TWI261662B - Subpixel precision estimating system of light point distance with multiple measurement purposes - Google Patents

Subpixel precision estimating system of light point distance with multiple measurement purposes Download PDF

Info

Publication number
TWI261662B
TWI261662B TW94117732A TW94117732A TWI261662B TW I261662 B TWI261662 B TW I261662B TW 94117732 A TW94117732 A TW 94117732A TW 94117732 A TW94117732 A TW 94117732A TW I261662 B TWI261662 B TW I261662B
Authority
TW
Taiwan
Prior art keywords
light
intensity
spot
function
intensity function
Prior art date
Application number
TW94117732A
Other languages
Chinese (zh)
Other versions
TW200641327A (en
Inventor
Chen-Sheng Lin
Jia-Shiuan Juo
Original Assignee
Univ Feng Chia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Feng Chia filed Critical Univ Feng Chia
Priority to TW94117732A priority Critical patent/TWI261662B/en
Application granted granted Critical
Publication of TWI261662B publication Critical patent/TWI261662B/en
Publication of TW200641327A publication Critical patent/TW200641327A/en

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a subpixel precision estimating system of light point distance with multiple measurement purposes, comprising: first, transforming the data captured from two light points to a first strength function and a second strength function; and estimating a precise light point distance by the use of a relevant approximate function and the multinomial interpolation method. Thus, the method of the present invention does not have to build a sample pattern of a light point model before calculating the light point distance, providing a simple and quick method for the measurement with wider application scopes.

Description

1261662 九、發明說明: - 【發明所屬之技術領域】 本發明係有關一種多量測用途光點間距之次像素精度 .估測系統,特別是指一種利用相關近似函數之多量測用途 光點間距之次像素精度估測系統,其兼具不必事先建立樣 本圖樣或光點模型、計算簡單快速又精確,以及應用範圍 廣之優點及功效。 【先前技術】 • 在數位影像處理分析上,單一光點位置之次像素精度 估測方法有重心估算法(Centroid Calculation Method , 簡稱CCM)、傅利葉相位偏移法(Fourier Phase Shift Method,簡稱 FPS)及相關近似法(Correlation Like ,Method,簡稱 CLM)。 在重心估算法方面,由於數位取樣的原因,演算法本 身會產生一誤差項且估測精度易受雜訊影響。 I 在傅利葉相位偏移法方面,雖然估測精度較不容易受 雜訊影響且亦可克服直流偏移(DC off set)的影響,但其相 位分析較為複雜。 在相關近似法方面則需事先建立樣本圖樣或光點模型 ,並利用插補的方法以達到次像素精度。然而,事先建立 樣本圖樣或光點模型十分麻煩,而且,只能適用此類型之 ,推估,應用範圍狹窄。 因此,有必要研發出既簡易又快速且精確的光點間距 之次像素精度估測技術。 5 1261662 【發明内容】 本發明之主要目的,在於提供—種多量測用途 測系統’其不必事先建立樣本圖樣或: 點杈型,可以直接進行量測。 距之之X目的’在於提供一種多量測用途光點間 人像素精度估測系統,其中具備計算簡單快速。 疋右重覆多次時,精確性更高。1261662 IX. Description of the invention: - Technical field of the invention The present invention relates to a sub-pixel precision estimation system for multi-measurement use spot spacing, in particular to a multi-measurement use spot using a correlation approximation function The sub-pixel precision estimation system of the pitch has the advantages and functions of not requiring the sample pattern or the spot model to be established in advance, the calculation is simple, fast and accurate, and the application range is wide. [Prior Art] • In the digital image processing analysis, the sub-pixel accuracy estimation method for single spot position has Centroid Calculation Method (CCM) and Fourier Phase Shift Method (FPS). And related approximation (Correlation Like, Method, referred to as CLM). In terms of the center of gravity estimation method, due to the reason of digital sampling, the algorithm itself generates an error term and the estimation accuracy is susceptible to noise. I In the Fourier phase shift method, although the estimation accuracy is less susceptible to noise and can overcome the DC off set, the phase analysis is more complicated. In the aspect of correlation approximation, it is necessary to establish a sample pattern or a spot model in advance, and use the interpolation method to achieve sub-pixel precision. However, it is very cumbersome to establish a sample pattern or a spot model in advance, and it can only be applied to this type, and the estimation is narrow. Therefore, it is necessary to develop a sub-pixel accuracy estimation technique that is simple, fast, and accurate. 5 1261662 SUMMARY OF THE INVENTION The main object of the present invention is to provide a multi-measurement measuring system that does not have to establish a sample pattern or a point type in advance, and can directly perform measurement. The purpose of X is to provide a human pixel accuracy estimation system for multi-measurement use, which is simple and fast to calculate. When the right is repeated multiple times, the accuracy is higher.

本發明之又-目的,在於提供一種多量測 距之次像素精度估m其W絲估測二待= 光片體之間隙’亦可修改成光學應變規,來估測光學應變 規之間隙及其代表之物理意義;或是,可反推出-料光 束之波長,因此,應用之範圍極廣。 ;、、、達g述目的本發明係提供一種多量測用途光胃占間 距之次像素精度估_統,係用於量測二待_光片體之 微細間隙,其包括:A further object of the present invention is to provide a sub-pixel accuracy estimation of a plurality of rangings, and a W-score estimation of the second-spot = gap of the optical sheet can also be modified into an optical strain gauge to estimate the gap between the optical strain gauges and The physical meaning of the representative; or, the wavelength of the beam can be reversed, so the range of applications is extremely wide. The present invention provides a sub-pixel precision estimation system for measuring the distance between the light and the stomach, which is used for measuring the micro-gap of the two-photo-light sheet, and includes:

一雷射量測模組,用以發出—雷射光束,其上有雷射 光束上下左右偏向調整鈕; 二待測透光片體,間隔一微細間隙; 上-影像擷取裝置’用以擷取由該雷射光束傾斜的穿透 該二待測透光片體後,所反射之複數光束,成為一光線強 度分佈資料; 一计异裝置,用以將擷取之光線強度分佈資料之二預 疋光點區分別轉換成-第_強度函數u(x)及—第二強度 函數f(x),利肋第-強度函數u(x)與第二強度函數f(x) 6 1261662 及下列步驟: —、擷取光點步驟:以—影像擷取裝置讀入一 光點及-第二光點強度分饰資料; -、轉換第-光點步驟:將該第—光 料轉換成為一第一強产函1 ^ ‘又刀佈貝 位於u(0)處; ⑴’且該第-強度之峰值約 二、轉換第二光點步驟:將該第一 料轉換成為一第二強度函數f( 強::貝 之峰值約位於f⑴處; 弟—強度函數f〇o u⑴‘:=以法處理步驟:利用該第-強度函數 樣後成為 8⑷《函數>·〇〇,經數位取 ::;得到-最大值r⑴上之一 r(I—丨)記 五、多項式插補處理步驟:利 仙"、…)之拋物線之插補法,…1•⑴ xc = — 2[Φ·-l) + r〇 + l)-2r(/)] :十异:最佳重心Xc,再推估出光點間距為—,由比例算 出一待測透光片體之微細間隙。 之詳上述目的與優點’不難從下述所選用實施例 之砰、、、田既明與附圖中,獲得深入瞭解。 兹以下列實_並配合H詳細朗本發明於後: 1261662 【實施方式】 首先,關於相關近仞、本. 仙对阶elat咖LlkeMet_之 埋响,如弟一圖所示,复 強度分佈函數,叫和;、It 祕別為二光點的光 双㈤和介以的相關函數為 % (七⑽ί+)/(卜咖 (2-1) =赛减為偶函數,即,(她) 可進一步推導如下:⑷-先強度遍數的相關函數 r->〇〇 jA laser measuring module is used for emitting a laser beam, wherein the laser beam is deflected up and down and left and right; the second light-transmissive film is to be separated by a fine gap; the upper-image capturing device is used for After the laser beam obliquely penetrates the two light-transmissive sheets to be tested, the reflected plurality of beams become a light intensity distribution data; a metering device is used to extract the light intensity distribution data The two pre-light spot regions are respectively converted into a -th _ intensity function u(x) and a second intensity function f(x), a rib-intensity function u(x) and a second intensity function f(x) 6 1261662 And the following steps: -, taking the light spot step: reading the light spot and the second light spot intensity distribution data by the image capturing device; -, converting the first light spot step: converting the first light material Become a first strong production letter 1 ^ 'the knife is located at u (0); (1) 'and the peak of the first intensity is about two, the conversion of the second spot step: the first material is converted into a second The intensity function f (strong:: the peak of the shell is located at f(1); the brother-intensity function f〇o u(1)':= method of processing by law: using the first - After the intensity function is sampled, it becomes 8(4) "Function> 〇〇, via the digit::; get - the maximum value of r(1), r(I - 丨) is recorded. 5. Polynomial interpolation processing steps: Lixian ",...) The interpolation method of parabola,...1•(1) xc = — 2[Φ·-l) + r〇+ l)-2r(/)] : Ten different: the best center of gravity Xc, and then the distance between the spots is estimated to be - Calculate the fine gap of the transparent sheet to be tested by the ratio. The above objects and advantages are not to be understood in view of the following selected embodiments, the drawings, and the drawings. The following is the actual _ and with the H detailed Langben invention in the following: 1261662 [Embodiment] First, the relevant 仞, 本. 对 对 el el el el el el el , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The function, called and ;, It is the light double (5) of the two light points and the correlation function is % (seven (10) ί+) / (Bu (2-1) = match reduction is even function, ie, (she ) can be further derived as follows: (4) - correlation function of the first intensity pass number r-> 〇〇 j

% fw(r)/(r-x)/r -¾ !^ι〒㈣八卜如 lThu、x、®f(x) ;% lim — fT,T 4% fw(r)/(r-x)/r -3⁄4 !^ι〒(4)八卜如 lThu,x,®f(x) ;% lim — fT,T 4

TAH- ~TA f (x ) exp、— i2nsx)dx ^xp(i27. TA :\P〇i -T/ tZJ (2-2) 由式(2-2)可知r(x)的最大值位於J。 八e 以上為相關函數之推導過程。 請參閱第二及第三圖’本發明係為一種多量測用途光 1261662 點間距之次像素精度估測系統,其包括下列步驟. 〜y擷取総步驟11:以—影像擷㈣置24胃一 弟-光點及-第二光點強度分佈資料,如第四圖所示,丑 有四個光點25(含25A、25B、25C及25D),但是,第三圖 中之二待測透光片冑22、23之間隙G可 :: 25B及25C來推算。 的一九..,,占TAH- ~TA f (x ) exp, — i2nsx)dx ^xp(i27. TA :\P〇i -T/ tZJ (2-2) From equation (2-2), the maximum value of r(x) is located. J. Eight or more is the derivation process of the correlation function. Please refer to the second and third figures. The present invention is a sub-pixel precision estimation system for multi-measurement light 1261662 point spacing, which includes the following steps. Step 11: Set the image of the 24th stomach and the light spot and the second spot intensity distribution with the image 撷 (4). As shown in the fourth figure, the ugly has four spots 25 (including 25A, 25B, 25C and 25D), however, the gap G of the two light-transmissive sheets 22, 23 to be tested in the third figure can be calculated as: 25B and 25C.

二、 轉換第-光點步驟12:將該第—光點強度分佈資 料轉換成為一第一強度函數u⑴,如第五圖所示,且該第 一強度之峰值約位於u(0)處。 三、 轉換第二光點步驟13:將該第一光點強度分佈資 料轉換成為一第二強度函數f(x),如第六圖所示,且 強度函數f(x)之峰值約位於f(i)處。 — 四、 相關近似法處理步驟14:利用該第一強度函數 U00與第二強度函數f(x)之相關近似函數r(x),經數位取 樣後成為 則可得到一系列之r(i),並找出一最大的r(i)值,並 將相鄰之r(i + l)及r(i-1)記錄下。 五、 多項式插補處理步驟15 ··利用至少包含r(i)、 r(i + l)、r(i-1)之拋物線之插補法, xc=_出二D-W+I) C 2k0*~l) + r(/ + l)-2r(z)] 計算出最佳重心Xc,再推估出光點間距L為i+Xc。 由於拋物線之插補法也可擴大至五項或七項,亦為等 1261662 效替換 :然,最好可再搭配下列步驟: 六、重覆估測N次步驟16 :重覆 IV個最佳重心Xc(N),以 五乂驟而取得 -估測標準差as。 、,、叶方法計算而可得到—單 七、遞迴運算步驟17 ··利用2. Converting the first light spot Step 12: Converting the first light spot intensity distribution data into a first intensity function u(1), as shown in the fifth figure, and the peak of the first intensity is located at u(0). 3. Converting the second spot. Step 13: Converting the first spot intensity distribution data into a second intensity function f(x), as shown in the sixth figure, and the peak of the intensity function f(x) is about f. (i). — IV. Correlation Approximation Process Step 14: Using the correlation approximation function r(x) of the first intensity function U00 and the second intensity function f(x), after serial sampling, a series of r(i) can be obtained. And find a maximum r(i) value and record the adjacent r(i + l) and r(i-1). V. Polynomial interpolation processing step 15 ·· Using the interpolation method of parabola containing at least r(i), r(i + l), r(i-1), xc=_out two D-W+I) C 2k0*~l) + r(/ + l)-2r(z)] Calculate the best center of gravity Xc, and then estimate the spot spacing L as i+Xc. Since the parabolic interpolation method can also be expanded to five or seven items, it is also equivalent to the 1261662 effect replacement: However, it is best to use the following steps: 6. Repeat the estimation N times Step 16: Repeat IV best The center of gravity Xc(N) is obtained in five steps - the estimated standard deviation as. , ,, leaf method calculation can be obtained - single seven, recursive operation step 17 · use

X 下列之推估公式 OPW ^^〇pt{N) +ΚΝ^(χ 其中 σ; κ 即可遞迴運算出-最佳估測值W。 β舉一極度簡化之範例來說明,假設經上述第一步驟 =取光點步驟u,已擷取到—含有二光點之影像之強度 刀佈(X=1至x=16,共16個像素)為: ^ 一中,利用第二步驟之轉換第一光點步驟12 ,而得知 弟一強度函數u(x)為: 且其原始峰值為u(5)=7,左移調整後為u(0)=5 又’第二強度函數f(x)為: 10 1261662 且其原始峰值為f(13)=8,左移同樣距離後為f(8)=8 利用第四步驟之相關近似法處理步驟14,可以計算出 當相關函數η之接近最大值之前後三處為 i二7 , 3x0+6x2+7x5+5x8+2x4+0x2=95 i=8 , 3x2+6x5+7x8+5x4+2x2=116 i=9 5 0x2+3x5+6x8+7x44-5x2+2x0 = 101 之後,再透過第五步驟之多項式插補處理步驟15,X The following estimation formula OPW ^^〇pt{N) +ΚΝ^(χ where σ; κ can be recursively calculated - the best estimate W. β is an example of an extremely simplified simplification, assuming the above The first step = the light-taking point step u, which has been extracted - the intensity knife cloth (X = 1 to x = 16, a total of 16 pixels) containing the image of the two light spots is: ^ One, using the second step Converting the first spot step 12, and learning that the intensity function u(x) is: and its original peak is u(5)=7, and the left shift is adjusted to u(0)=5 and the 'second intensity function f(x) is: 10 1261662 and its original peak value is f(13)=8, and f(8)=8 after shifting the same distance to the left. Using step 4 of the correlation approximation of the fourth step, the correlation function can be calculated. The next three places before η are i 2, 3x0+6x2+7x5+5x8+2x4+0x2=95 i=8 , 3x2+6x5+7x8+5x4+2x2=116 i=9 5 0x2+3x5+ After 6x8+7x44-5x2+2x0 = 101, the polynomial interpolation processing step 15 of the fifth step is performed.

r(/-l)-r(/ + l) — 95-101 2[r(i -1) + r(i + 1)- 2r(i)] ~ 2[95 + 101-2x116] 所以,最佳重心xc會落在i=8+0. 083=8. 083處,再推 估出光點間距L為i+xc。換言之,該二光點之光點間距L 為8. 083個像素。 此外,若是再搭配第六步驟之重覆估測N次步驟16 及第七步驟之遞迴運算步驟17,亦即,利用卡曼濾波器來 改善估測標準差,可使得本發明之準確性更提高。 請參閱附件一第A圖,此為利用卡曼濾波器改善估測 標準差的實際曲線與理論曲線之比較圖,由此可看出,重 覆的次數越多,其估測標準差亦越來越低,代表估測越精 準。 本發明之實際應用很多,第一種應用是量測二片平行 之玻璃之間隙G。請參閱第三圖之多量測用途光點間距之 次像素精度估測系統之第一實施例,其係包括: 一雷射量測模組21,用以發出一雷射光束211 ; 1261662 二待測透光片體22、23,間隔_間隙G ; -影像擷取裝置24,用以擷取由該雷射光束211傾斜 的牙透該二待測透光0 22、23後,所反射之複數光束 25B 25C、25D,成為一光線強度分佈資料; —計算裝置26,用以將擷取之光線強度分佈資料241 預定光點區分別轉換成―第―強度函數u(X)及-第 =度函數f(x)’利用該第—強度函數u(x)與第二強度函 (X)之相關近似函數r(x),經數位取樣後成為 ΊΑr(/-l)-r(/ + l) — 95-101 2[r(i -1) + r(i + 1)- 2r(i)] ~ 2[95 + 101-2x116] So, most The center of gravity xc will fall at i=8+0. 083=8. 083, and then the estimated spot spacing L is i+xc. In other words, the spot distance L of the two spots is 8.083 pixels. In addition, if the recalculation step 17 of step 16 and the seventh step is further evaluated in conjunction with the sixth step, that is, the Karman filter is used to improve the estimated standard deviation, the accuracy of the present invention can be made. More improved. Please refer to Figure A of Annex I. This is a comparison of the actual curve and the theoretical curve using the Karman filter to improve the estimated standard deviation. It can be seen that the more times the repetition is repeated, the more the standard deviation is estimated. The lower the value, the more accurate the estimate is. The practical application of the present invention is numerous. The first application is to measure the gap G of two parallel glass. Referring to the third embodiment, a first embodiment of the sub-pixel precision estimation system for measuring the spot distance of the measurement uses a laser measurement module 21 for emitting a laser beam 211; 1261662 The light-transmissive sheet 22, 23 to be tested, the interval_gap G; the image capturing device 24, for capturing the teeth obliquely tilted by the laser beam 211, and reflecting the light to be measured 0 22, 23 The plurality of light beams 25B 25C, 25D become a light intensity distribution data; - the computing device 26 is configured to convert the predetermined light intensity distribution data 241 into a predetermined light spot area into a "first intensity function u (X) and - The degree function f(x)' uses the correlation function r(x) of the first intensity function u(x) and the second intensity function (X), and is digitally sampled to become ΊΑ

4則可得到一最大值r(i),並將相鄰之r(I + l)及r(I-U =錄下;利用至少包含r⑴、仙1)、之拋物線之 插補法, xc + Άτ{ί -1) + r(i + 1)- 2r(/)] 最後计异出最佳重心Xc,再推估出光點間距L·為i+xc Ο ^本發明也可應用於光學應變規,此即本發明之第二實 &例(如第L)。亦即一種多量測用途光點間距之 次像素精度估測系統,其包括: 雷射夏測模組21,用以發出一雷射光束211 ; ::學應變規27,具有一間隙G; 衫像擷取裝置24,用以擷取由該雷射光束211穿透 該光學應變規27 > ^ η , 之間隙G後,所繞射之複數個繞射光點 28(參閱第八圖),成炎 口」成為一光線強度分佈資料; 12 1261662 前述之計算裝置 一計算裝置26,此部份之細部内容與 26相同,在此不重覆敘述。 齡匕’可以精確的推估出光點間⑮l,進而可反推出 =G以及間隙G_表之應變程度,故,本發明可應用 於光學應變規上。 同理:若間隙G為已知,而雷射光束211之波長為未 知時’可藉由所量得之特定二個繞射光點狀之光點間距l φ *反推田射光束之波長,而成為雷射光束211 之檢測儀器。 更詳細的講,該雷射測量模組21上可設一雷射光源插 入孔(圖面未示,合先陳明),用以插入雷射,發出一雷射 光束211,且該雷射測量模組21上並設有供雷射光束211 上下左右偏向的調整紐212 ; 在有關雷射光束211反射光強度分析方面,為事先確 認反射光強度分佈狀況(如附件一第Β圖所示),本研究利 % 用光的波動理論推算以、R2、R3、R4及R5的反射光強度。 從光的波動理論可知: 振幅反射率-s分量: (2-1) (2-2) 广=—% cos 0 cos q COS0 + n2 cos02 振幅反射率-p分量: «2 COS0 -/2丨 COS02 «2 COS^i + 乃丨 COS02 振幅透射率—S分量: 134, we can get a maximum value r (i), and the adjacent r (I + l) and r (IU = recorded; using at least r (1), Xian 1), parabolic interpolation, xc + Άτ {ί -1) + r(i + 1)- 2r(/)] Finally, the best center of gravity Xc is calculated, and then the spot spacing L· is i+xc Ο ^ The invention can also be applied to optical strain gauges. This is the second embodiment of the present invention (e.g., L). That is, a sub-pixel precision estimation system for multi-measurement use spot spacing, comprising: a laser summer measurement module 21 for emitting a laser beam 211; a learning strain gauge 27 having a gap G; The shirt image capturing device 24 is configured to capture a plurality of diffracted light spots 28 that are diffracted by the laser beam 211 penetrating the gap G of the optical strain gauge 27 > ^ η (refer to the eighth figure) , "Yanyankou" becomes a light intensity distribution data; 12 1261662 The foregoing computing device-calculation device 26, the details of this portion are the same as 26, and will not be repeated here. Age 匕' can accurately estimate 15l between the light spots, and then can reverse the degree of strain of =G and the gap G_ table. Therefore, the present invention can be applied to an optical strain gauge. Similarly, if the gap G is known, and the wavelength of the laser beam 211 is unknown, the wavelength of the field beam can be reversed by the distance between the spot points of the specific two diffracted light spots. It becomes a detecting instrument for the laser beam 211. In more detail, the laser measuring module 21 can be provided with a laser light source insertion hole (not shown, for example), for inserting a laser, emitting a laser beam 211, and the laser beam The measuring module 21 is provided with an adjustment button 212 for deflecting the laser beam 211 up and down and left and right; in terms of analyzing the intensity of the reflected light of the laser beam 211, the intensity distribution of the reflected light is confirmed in advance (as shown in the attached figure) ), in this study, we use the wave theory of light to estimate the reflected light intensity of R2, R3, R4, and R5. From the wave theory of light, the amplitude reflectance-s component: (2-1) (2-2) wide = -% cos 0 cos q COS0 + n2 cos02 amplitude reflectivity - p component: «2 COS0 -/2丨COS02 «2 COS^i + Nai COS02 Amplitude Transmittance - S Component: 13

1261662 ηλ cos^ +η2 cos 6^2振幅透射率-ρ分量: t 一 2% cos6^ ,π--—;~~~^- n2 cos0} cos 6^2 (2-3) (2-4) 因所使用的雷射光為非偏振的光源,假設其p分量和 s分量的能量都等於入射能量的一半,所以入射光的能量 反射率為 1 =— r nx cos^j -n2 cos Y «2 cos^j -nx cos02 ^ 2" 2 cos^j +n2 cos02J Kn2 cos^j +ηλ cos^ (2 - 5) 若忽略介質的吸收率,則 ρ + τ-\ (2-6) 其中r為入射光的透射率。 假設:入射角=30。1261662 ηλ cos^ +η2 cos 6^2 amplitude transmittance -ρ component: t -2% cos6^ , π---;~~~^- n2 cos0} cos 6^2 (2-3) (2-4 Since the laser light used is a non-polarized light source, the energy of both the p component and the s component is equal to half of the incident energy, so the energy reflectivity of the incident light is 1 = - r nx cos^j -n2 cos Y « 2 cos^j -nx cos02 ^ 2" 2 cos^j +n2 cos02J Kn2 cos^j +ηλ cos^ (2 - 5) If the absorption rate of the medium is neglected, then ρ + τ-\ (2-6) where r Is the transmittance of incident light. Assume: incident angle = 30.

«1 = 1 忍吟圾梢的色散常數)則依據式(2-1)〜(2-6)加以運算,可得到如附件一第 7TT ^ 〇 τ4ΐ 丄L 4丄田一r*、/. 、. ,一 ^ 5 口J圖所不之結果。由此結果可進一步求得 D1 . n j 一 示«1 = 1 The dispersion constant of the tipping tip is calculated according to equations (2-1) to (2-6), and can be obtained as the seventh TT ^ 〇τ4ΐ 丄L 4 丄田一r*, /. ,., a ^ 5 mouth J figure does not result. From this result, D1 . n j can be further obtained.

Rl : R2 : R3 : R4 : R5 = 35.4 : 20.6 : 28 :16.2 ; 〇 經貫際取像,結果如附件一第D圖所示。==分析驗證’結果如附件一第_ 3及R4反射先強度的相關比率為 R1: R2 : R3: R4 = 28 ·· 24 : 26 : 23 … 14 1261662 而在有關雷射光束211的反射光幾何尺寸分析方面, 為求得雷射光束211的反射光強度R2與R3的間距尺寸户 與二片玻璃間隙尺寸的幾何關係,依據幾何光學的反射 定律及折射定律’可求得 (2-7) p 2 sin6} 另外,在有關雷射光束211光場分佈分析方面,如附 件一第F圖所示為本研究之光學系統示意圖,雷射光束211 經玻璃反射後入射至鏡頭並在感測晶片(CCD)成像,雷射光 束211經此光路成像後的光場分佈可藉由傅氏光學理論或 高斯光束的ABCD定律推導得知。以下本研究乃就高斯光束 假設雷射的光場分佈為Rl : R2 : R3 : R4 : R5 = 35.4 : 20.6 : 28 :16.2 ; 〇 After continuous image acquisition, the result is shown in Figure D of Annex I. ==Analytical verification' The result is as follows: R1: R2: R3: R4 = 28 ·· 24 : 26 : 23 ... 14 1261662 and the reflected light of the laser beam 211 In terms of geometric size analysis, in order to obtain the geometric relationship between the distance between the reflected light intensity R2 and R3 of the laser beam 211 and the gap size between the two glasses, the reflection law and the law of refraction of the geometrical optics can be obtained (2-7). ) p 2 sin6} In addition, in the analysis of the light field distribution of the laser beam 211, as shown in Figure F of Annex I, the optical system of the present study is shown. The laser beam 211 is reflected by the glass and then incident on the lens and sensed. The wafer (CCD) imaging, the light field distribution of the laser beam 211 after imaging through the optical path can be derived by the Fourier optical theory or the ABCD law of the Gaussian beam. The following study is based on the Gaussian beam. The light field distribution of the laser is assumed to be

E(r,z)=E0 且 %w(z)E(r,z)=E0 and %w(z)

kz-tan-1 Z 11 >exp jkr2 kz〇 y. JJ _ 2q(z)_ (2-8) -j(~ λ q(z) R(z) 7rw(z) (2-9) 其中 r -」x2 + y2,Kz-tan-1 Z 11 >exp jkr2 kz〇y. JJ _ 2q(z)_ (2-8) -j(~ λ q(z) R(z) 7rw(z) (2-9) where r -"x2 + y2,

2π Ύ z為高斯光束的傳播方向。 a為光波長。 4為光場振幅大小。 %為南斯光束的最小光斑尺寸。 15 1261662 W為南斯光束在位置Z的光斑尺寸。 為光波波前的曲率半徑。 而有許多量測的技術皆是建立於單狭縫繞射而來的, 例如光學應變規即是。在實務應用上,自1965年來,由於 雷射的同調性引發了許多的光學應變規的發展,杜魯克曼 (Tuckerman)光學應變規即是其中簡易優良的一種光學應 變規,如附件一第G圖所示,此光學應變規是利用二片刀 片貼於試片之上,通常刀片間距為一很小的距離,也許只 有數微米而已,當試片施力時,由於應變的作用,使刀片 距離增大,因此,當我們將雷射光入射於刀片間的狹縫時, 將會看到隨著施力的增加,光點由疏而密,由狹縫繞射公 式,我們知道狹缝越大,繞射光點的距離越大,由此可求 得應變值。干涉式之光學應變規有如下之優點: [1 ]提供了 一個量測應變的方法,不需使用昂貴的應 變規,且架設容易,黏結的難度減低。 [2 ]消除了對待測材料增強效應的困擾。 [3 ]為無接觸式的量測。 [4] 如果刀片選用與待測物相同的材質的話,那麼將 得到自動溫度補償的結果。 [5] 用於高溫環境的檢測工作。 從1984年之後,針對光學應變規實驗的研究逐漸增 多,但大都是利用各種的光纖裝置,來從事應變的測量, 比較值得留意的是1990年Brown所提出的多色光學應變規 (POLYCHROMATIC OPTICAL STRAIN GUAGE),以及 1988 年 16 12616622π Ύ z is the propagation direction of the Gaussian beam. a is the wavelength of light. 4 is the amplitude of the light field. % is the minimum spot size of the Nantes beam. 15 1261662 W is the spot size of the Nans beam at position Z. The radius of curvature of the wavefront of the light wave. And many measurement techniques are based on single-slit diffraction, such as optical strain gauges. In practical applications, since 1965, due to the homology of lasers, many optical strain gauges have been developed. The Tuckerman optical strain gauge is one of the simple and excellent optical strain gauges, such as Annex I. As shown in Figure G, the optical strain gauge is attached to the test piece by two blades. Usually, the blade pitch is a small distance, perhaps only a few micrometers. When the test piece is applied, the strain is caused by the strain. The blade distance increases, so when we inject the laser light into the slit between the blades, we will see that as the applied force increases, the spot is dense and dense, and the slit diffraction formula, we know the slit The larger the distance of the diffracted spot, the higher the strain value can be obtained. Interferometric optical strain gauges have the following advantages: [1] provides a method of measuring strain without the need for expensive strain gauges, and is easy to set up and the difficulty of bonding is reduced. [2] eliminates the problem of the enhancement effect of the material to be tested. [3] is a contactless measurement. [4] If the blade is made of the same material as the object to be tested, the result of automatic temperature compensation will be obtained. [5] For testing in high temperature environments. Since 1984, research on optical strain gauge experiments has gradually increased, but most of them use various fiber optic devices to perform strain measurement. It is worth noting that the multicolor optical strain gauge proposed by Brown in 1990 (POLYCHROMATIC OPTICAL STRAIN) GUAGE), and 1988 16 1261662

Glenn所提出的光柵與光纖式(IMpRESSING GRATINGS WITHIN FIBER OPTICS )光學應變規,其皆係利用光柵繞 射來從事應變的測量,與本研究之光學應變規實驗使用單 狹縫繞射這一部份甚為相近。 近年來雷射精密量測技術得以迅速的發展,是由於雷 射光束具有〶度準直性、方向性、同調性之特點 ,因此在The grating and fiber optic (IMpRESSING GRATINGS WITHIN FIBER OPTICS) optical strain gauges proposed by Glenn use grating diffraction to perform strain measurement. The optical strain gauge experiment of this study uses single slit diffraction. Very similar. In recent years, the rapid development of laser precision measurement technology is due to the fact that the laser beam has the characteristics of twist collimation, directivity and homology.

光子繞射方面獲侍了廣泛的應用。惠更斯咖Μ·) —菲涅 耳(立Fresnel)原理可用以解釋繞射現象,簡單的說,空間中 占'士难换的光波強度大小,是來自波前上各點光源以 P點上的總和。通過狹縫上每 :Γ=:面波到達屏幕時,將由於其光程差而引起 干涉。因此繞射,ν π、Q 1 〜 ^ 又可視為眾多光線之干涉。 〜疒::』H圖所示為單狹缝繞射,對中間點PQ點而 各:有相同之光程,為建設性干涉,為亮點。 rl λ/2 差為;1/2之;㈣任—光線到達屏幕,均可找到光程 … 應破壞性干涉的光線,因此Pi是暗點。 772乂 =兰 sin0 建設性干涉: 破壞性干涉 由上式可知, 關係sin 0 =又/a 規律性關係,當減 從第一暗點位置來看,其相對狹縫角度 •繞射條紋的寬度與狹縫寬度a及波長有 J狹縫見度或增大入射光波長,都能使 1261662 條紋變寬。對亮點P1而言,當狹縫寬度a越小’則sing 愈大’因此繞射現象具有小信號放大的功能。 如m1圖戶t示,屏幕上合成電場可表示成[2-3]: 它= E\+E2+A +En ',田破壞性干涉光私差恰為λ /2時,二相鄰光點源之相 位差△ 時’其向量和為零,即為暗點P1,光強度為零’ 如附件一第頂所示,屏幕上其餘P的光強度可以下面公式 表示: 其中,φ =ηΔ φ Ι〇為Ρ〇點的光強度 如附件-第Κ圖所示為單狹缝繞射圖譜相對照度,中 間亮點光強度與其他亮點光強度比值分別為:〇 047 .Photon diffraction has been widely used. Huygens Curry·) — Fresnel principle can be used to explain the diffraction phenomenon. In short, the intensity of the light wave that is difficult to change in the space is from the point source on the wavefront. The sum on. Every time through the slit: Γ =: When the surface wave reaches the screen, it will interfere due to its optical path difference. Therefore, diffraction, ν π, Q 1 ~ ^ can be regarded as interference of many light rays. ~疒::』H shows a single-slit diffraction, with the PQ point at the intermediate point: each has the same optical path, which is a constructive interference and is a bright spot. The difference between rl λ/2 is 1/2; (4) ——When the light reaches the screen, the optical path can be found... The light should be destructively interfered, so Pi is a dark point. 772乂=lansin0 Constructive interference: Destructive interference is known from the above equation, the relationship sin 0 = again /a regular relationship, when subtracting from the first dark point position, its relative slit angle • the width of the diffraction fringe The gap of the slit width a and the wavelength of the J slit or the increase of the incident light wavelength can widen the 1261662 stripe. For the bright spot P1, the smaller the slit width a is, the larger the sing is. Thus, the diffraction phenomenon has a function of small signal amplification. As shown in m1, the synthesized electric field on the screen can be expressed as [2-3]: it = E\+E2+A +En ', when the destructive interference light privately is λ /2, the two adjacent lights When the phase difference of the point source is △, the vector sum is zero, that is, the dark point P1, and the light intensity is zero. As shown in the top of Annex I, the light intensity of the remaining P on the screen can be expressed by the following formula: where φ = ηΔ The light intensity of φ Ι〇 is the Ρ〇 point as shown in the Annex - Figure 为 is the single-slit diffraction pattern contrast, the ratio of the light intensity of the middle bright spot to the light intensity of other bright spots is: 〇047.

0.0」7;0·008;... ’主亮帶在中心點處,而其 他壳帶的中心點分別在二相鄰光點源之相位差為:+ 1· 4303 7Γ ; ± 2· 4560 7Γ ; 土 3 47Π7 7Γ · 一 π -· 707 τγ,···。至於暗線是發 生在二相鄰光點源之相位差為:±冗;± 2死;+ 至於中心亮帶寬為: 〜0.0"7;0·008;... 'The main bright band is at the center point, and the center points of the other crust strips are respectively at the phase difference of the two adjacent spot sources: + 1· 4303 7Γ ; ± 2· 4560 7Γ; soil 3 47Π7 7Γ · a π -· 707 τγ,···. As for the dark line, the phase difference between the two adjacent spot sources is: ± redundant; ± 2 dead; + as for the center bright bandwidth:

a 而免帶的亮 中心亮帶1度是其他次級亮帶寬的2倍 度是依序遞減的。 18 1261662 =常狹縫b為-微小的距離,只有數微米之間,當試 距時’會產生伸長型變作用’使銅片之間的狹縫b 有^/雷射光入射於銅片之間的狹縫b,在屏幕上會 有Γ光點產生,隨著施力增加,狹縫b㈣越大光點就 越雄、,^學應變規就運用這種特性,來做試片應變的量測。 假π又b為所黏貼之二片銅片的狹縫,則 y 其中η為繞射圖譜從中間算起的暗點數, ,中間點之距離(如附件一第L圖所示),當試片受:日:點 變形量導致縫隙寬度產生改變,即 守, £ △ b 假設變形前暗點與中點之距離為y,當試 / 暗點與中點之距離為yi,因此我們可以得到:4時’ yx b + Ab 在變形前b與y之關係如下:a bright band with no light, 1 degree is 2 times the other secondary bright bandwidth is decreasing in order. 18 1261662 = The constant slit b is - a small distance, only a few micrometers, when the test distance is 'extended deformation effect', the slit b between the copper sheets has ^/laser light incident on the copper sheet Between the slits b, there will be a light-emitting point on the screen. As the applied force increases, the larger the slit b(4), the more the spot will be, and the strain gauge will use this characteristic to make the test piece strain. Measure. False π and b are the slits of the two copper sheets pasted, then y where η is the number of dark points from the middle of the diffraction pattern, and the distance between the intermediate points (as shown in Figure L of Annex I). The test piece is subjected to: Day: The amount of deformation causes the gap width to change, that is, Shou, £ △ b. The distance between the dark point and the midpoint before the deformation is y. When the distance between the test/dark point and the midpoint is yi, we can Obtained: 4 o' yx b + Ab The relationship between b and y before deformation is as follows:

XR 下: 將兩式相減合併,便可得到施力後之平均應綠曰 %、交Ϊ 1 iyxy 而在光柵的繞射方式之檢驗實施例方面, 經常利 用光 19 1261662 柵的繞射方式來檢驗光波的頻譜及波長,早期的光譜儀即 是利用表面蝕刻形成光柵來對入射光進行分光。 由光的繞射公式: d sin Θ = η λ 兩邊取其微分可得: D cos θ 5 <9 5 λ 在此將該光栅之角射散本領設為 Όθ — δθ/ δλUnder XR: The two equations are subtracted and combined to obtain the average green 曰% and Ϊ1 iyxy after the applied force. In the inspection example of the diffraction pattern of the grating, the diffraction pattern of the light 19 1261662 grid is often used. To test the spectrum and wavelength of the light wave, the early spectrometer used surface etching to form a grating to split the incident light. From the diffraction formula of light: d sin Θ = η λ Take the differential on both sides: D cos θ 5 <9 5 λ Here, the angular dispersion power of the grating is set to Όθ — δθ/ δλ

從上式可知,角射散本領與光栅間距d、繞射階數η 成正比,並且也與繞射光柵的狹縫總數Ν無關。 角射散本領只能告诉我們,譜線中心分離的程度有多 大,但不旎反映出這些中心倍分離的譜線其邊緣重疊與 否,欲知兩條譜線是否重疊,就必先知道每條譜線的半角 # u θ,根據前面的光柵圖形,我們知道這是與光拇的條 數有關的,因當入射光所經光柵條紋數較多時,繞射光點 車父細,而當入射光只對-條先柵入射時,我們將發現繞射 先點免帶被拉的很長,暗帶幾乎只剩下—個狹小的點。 根據瑞利法則(Raileigh”sa Criteeri〇n),如附件一 第Μ圖所示, 可得:It can be seen from the above equation that the angular dispersion power is proportional to the grating pitch d, the diffraction order η, and also to the total number of slits of the diffraction grating. The angular scatter ability can only tell us how much the center of the line is separated, but it does not reflect whether the edges of these center-separated lines overlap or not. If you want to know whether the two lines overlap, you must know each The half angle of the bar line # u θ, according to the previous raster pattern, we know that this is related to the number of the light thumb, because when the incident light passes through the number of grating stripes, the diffraction spot is fine, and when When the incident light is incident only on the -first grid, we will find that the diffracted point is pulled long and the dark band is almost only a narrow point. According to Raileigh's law (Raileigh "sa Criteeri〇n), as shown in the attached figure, you can get:

Asin( 6» )-η Δ λ /d δίη(^+Δ^ )-(η+1/Ν) Λ/d 20 1261662 sin( ^ +Δ ^ )- sin( Θ )= Αθ δ sin( 0)/ δ Θ =Δ Θ cos( θ ) 根據光柵圖形,我們知道這是與光柵的條數有關的, 因當入射光所經光柵條紋數較多時,繞射光點較細,而當 入射光只對-條光柵人射時,我們將發現繞射総亮帶二 拉的很長,暗帶幾乎只剩下一個狹小的點。 Δ^ = λ/(Ν d cos^ ) 其中N為入射光經繞射光柵的狹縫總數。 綜上所述,本發明之優點及功效可歸納為·· [1] ·不必事先建立樣本圖樣或光點模型。本發明可以 直接進打二光點間距之次像素精度估測,特別是應用於二 片液晶顯示(LCD)面板間之間隙之量測,對光電產業有極 大的助益。 ° [2] ·計算簡單快速又精確。本發明不像習知之傅利葉 相位偏移法需要煩瑣的數學轉換,也比傳統之重心估算法 精確,實務上,本發明之精確度已可高達〇· 〇5個像素的程 度,整體而言,計算簡單、快速又準確。_是若搭配重 覆N次及遞迴運算步驟,即可利用卡曼濾波器之原理,將 估測之精確性再提高。 [3] ·應用範圍廣。由於本發明之系統,不只可以用來 估測光點間距,再反推出二待測透光片體之間隙。也可修 改成光學應變規,利用估測光關距,再反推出光學應變 規之間隙及其代表之物理意義。當然,若將間隙設為已知 項目’則可反推出-雷射光束之波長,因此,應用之範圍 1261662 極廣。 以上僅是藉由較佳實施例詳細說明本發明,對於該實 施例所做的任何簡單修改與變化,皆不脫離本發明之精神 與範圍。 由以上詳細說明,可使熟知本項技藝者明瞭本發明的 確可達成前述目的,實已符合專利法之規定,爰提出發明 專利申請。 【附件一】 第A圖係利用卡曼濾波器改善估測標準差的實際曲線 與理論曲線之比較圖 第B圖係反射光強度分佈狀況之示意圖 第C圖係反射光強度分佈理論推算結果之示意圖 第D圖係反射光實際取像結果之示意圖 第E圖係反射光之線強度輪廓量測結果之示意圖 第F圖係玻璃間隙量測光學系統之示意圖 第G圖係光學應變規實施例之示意圖 第Η圖係單狹缝繞射之示意圖 第I圖係合成電場之向量示意圖 第J圖係暗點光場之向量示意圖 第Κ圖係單狹缝繞射圖譜相對照度之示意圖 第L圖係繞射光點與狹縫之幾何關係之示意圖 第Μ圖係光柵圖形之示意圖 22 1261662 【圖式簡單說明】 第-圖係本發明之相關近似法理論之示意圖 第二圖係本發明之方法之流程圖 第三圖係本發明之第一實施例之示意圖 ί四圖係本發明之複數光束之強度分佈示意圖 弟五圖係本發明之第—強度函數之示意圖 第六圖係本發明之第二強度函數之示意圖Asin( 6» )-η Δ λ /d δίη(^+Δ^ )-(η+1/Ν) Λ/d 20 1261662 sin( ^ +Δ ^ )- sin( Θ )= Αθ δ sin( 0) / δ Θ =Δ Θ cos( θ ) According to the grating pattern, we know that this is related to the number of gratings, because when the incident light passes through a large number of grating stripes, the diffraction spot is fine, and when the incident light is only When we shoot a pair of gratings, we will find that the diffracted bright band is very long, and the dark band has almost only one narrow point. Δ^ = λ/(Ν d cos^ ) where N is the total number of slits of incident light passing through the diffraction grating. In summary, the advantages and effects of the present invention can be summarized as [1]. It is not necessary to establish a sample pattern or a spot model in advance. The invention can directly measure the sub-pixel precision of the two-spot spacing, especially for measuring the gap between two liquid crystal display (LCD) panels, which is of great benefit to the optoelectronic industry. ° [2] · Calculation is simple, fast and accurate. The present invention does not require a cumbersome mathematical conversion as in the conventional Fourier phase shift method, and is more accurate than the conventional center of gravity estimation method. In practice, the accuracy of the present invention can be as high as 〇· 〇 5 pixels, overall, The calculation is simple, fast and accurate. _ is to use the principle of Kalman filter to improve the accuracy of the estimation if it is repeated with N times and recursive steps. [3] · Wide range of applications. Since the system of the present invention can be used not only to estimate the spot pitch, but also to push back the gap between the two light-transmissive sheets to be tested. It can also be modified into an optical strain gauge, using the estimated light-off distance, and then deriving the gap between the optical strain gauges and the physical meaning of the representation. Of course, if the gap is set to a known item, the wavelength of the laser beam can be reversed, so the range of application 1261662 is extremely wide. The present invention has been described in detail by the preferred embodiments of the present invention. From the above detailed description, those skilled in the art can understand that the present invention can achieve the foregoing objects, and the invention has been in compliance with the provisions of the patent law. [Annex 1] Figure A is a comparison between the actual curve and the theoretical curve using the Karman filter to improve the estimated standard deviation. Figure B is a schematic diagram of the distribution of reflected light intensity. Figure C is the theoretical calculation result of the reflected light intensity distribution. FIG. D is a schematic diagram of the actual image capturing result of the reflected light. FIG. E is a schematic diagram of the intensity intensity profile measurement result of the reflected light. FIG. F is a schematic diagram of the glass gap measuring optical system. FIG. G is an optical strain gauge embodiment. Schematic diagram of the first diagram is a schematic diagram of single-slit diffraction. Figure I is a vector diagram of the synthetic electric field. Figure J is a vector diagram of the dark-spot light field. Figure 示意图 is a schematic diagram of the single-slit diffraction pattern. Schematic diagram of the geometric relationship between the diffracted spot and the slit. Figure 2 is a schematic diagram of the grating pattern. 22 1261662 [Simplified illustration of the drawing] The first drawing is a schematic diagram of the related approximation theory of the present invention. The second drawing is the flow of the method of the present invention. Figure 3 is a schematic view of a first embodiment of the present invention. Figure 4 is a schematic diagram showing the intensity distribution of a plurality of beams of the present invention. A schematic view of a sixth schematic view showing a second function of the strength of the present invention

ΐ七圖係本發明之第二實施例之反射式的示意圖 11擷取光點步驟 13轉換第二光點步驟 15多項式插補處理步驟 17遞迴運算步驟 211雷射光束 =八圖係本發明之第三實施例之反射式光譜儀示音 圖式元件符號說明】 %、圖 12轉換第一光點步驟 14相關近似法處理步驟 16重覆估測Ν次步驟 21雷射量測模組 212調整鈕 22、23待測透光片體 241光線強度分佈資料 26計算裝置 28繞射光點 f(x)弟二強度函數 X。最佳重心 Xopt 最佳估測值 24影像擷取裝置 25 ' 25A、25B、25C、25D 光點 27光學應變規 u(x)第一強度函數 r(x)相關近似函數 σ s單一估測標準差 L光點間距 G間隙 R卜 R2 、 R3 、 /7、职Ρ間距尺寸 以、R5反射光強度 23 1261662 Z高斯光束的傳播方向 A光场振幅大小 ^入射光的透射率 A光波長 %高斯光束的最小光斑尺寸 尚斯光束在位置z的光斑尺寸 Λ為光波波前的曲率半徑 Ρ〇壳點(即中間點) Pi暗點 I 〇為Ρο點的光強度 △ φ相位差Figure 7 is a schematic view of a reflective embodiment of the second embodiment of the present invention. 11: Picking up a light spot, Step 13 converting a second light spot, Step 15, Polynomial interpolation processing, Step 17, Recursive operation step 211, Laser beam = Eight figure, the present invention The reflective spectrometer of the third embodiment shows the symbolic description of the symbolic component] %, FIG. 12 converts the first light spot, step 14 is related to the approximation, and the processing step 16 repeats the estimation step 21, the laser measurement module 212 adjusts Buttons 22, 23 to be tested light transmissive sheet 241 light intensity distribution data 26 computing device 28 diffracts the point f (x) dienergetic intensity function X. Best center of gravity Xopt Best estimate 24 Image capture device 25 '25A, 25B, 25C, 25D Spot 27 Optical strain gauge u(x) First intensity function r(x) Correlation approximation σ s Single estimation standard Difference L spot spacing G gap R b R2, R3, /7, spacing of the spacing, R5 reflected light intensity 23 1261662 Z Gaussian beam propagation direction A Light field amplitude size ^ Incident light transmittance A light wavelength % Gauss The minimum spot size of the beam The spot size of the beam at position z is the radius of curvature of the wavefront. The point of the crust (ie, the intermediate point) Pi dark point I 〇 is the light intensity of the point Δ φ phase difference

δ狹縫見度(在早狹縫繞射的) b狹缝寬度(在單狹縫繞射圖譜相對照度的) y暗點與中間點之距離 ε平均應變量 d光柵間距 η繞射階數 Ν狹縫總數 6 θ半角寬 24δ slit visibility (diffraction in the early slit) b slit width (in the single slit diffraction pattern contrast) y dark point and intermediate point distance ε average strain d grating spacing η diffraction order ΝSlit total 6 θ half-width 24

Claims (1)

1261662 十、申請專利範圍: 1 ·一種多量測用途光點間距之次像素精度估測系統,係 用於量測二待測透光片體之微細間隙,其包括·· 一雷射量測模組,用以發出一雷射光束,其上有雷 射光束上下左右偏向調整鈕; —待測透光片體,間隔一微細間隙; 一影像擷取裝置,用以擷取由該雷射光束傾斜的穿 透該二待測透光片體後,所反射之複數光束,成為一 光線強度分佈資料; 一計算裝置,用以將擷取之光線強度分佈資料之二 預定光點區分別轉換成一第一強度函數u(x)及一第 -強度函數f(X),利㈣第—強度函數u(X)與第二強 度函數f(X)及下列步驟: 一、擷取光點步驟:以一影像擷取裝置讀入一第 一光點及一第二光點強度分佈資料; + 一、轉換第—光點步驟:將該第—光點強度分佈 資料轉換成為-第-強度函數u(x),且該第—強度之 峰值約位於U(0)處; — ------ 光點強度分佈 貢料轉換成為—第二強度函數f⑴,且第二強度函數 f(X)之峰值約位於f(i)處; 四、相關近似法處理步驟·剎 心乂騍·利用該第一強度函數 u(x)與第二強度函數f(x) 之相關近似函數r ( x ),經數 位取樣後成為 默 25 1261662 則可得到一最大值r(i),並將相鄰之r(I + l)及r(I-l) 記錄下; •五、多項式插補處理步驟:利用至少包含r(i)、 r(i + l)、rQ —1)之拋物線之插補法, xc =_ 2[Φ*-1) + γ(/ + 1)-2γ(〇] I °十=出取佳重心Xc,再推估出光點間距為i+Xc ,由比 例异出二待測透光片體之微細間隙。 2 · ^申請翻範圍第i項所叙多量測料光點間距之 次像素精度估測系統,其中,該計算裝置又包括 步驟: 乂曰六、重覆估測N次步驟:重覆第一至第五步驟而取 得N個最佳重心Xe(N),以現有統計方法計算而可得 到一單一估測標準差(Js ; # 七、遞迴運算步驟:利用下列之推估公式: xmw = χ〇Ρ_+ ΚΝ_'{χΝ 一乂郇㈣、 其中, κ = ~~^2_ ~^σ〇ρί{Ν-\) 再推估出光點間 即可遞迴運算出一最佳估測值 距為 i+xc 〇 一種多量測用途光點間距之次像素精度估測系並 、、 26 1261662 包括: 一雷射量測模組,用以發出一雷射光束,其上設一 供雷射光束上下左右偏向的調整紐; 一光學應變規,具有一間隙; 一影像擷取裝置,用以擷取由該雷射光束傾斜的穿 透二待測透光片體後,所反射之複數光束,成為一光 線強度分佈資料;1261662 X. Patent application scope: 1 · A sub-pixel precision estimation system for multi-measurement spot spacing, which is used to measure the fine gap of the two transparent sheets to be tested, including: · a laser measurement The module is configured to emit a laser beam with a laser beam on the upper, lower, left and right side of the adjustment button; - a transparent light body to be tested, separated by a fine gap; an image capturing device for capturing the laser beam After the light beam obliquely penetrates the two light-transmissive sheets to be tested, the reflected plurality of light beams become a light intensity distribution data; a computing device is configured to respectively convert the two predetermined light spot regions of the extracted light intensity distribution data Forming a first intensity function u(x) and a first-intensity function f(X), a (four) first-intensity function u(X) and a second intensity function f(X) and the following steps: 1. Stepping up the spot : reading a first light spot and a second light spot intensity distribution data by using an image capturing device; 1. converting the first light spot step: converting the first light spot intensity distribution data into a -first intensity function u(x), and the peak of the first intensity is located at U(0); — ------ The spot intensity distribution metric is converted into a second intensity function f(1), and the peak of the second intensity function f(X) is located at f(i); 4. Correlation approximation processing steps The heartbeat uses the correlation approximation function r(x) of the first intensity function u(x) and the second intensity function f(x), and after digit sampling, it becomes a maximum value r(i) And record the adjacent r(I + l) and r(Il); • 5. Polynomial interpolation processing steps: using a parabola containing at least r(i), r(i + l), rQ-1) Interpolation method, xc = _ 2 [Φ * -1) + γ ( / + 1) - 2 γ (〇) I ° ten = out of the center of gravity Xc, and then estimated the spot spacing is i + Xc, by the ratio The micro-gap of the light-transmissive sheet to be tested is different. 2 · ^ Applying the sub-pixel precision estimation system of the multi-measurement spot spacing described in item i of the range, wherein the computing device further comprises the steps: 6. Repeat the N steps: repeat the first to fifth steps to obtain the N best center of gravity Xe(N), and obtain a single estimated standard deviation by the existing statistical method (Js; #七, Recursive operation Step: Use the following estimation formula: xmw = χ〇Ρ_+ ΚΝ_'{χΝ 一乂郇(4), where κ = ~~^2_ ~^σ〇ρί{Ν-\) Then estimate the light spot Recursively calculates a sub-pixel accuracy estimation system with a best estimated value distance of i+xc 〇 a multi-measurement spot spacing, and 26 1261662 includes: a laser measurement module for issuing a laser beam having an adjustment button for deflecting the laser beam up and down and left and right; an optical strain gauge having a gap; and an image capturing device for capturing the penetration of the laser beam After measuring the light-transmissive sheet, the reflected plurality of beams become a light intensity distribution data; 一計算裝置,用以將擷取之光線強度分佈資料之二 預定光點區分別轉換成一第一強度函數u(x)及一第 二強度函數f(x),利用該第一強度函數u⑴與第二強 度函數f(X)之相關近似函數r(x),並配合下列步驟: 一、擷取光點步驟:以一影像擷取裝置讀入一第 一光點及一第二光點強度分佈資料; 一 一、轉換第一光點步驟··將該第一光點強度分佈a computing device for converting the two predetermined spot regions of the extracted light intensity distribution data into a first intensity function u(x) and a second intensity function f(x), respectively, using the first intensity function u(1) The correlation function r(x) of the second intensity function f(X) is matched with the following steps: 1. Step of capturing the light spot: reading a first light spot and a second light spot intensity by an image capturing device Distribution data; one, the first light spot conversion step · the first light spot intensity distribution 貧料轉換成為-第-強度函數u(x),且該第—強度之 峰值約位於u(0)處; 一三、轉換第二光點步驟:將該第一光點強度分佈 會枓轉換成為一第二強度函數f(x),且第二強度函數 f(X)之峰值約位於處; 則錢法處理步驟:利用該第—強度函數 u(x)與弟二強度函數士 )之相關近似函數Γ(χ),經數 位取樣後成為 双 j 則可得到一最大值r(i) 並記錄相鄰之r(I + l)及 27 1261662 r(I-l); 五、多項式插補處理步驟:得到一最大值r(i), 並將相鄰之r(i + 1Mr(H)記錄下;利用至少包含 r(i)、r(i + l)、^卜丨)之拋物線之插補法, C 2[r(z -1) + r(i + 1)- 2r{i)] 最後,計算出最佳重心Xc,再推估出光點間距為 ’由比例异出光學應變規之應變值。 .4 ·-種多量_途光關距之次像素精度估測系統,盆 ^ 包括: 一雷射量測模組,係設一雷射光源插入孔,用以插 入雷射,發出一雷射光束,該雷射量測模組上設一供 雷射光束上下左右偏向的調整鈕; 一光柵; 一影像擷取裝置,用以擷取由該雷射光束傾斜的穿 • 透該二待測透光片體後,所反射之複數光束,成為一 光線強度分佈資料; 一計算裝置,用以將擷取之光線強度分佈資料之二 預定光點區分別轉換成一第一強度函數u(x)及一第 二強度函數f(X),利用該第一強度函數u(x)與第二強 度函數f (X)之相關近似函數r(x),經數位取樣後成為 J 則可得到一最大值r(i),並將相鄰之r(i + i)及— D 記錄下;利用至少包含1*〇)、1*〇 + 1)、汽卜1)之拋物 28 1261662The lean material is converted into a -first-strength function u(x), and the peak of the first intensity is located at u(0); a third, the second light spot is converted: the first light spot intensity distribution is converted a second intensity function f(x), and the peak of the second intensity function f(X) is located approximately; then the money processing step: using the first intensity function u(x) and the second strength function The correlation approximation function Γ(χ), after the digital sampling becomes double j, can obtain a maximum value r(i) and record the adjacent r(I + l) and 27 1261662 r(Il); 5. Polynomial interpolation processing Step: obtain a maximum value r(i), and record the adjacent r(i + 1Mr(H); use a parabolic interpolation containing at least r(i), r(i + l), ^b丨) Complement, C 2[r(z -1) + r(i + 1)- 2r{i)] Finally, calculate the best center of gravity Xc, and then estimate the spot spacing as 'strain from the proportional optical strain gauge value. .4 ·- Multi-quantity _ pass-by-pixel sub-pixel accuracy estimation system, the basin ^ includes: a laser measurement module, which is provided with a laser light source insertion hole for inserting a laser and emitting a laser a beam, the laser measuring module is provided with an adjusting button for deflecting the laser beam up and down and left and right; a grating; an image capturing device for capturing the tilting of the laser beam; After the light-transmissive sheet, the reflected plurality of beams become a light intensity distribution data; a computing device is configured to convert the two predetermined light spot regions of the extracted light intensity distribution data into a first intensity function u(x) And a second intensity function f(X), using the correlation function r(x) of the first intensity function u(x) and the second intensity function f(X), and obtaining a maximum after being digitally sampled into J The value r(i), and the adjacent r(i + i) and - D are recorded; using a parabola 28 1261662 containing at least 1*〇), 1*〇+ 1), and steam 線之插補法, χ — r(z-l)-r(/ + l) c ~2[r(/-1) +r(z+ 1)-2r(〇] 最後,計算出最佳重心X。,再推估出光點間距為i +Xc ,由比例算出光學應變規之應變值。 29Line interpolation method, χ — r(zl)-r(/ + l) c ~2[r(/-1) +r(z+ 1)-2r(〇] Finally, calculate the best center of gravity X. Then estimate the spot spacing as i + Xc and calculate the strain value of the optical strain gauge from the ratio.
TW94117732A 2005-05-30 2005-05-30 Subpixel precision estimating system of light point distance with multiple measurement purposes TWI261662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94117732A TWI261662B (en) 2005-05-30 2005-05-30 Subpixel precision estimating system of light point distance with multiple measurement purposes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94117732A TWI261662B (en) 2005-05-30 2005-05-30 Subpixel precision estimating system of light point distance with multiple measurement purposes

Publications (2)

Publication Number Publication Date
TWI261662B true TWI261662B (en) 2006-09-11
TW200641327A TW200641327A (en) 2006-12-01

Family

ID=37986964

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94117732A TWI261662B (en) 2005-05-30 2005-05-30 Subpixel precision estimating system of light point distance with multiple measurement purposes

Country Status (1)

Country Link
TW (1) TWI261662B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742718B (en) * 2020-06-11 2021-10-11 得力富企業股份有限公司 Centroid detection device

Also Published As

Publication number Publication date
TW200641327A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP6053523B2 (en) Fabry-Perot Fourier transform spectrometer
CN104729402B (en) High-optical-subdivision grating interferometer based on plane mirrors
CN102414537B (en) Film thickness measuring apparatus using interference and method of measuring film thickness using interference
CN105928465A (en) Strain sensor and method of measuring strain amount
CN104729411B (en) High-resolution gration interferometer based on high dencity grating
CN104266755B (en) A kind of spectral measurement method improving luminous flux and system
WO2018146681A1 (en) System and method for use in high spatial resolution ellipsometry
KR101011227B1 (en) Achromatic and compact optical interferometer of the trilateral shift type
CN104655278B (en) A kind of wavelength scaling instrument
CN104833411A (en) High-precision micro-cantilever thermal vibration signal measuring device
CN108303038A (en) Reflection-type surface shape measurement method and device based on two-dimension optical dot matrix
TW200928285A (en) Reflective measurement method of film thickness by spectral image system
US8462344B2 (en) SPR apparatus and method
CN117128877B (en) Film thickness detection method, computer and system
TWI261662B (en) Subpixel precision estimating system of light point distance with multiple measurement purposes
JP2009092569A (en) Refractive index meter
CN106840002B (en) Non-contact type plate glass thickness and refractive index measuring device and method
KR20210125428A (en) Optical measuring system and optical measuring method
Šiaudinytė et al. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration
CN1447111A (en) Method for measuring refractive index of thin film and its device
Taudt Development and Characterization of a dispersion-encoded method for low-coherence interferometry
Yu et al. Thickness measurement of transparent plates by wavelength stepping and a phase unwrapping algorithm
Nikolaev et al. Methods of calibrating prisms with faces that have no reflective coating, using a dynamic goniometer
EP2871451A1 (en) Spectroscopic imaging device adjusting method and spectroscopic imaging system
CN104655029A (en) Method and system for measuring thickness of phase-enhanced film