC-2 cleaning process. 5. The method of claim 1, wherein the particles comprise microparticles, organic matter, metal particles, and microroughness attached to the surface of the semiconductor wafer. 6. The method of claim 1, wherein the first stage low temperature amorphous germanium deposition process has a process temperature range of 550 to 650 ° C, and the amorphous germanium deposition process generates a non- The thickness of the wafer layer is about 100 A. 7. The method of claim 1, wherein the second stage high temperature polysilicon deposition process has a process temperature range of 680 to 710 °C. 8. The method of claim 1, wherein the two-stage polycrystalline deposition process is carried out in a single-wafer type low pressure chemical vapor deposition (L P C V D ) apparatus. 9. 一種於一半導體晶片上製作一多晶矽薄膜 (polysilicon film)的方法,該半導體晶片表面包含一第 一閘極氧化區以及一第二閘極氧化區,該方法包含有下列 步驟: 於該半導體晶片表面形成一第一閘極氧化層(gate oxide layer,GOX Layer); 進行一黃光(photolithography)製程以及一姓刻9. A method of fabricating a polysilicon film on a semiconductor wafer, the semiconductor wafer surface comprising a first gate oxide region and a second gate oxide region, the method comprising the steps of: Forming a first gate oxide layer (GOX Layer) on the surface of the wafer; performing a photolithography process and a surname 第20頁 1261870 六、申請專利範圍 (etching)製程,以去除第二閘極氧化區表面上之第一閘 極氧化層; 進行一清洗製程;以及 進行一兩階段式(t w 〇 - s t e p)的多晶石夕沉積製程,並使 該多晶矽層覆蓋於第一閘極氧化區以及第二閘極氧化區之 上;Page 20 1261870 6. Applying an etching process to remove the first gate oxide layer on the surface of the second gate oxide region; performing a cleaning process; and performing a two-stage (tw 〇-step) a polycrystalline deposition process, and covering the polysilicon layer over the first gate oxide region and the second gate oxide region; 其中該兩階段式的多晶矽沉積製程,包含一第一階段 低溫式的非晶石夕(amorphous silicon,α -Si)沉積製程, 用來避免於形成多晶矽層時,同時形成微粒(part icle)與 缺陷(defect)的情形,以及一第二階段高溫式的多晶矽沉 積製程。 1 0.如申請專利範圍第9項之方法,其中該蝕刻製程係為 一濕蝕刻製程。 11.如申請專利範圍第1 〇項之方法,其中該濕蝕刻製程係 利用緩衝氧化物钱刻溶液(buffer oxide etchant, Β0Ε) 作為ϋ刻溶液。The two-stage polycrystalline germanium deposition process comprises a first-stage low-temperature amorphous silicon (α-Si) deposition process for avoiding the formation of particles simultaneously with the formation of a polycrystalline germanium layer. The case of a defect, and a second-stage high-temperature polycrystalline germanium deposition process. The method of claim 9, wherein the etching process is a wet etching process. 11. The method of claim 1, wherein the wet etching process utilizes a buffer oxide etchant (Β0Ε) as the etching solution. 1 2.如申請專利範圍第9項之方法,其中該清洗製程係為 一濕式清洗製程。 1 3.如申請專利範圍第1 2項之方法,其中該濕式清洗製程 包含:1 2. The method of claim 9, wherein the cleaning process is a wet cleaning process. 1 3. The method of claim 12, wherein the wet cleaning process comprises: 第21頁 1261870 六、申請專利範圍 進行一超音波屌1J洗(megasoni c scrubbing)製程; 進行一 SC-1清洗製程;以及 進行一 S C - 2清洗製程。 1 4.如申請專利範圍第9項之方法,其中該第一階段低溫 式的非晶矽沉積製程的製程溫度範圍為5 5 0〜6 5 0°C。 1 5.如申請專利範圍第9項之方法,其中該第二階段高溫 式的多晶矽沉積製程的製程溫度範圍為6 8 0〜7 1 0°C。 1 6.如申請專利範圍第9項之方法,其中該兩階段式的多 晶矽沉積製程,係於單片晶片式(single wafer type)的 低壓化學氣相沉積(LPCVD)設備中進行。 17.如申請專利範圍第9項之方法,其中該缺陷(defects) 包含針狀(needle-1 ike)缺陷。Page 21 1261870 VI. Scope of Application Patent A megasoni c scrubbing process is performed; an SC-1 cleaning process is performed; and an S C - 2 cleaning process is performed. The method of claim 9, wherein the first stage low temperature amorphous germanium deposition process has a process temperature range of 550 to 650 °C. 1 5. The method of claim 9, wherein the second stage high temperature polysilicon deposition process has a process temperature range of 680 to 710 °C. The method of claim 9, wherein the two-stage polycrystalline germanium deposition process is carried out in a single wafer type low pressure chemical vapor deposition (LPCVD) apparatus. 17. The method of claim 9, wherein the defects comprise needle-1 ike defects. 第22頁Page 22
TW91104833A 2002-03-14 2002-03-14 Method of forming a polysilicon layer TWI261870B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91104833A TWI261870B (en) 2002-03-14 2002-03-14 Method of forming a polysilicon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91104833A TWI261870B (en) 2002-03-14 2002-03-14 Method of forming a polysilicon layer

Publications (1)

Publication Number Publication Date
TWI261870B true TWI261870B (en) 2006-09-11

Family

ID=37987024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91104833A TWI261870B (en) 2002-03-14 2002-03-14 Method of forming a polysilicon layer

Country Status (1)

Country Link
TW (1) TWI261870B (en)

Similar Documents

Publication Publication Date Title
JPH01241823A (en) Manufacture of semiconductor device
JPH11345767A (en) Semiconductor thin film and semiconductor device
JPH06232141A (en) Manufacture of semiconductor substrate and solid-state image pick up device
US8420550B2 (en) Method for cleaning backside etch during manufacture of integrated circuits
US9129796B2 (en) Pre-metal deposition clean process
JPS61289618A (en) Semiconductor device and manufacture thereof
EP0878022B1 (en) Method for forming ultra-thin gate oxides
JP2004088103A (en) Manufacturing method of liquid crystal display
TWI261870B (en) Method of forming a polysilicon layer
JPH04206766A (en) Manufacture of semiconductor device
CN1217382C (en) Method for fabricating polysilicon thin films
JP2002043435A (en) Method for manufacturing system on chip and method for manufacturing semiconductor device
JP2609198B2 (en) Semiconductor substrate manufacturing method
US20240114804A1 (en) Method for preparing multi-superconducting material layers, quantum device and quantum chip
US7358197B2 (en) Method for avoiding polysilicon film over etch abnormal
JP2602598B2 (en) Semiconductor substrate processing method
KR100191084B1 (en) Manufacture of pmos tft load cell in semiconductor device
CN116805617A (en) Semiconductor device and method for manufacturing the same
TW392284B (en) Method for removing polysilicon barrier using wet etching
JP2004146583A (en) Method of manufacturing semiconductor device
JPH0488643A (en) Manufacture of polycrystalline silicon semiconductor device
JPH06296016A (en) Semiconductor device
JP3523016B2 (en) Method for manufacturing semiconductor device
JPH0396223A (en) Forming method for soi structure
CN115483154A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees