TWI261429B - A method for generating OFDM frame for wireless communications - Google Patents

A method for generating OFDM frame for wireless communications Download PDF

Info

Publication number
TWI261429B
TWI261429B TW93121533A TW93121533A TWI261429B TW I261429 B TWI261429 B TW I261429B TW 93121533 A TW93121533 A TW 93121533A TW 93121533 A TW93121533 A TW 93121533A TW I261429 B TWI261429 B TW I261429B
Authority
TW
Taiwan
Prior art keywords
data
frequency division
division multiplexing
complex
orthogonal frequency
Prior art date
Application number
TW93121533A
Other languages
Chinese (zh)
Other versions
TW200531465A (en
Inventor
Christopher J Hansen
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/778,754 external-priority patent/US7162204B2/en
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW200531465A publication Critical patent/TW200531465A/en
Application granted granted Critical
Publication of TWI261429B publication Critical patent/TWI261429B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A method for generating an orthogonal frequency division multiplexing (OFDM) frame for wireless communications by generating a preamble of the OFDM frame, wherein the preamble includes training information and signal information. The method continues by generating a plurality of data fields includes a plurality of subcarriers, wherein at least some of the plurality of data fields includes, at most, three of the plurality of subcarriers allocated for a pilot signal.

Description

1261429 九、發明說明: 【發明所屬之技術領域】 本發明係關於無線通訊系統 支與無線通鱗統間的;^格式。、線通訊設備分 【先前技術】 很多年。網際網路(Intemet)是另一熟知的通訊網路實例,其 也已出現料。這些通訊網路可使客戶端設備在全球範圍内互 連接有電子設備之網路之通《支術已為人熟知。通訊網路 之具體例子包括有線分組:#_路、無線分組㈣網路、有線 電話網路、無線電話網路、以及衛星通訊網路等。通常這些通 訊網路包括為缝客戶端設備提供服務之鱗親。公共交換 %活、、罔(PSTN)可能是最為熟知的通訊網路實例,其已出現 相通訊。有線區域網(LAN)如乙太網(Ethemets)也很普通, 其可支援服務區域_網路電腦與其他設備的軌。區域網通 常也和廣_及網際晴連接。網路巾的每—個通常被認 為疋有線的網路,即使某些網路,如pSTN,可能包括可 用於無線連接的發射通道。 與有線網路相比,無線網路出現的時間相對要短許多,如 行動電話網路、無線區域網(WLANS)、衛星通訊網等。無線 區域網通常根據一或複數標準建立,如IEEE802.il、. 11(a)、. 11 (b)、·11 (g)等,這些標準可統稱為“IEEE802.11網,,。在 /、足的IEEE802.il網中,複數無線接入點(Accessp〇ints,APs) 1261429 相互連接,並且每—點皆可支援無線通訊設備(如包括相狂 線介面的電腦)進行無線通訊。APs為無線通訊設備提供訪問 恶線區域網外部的網路之能力。 當使用行動電腦、行動資料終端、以及其他通常非固定 的、亚可訪問有祕_連接的設鱗行麟備時,無線區域 、、罔有著顯著之優點。然,與有線區域網如IEEE搬.3網相比, 热線區域網提供減較低的聽率。目前配置之有線網路可提 供達到10億位it (Gigabit) /秒的帶寬,並且很快有線網路就 可提供1GGB/秒的帶寬。而由於在服務行動設備方面的優勢, 無線區域網常常覆蓋了有線網路的服務區域。在上述設備中, 與有線區域網連接的設财為固定的,如桌上型電腦;而與無 線區域網連接的稍^要是移_,如行動電腦。而行動電腦 也可有有線區域網連接’使其在不飾時可麟較高帶寬之服 務0 新的無線網路標準支援相對較高的資料率。例如, IEEE8〇2· 11 ( a )標準支援的資料率達到54百萬位元(Bits) 每秒,IEEE802.il (g)也達到了上述資料率。IEEE8〇2 n⑷ 使用了正父頻刀袓用(〇池〇g〇nal ανϋ〇η1261429 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a format between a wireless communication system and a wireless communication system. , line communication equipment [previous technology] many years. The Internet is another well-known example of a communication network that has also emerged. These communication networks make it possible for client devices to connect to the Internet of electronic devices on a global scale. Specific examples of communication networks include wired packets: #_路, wireless packet (4) networks, wired telephone networks, wireless telephone networks, and satellite communication networks. Often these communication networks include scales that serve the client device. The public exchange % live, 罔 (PSTN) is probably the most well-known example of a communication network, and it has already appeared. Wired area networks (LANs) such as Ethernet (Ethemets) are also common, supporting the service area _ network computers and other equipment tracks. Regional network connections are often connected to Guang_ and Internet. Each of the network towels is generally considered to be a wired network, even though some networks, such as the pSTN, may include a transmission channel that can be used for wireless connections. Compared with wired networks, wireless networks appear to be relatively short-lived, such as mobile phone networks, wireless local area networks (WLANs), and satellite communication networks. Wireless area networks are usually established according to one or more standards, such as IEEE802.il, .11(a), .11 (b), ·11 (g), etc. These standards can be collectively referred to as "IEEE802.11 network,. In the IEEE802.il network, multiple wireless access points (APs) 1261429 are connected to each other, and each point can support wireless communication devices (such as computers including phase mad interface) for wireless communication. Provides wireless communication equipment with the ability to access networks outside the area of the bad line network. When using mobile computers, mobile data terminals, and other generally non-fixed, sub-accessible, singularly connected, wireless areas And 罔 have significant advantages. However, compared with wired regional networks such as IEEE Mobile.3, hotline regional networks provide lower listening rates. Currently configured wired networks can provide up to 1 billion bits of it (Gigabit) / sec bandwidth, and soon the wired network can provide 1GGB / sec of bandwidth. Because of the advantages of the service mobile device, the wireless area network often covers the service area of the wired network. In the above devices, Wired area network connection The wealth is fixed, such as a desktop computer; and the connection to the wireless area network is slightly _, such as a mobile computer. And the mobile computer can also have a wired area network connection, so that it can be compared when it is not decorated. High-bandwidth service 0 The new wireless network standard supports a relatively high data rate. For example, the IEEE8〇2·11 (a) standard supports data rates up to 54 megabits (Bits) per second, IEEE 802.il ( g) The above data rate is also reached. IEEE8〇2 n(4) uses a positive parent frequency knife (〇池〇g〇nal ανϋ〇η

Multiplexing,OFDM)物理層,以支援上述資料率。藉由〇FDM 物理層’可用載波被Μ分為許複數副載波或通道(subcarriersor tones ) ’每一副載波傳送多路信號資料流的一部分。ffiEE8 〇2 · j j 1261429 ()DM 4勿理層包括48位元元資料傳輸通道和4位控制信 號通道,空間/帶寬為α迎MHz。如圖〗所示,副載波〇、副 載波27 32以及韻波_27〜_3 j未使用。副載波十^、副載波 +/21作為4個控制信號通道或信號。副載波1〜6、副載波 8〜2〇、副載波22〜26、副載波]〜_6、副載波U0、以及副載 波-22〜-26組成了 48細於傳送㈣之㈣傳輸通道。 田將第-圖之副載波分配標準化,並支援較寬變化的無線 區域網應料’還存在—些不_上賴載波分配之無線區域 網應用。例如,若通道帶寬較窄或驗多人多處(融响_ muitipie Gutput’MIMQ)麟通瞒,f —圖之_波分配可 能並非最理想的和/或可實現的。 以 田要出現—種正交頻分複用幢生成設備和方法, 用於乍通道應用和/或ΜΙΜΟ應用。 【發明内容】 ^ 本發明之正交頻分觀巾貞之格式完全符合上述和其他的 要求。在-貫施例中,揭露了—用於無線通訊的產生正交頻分 複用巾貞的方法,首先產賴紅交頻分觀巾貞之前置資料,其 中该則置貧料包括訓練資訊和信f虎資訊。該方法接著產生所述 正交頻分複用巾貞的複數資料攔,其中每—複數資料攔包括複數 副載波,其中至少部分所述複數資料攔包括,至多三個被分派 控制信號的所述複數副載波。 在另一實施例中,揭露了一 用於多入多出無線通訊的產 1261429 生正交頻分複用幀之方法,首先轉換一個資料流為複數資料 流。該方法接著轉換該複數資料流為複數正交頻分複用幀,其 中每一所述複數正交頻分複用幀包括具有訓練資訊和信號資 訊的前置資料,其中每一所述複數正交頻分複用幀包括複數資 料欄,其中每一所述複數正交頻分複用幀之每一複數資料欄包 括複數副載波,其中至少一個所述複數正交頻分複用幀的至少 部分該複數資料攔包括,至多三個被分派控制信號的所述複數 副載波。 在再一實施例中,揭露了一用於無線通訊的接收正交頻 分複用幀之方法,首先接收所述正交頻分複用幀之前置資料, 其中該前置資料包括訓練資訊和信號資訊。所述方法接著接收 該正交頻分複用幀的複數資料攔,其中每一所述複數資料欄包 括複數副載波頻率’其中藉由信號資訊的指示,至少部分該複 數資料欄包括,至多三個被分派控制信號的所述複數副載波頻 率。所述方法接著轉換所述複數資料攔為内部資料(inb〇und data)。 在進一步的實施例中,一或複數這樣的方法可以為一射頻 發射器和/或一射頻接收器。 【實施方式】 第二圖示出了一個通訊系統10的原理結構圖,其中包括 複數基站(Base station, BS)和/或接入點(Access p〇ints,Ap) 12_16,複數無線通訊設備18_32,以及一網路硬體部件%。 1261429 其中之無線通減備丨8-32可以是膝上型電腦主機is和%、 個人數位助理主雕岡20和30、個人電腦主機Μ和%、和 /或行動電話域22和28。後轉結合附第1對這此 訊設備作更詳細的說明。 —…^ 丞站或接入點Multiplexing, OFDM) physical layer to support the above data rate. By means of the FDM physical layer, the available carriers are divided into a plurality of subcarriers or channels (subcarriers tones) each of which transmits a portion of the multiplexed signal stream. ffiEE8 〇2 · j j 1261429 () DM 4 The standby layer includes a 48-bit metadata transmission channel and a 4-bit control signal channel, and the space/bandwidth is α-MHz. As shown in the figure, subcarrier 〇, subcarrier 27 32 and rhyme _27~_3 j are not used. Subcarrier 10^, subcarrier +/21 is used as 4 control signal channels or signals. Subcarriers 1 to 6, subcarriers 8 to 2, subcarriers 22 to 26, subcarriers] to 6, subcarrier U0, and subcarriers 22 to 26 constitute a transmission channel of (4). Tian will standardize the subcarrier allocation of the first-picture and support the wide-ranging change of the wireless local area network. There are still some wireless area network applications that do not rely on carrier allocation. For example, if the channel bandwidth is narrow or multiple people are involved (melting _ muitipie Gutput'MIMQ), the wave assignment of the f-map may not be optimal and/or achievable. I want to appear in the field—a kind of orthogonal frequency division multiplexing building generation equipment and method for 乍 channel application and/or ΜΙΜΟ application. SUMMARY OF THE INVENTION The format of the orthogonal frequency division frame of the present invention fully meets the above and other requirements. In the embodiment, the method for generating orthogonal frequency division multiplexing frames for wireless communication is disclosed, which firstly produces the pre-existing data of the red crossover frequency, wherein the depleted material includes training information. And letter f tiger information. The method then generates a complex data block of the orthogonal frequency division multiplexing frame, wherein each of the plurality of data blocks includes a plurality of subcarriers, wherein at least a portion of the plurality of data blocks includes, for example, at least three of the assigned control signals Complex subcarriers. In another embodiment, a method for generating 1261429 Orthogonal Frequency Division Multiplexing (OFDM) frames for multiple incoming and outgoing wireless communications is disclosed, first converting a data stream into a complex data stream. The method then converts the complex data stream into a complex Orthogonal Frequency Division Multiplexing frame, wherein each of the complex Orthogonal Frequency Division Multiplexing frames includes preamble data having training information and signal information, wherein each of the complex numbers is positive The frequency division multiplexing frame includes a complex data column, wherein each of the complex data columns of each of the complex orthogonal frequency division multiplexing frames includes a plurality of subcarriers, wherein at least one of the plurality of complex orthogonal frequency division multiplexing frames A portion of the plurality of data blocks includes up to three of the plurality of subcarriers to which the control signal is assigned. In still another embodiment, a method for receiving an orthogonal frequency division multiplexing frame for wireless communication is disclosed, which first receives the orthogonal frequency division multiplexing frame preamble data, wherein the preamble data includes training information. And signal information. The method then receives a complex data block of the orthogonal frequency division multiplexed frame, wherein each of the plurality of data fields includes a plurality of subcarrier frequencies 'where an indication of signal information, at least part of the plurality of data columns includes, at most three The complex subcarrier frequencies of the assigned control signals. The method then converts the complex data into internal data (inb〇und data). In a further embodiment, one or more of such methods can be a radio frequency transmitter and/or a radio frequency receiver. [Embodiment] The second figure shows a schematic structural diagram of a communication system 10, which includes a base station (BS) and/or an access point (Ap) 12_16, and a plurality of wireless communication devices 18_32. And a network hardware component%. 1261429 The wireless channel reduction port 8-32 can be a laptop host is and %, a personal digital assistant main squad 20 and 30, a personal computer host % and %, and/or mobile phone domains 22 and 28. The post-transfer will be described in more detail with the first device. —...^ Station or access point

地稭由區域網(LAN)36、3M 4〇與網路硬體34連接。網路硬體34可為路由器、轉換器、'部 橋、數據機、系統控制器等,它可為通訊系統ig提供—糾 網_)連接42。每-基站或接入點12_16有—關聯之天、= 天線陣列,以實現與其所在區域内之無線通訊設備間的通訊。 通常’無線通訊設備會註冊到一特定之基站或接入點匕^以 從通訊系統ω減服務。躲直接連她點對_訊),無線 通訊設備之間會藉φ—指定之猶直接通訊。The ground straw is connected to the network hardware 34 by a local area network (LAN) 36, 3M 4 . The network hardware 34 can be a router, a converter, a 'bridge, a data machine, a system controller, etc., which can provide a connection 42 to the communication system ig. Each base station or access point 12_16 has an associated day, = antenna array, to enable communication between wireless communication devices within its area. Usually, the 'wireless communication device' registers with a specific base station or access point to reduce the service from the communication system ω. Hiding directly to her point to _ news), wireless communication equipment will borrow φ - designated direct communication.

—通常4站用於行動電話系統及類似系統,接人點則用於 家庭或建築物内之無_路。忽略通訊系統之特定類型,每一 無線通訊設備中包含有—内建無線收發器和/或被連接到一無 線收發器。應注意的是,—或複數接人點及其附屬之無線軌 設備可能在同一建築物内。 第二圖示出了一無線通訊設備之原理結構圖,其中包括主 機設備18-32和一關聯無線收發器6卜對於行動電話主機,該 然線收發器60是它的—細建部件。對於個人數位助理主 機膝上型電腦主機、和/或個人電腦主機,該無線收發器⑻ 9 1261429 可以是其内建部件,也可以是其外接連接部件。 ^ /圖中可以看出,主機設備18_32中包括一處理模組5〇、、 L體52個热線收發益介面54、-個輸入介面58、以及 個輸出介面56。處理模組5〇和記憶體Μ執行通常由主機設 備= 成的對應指令。例如,對於行動電話主機設備,處理模組 %會根據-特定的行動電話標準執行對狀通訊功能。 無線收發器介面S4用於實現與無線收發器6〇之間的資料 接收和發送。對於從無線收發器60接收的資料(即入站資料# inbounddata),無線收發器介面M會將該資料提供給處理模組 5〇以作進一步處理和/或傳送至輸出介面%。輸出介面弘提 供與輸出顯硝制之連接,例如顯示器、監視器、揚聲器等, 攸而使接收到的資料可被顯示出來。無線收發器介面Μ還可 攸處理模組50向無線收發請提供㈣。處理模組%可藉 輸入”面58接收鍵盤、小鍵盤、麥克風等輸入設備傳來之 ^站資料(〇Utbound data) ’或自己生成該資料。對於藉由輸入⑩ 二面58接收之資料,處理模組5〇可對該資料執行一對應的主 機功能和/或藉由無線收發器介面54將該資料傳送到無線收發 器60。 無線收發器60中包括一主機介面62、數位接收器處理模 組64、一類比數位轉換器(anal〇g_t〇_di咖丨⑶爪咖”,他c)66, 一渡波/增益模組68、一 IF混合下變換模組70、-接收器(Rx) 10 1261429 濾波器7卜-低雜訊放大器(L〇wn〇iseam卿%舰)72、 —發送/触(Tx/Rx)轉換開關73、—本地振蘯模组%、記憶體 乃、一數位發达器處理模組76、一數位類比轉換器 (digital-to-analog converter,DAC)78、一濾波/增益模組 8〇、一 IF混合上變換模組82、一功率放大器咖赠卿肪% pA)84、 -發送器(Tx)濾波器模組8S、以及天線%。所述天線祕可以 是在發送/接收轉換開關73的控制下由發送和接收路徑共用之 單天線,或者針對發送路徑和魏職分概有不同之天線。 天線的實施將依賴於無線通訊設備所適應之特定標準。 數位接收1、處_組64和触發送_處理· %與存有 #作指令之記憶體75結合,分職行數位接收器功能和數位 發达盗功能。數位接收器功能包括但不限於:數位巾頻至基帶 轉換(baseband Conversion)、解調(dem〇dulati〇n)、組合解映射 (_tdlati〇n demapping)、解碼(dec〇ding)、和 / 或解密 (descmmbling)。數位發送器功能包括但不限於:加密 (s_bling)、編碼(enc〇ding)、組合映射(c〇nstdiaJn mapping) α周製(m〇duiati〇n)、和/或數位基帶至I?轉換。要實 現數位接收器和發送器處理模組64和76,可使用—共用處理 設備、分別仙-纽設備、或者使賴數處理設備。所述處 號處理器、微型電 programmable gate 理設備可以是微處理器、微控制器、數位信 腦、中央處理單元、現場可編程閘陣列 1261429 金_)、可編程邏輯設備、狀態機、邏輯電路♦ 1=7物基於職令來纖號^ 供$ X “體75可以是單存儲設備或複數存心 。所赫儲設财从唯讀記㈣、隨機存取記易: 記憶體、非易失記憶體、靜態記憶體、動態記憶 = 體、和域任何可存雜位資訊的設備。應注意的是,=處己= =64—和/或76籍由狀態機、類比電路、數位電路、和/或邏 耳電路賞現其_或複數功能時,存儲有相應操作指令的記 =路含、類_、_路, 工作時,無線收發㈣藉由主機介面62接收—組出站資 料㈣b_d _94。主機介面62將出站資料94傳送到數位 發送器處理模組76,由後者利用狀之無線通訊標準㈤如 臓8〇2.:Π、藍牙等)對所述出站資料94進行處理,並生成 出站基帶錢%。出站基帶錢96中包含有〇fdm巾貞,它可 以是-數位基帶信號(例如有—個Q IF)或者是—數位低正 k號,所述低IF的頻率範圍通常在1〇〇KHz至幾百萬間。 數位巧比轉換裔78將出站基帶信號%從數位域轉換到類 比域。濾波/增益模組80用於在將類比信號傳送給正混合上變 換模組82之g ’對辦貞比信號進行和/或調整該類比信號 的增益。IF混合上變換模、組82基於由本地振麵组%所提供 1261429 的發送器本地振盪信號(TxLO)83,將所述類比基帶或低正信 號轉換成RF錢。功树A器84再_财錢放大,以^, 成出站RF信號98,並送到發送器濾波器模組%進行遽波。' 天線86則將該出站rf信號98發送到目標設備,例如基站、 接入點和/或另一無線通訊設備。 热線收發器60還藉由天線86接收由基站、接入點或另一 無線通訊設備所發來之人站RF信號88。场%藉由發送/接 收轉換開關73將該入站rf信號88提供給接收器遽波器模組⑩ 71,所述接收器濾波器模組71對所述入站rf信號88進行帶 通濾波。接收器濾波器模組71將濾波後之即信號提供給低雜 訊放大器72,後者對信號88進行放大以生成一放大的入站处 信號。低雜訊放大器72再將放大後之入站RF信號提供給正 此合下變換模組70,後者基於由本地振盪模組%所提供之接 收器本地振盪信號(RxL〇)81,將所述放大後的入站rf信號轉 換成入站低IF ^號或基帶信號。正混合下變換模組將所述馨 入站低IF信號或基帶信號提供給濾波/增益模組68。然後由濾 波/增益模組68對入站低IF信號或基帶信號進行濾波和/或調 整其增ϋ,以生成一渡波後的入站信號。 類比數位轉換器66將濾波後的入站信號從類比域轉換到 數位域,以生成一入站基帶信號9〇,所述入站基帶信號9〇中 含有OFDM幀,它可以是數位基帶信號或數位低ip信號,所 13 1261429 述數位低IF的頻率範圍通常在ιοοκΗζ至幾百萬Hz間。數位 接收器處理模組64對入站基帶信號90進行解碼、解密、解映 射、和/或解調,以根據被無線收發器60所採用的特定益線通 汛標準恢復出一組入站資料(inbound data)92。主機介面62夢 由無線收發器介面54將所恢復出的入站資料92提供給主機設 備 18-32。- Usually 4 stations are used for mobile phone systems and similar systems, and pick-up points are used for nowhere in the home or building. Ignoring specific types of communication systems, each wireless communication device includes a built-in wireless transceiver and/or is connected to a wireless transceiver. It should be noted that - or multiple access points and their associated radio track equipment may be in the same building. The second figure shows a schematic block diagram of a wireless communication device including host device 18-32 and an associated wireless transceiver 6 for the mobile phone host, which is its fine-grained component. For a personal digital assistant host laptop host, and/or a personal computer host, the wireless transceiver (8) 9 1261429 can be either a built-in component or an external connection component. ^ / / can be seen in the figure, the host device 18_32 includes a processing module 5, L body 52 hot line transceiver interface 54, an input interface 58, and an output interface 56. The processing module 5 and the memory Μ execute corresponding instructions normally made by the host device. For example, for a mobile phone host device, the processing module % performs the communication function according to the specific mobile phone standard. The wireless transceiver interface S4 is used to implement data reception and transmission with the wireless transceiver 6. For data received from the wireless transceiver 60 (i.e., inbound data # inbounddata), the wireless transceiver interface M provides the data to the processing module 5 for further processing and/or transmission to the output interface %. The output interface provides connectivity to the output display system, such as displays, monitors, speakers, etc., so that the received data can be displayed. The wireless transceiver interface can also provide the processing module 50 to the wireless transceiver (4). The processing module % can use the input "face 58 to receive the Utbound data from the input device such as keyboard, keypad, microphone, etc." or generate the data by itself. For the information received by inputting the two sides 58 The processing module 5 can perform a corresponding host function on the data and/or transmit the data to the wireless transceiver 60 via the wireless transceiver interface 54. The wireless transceiver 60 includes a host interface 62 and digital receiver processing. Module 64, an analog-to-digital converter (anal〇g_t〇_di curry (3) claw coffee", he c) 66, a wave/gain module 68, an IF hybrid down conversion module 70, a receiver (Rx 10 1261429 Filter 7 - low noise amplifier (L〇wn〇iseamqing% ship) 72, - transmit / touch (Tx / Rx) switch 73, - local oscillator module %, memory is, a Digital developed processor processing module 76, a digital-to-analog converter (DAC) 78, a filter/gain module 8〇, an IF hybrid up-conversion module 82, and a power amplifier Fat % pA) 84, - Transmitter (Tx) filter module 8S, and antenna %. The antenna may be a single antenna shared by the transmission and reception paths under the control of the transmission/reception switch 73, or an antenna different for the transmission path and the Wei position. The implementation of the antenna will depend on the particular criteria to which the wireless communication device is adapted. The digital reception 1, the _ group 64, and the touch transmission _ processing·% are combined with the memory 75 in which the instruction is stored, and the digital receiver function and the digital developed pirate function are divided. Digital receiver functions include, but are not limited to, digital band to baseband conversion, demodulation, demapping, dec ding, and/or Decrypt (descmmbling). Digital transmitter functions include, but are not limited to, encryption (s_bling), encoding (enc〇ding), combined mapping (c〇nstdiaJn mapping) alpha-perimeter (m〇duiati〇n), and/or digital baseband to I? conversion. To implement the digital receiver and transmitter processing modules 64 and 76, a shared processing device, a separate device, or a processing device can be used. The processor, the micro-programmable gate device can be a microprocessor, a microcontroller, a digital signal brain, a central processing unit, a field programmable gate array 1261429 gold, a programmable logic device, a state machine, a logic Circuit ♦ 1=7 based on the order of the code to the number ^ for $ X "body 75 can be a single storage device or a plurality of memory. The memory of the memory from the reading only (four), random access record: memory, non-easy Loss of memory, static memory, dynamic memory = body, and any device that can store miscellaneous information. It should be noted that = = = = 64 - and / or 76 by state machine, analog circuit, digital circuit And/or the logic circuit, when the _ or the plural function is displayed, the corresponding operation instruction is stored, the class _, the _ path, and the wireless transceiver (4) is received by the host interface 62. (d) b_d _94. The host interface 62 transmits the outbound data 94 to the digital transmitter processing module 76, which uses the wireless communication standard (5) such as 臓8〇2.:Π, Bluetooth, etc.) to perform the outbound data 94. Processing and generating outbound baseband money%. Outbound baseband 96 includes a 〇fdm frame, which may be a -digit baseband signal (eg, having a Q IF) or a - digit low positive k number, the low IF frequency range typically ranging from 1 〇〇KHz to several million The digital/converter 78 converts the outbound baseband signal % from the digit field to the analog domain. The filter/gain module 80 is used to transmit the analog signal to the positive hybrid up-conversion module 82. The signal performs and/or adjusts the gain of the analog signal. The IF hybrid up-conversion mode, group 82 bases the analog baseband or low positive signal on a transmitter local oscillator signal (TxLO) 83 provided by the local oscillator group % 1261429. Converted into RF money. The function tree A 84 is then amplified by _ money, into the outbound RF signal 98, and sent to the transmitter filter module % for chopping. ' Antenna 86 will be the outbound rf signal 98 is sent to a target device, such as a base station, an access point, and/or another wireless communication device. The hotline transceiver 60 also receives, via the antenna 86, a person station sent by a base station, an access point, or another wireless communication device. RF signal 88. Field % is provided by the transmit/receive switch 73 to the inbound rf signal 88 a receiver chopper module 10 71, the receiver filter module 71 bandpass filtering the inbound rf signal 88. The receiver filter module 71 provides the filtered signal to the low impurity Amplifier 72, which amplifies signal 88 to generate an amplified inbound signal. Low noise amplifier 72 provides the amplified inbound RF signal to the down-conversion module 70, which is based on local oscillations. The receiver local oscillation signal (RxL〇) 81 provided by the module % converts the amplified inbound rf signal into an inbound low IF ^ number or baseband signal. The positive mixed down conversion module will The station low IF signal or baseband signal is provided to the filter/gain module 68. The inbound low IF signal or baseband signal is then filtered and/or adjusted by the filter/gain module 68 to generate an inbound signal after the wave. The analog-to-digital converter 66 converts the filtered inbound signal from the analog domain to the digital domain to generate an inbound baseband signal 9〇, which contains an OFDM frame, which may be a digital baseband signal or Digital low ip signal, 13 1261429 The frequency range of the low IF is usually between ιοοκΗζ and several million Hz. The digital receiver processing module 64 decodes, decrypts, demaps, and/or demodulates the inbound baseband signal 90 to recover a set of inbound data based on the particular benefit line standard adopted by the wireless transceiver 60. (inbound data) 92. The host interface 62 dreams the recovered inbound material 92 from the wireless transceiver interface 54 to the host devices 18-32.

本領域的普通技術人員可以理解的是,第三圖中所示的^ 線通訊設備可使用-或複數雜轉來實現。例如,主機設肩 可在-積體電路上實現,數位接收器處理模組64、數位^ 器處理模組76和記髓75可在—第二繼電路上實現,^ ^發器60的其餘部件(天線86除外)可在—第三積體電路」 實現。在另_例子中,麟收發器6()可在單個龍電^上, 現。在另一例子中,主機設備的處理模組%與數位接收糾 發送器處理模組64和76可以是在單個積體電路上實現的 共處理設備。另外’記鍾52和75可在物積體電路上科 ^或與主機設備的處賴組%、數位接收器和發送器處理相 、且64和76所在的公共處理餘铜—频電路上。 第四圖是兩個無線通訊設備間的無線通訊示意圖。從圖中 可二看出’第—無線通訊設備中有—發送器⑽,第二無 BfU又備中有一接收器1〇2。每一 1 述邮所嫩。4侧前面的指 14 1261429 從圖中可以看出,接收器100接收一組出站資料94,並將 其轉換成出站RIM§號98。包含有OFDM幀1〇4的rf信號98 從發送器1⑻傳送到接收器102。接收器1〇2將〇fdm幀1〇4 接收為入站RF信號88,並將它們轉換成一組入站資料%。 在OFDM巾貞104中包含一前置資料部分1〇6和一資料部分 108。所述刖置貧料部分1〇6中包括訓練資訊11〇和信號資訊 112。以802.11a應用或其他8〇211應用為例,訓練資訊11〇 中可包含-個短训練序列、複數防護間隔以及複數長訓練序φ 列。信號資訊部分112可以是與802· 1丨a或其他8〇2.丨丨規則一 致的一信號場,它提供與0FDM幀1〇4的長度、資料率等有 關的資訊。另外,信號資訊112巾可能含有一指*,以指出在 OFDM巾貞的貧料部分的複數副載波中哪些會作為控制信號或 通道。 資料邛刀108中包括複數防護間隔咖如如㈣也,GJ)及複 數資料欄114-118。每-資料攔中含有的資料位於〇FDM巾貞的籲 64個副載波内。如第四圖所示,在一個實施例中,資料攔116 中含有64個以RF信號98的处頻率為中心的副載波。對於 一 20MHz的通道,副載波間之間距為312·5ΚΗζ,並由第四圖 中之各個箭頭來代表。 從圖中逛可以看出,某些副載波未被使用。具體是副載波 0、副載波27至32、副載波_27至_31未被使用。本例中只使 15 ^61429 用了兩個控制信號,並位於副載波21和副載波-21。本實施例 中’ 一载波7和-7被用來攜帶資料,而在8〇2.iia的規則中它 們被用作導引通道。這樣一來,就可藉由用較多副載波來傳送 貝料、亚用較少副載波來傳送控制信號,使得一特定的資料欄 可表示更多資料。 第五圖示出了 OFDM幀中的副載波的另一配置方案。其 中’控制信號位於副載波7與-7位置,而副載波21和-21被用 於攜帶資料。應注意的是,在OFDM幀的資料欄與資料欄之 間,副載波的配置可按某些預定的模式,一區一區地從圖4所 不狀態變成第五圖所示狀態,或者是固定為第四圖或第五圖所 示的配置狀態。 第六圖示出了 OFDM幀中的副載波的另一配置方案。其 中,副载波0、27至32、以及_27至_32未被使用。副載波! 至 6、8 至 20、22 至 26、-1 至-6、-8 至-20、以及-22 至-26 被 用於攜帶資料◦本實施例中,副載波+/_7和副載波+/_21可被 用來攜帶資料或控制信號。同樣,副載波+/_7和副載波+/_21 中的〇至4個可被用來攜帶導引通道。 弟七圖示出了按本發明的一實施例運行的一物理層的特 性。本發明中,該物理層駐留於一 10MHz的通道,並以OFDM 為基礎。它與802.11⑻的物理層有很多相似點也有一些不同 點。第3圖將本發明的IOMHzOFDM物理層與IEEE802.11⑻ 16 1261429 的物理層進行了比較◦本發明的10 MHz OFDM物理層可運行 於多種頻帶,包括4.9-5.0GHz頻帶和5.03-5.091GHZ頻帶。該 物理層運行時,具有的最大範圍、25〇mw的最大許可發 射功率、250〇mwEIRP、以及i〇〇mw的最大非許可發射功率。 該物理層的路徑損耗(障礙通道)模型可由公式 + 來描述,其中,在典型值5〇〇m、 116dB+/_9.3 dB 時,^卜 二必滅w。該 物理層的延遲張開的平均值為275.9ns,並有一個352ns的標 準偏移。因該物理層的延遲張開大於IEEE8〇211⑻物理層的 延遲張開(5〇ns延遲張開通道),所以需要一防護間隔(迴圈 首碼)。而且’因該物理層的路徑損耗大於IEEE8〇2 n⑻物理 層的路徑損耗,支撐該物理層的接收器應具有較高的靈敏度。 與IEEE802_ 11⑻物理層對比,當接收器的帶寬被一個因數 2所減小時,該物理層的SNR會提高3 dB。防護間隔(迴圈首 碼)的長度會翻倍至1.6ms。符號長度被加倍以維持與 IEEE802.il⑻相同的防護間隔開銷。正如IEEE8〇2 n⑻物理 層一樣,在該物理層也可使用一個64點快速傅裏葉變換邙ast Fourier Transform,FFT ) 第八圖疋根據本發明實施例,描述物理層通道的控制方 式。因為物理層的帶寬減小(相對於IEEE8〇211 (a)物理層 的帶寬而言)’中心通道,通道_丨和通道+1更接近於DC。在 1261429 DC處,許多接收器連接陷波渡波器。在支援移動終端之間的 正常頻率補償有效地將凹槽遠離Dc處。在靠近通道的間隔 處,頻率補償的作収加。錢大苛刻條件下,頻率 補償可以因陷波濾、波器而刪除通道_丨或通道+1的部分。 因此,根據本發明,内部的兩個資料副載波(通道和通 道被去除/不再用於調節頻率補償。利用鹏說 物理層在通道-1和+1上妒宁 θ 载的貧料移動到承載控制信號It will be understood by those skilled in the art that the wired communication device shown in the third figure can be implemented using - or complex miscellaneous turns. For example, the host shoulder can be implemented on the integrated circuit, and the digital receiver processing module 64, the digital processing module 76, and the recording core 75 can be implemented on the second relay circuit, and the rest of the transmitter 60 The components (except antenna 86) can be implemented in a - third integrated circuit. In another example, the Lin transceiver 6() can be used on a single dragon. In another example, the processing module % and digital receive encoder processing modules 64 and 76 of the host device can be co-processing devices implemented on a single integrated circuit. Alternatively, the 'clocks 52 and 75' may be on the complex circuit or on the common processing copper-frequency circuit where the host device's dependent group %, digital receiver and transmitter are processed, and 64 and 76 are located. The fourth picture is a schematic diagram of wireless communication between two wireless communication devices. It can be seen from the figure that the 'the first wireless communication device has a transmitter (10), and the second non-BfU has a receiver 1〇2. Every 1 post is tender. The front finger of the 4 side 14 1261429 As can be seen from the figure, the receiver 100 receives a set of outbound data 94 and converts it into an outbound RIM § 98. The rf signal 98 containing the OFDM frame 1〇4 is transmitted from the transmitter 1 (8) to the receiver 102. Receiver 1 接收 2 receives 〇fdm frames 1 〇 4 as inbound RF signals 88 and converts them into a set of inbound data %. A preamble portion 1〇6 and a data portion 108 are included in the OFDM frame 104. The insufficient portion 1〇6 includes training information 11〇 and signal information 112. Taking the 802.11a application or other 8〇211 applications as an example, the training information 11〇 may include a short training sequence, a complex guard interval, and a complex long training sequence φ column. The signal information portion 112 may be a signal field consistent with 802·1丨a or other 8〇2.丨丨 rules, which provides information related to the length, data rate, etc. of the 0FDM frame 1〇4. Alternatively, the signal information 112 may contain a finger* to indicate which of the plurality of subcarriers in the lean portion of the OFDM frame will act as a control signal or channel. The data file 108 includes a plurality of guard intervals such as (4) and GJ) and a plurality of data columns 114-118. The data contained in each data block is located in the 64 subcarriers of the FDM frame. As shown in the fourth figure, in one embodiment, the data block 116 contains 64 subcarriers centered at the frequency of the RF signal 98. For a 20 MHz channel, the distance between the subcarriers is 312·5 ΚΗζ and is represented by the arrows in the fourth figure. As can be seen from the figure, some subcarriers are not used. Specifically, subcarrier 0, subcarriers 27 to 32, and subcarriers _27 to _31 are not used. In this example, only 15 ^61429 are used for two control signals and are located in subcarrier 21 and subcarrier-21. In the present embodiment, a carrier 7 and -7 are used to carry data, and they are used as pilot channels in the rules of 8〇2.iia. In this way, the control signal can be transmitted by transmitting the feed material with more subcarriers and using less subcarriers, so that a specific data column can represent more data. The fifth figure shows another configuration scheme of subcarriers in an OFDM frame. The 'control signal is located at subcarriers 7 and -7, and subcarriers 21 and -21 are used to carry data. It should be noted that, between the data column and the data column of the OFDM frame, the configuration of the subcarriers may be changed from the state shown in FIG. 4 to the state shown in the fifth figure in a certain region or in a predetermined pattern, or Fixed to the configuration state shown in the fourth or fifth figure. The sixth figure shows another configuration scheme of subcarriers in an OFDM frame. Among them, subcarriers 0, 27 to 32, and _27 to _32 are not used. Subcarrier! To 6, 8 to 20, 22 to 26, -1 to -6, -8 to -20, and -22 to -26 are used to carry data. In this embodiment, subcarriers +/_7 and subcarriers +/ _21 can be used to carry data or control signals. Similarly, 〇 to 4 of subcarriers +/_7 and subcarriers +/_21 can be used to carry the pilot channel. The seventh diagram shows the characteristics of a physical layer operating in accordance with an embodiment of the present invention. In the present invention, the physical layer resides in a 10 MHz channel and is based on OFDM. It has many similarities and differences with the physical layer of 802.11(8). Figure 3 compares the 10 MHz OFDM physical layer of the present invention with the physical layer of IEEE 802.11(8) 16 1261429. The 10 MHz OFDM physical layer of the present invention can operate in a variety of frequency bands, including the 4.9-5.0 GHz band and the 5.03-5.091 GHz band. The physical layer operates with a maximum range, a maximum allowable transmit power of 25 〇 mw, a maximum unlicensed transmit power of 250 〇 mwEIRP, and i〇〇mw. The path loss (obstacle channel) model of the physical layer can be described by the formula +, where, at a typical value of 5 〇〇 m, 116 dB + / 9.3 dB, ^ 2 must be extinguished w. The physical layer has an average of 275.9 ns of delay spread and a standard offset of 352 ns. Since the delay spread of the physical layer is larger than the delay spread of the IEEE8〇211(8) physical layer (5〇ns delayed open channel), a guard interval (loop first code) is required. Moreover, since the path loss of the physical layer is larger than the path loss of the IEEE8〇2 n(8) physical layer, the receiver supporting the physical layer should have higher sensitivity. In contrast to the IEEE 802_11(8) physical layer, when the bandwidth of the receiver is reduced by a factor of 2, the SNR of the physical layer is increased by 3 dB. The guard interval (the first loop of the loop) is doubled to 1.6ms. The symbol length is doubled to maintain the same guard interval overhead as IEEE 802.il(8). As with the IEEE 8 〇 2 n (8) physical layer, a 64-point fast Fourier transform (FFT) can also be used in the physical layer. The eighth figure describes the control method of the physical layer channel according to an embodiment of the present invention. Since the bandwidth of the physical layer is reduced (relative to the IEEE 8 〇 211 (a) physical layer bandwidth) 'center channel, channel_丨 and channel +1 are closer to DC. At 1261429 DC, many receivers are connected to the notch ferrite. The normal frequency compensation between the supporting mobile terminals effectively moves the groove away from Dc. At the interval close to the channel, the frequency compensation is added. Under the harsh conditions of money, the frequency compensation can delete the channel _丨 or the channel +1 part due to the notch filter and the wave filter. Thus, in accordance with the present invention, the internal two data subcarriers (channels and channels are removed/no longer used to adjust the frequency compensation. Using Peng said that the physical layer moves on channel-1 and +1. Bearer control signal

通運-12,-7,7和21的副截減卜。收 域波上修正後,物理層包括-個 7·28ΚΗζ+接收器凹槽帶寬的死區帶寬。 運用中,物理層根據㈣號索_ (從零信號符 唬開始)交替使用通道: k=3 ; {_7,7} k二2 ; {-21,21} k=4 ; {-7,21} 、丄 k-5 ; {7 , 21}The deputy interception of -12, -7, 7 and 21 is reduced. After the correction on the receive wave, the physical layer includes a deadband bandwidth of 7.28 ΚΗζ + receiver groove bandwidth. In practice, the physical layer alternately uses the channel according to (4) _ (starting from the zero signal symbol :): k=3; {_7,7} k2 2; {-21,21} k=4 ; {-7,21 }, 丄k-5; {7, 21}

讀方案鱗了㈣錢的 =的時間週期因為因數2而增長,與二 刀·3·3同樣方式產生短和長訓嘹# 4.5,6, 讀。支援麼等紹 18,25,27Mbps。 這些加長的符號 (相對於 IEEE802.li 下: 日守間和空氣傳播時間需要MAC時間變化 (a)物理層而言)。這些時間變化概述如 18 1261429 aCCATime從4增加到8微秒 aAirPropagatkmTime從遠遠小於1微秒增加到2微秒 aSlotTIME二 14 微秒 aSIFTIME=16微秒(無變化) PIFS=30 微秒(SIF+SLOT)Read the plan scale (4) The time period of the money = increase due to the factor 2, and the short way and the second method are produced in the same way as the second knife · 3. 3 # 4.5, 6, read. Support, etc. 18, 25, 27Mbps. These extended symbols (relative to IEEE802.li: daytime and airtime require MAC time changes (a) physical layer). These time changes are summarized as 18 1261429 aCCATime increased from 4 to 8 microseconds aAirPropagatkmTime increased from far less than 1 microsecond to 2 microseconds aSlotTIME two 14 microseconds aSIFTIME=16 microseconds (no change) PIFS=30 microseconds (SIF+ SLOT)

DIFS=44 微秒(SIF+2*SLCXQ 第九圖是一個用於窄通道的0FDM幀的副载波分配圖。 窄通道可以有一個小於20MHz的帶寬,在一個實施例中可以⑩ 是10MHz。這種實例中,參考附圖8,副載波〇和+1和_丨不 使用。另外,副載波27到32和-27到32也不使用。在該實例 中,為替代副載波-1和+1的損失通道,使用副載波+7和_7或 者+21和-21用於傳輸資料,而使用另一對副載波傳送控制信 號°在本貫例中’副載波+1和q用於傳輸空資料。 苐十圖是多入多出無線(multiple-input-multiple-output, ΜΙΜΟ)的無線通訊結構示意圖。在本實例中,無線通訊設備® 的發射器120接收出站的資料流124,並將其轉換成複數RF 信號,每一個RF信號包括有複數ofdm幀126。接收器122 接收所述複數RF信號,並將其轉換成入站資料流128。發射 器120和接收器122將進一步結合第十一圖的無線通訊設備說 明。 在附圖中,每一個OTDM幀126可以是第六圖所示的副 19 1261429 載波分配方式。而且,從通路到通路,副載波分配方式可以不、 同。例如,如果有四個無線通訊通路存在於發射器12〇和接收 器122之間,四個中的每—個通路可以有不同的副載波分配方-式。例如’-個無線通路可以沒有控制信號通道,另一個可以 有四個控制信號通道,而剩下的兩個其中之一可以是+7和7、 另-個+21和-2卜本領域技術人討知,因為在發射器 和接收器122之間的多通訊通路,從—個通路發出的控制信號 通道可以被用於同步和/或指向另—通路,或者他們可以用於° _ 關聯同步和/或指向多通路。 第十-圖是包括主機設備⑽和關聯無線收發器16〇的 無線通訊贿的結構示意圖。在行動電話中,無線收發器16〇 是内建組件。對於個人數位助理主機、膝上型電腦主機,和/ 或個人電腦主機,無線收發器16〇可以是内建或外置結合組 件。 如圖所示,主機設備18_32包括處理模組5〇、記憶體Μ、· 無線收發器介面54、輸入介面58和輸出介面%。處理模組 50和記憶體52執行㈣通常麵機設備上完成的通訊指令。 例如,行動電話主機,處理模組5〇根據具體行動電話標準完 成通訊通訊功能。 無線收剌介面54實現資料從無線收發器的接收和 發送。無線收發器介面54將這些從無線收發器接收的資 20 1261429 2 inb_ddata)送到處理模㈣餘進-步處理和/或發送 =出怖6。輸出介面56連接顯示器、監視器、揚聲器等 別出頒㈣備以顯讀收的資料。無線收發器介面Μ也為 处理模組洲無線收發器⑽提供㈣。處賴㈣可以接 收糟由輸人介面58從例如鍵盤、鍵區、麥克風等的輸入設備 的貢料或者本身產㈣料。對於藉由輸人介面58接收的資 料,處理模組50可以提供資料方面的相應的主機功能和/或將 貧料藉由無線收發ϋ介面54傳送到無線收發器16〇。 無線收發1廳包括主機介面162、—個基帶處理模組 164、記憶體廳、複數無線頻率⑽)發射器购π、發射 /接收(T/R)模組m、複數天線182_186,複數奵接收器 176-180以及本地振邮〇)模组·。與存儲於記憶體脱的 操作指令相結合帶處理難⑹,分職行數位接收器功 能和數位發射器魏。數位接收器功能包括但不限於:數字中 頻到基帶的轉換、解調、組合解映射、解碼、去交又 (de-interleaving)、快速傅裏葉變換、週期前置去除(c⑽^二如 re励val )、空間域和時間域的解碼、和/或歸一化 (descmmbling)。數位發送器功能包括但不限於:不規則化 (scrambling)、編碼、交又、組合映射、調製、反快速傅裏葉變 換、週期前置、空間域和時間域的編碼,和/或數位基帶向= 位中頻的轉化。基帶處理模組164可以由—個或複數處理設備 21 1261429 ^現。這滅料财叹财理_、财 理器、微型電腦、中央處理單元 數位u虎處 r # 、、扁耘閘陣列、可編程邏輯 = 邏輯電路、類比電路、數位電路,和/咬任音 可基於_指令處理錢(_以及/或者數位 ^ 憶體166可以是單記憶體或多記憶體。這種記憶體可叹唯: 咖,隨機存取記憶體、易失記憶體、非易失記憶體、靜能 i己憶體、動態記憶體、快閃記憶體,和/或任意具有存儲數I ^功能的設備。注意當處理模組64藉由靜態機、類比電路、 紐魏、和/或·電路執行—個錢數魏時,存儲通訊 操作指令的記憶體被嵌人包括靜態機、_電路、數位電路、 以及/或者邏輯電路的電路中。 在運行中,無線收發器160藉由主機介面162從主機接收 出站資料流m。基帶處理模組164接收出站資料流188,並 基於模式選擇信號2〇2產生一個或複數出站符號流⑽,每一 個出站符號流包括0FDM幢。模式選擇信號逝表示的具體φ 模式在模式選擇表中具體說明,詳見本文末尾。例如模式選擇 L號202 ’可蒼照表1所示的頻帶為2 4GHz、通道帶寬%或 22MHz以及最大位元率54百萬位元每秒。在通常的類型中, 桓式選擇信號還表明一具體頻率範圍從!百萬位元每秒到54 百萬位元每秒。另外,模式選擇信號表明調製的具體類型,包 括但不限於’巴克碼調製、BPSK、QPSK、CCK、16QAM、 22 1261429 和/或64QAM。如表卜還給出了編碼率··每個〇FDM副戴頻 — 上的數據bit數(NBPSC)、每個OFDM符號中的已編碼bit 一 的個數(NCBPS )、每個OFDM符號中將包含的資料bit的位 數(NDBPS)、分貝中的錯誤向量量級(EVM)、表示要求獲 得目標資料包錯誤率的最大接收容量的敏感度(例如,在 IEEE802.11a中為10%)、相鄰通道拒斥(ACR),以及交替相 鄰通道拒斥(AACR)。 模式選擇信號202也表明具體通道化的方式,以用於通訊鲁 模式,用於表1中的資訊的該通訊模式在表2中有所說明。如 表2所示,表2中包括通道數以及通訊中心頻率。模式選擇信 號C了以表月表3所示的用於表1的功率譜密度(p〇wer density,PSD)遮罩碼值。模式選擇信號2〇2可以表示表4中的 具有5GHz頻帶、20MHz通道帶寬以及最大位元_ %百萬位 元每心的率值。如果具體模式選擇已定,則表$表明其載波的 遙擇。避可以選擇,如圖6所示,模式選擇信號1〇2可以表示籲 2川出頻帶、20讀讀道帶寬以及最大位元率192百萬位元 每秒的率值。在圖6中大量的天線可以用於獲得更高帶寬。在 本例中’板式選擇還表明所用的天線的數量。表7說明用於表 6的載波_擇。表8朗在24GHz頻帶、應他通道帶寬 以及取大位70率192百萬位元每秒的情況下的另一選擇模 弋對應的表8包括使用2_4天線以及在表中表示的空間時間 23 1261429 編碼率表化範圍從12百萬位元每秒到m百萬位元每秒的各 ,位元率。表9表示用於表8的載波的選擇。模式選擇信號加— 、可乂表不表10中所不的具體操作模式,相應於出頻帶, 其具有4〇MHz頻帶、4〇廳通道帶寬以及最大位元率百 萬位元每秒。如表1G所示,_ M個天線以及對應通訊空 間時間編碼率,位元率變化範圍可以從135百萬位元每秒到 傷百萬位元每秒。表⑴還表明具體編碼配置編碼率以及 SC值表11給出了用於表10的功率错密度遮罩碼值,· 表12給出表10的載波的選擇。 基於模式選擇信號2〇2的基帶處理模組164,從出站資料 I88 ’產生-個或複數出站符號流w,該出站符號流刚包 括^文中所迷的〇FDM幢。例如,如果模式選擇信號搬表 單I射天、、泉正用於已選擇的具體模式,則基帶處理模組164 將產生單出站符號流。可選擇的,如果模式選擇信號表示 或者4天線’基帶處理模組脱將從出站資料⑽產生相φ 應於天線數的2、3或4出站符號流190。 依據由基帶處理模組164產生的出站符號流⑽的數量, 相應數里的RF發射器脉172將可以用來將出站符號流⑽ 観成出站RF信號192。發射/接收模組174接收出站職 號192 ’亚為出站你信號提供通訊天線⑻损。 田热線收發1116G在較模級t時,魏/純模組174 24 1261429 藉由天線182-186接收一個或複數入站RF信號◦發射/接收模 組174為一個或複數RF接收器176-180提供入站rf信號 194。RF接收器176-180將輸入RF信號194轉換成相應包括 文中所述的OFDM幀的入站信號流196的通訊資料。入站信 號流196的數量相應於資料接收的具體模式(該模式可以是表 M2表示的任意一種模式)。基帶處理模組ι64接收入站符號 流190並將其轉換成入站資料流198,該資料流藉由主機介面 162提供給主機18-32。 正如本領域技術人員所知,第十一圖中之無線通訊設備可 以利用一個或複數積體電路實現。例如,主機設備可以在一個 積體電路上實現,基帶處理模組164和記憶體166可以在第二 積體電路實現,剩餘除了天線182_186的無線收發器16〇的組 件可以在第二積體電路上實現。在另—實施例中,無線收發器 副可以在單積體電路上實現。另一例子,主機設備的處理模 組5〇和基帶處理模組164可以是在單積體電路上共用處理設 備。而且’記憶體52和記憶體166可以在單積體電路上和/或 處理模組5〇和基帶處理模組164的通用處理模組同樣的積體 電路上實現。 ,,如本領域一般技術人員所知,文中所使用的,術語“充分 地或“近似地,,,提供一種工業允許的可相容的通訊術語以 或者術…之間的相關性。這種工業允許的相容範圍從低於 1261429 i%到2G% ’以及相應的但秘於,元件值、積體電路處理變 化、溫度變化、升高和降低次數,以及/或者熱噪音。這種術 相舰從較小的百分比差異到大數量極的差異。本領域 -般祕人員還可知,增物,術語“可操作的連 接,包括藉由其他元件、元素、電路、或者模組直接連接和 間接連接,然而,嚷接、交互元件、元素、電路或模組並 =修改^虎貧訊但需要調節電流等級、電虔等級以及/或者能 量等級。如本領域-般技術人員所知,可推知的連接(也就是 -個元件藉由介面連接到另一元件)包括在元件之間直接以及 間接連接明樣的方式也就是“可猶連接,,。本領域一般技 術人員可知’文中所使用的,術語“有效比較”,表示兩個或 更多兀件、術語、信號料的比較,提供—個可預知的聯繫。 例如,可預知聯繫是信號丨比信號2具有更大數量級,也就是, 田彳口 5虎1的數里級比信號2的數量級大時或者信號2的數量級 比信號1的小的情況下,可以得到有效比較。 上述a寸論公開了各種用於產生和接收〇FDM幀的方法和 没備。本領域一般技術人員可知,在不超出權利要求範圍的情 況下由本發明所教授方法可得到其他實施例。 模式選擇表:DIFS = 44 microseconds (SIF + 2 * SLCXQ Figure 9 is a subcarrier allocation diagram for a 0FDM frame for a narrow channel. A narrow channel can have a bandwidth of less than 20 MHz, and in one embodiment 10 can be 10 MHz. In the example, subcarriers 〇 and +1 and _丨 are not used with reference to Fig. 8. In addition, subcarriers 27 to 32 and -27 to 32 are also not used. In this example, subcarriers -1 and + are replaced. 1 loss channel, using subcarriers +7 and _7 or +21 and -21 for transmitting data, and using another pair of subcarriers for transmitting control signals. In this example, 'subcarriers +1 and q are used for transmission. The data is a schematic diagram of a wireless communication structure of multiple-input-multiple-output (MIMO). In this example, the transmitter 120 of the wireless communication device® receives the data stream 124 of the outbound station. And converting it into a complex RF signal, each RF signal comprising a complex ofdm frame 126. Receiver 122 receives the complex RF signal and converts it into an inbound data stream 128. Transmitter 120 and receiver 122 will further In conjunction with the description of the wireless communication device of Figure 11, in the drawings, each The OTDM frame 126 may be the secondary 19 1261429 carrier allocation mode shown in the sixth figure. Moreover, the subcarrier allocation manner may be different from the path to the path. For example, if there are four wireless communication paths existing in the transmitter 12 and Between the receivers 122, each of the four paths may have different subcarrier allocation formulas. For example, '-one wireless path may have no control signal channel, and the other may have four control signal channels, and the rest One of the two may be +7 and 7, another -21 and -2, as will be appreciated by those skilled in the art, since multiple communication paths between the transmitter and receiver 122 are issued from one path. Control signal channels can be used to synchronize and/or point to another path, or they can be used for _ associative synchronization and/or pointing to multiple paths. Tenth-figure is wireless including host device (10) and associated wireless transceiver 16〇 A schematic diagram of the structure of a communication bribe. In a mobile phone, the wireless transceiver 16 is a built-in component. For a personal digital assistant host, a laptop host, and/or a personal computer host, the wireless transceiver 16 can Built-in or external combination components. As shown, the host device 18_32 includes a processing module 5, a memory port, a wireless transceiver interface 54, an input interface 58 and an output interface %. The processing module 50 and the memory 52 Execute (4) communication instructions completed on the general-purpose device. For example, the mobile phone host, the processing module 5 完成 completes the communication communication function according to the specific mobile phone standard. The wireless receiving interface 54 realizes the receiving and transmitting of data from the wireless transceiver. The transceiver interface 54 sends these 20 1261429 2 inb_ddata) received from the wireless transceiver to the processing module (4) for the rest-step processing and/or the transmission = spoofing 6. The output interface 56 is connected to the display, the monitor, the speaker, etc. (4) for reading and receiving data. The wireless transceiver interface is also provided for processing the module's wireless transceiver (10) (4). The reliance (4) can receive the tribute from the input device of the input interface 58 such as a keyboard, a keypad, a microphone, or the like (4). For the information received by the input interface 58, the processing module 50 can provide the corresponding host functions in terms of data and/or transmit the lean material to the wireless transceiver 16 via the wireless transceiver interface 54. The wireless transceiver 1 hall includes a host interface 162, a baseband processing module 164, a memory hall, a complex wireless frequency (10), a transmitter purchase π, a transmit/receive (T/R) module m, a complex antenna 182_186, and a plurality of antennas. 176-180 and local Zhenmail 〇) module. It is difficult to deal with the operation instructions stored in the memory (6), and the digital receiver function and the digital transmitter are separated. Digital receiver functions include, but are not limited to, digital intermediate frequency to baseband conversion, demodulation, combined demapping, decoding, de-interleaving, fast Fourier transform, and periodic pre-removal (c(10)^2 Re val ), spatial domain and time domain decoding, and/or normalization (descmmbling). Digital transmitter functions include, but are not limited to, scrambling, encoding, crossover, combined mapping, modulation, inverse fast Fourier transform, periodic preamble, spatial and temporal encoding, and/or digital baseband Conversion to = IF. The baseband processing module 164 can be implemented by one or a plurality of processing devices 21 1261429. This destroys the financial sin _, financial equipment, micro-computer, central processing unit digital u tiger r #,, 耘 耘 gate array, programmable logic = logic circuit, analog circuit, digital circuit, and / bite The money can be processed based on the _ instruction (_ and / or digital ^ 忆 166 can be a single memory or multiple memory. This memory can only sigh: coffee, random access memory, volatile memory, non-volatile Memory, static energy, dynamic memory, flash memory, and/or any device with a memory number I ^ function. Note that when processing module 64 is used by static machine, analog circuit, Newwei, and / or · circuit execution - a number of money, the memory of the storage communication operation instructions are embedded in the circuit including static machine, _ circuit, digital circuit, and / or logic circuit. In operation, the wireless transceiver 160 borrows The outbound data stream m is received by the host interface 162 from the host. The baseband processing module 164 receives the outbound data stream 188 and generates one or a plurality of outbound symbol streams (10) based on the mode selection signal 2〇2, each of the outbound symbol streams including 0FDM building. Mode selection signal The specific φ mode indicated by the elapsed is specified in the mode selection table. For details, see the end of this article. For example, the mode selection L No. 202 'can be seen as shown in Table 1 is 2 4 GHz, channel bandwidth % or 22 MHz, and maximum bit rate 54 Millions of bits per second. In the usual type, the 选择 selection signal also indicates a specific frequency range from ! megabits per second to 54 megabits per second. In addition, the mode selection signal indicates the specific type of modulation. , including but not limited to 'Buck code modulation, BPSK, QPSK, CCK, 16QAM, 22 1261429 and / or 64QAM. As shown in the table, the coding rate · · each 〇 FDM sub-band frequency - the number of data bits ( NBPSC), the number of coded bit ones (NCBPS) in each OFDM symbol, the number of bits of data bits (NDBPS) to be included in each OFDM symbol, the error vector magnitude (EVM) in decibels, indicating requirements The sensitivity of the maximum reception capacity of the target packet error rate (for example, 10% in IEEE802.11a), adjacent channel rejection (ACR), and alternate adjacent channel rejection (AACR) are obtained. Mode selection signal 202 Also shows the specific channelization method, In the communication mode, the communication mode used for the information in Table 1 is described in Table 2. As shown in Table 2, the number of channels and the communication center frequency are included in Table 2. The mode selection signal C is in the form of a table. The power spectral density (PSD) mask code value shown in Table 3. The mode selection signal 2 〇 2 can represent the 5 GHz band, the 20 MHz channel bandwidth, and the maximum bit _ % in Table 4. The rate value of each megabyte per heart. If the specific mode selection has been determined, the table $ indicates the remote selection of its carrier. Avoiding the selection, as shown in Figure 6, the mode selection signal 1〇2 can represent the 2 out of the band. 20 read channel bandwidth and a maximum bit rate of 192 megabits per second. A large number of antennas can be used to achieve higher bandwidth in Figure 6. In this example, the 'plate selection' also indicates the number of antennas used. Table 7 illustrates the carrier_selection used in Table 6. Table 8 shows a table 8 corresponding to another selection mode in the case of the 24 GHz band, the channel bandwidth, and the large bit rate of 192 megabits per second, including the use of 2_4 antennas and the space time represented in the table. 1261429 The coding rate is expressed in terms of bit rate from 12 megabits per second to m megabits per second. Table 9 shows the selection of carriers for Table 8. The mode selection signal plus- can be used to indicate the specific operation mode not shown in Table 10. Corresponding to the outgoing frequency band, it has a 4 〇 MHz band, a 4 〇 channel bandwidth, and a maximum bit rate of 1 million bits per second. As shown in Table 1G, _ M antennas and the corresponding communication space time coding rate, the bit rate can vary from 135 megabits per second to megabits per second. Table (1) also shows the specific coding configuration coding rate and SC value. Table 11 gives the power error density mask code values for Table 10, and Table 12 gives the selection of the carrier of Table 10. The baseband processing module 164, based on the mode selection signal 2〇2, generates one or a plurality of outbound symbol streams w from the outbound material I88', which just includes the 〇FDM block in the text. For example, if the mode selection signal is transmitted to the specific mode that has been selected, the baseband processing module 164 will generate a single outbound symbol stream. Alternatively, if the mode selection signal is indicated or the 4 antenna 'baseband processing module is removed from the outbound data (10), a 2, 3 or 4 outbound symbol stream 190 corresponding to the number of antennas is generated. Depending on the number of outbound symbol streams (10) generated by the baseband processing module 164, the corresponding number of RF transmitter pulses 172 will be used to convert the outbound symbol stream (10) into an outbound RF signal 192. The transmit/receive module 174 receives the outbound station number 192' for the outbound station to provide the communication antenna (8) loss. The field hotline transceiver 1116G is at the mode level t, the Wei/Pure module 174 24 1261429 receives one or more inbound RF signals via the antennas 182-186, and the transmit/receive module 174 is one or a plurality of RF receivers 176- 180 provides an inbound rf signal 194. The RF receivers 176-180 convert the input RF signal 194 into communication material corresponding to the inbound signal stream 196 including the OFDM frame described herein. The number of inbound signal streams 196 corresponds to the particular mode of data reception (this mode can be any of the modes represented by table M2). The baseband processing module ι64 receives the inbound symbol stream 190 and converts it into an inbound data stream 198 that is provided to the host 18-32 by the host interface 162. As is known to those skilled in the art, the wireless communication device of Figure 11 can be implemented using one or a plurality of integrated circuits. For example, the host device can be implemented on an integrated circuit, the baseband processing module 164 and the memory 166 can be implemented in the second integrated circuit, and the remaining components of the wireless transceiver 16A other than the antenna 182_186 can be in the second integrated circuit. Implemented on. In another embodiment, the wireless transceiver pair can be implemented on a single integrated circuit. As another example, the processing module 5 〇 and the baseband processing module 164 of the host device may be shared processing devices on a single integrated circuit. Further, the 'memory 52 and the memory 166 can be implemented on the integrated circuit of the single integrated circuit and/or the processing module 5 and the general processing module of the baseband processing module 164. As is known to those of ordinary skill in the art, as used herein, the term "sufficiently or "approximately" provides a correlation between industrially compatible compatible communication terms or operations. This industry allows compatibility ranges from less than 1261429 i% to 2G%' and corresponding but secret, component values, integrated circuit processing variations, temperature variations, rise and fall times, and/or thermal noise. This kind of phase ship varies from a small percentage difference to a large number of poles. It will also be appreciated by those skilled in the art that the term "operable connection" includes direct connection and indirect connection by other elements, elements, circuits, or modules, however, splicing, interacting elements, elements, circuits or The module does not modify the current level, the power level, and/or the energy level. As is known to those skilled in the art, the inferential connection (ie, the component is connected to the other by the interface) A component) includes a direct and indirect connection between components, that is, "can be connected." One of ordinary skill in the art will recognize that the term "effective comparison" as used herein refers to a comparison of two or more components, terms, and signal materials, providing a predictable connection. For example, it can be foreseen that the signal is greater than the signal 2 by a greater order of magnitude, that is, when the number of miles of the field 1 is greater than the magnitude of the signal 2 or when the magnitude of the signal 2 is smaller than the signal 1 A valid comparison can be obtained. The above-mentioned a-inch theory discloses various methods and preparations for generating and receiving 〇FDM frames. Other embodiments may be derived from the methods taught by the present invention without departing from the scope of the appended claims. Mode selection table:

位 元 率 調製 編碼 率 NBPSC NCBPS NDBPS EVM aPL 敏 度 ACR AACR 26 1261429 1 Barker BPSK 2 Barker QPSK 5.5 CCK 6 BPSK 0.5 1 48 24 -5 -82 16 32 9 BPSK 0.75 1 48 36 -8 -81 15 31 11 CCK 12 QPSK 0.5 2 96 48 -10 -79 13 29 18 QPSK 0.75 2 96 72 -13 -77 11 27 24 16-QAM 0.5 4 192 96 -16 -74 8 24 36 16-QAM 0.75 4 192 144 -19 -70 4 20 48 64-QAM 0.666 6 288 192 -22 -66 0 16 54 64-QAM 0.75 6 288 216 -25 -65 -1 15 表2 :表1的載波的選擇 通道 頻率(MHz) 1 2412 2 2417 3 2422 4 2427 5 2432 6 2437 7 2442 8 2447 9 2452 10 2457 11 2462 12 2467 表3 :表1的功率譜密度(PSD)遮罩碼 功率譜密度遮罩碼頻率偏移 ldBr -9MHz〜9 MHz 0 +/-11 MHz 20 +/-20 MHz -28 +/-30 MHz及更大 -50 表4 : 5GHz,20MHz通道帶寬,54Mbps最大位元率Bit rate modulation coding rate NBPSC NCBPS NDBPS EVM aPL sensitivity ACR AACR 26 1261429 1 Barker BPSK 2 Barker QPSK 5.5 CCK 6 BPSK 0.5 1 48 24 -5 -82 16 32 9 BPSK 0.75 1 48 36 -8 -81 15 31 11 CCK 12 QPSK 0.5 2 96 48 -10 -79 13 29 18 QPSK 0.75 2 96 72 -13 -77 11 27 24 16-QAM 0.5 4 192 96 -16 -74 8 24 36 16-QAM 0.75 4 192 144 -19 - 70 4 20 48 64-QAM 0.666 6 288 192 -22 -66 0 16 54 64-QAM 0.75 6 288 216 -25 -65 -1 15 Table 2: Carrier channel selection channel frequency (MHz) 1 2412 2 2417 3 2422 4 2427 5 2432 6 2437 7 2442 8 2447 9 2452 10 2457 11 2462 12 2467 Table 3: Power Spectral Density (PSD) mask code for Table 1 Power Spectral Density Mask Code Frequency Offset ldBr -9MHz~9 MHz 0 +/-11 MHz 20 +/-20 MHz -28 +/-30 MHz and greater -50 Table 4: 5 GHz, 20 MHz channel bandwidth, 54 Mbps maximum bit rate

ΊίΊ^^"""I NBPSC I NCBPS I NDBPS I EVM I 靈 I ACR I AACR 27 1261429 元 率 碼 率 敏 度 6 BPSK 0.5 1 48 24 -5 -82 16 32 9 BPSK 0.75 1 48 36 -8 -81 15 31 12 QPSK 0.5 2 96 48 -10 -79 13 29 18 QPSK 0.75 2 96 72 -13 -77 11 27 24 16-QAM 0.5 4 192 96 -16 -74 8 24 36 16-QAM 0.75 4 192 144 -19 -70 4 20 48 64-QAM 0.666 6 288 192 -22 -66 0 16 54 64-QAM 0.75 6 288 216 25 -65 -1 15 表5 :表4的載波的選擇ΊίΊ^^"""I NBPSC I NCBPS I NDBPS I EVM I Spirit I ACR I AACR 27 1261429 Rate Rate Sensitivity 6 BPSK 0.5 1 48 24 -5 -82 16 32 9 BPSK 0.75 1 48 36 - 8 -81 15 31 12 QPSK 0.5 2 96 48 -10 -79 13 29 18 QPSK 0.75 2 96 72 -13 -77 11 27 24 16-QAM 0.5 4 192 96 -16 -74 8 24 36 16-QAM 0.75 4 192 144 -19 -70 4 20 48 64-QAM 0.666 6 288 192 -22 -66 0 16 54 64-QAM 0.75 6 288 216 25 -65 -1 15 Table 5: Selection of carrier for Table 4

通道 頻率(MHz) 國家 通道 頻率(MHz) 國家 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA/Europe 34 5170 Japan 40 5200 USA/Europe 38 5190 Japan 44 5220 USA/Europe 42 5210 Japan 48 5240 USA/Europe 46 5230 Japan 52 5260 USA/Europe 56 5280 USA/Europe 60 5300 USA/Europe 64 5320 USA/Europe 100 5500 USA/Europe 104 5520 USA/Europe 108 5540 USA/Europe 112 5560 USA/Europe 116 5580 USA/Europe 120 5600 USA/Europe 124 5620 USA/Europe 128 5640 USA/Europe 132 5660 USA/Europe 136 5680 USA/Europe 140 5700 USA/Europe 149 5745 USA 153 5765 USAChannel frequency (MHz) National channel frequency (MHz) Country 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA/Europe 34 5170 Japan 40 5200 USA/Europe 38 5190 Japan 44 5220 USA/Europe 42 5210 Japan 48 5240 USA/Europe 46 5230 Japan 52 5260 USA/Europe 56 5280 USA/Europe 60 5300 USA/Europe 64 5320 USA/Europe 100 5500 USA/Europe 104 5520 USA/Europe 108 5540 USA/Europe 112 5560 USA/Europe 116 5580 USA/Europe 120 5600 USA/Europe 124 5620 USA/Europe 128 5640 USA/Europe 132 5660 USA/Europe 136 5680 USA/Europe 140 5700 USA/Europe 149 5745 USA 153 5765 USA

28 126142928 1261429

157 5785 USA 161 5805 USA 165 5825 USA 表6 : 2.4GHz,20MHz通道帶寬,192Mbps最大位元率 位元率 TX 天線 ST 編碼率 調製 編碼率 NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64 - QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16-QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216 表7 :表6的載波的選擇 通道 頻率(MHz) 1 2412 2 2417 3 2422 4 2427 5 2432 6 2437 7 2442 8 2447 9 2452 10 2457 11 2462 12 2467 29 1261429 表8 : 5GHz,20MHz通道帶寬,192Mbps最大位元率 位元率 TX 天線 ST 編碼率 調製 編碼率 NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64-QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16-QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216157 5785 USA 161 5805 USA 165 5825 USA Table 6: 2.4 GHz, 20 MHz channel bandwidth, 192 Mbps maximum bit rate bit rate TX Antenna ST code rate modulation coding rate NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64 - QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16 -QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216 Table 7: Carrier channel selection channel frequency (MHz) 1 2412 2 2417 3 2422 4 2427 5 2432 6 2437 7 2442 8 2447 9 2452 10 2457 11 2462 12 2467 29 1261429 Table 8: 5 GHz, 20 MHz channel bandwidth, 192 Mbps maximum bit rate bit rate TX antenna ST code rate modulation coding rate NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64-QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16-QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216

表9 :表8的載波的選擇Table 9: Selection of carrier for Table 8

通道 頻率(MHz) 國家 通道 頻率(MHz) 國家 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA/Europe 34 5170 Japan 40 5200 USA/Europe 38 5190 Japan 44 5220 USA/Europe 42 5210 Japan 48 5240 USA/Europe 46 5230 Japan 52 5260 USA/Europe 56 5280 USA/Europe 60 5300 USA/Europe 64 5320 USA/Europe 100 5500 USA/Europe 104 5520 USA/Europe 108 5540 USA/Europe 112 5560 USA/Europe 30 1261429Channel frequency (MHz) National channel frequency (MHz) Country 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA/Europe 34 5170 Japan 40 5200 USA/Europe 38 5190 Japan 44 5220 USA/Europe 42 5210 Japan 48 5240 USA/Europe 46 5230 Japan 52 5260 USA/Europe 56 5280 USA/Europe 60 5300 USA/Europe 64 5320 USA/Europe 100 5500 USA/Europe 104 5520 USA/Europe 108 5540 USA/Europe 112 5560 USA/Europe 30 1261429

116 5580 USA/Europe 120 5600 USA/Europe 124 5620 USA/Europe 128 5640 USA/Europe 132 5660 USA/Europe 136 5680 USA/Europe 140 5700 USA/Europe 149 5745 USA 153 5765 USA 157 5785 USA 161 5805 USA 165 5825 USA116 5580 USA/Europe 120 5600 USA/Europe 124 5620 USA/Europe 128 5640 USA/Europe 132 5660 USA/Europe 136 5680 USA/Europe 140 5700 USA/Europe 149 5745 USA 153 5765 USA 157 5785 USA 161 5805 USA 165 5825 USA

表10 : 5GHz,和40MHz通道和486Mbps最大串列傳輸位元率 位元率 TX 天線 ST 編碼率 調製 編碼率 NBPSC 13.5Mbps 1 1 BPSK 0.5 1 27Mbps 1 1 QPSK 0.5 2 54Mbps 1 1 16-QAM 0.5 4 108Mbps 1 1 64-QAM 0.666 6 121.5Mbps 1 1 64-QAM 0.75 6 27Mbps 2 1 BPSK 0.5 1 54Mbps 2 1 QPSK 0.5 2 108Mbps 2 1 16-QAM 0.5 4 216Mbps 2 1 64-QAM 0.666 6 243Mbps 2 1 64-QAM 0.75 6 40.5Mbps 3 1 BPSK 0.5 1 81Mbps 3 1 QPSK 0.5 2 162Mbps 3 1 16-QAM 0.5 4 324Mbps 3 1 64-QAM 0.666 6 365.5Mbps 3 1 64-QAM 0.75 6 54Mbps 4 1 BPSK 0.5 1 108Mbps 4 1 QPSK 0.5 2 216Mbps 4 1 16-QAM 0.5 4 432Mbps 4 1 64-QAM 0.666 6 486 Mbps 4 1 64-QAM 0.75 6Table 10: 5GHz, and 40MHz channels and 486Mbps maximum serial transmission bit rate bit rate TX antenna ST code rate modulation coding rate NBPSC 13.5Mbps 1 1 BPSK 0.5 1 27Mbps 1 1 QPSK 0.5 2 54Mbps 1 1 16-QAM 0.5 4 108Mbps 1 1 64-QAM 0.666 6 121.5Mbps 1 1 64-QAM 0.75 6 27Mbps 2 1 BPSK 0.5 1 54Mbps 2 1 QPSK 0.5 2 108Mbps 2 1 16-QAM 0.5 4 216Mbps 2 1 64-QAM 0.666 6 243Mbps 2 1 64- QAM 0.75 6 40.5Mbps 3 1 BPSK 0.5 1 81Mbps 3 1 QPSK 0.5 2 162Mbps 3 1 16-QAM 0.5 4 324Mbps 3 1 64-QAM 0.666 6 365.5Mbps 3 1 64-QAM 0.75 6 54Mbps 4 1 BPSK 0.5 1 108Mbps 4 1 QPSK 0.5 2 216Mbps 4 1 16-QAM 0.5 4 432Mbps 4 1 64-QAM 0.666 6 486 Mbps 4 1 64-QAM 0.75 6

表11 :表10的功率譜密度遮罩碼 功率譜密度遮罩碼頻率偏移 | 2dBr 31 1261429 -9MHz〜9 MHz —--—___ 0 +/-21 MHz -20 +/-30 MHz —~~~—-— -28 +/-40 MHz及更大 50Table 11: Power Spectral Density Mask Code Power Spectral Density Mask Frequency Offset of Table 10 | 2dBr 31 1261429 -9MHz~9 MHz —--—___ 0 +/-21 MHz -20 +/-30 MHz —~ ~~—-— -28 +/-40 MHz and greater 50

表12 ·表10的载波的選擇Table 12 · Selection of carrier of Table 10

通道 頻率(MHz) 國家 通道 頻率(MHz) 242 4930 Japan 250 4970 Japan 12 5060 Japan ----___-—----- 38 5190 USA/Europe 36 5180 46 5230 USA/Europe 44 5520 54 5270 USA/Europe 62 5310 USA/Europe ______-—--— 102 5510 USA/Europe ______— 110 「5550 USA/Europe ------- 118 5590 USA/Europe ~~~~~~~~~~------- 126 5630 USA/Europe ___________________ —- 134 5670 USA/Europe ------ ---- 151 5755 ------- USA ---- ---- 159 5795 USAChannel Frequency (MHz) National Channel Frequency (MHz) 242 4930 Japan 250 4970 Japan 12 5060 Japan ----___------- 38 5190 USA/Europe 36 5180 46 5230 USA/Europe 44 5520 54 5270 USA/ Europe 62 5310 USA/Europe ______----- 102 5510 USA/Europe ______— 110 "5550 USA/Europe ------- 118 5590 USA/Europe ~~~~~~~~~~--- ---- 126 5630 USA/Europe ___________________ —- 134 5670 USA/Europe ------ ---- 151 5755 ------- USA ---- ---- 159 5795 USA

【圖式簡單說明】 第一圖係為現有的OFDM幀的副載波分配的示意圖; 第一圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的無線通訊系統的結構方塊圖; 苐二圖係為本發明無線通訊中產生正交頻分複用傾的設備及 方法的無線通訊設備的結構方塊圖; 第四圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的無線通訊的示意圖; 第五圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的OFDM幀副載波分配的示意圖; 32 1261429 第”圖係為本發明碰通訊巾產生正交頻分姻巾貞的設備及 ^ 方法的另一0FDM鴨副載波分配的示意圖; :七圖係4 802.11a和本發明的窄通道應用的對照表; 第八圖係為本發明热線通訊巾產生正交頻分複賴的設備及 方法的OFDM基帶信號以及對應的直流陷波濾波器的 示意圖; 第九圖係為本發明無線通訊巾產生正交頻分複賴的設備及 方法的於窄通道的㈤繼巾貞副載波分配的示意圖; 第十圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的多入多出無線通訊系統的結構方塊圖; 第十圖係為本發明無線通訊中產生正交頻分複用幀的設備 及方法的無線通訊設備的結構方塊圖。 【主要元件符號說明】 通訊系統 10 基站或訪問點 ^2、14、16 膝上型電腦主機 18、26 個人數位助理主機20、3〇 行動電話主機 22、28 個人電腦主機 24、32 網路硬體 34 區域網連接 36、38、40 廣域網連接 42 處理核組 50 記憶體 52、75 無線收發器介面 54 輸出介面 56 輸入介面 58 無線收發器 60 主機介面 62 數位接收器處理模組64 類比數位轉換器 66 1261429 濾波/增益模組 68、80 接收器濾、波模組 71 發送接收轉換開關 73 數位發送器處理模 組76 接收器本地振盡信號 發送器本地振盪信號83 發送器濾波器模組 85 入站RF信號 88 入站資料 92 出站基帶信號 96 發射器 100 OFDM 幀 104 資料部分 108 k號資訊 112 無線收發器 160 記憶體 166 T/R模組 174 天線 182 、184 、 186 出站符號流 190 入站RF信號 194 輸入資料 198 IF混合下變換模組70 低雜訊放大器 72 本地振蘯模組 74 數位類比轉轉換器78 IF混合上變換模組82 功率放大器 84 天線 86 入站基帶信號 90 出站資料 94 出站射頻信號 98 接收器 102 前置資料 106 訓練資訊 110 資料域 114、116、118 基帶處理模組 164 RF發射器 168、170、172 RF接收器 176、178、180 輸出資料 188 出站RF信號 192 入站符號流 196 LO模組 200 1261429 模式選擇信號 202BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of subcarrier allocation of an existing OFDM frame; the first figure is a structure of a wireless communication system for generating an orthogonal frequency division multiplexing frame in wireless communication according to the present invention. Block diagram; FIG. 2 is a structural block diagram of a wireless communication device for generating an orthogonal frequency division multiplexing tilting device and method in the wireless communication of the present invention; and the fourth figure is an orthogonal frequency division generated in the wireless communication of the present invention. Schematic diagram of wireless communication using a device and method for frames; FIG. 5 is a schematic diagram of OFDM frame subcarrier allocation for an apparatus and method for generating orthogonal frequency division multiplexing frames in wireless communication according to the present invention; 32 1261429 A schematic diagram of another OFDM duck subcarrier allocation of the device and the method for generating an orthogonal frequency division mask of the present invention; : a comparison table of the seven-picture system 4 802.11a and the narrow channel application of the present invention; The schematic diagram of the OFDM baseband signal and the corresponding DC notch filter for the device and method for generating orthogonal frequency division for the hotline communication towel of the present invention; the ninth figure is orthogonal to the wireless communication towel of the present invention. A schematic diagram of a device and method for frequency division multiplexing in (5) a sub-carrier allocation of a narrow channel; a tenth figure is a multi-input and multi-output device and method for generating an orthogonal frequency division multiplexing frame in wireless communication according to the present invention; The block diagram of the wireless communication system; the tenth figure is a block diagram of the structure of the wireless communication device for generating the orthogonal frequency division multiplexing frame in the wireless communication of the present invention. [Description of main component symbols] Communication system 10 base station or Access points ^2,14,16 Laptop mainframe 18, 26 Personal digital assistant host 20, 3 〇 Mobile phone host 22, 28 Personal computer host 24, 32 Network hardware 34 Regional network connection 36, 38, 40 WAN Connection 42 Processing Core Group 50 Memory 52, 75 Wireless Transceiver Interface 54 Output Interface 56 Input Interface 58 Wireless Transceiver 60 Host Interface 62 Digital Receiver Processing Module 64 Analog Digit Converter 66 1261429 Filter/Gain Module 68, 80 Receiver filter, wave module 71 transmit and receive transfer switch 73 digital transmitter processing module 76 receiver local vibration signal transmitter local oscillation signal 83 Transmitter Filter Module 85 Inbound RF Signal 88 Inbound Data 92 Outbound Baseband Signal 96 Transmitter 100 OFDM Frame 104 Data Section 108 k Information 112 Wireless Transceiver 160 Memory 166 T/R Module 174 Antenna 182 184, 186 Outbound symbol stream 190 Inbound RF signal 194 Input data 198 IF hybrid down conversion module 70 Low noise amplifier 72 Local vibrating module 74 Digital analog converter 78 IF hybrid up conversion module 82 Power amplifier 84 Antenna 86 Inbound Baseband Signal 90 Outbound Data 94 Outbound RF Signal 98 Receiver 102 Preamble 106 Training Information 110 Data Fields 114, 116, 118 Baseband Processing Module 164 RF Transmitter 168, 170, 172 RF Receiver 176 178, 180 Output data 188 Outbound RF signal 192 Inbound symbol stream 196 LO module 200 1261429 Mode selection signal 202

3535

Claims (1)

1261429 十、申請專利範圍: 1、-種用於無線通訊的產生正交頻分複用(〇rth〇g〇nalfrequency divisionmultiplexing,0FDM)幀的方法包括以下步驟: 產生正交頻分複用幀的前置資料,其中所述前置資料包括訓 練資訊和信號資訊;和 產生複數正交頻分複用幀的資料攔,其中每個資料欄包括 複數副載波,其中至少部分資料攔包括最多三個被分派有控 制"is被的副載波。 2如申睛專利範圍第1項所述之用於無線通訊的產生正交頻分 複用幀的方法,進一步包括: 在一個窄帶通道傳送所述正交頻分複用幀,其中所述窄帶 通道具有小於2〇百萬赫茲(111叹3-1^11;2)的通道寬度。 3、 如申請專利範圍第1項所述之用於無線通訊的產生正交頻分 複用幀的方法,其中所述產生複數資料攔步驟包括: 利用每一所述至少部分資料攔的副載波+7和-7來傳遞資 料,和對每一所述至少部分資料攔的副載波+1和_丨調零。 4、 如申請專利範圍第1項所述之用於無線通訊的產生正交頻分 複用幀的方法,其中所述產生複數資料攔步驟包括: 利用每一所述至少部分資料欄的副載波+21和-21來傳遞資 料,和對每一所述至少部分資料欄的副載波+1和_丨調零。 5、 如申請專利範圍第1項所述之用於無線通訊的產生正交頻分 複用幀的方法,其中所述產生複數資料攔步驟包括: 1261429 =母:至少部分之複數資料攔的副載波+ι和-1位調零; 庵一夕個所述至少部分資料攔,利用副載波+7和-7來 傳遞資料;和 對至少另—個所述至少部分資料搁,利用副載波伯和 來傳遞資料。 6、^申請專·圍第i項所述之用於無線通訊的產生正交頻分 複用悄的方法,其中產生前置資料步驟包括: 產生信號資訊以指示出哪一所述複數副載波頻率將分派控 制信號。 種用於夕入多出__呵饥聰1如丨“率t,MIM〇)無線 通訊的產生正交頻分複_的方法,所述方法包括: 轉換一個資料流為複數資料流;和 將所述複數資料流轉換為複數正交頻分複用巾貞,其中每一 所逑正父頻分複用幢包括具有訓練資訊和信號資訊的前置資 料,每-所述正交頻分複用幢包括複數資料欄,每一所述正 乂頻77複用Ί5貞資料搁包括複數副載波頻率,其中至少部分正 交頻分複m貞資料攔包括至多三個被分派控制信號的副载波 頻率。 8、如申請專利範圍第7項所述之用於多入多出無線通訊的產生 正交頻分複用幀的方法,其中所述正交頻分複用幀至少部分 資料欄包括: 1261429 副载波+7和-7來傳送資料和每一副載波+21和-21來傳送控 制信號。 ~ 9、 - 、如申請專利範圍第7項所述之用於多入多出無線通訊的產生 正父頻分複用幀的方法,其中正交頻分複用幀所述至少部分 資料攔包括: 則载波+21和-21來傳送資料和每一副載波+7和-7位元來傳 送控制信號。 10、 如申請專利範圍第7項所述之用於多入多出無線通訊的產生馨 正交頻分複用幀的方法,其中正交頻分複用幀所述至少部分 資料攔包括: 對至少一個所述至少部分資料攔,利用副載波+7和_7來傳 送資料,和 對至少另一個所述至少部分資料欄,利用副載波+21和_21 來傳送資料。 11、 如申請專利範圍第7項所述之用於多入多出無線通訊的產生 _ 正交頻分複用幀的方法,進一步包括: 產生信號貢訊以指示出哪一所述複數副載波頻率將被分派 為控制信號。 12、 如申請專利範圍第7項所述之多人多出無線通訊的產生 i父頻分複m貞的方法,其中將所述複數資料流轉換為複數 正交頻分複用幀步驟包括·· 38 1261429 產生第一正交頻分複用幀,所述第一正交頻分複用幀包括 具有四個控制信號的複數資料欄,和 產生剩餘的正交頻分複用幀,所述剩餘的正交頻分複用幀 包括少於四個控制信號的複數資料攔。 13、一種用於無線通訊的接收正交頻分複用幀的方法,所述方法 包括: 接收所述正交頻分複用巾貞的前置資料’所述前置資料包括 訓練資訊和信號資訊; _ 接收所述正交頻分複用幀的複數資料攔,其中每一所述資 料攔包括複數副載波,其中,藉由信號資訊指示出的、至少 部分資料欄最多包括三個被分派控制信號的副載波頻率;和 將所述複數資料欄轉換為内部資料。 14、如申料利範圍第13項所述之用於無線軌的接收正交頻分 複用幀的方法,進一步包括:1261429 X. Patent application scope: 1. A method for generating Orthogonal Frequency Division Multiplexing (OFDM) frames for wireless communication includes the following steps: generating orthogonal frequency division multiplexing frames Pre-data, wherein the pre-data includes training information and signal information; and a data block for generating a plurality of orthogonal frequency division multiplexing frames, wherein each data column includes a plurality of subcarriers, wherein at least part of the data blocks includes at most three It is assigned a subcarrier with control "is. 2. The method for generating an orthogonal frequency division multiplexing frame for wireless communication according to claim 1, wherein the method further comprises: transmitting the orthogonal frequency division multiplexing frame in a narrowband channel, wherein the narrowband The channel has a channel width of less than 2 megahertz (111 sing 3-1^11; 2). 3. The method for generating an orthogonal frequency division multiplexing frame for wireless communication according to claim 1, wherein the generating the plurality of data intercepting steps comprises: using each of the at least partial data intercepting subcarriers +7 and -7 to pass the data, and zero the subcarriers +1 and _丨 for each of the at least some of the data blocks. 4. The method for generating an orthogonal frequency division multiplexing frame for wireless communication according to claim 1, wherein the generating the plurality of data intercepting steps comprises: using a subcarrier of each of the at least part of the data column +21 and -21 to pass the data, and zero the subcarriers +1 and _丨 for each of the at least part of the data column. 5. The method for generating an orthogonal frequency division multiplexing frame for wireless communication according to claim 1, wherein the generating the plurality of data intercepting steps comprises: 1261429 = mother: at least part of a plurality of data blocks Zeroing the carrier +1 and -1 bits; at least part of the data interception, using the subcarriers +7 and -7 to transfer the data; and using at least another of the at least part of the data, using the subcarrier And to pass the information. 6. The method of generating an orthogonal frequency division multiplexing method for wireless communication as described in item i, wherein the generating the preamble data comprises: generating signal information to indicate which of the plurality of subcarriers The frequency will assign a control signal. a method for generating an orthogonal frequency division _ for wireless communication, such as: converting a data stream into a plurality of data streams; and Converting the complex data stream into a complex orthogonal frequency division multiplexing frame, wherein each of the positive parent frequency division multiplexing blocks includes preamble data having training information and signal information, and each of the orthogonal frequency divisions The multiplexing building includes a complex data column, each of the positive frequency 77 multiplexed 贞5 贞 data includes a plurality of subcarrier frequencies, wherein at least part of the orthogonal frequency division complex 贞 data block includes at most three of the assigned control signals 8. The method of generating an orthogonal frequency division multiplexing frame for multiple input and multiple output wireless communication according to claim 7, wherein at least part of the data frame of the orthogonal frequency division multiplexing frame includes : 1261429 Subcarriers +7 and -7 to transmit data and each subcarrier +21 and -21 to transmit control signals. ~ 9, - , as described in claim 7 for multi-input and multi-output wireless communication Method for generating a positive parent frequency division multiplexing frame, where orthogonal frequency division The at least part of the data block of the multiplex frame includes: then the carriers +21 and -21 transmit the data and the +7 and -7 bits of each subcarrier to transmit the control signal. 10. As described in claim 7 A method for generating a MIMO orthogonal frequency division multiplexing frame for multi-input and multi-output wireless communication, wherein the at least part of the data interception of the orthogonal frequency division multiplexing frame comprises: using at least one of the at least part of the data intercept, using the subcarrier +7 and _7 to transmit data, and to transmit data to at least one of the at least part of the data fields, using subcarriers +21 and _21. 11. For multi-entry as described in claim 7 The method for generating a wireless communication OFDM orthogonal OFDM frame further includes: generating a signal homing to indicate which of the plurality of subcarrier frequencies is to be assigned as a control signal. 12. As claimed in claim 7 The method for generating a parent frequency division m贞 by wireless communication, wherein the step of converting the complex data stream into a complex orthogonal frequency division multiplexing frame includes: 38 1261429 generating a first orthogonal frequency Sub-multiplexed frame, the first positive The cross-frequency division multiplexing frame includes a complex data field having four control signals, and generates remaining Orthogonal Frequency Division Multiplexing frames, the remaining orthogonal frequency division multiplexing frames including complex data of less than four control signals 13. A method for receiving an orthogonal frequency division multiplexing frame for wireless communication, the method comprising: receiving preamble data of the orthogonal frequency division multiplexing frame, wherein the preamble data includes training information And a signal information; _ receiving a plurality of data blocks of the orthogonal frequency division multiplexing frame, wherein each of the data blocks includes a plurality of subcarriers, wherein at least part of the data column indicated by the signal information includes at most three The subcarrier frequency to which the control signal is assigned; and converting the complex data column to internal data. 14. The method for receiving an orthogonal frequency division multiplexing frame for a radio orbit as described in claim 13 of the claim, further comprising: 稭由-窄帶寬通道接收所述正交頻分複用幅,其中所土 π覓通道具有小於二十百萬赫茲的通道寬度。 15、如申物_第η項所如於無_响接收正^ 複用_方法,其中接收所述複數資料攔步驟還包括. 從每—所述至少部分資料攔的副載波+7和 39 1261429 16、==r圍第13項所述之無線通訊的接收正交頻分 負的方法,其中所述接收所述複數資料攔包括.、 7恢復資料;和 1恢復零資料。 頻分 f每—所述至少部分資料攔的副載波+7和_ 從每-所述至少部分#料攔的副载波+1和_ 17、:;:=_13項所述之_^^^ 貞的方法,所述接收所述資料攔步驟包括: 料;和L,貝料攔,從副载波+7和-7恢復資 18 =少另—烟述增分_,從副載㈣㈣ 復資料 恢 、-種用於多人多出無線通訊的接收正交 所述方法包括: 頻分複用幀的方法, 接收稷數正父頻分複用幀,苴 目亡4丨砧次,、千母一正父頻分複用幀包括 一有3川、、東貝汛和信號資訊的前 — 貝枓,母一正交頻分複用幀 包括稷數—貝料攔,每一所沭 . ^ 、正父頻7刀複用幀資料攔包括複數 副載波頻率,其中藉由信號資 貝汛才曰不出的、至少一個所述正 派控制信號的所述複 交頻分複關資料婦多包括三個被分: 數副載波頻率; 將所述複數轉頻分__換騎«料流;和 將所述複數資料流轉換為—個資料流。 40 1261429 19、如申請專利範圍第18項所述之用於多入多出無線通訊的接收 正又頻刀複用鴨的方法,其中所述至少一個之複數正交頻分 複用幢的至少部分之複數資料搁包括: 田1J載波+7和-7來傳送資料和每一副載波+21和_21來傳送控 制信號。 20如申明專利範圍第項所述之用於多入多出無線通訊的接收 正交頻分複用幀的方法,其中所述至少一個之複數正交頻分 複用幀的至少部分之複數資料攔包括: 馨 副載波+21和-21來傳送資料和每一副載波+7和-7來傳送控 制信號。 21、 如申請專利範圍第18項所述之用於多入多出無線通訊的接收 正交頻分複用幀的方法,其中所述至少一個之複數正交頻分 複用幀的至少部分之複數資料攔包括: 對至少一個所述至少部分之複數資料欄,從副載+7和-7恢 復貢料,和 ^ 對至少另一個所述至少部分之複數資料欄,從副載波+21 和-21恢復資料。 22、 如申請專利範圍第18項所述之用於多入多出無線通訊的接收 正交頻分複用幀的方法,其中所述複數正交頻分複用幀包括: 第一正交頻分複用幀包括具有四個控制信號的所述複數資料 爛,和 41 1261429 L、人頻分複用巾貞包括具有少於四個控制信號的所述複數- 一貧料攔。 23、 -種射頻發射器,包括·· 基▼處理模組,可連接用於產生正交頻分複用巾貞,藉由·· 產生所述正交頻分複用幀的前置資料,其中所述前置資料包 括訓練資訊和信號資訊,和 產生所述正交頻分複用幢的複數資料攔,其中每一所述複 數資料攔包括複數副載波,其中至少部分所述複數資料搁至❿ 夕匕括—個被分派控制信號的所述複數副載波頻率;和 射頻傳送部分可連接用於將所述正交頻分複用巾貞轉換為輸 出RF信號。 24、 如申請專利範圍第23項所述之射頻發射器,進一步包括·· 產生用於傳送所述正交頻分複用幀的窄帶寬通道,其中所述 窄帶見通道具有小於二十百萬赫茲的通道寬度。 25、 如申请專利範圍第23項所述之射頻發射器,其中該產生所述_ 複數資料攔包括: 利用每一所述至少部分之複數資料攔的副載波+7和_7來傳 送貢料;和 每一所述至少部分之複數資料攔的副載波+1和―丨調零。 26、 如申請專利範圍第23項所述之射頻發射器,其中該產生所述 複數資料欄包括: 42 1261429 ^母―所述至少部分之複數資料欄的副載波+21和-21來傳 达貢料;和 27 I斤述至)部分之複數資料攔的副載+1和·1調零。 、触請專概_23項誠之_發㈣,其巾 禝數貢料攔包括: :了核少部分之複數資料欄的副載S+1和-1調零; 7 =至^個所述至少部分之複數資料攔,利用副載波+7和 _7來傳送資料;和 對至)另—個所述至少部分之複數資料欄,利用副載波+21 和來傳送資料。 ,申。月專利feu第23項所述之射頻發射||,其中該產生所述 前置資料,包括: 產生所述信號資訊來指示出哪一所述複數副載波頻率將分 派控制信號。 29、一種射頻發射器,包括·· 基V處理她,可連制於產生驗多人多Λ無線通訊的正 交頻分複用幀,藉由: 將一資料流轉換為複數資料流,和 將所述複數資料流轉換為複數正交頻分複用幀,其中每一 正交頻分複用巾貞包括具有訓練資訊和信號資訊的前置資料, 每一正交頻分複用幀包括複數資料攔,其中每一所述複數正 43 1261429 交頻分複用巾貞的每一所述複數貧料棚包括複數副戟波頻率, 其中至少一個所述複數正交頻分複用幀的至少部分所述複數 / 資料欄至多包括三個被分派一控制信號的所述複數副載波頻 率;和 射頻傳送部分可連接用於轉換所述複數正交頻分複用幅為 複數輸出RF信號。 30、 如申请專利範圍第29項所述之射頻發射器,其中所述至少一 個之複數正交頻分複用幀的至少部分之複數資料攔,包括:馨 副載波+7和-7傳送資料和每一副載波+21和-21傳送控制信 號。 31、 如申請專利範圍第29項所述之射頻發射器,其中所述至少一 個之複數正交頻分複用幀的至少部分之複數資料欄,包括: 副載波+21和-21傳送資料和每一副載波+7和_7傳送控制信 號。 32、 如申請專利範圍第29項所述之射頻發射器,其中所述至少一❿ 個之複數正交頻分複用幀的至少部分之複數資料欄,包括: 對至少一個所述至少部分之複數資料欄,利用副載波+7和-7 來傳送資料;和 對至少另一個所述至少部分之複數資料攔,利用副載波+21 和-21來傳送資料。 33、 如申請專利範圍第29項所述之射頻發射器,其中所述基帶處 44 1261429 理模組進一步具有以下功能: — 產生所述信號資訊來指示出哪一所述複數副載波頻率將分 , 派控制信號。 34、 如申請專利範圍第29項所述之射頻發射器,其中該轉換所述 複數資料流為複數正交頻分複用幅包括: 產生第一正交頻分複用幀包括具有四個控制信號的所述複 數貧料搁;和 產生剩餘正父頻分複用幀包括具有少於四個控制信號的所鲁 述複數資料棚。 35、 一種射頻接收器,包括: 射頻接收部分可賴祕觀輸人处錢為正交頻分複 用巾貞;和 基帶處理模組可連接用於·· 接收所述正交頻分複用幅的前置資料,其中所述前置資料 包括訓練資訊和信號資訊;和 參 接收所述正交頻分複關的複數資料攔,其中每一所述複 歸侧包括複數副載波頻率,其中,#由信號f訊的指派, 卩刀所述複數資料攔最多包括三個被分派一控制信號的 所述複數副載波頻率;和 將所述複數資料欄轉換為輸入資料。 士申明專利範圍第35項所述之射頻接收器,其中所述射頻接 45 1261429 收器還用於:藉由—窄帶通道接收正交頻分複,其中所 述窄帶通道帶寬小於20MHz。 37、如申請專利範圍第%項所述之射頻接收器,其中該接收所述 複數資料攔,包括: 藉由每-所述至少部分之複數資料攔的副载波+7和_7來恢 復資料;和 藉由每一所述至少部分之複數資料攔的副载波+1和」來恢 復零資料(null data)。 _ 38、 如申請專利範圍第35項所述之射頻接收器,其中該接收所述 複數資料攔,包括·· 從每一所述至少部分之複數資料攔的副載波+21和_21恢復 貧料;和 從每一所述至少部分之複數資料攔的副載波+1和-1恢復零 資料。 39、 如申請專利範圍第35項所述之射頻接收器,其中該接收所述鲁 複數資料攔,包括: 從每一所述至少部分之複數資料攔的副載波+1和_1來恢復 零資料; 對至少一個所述至少部分之複數資料攔,從副载波+7和_7 恢復資料;和 對至少另一個所述至少部分之複數資料攔,從副載波+21 46 1261429 和-21恢復資料。 40、 一種射頻接收器,包括: 用於多入多出無線通訊的即接收部分,可連接用於轉換輸 入RiM言號為複數正交頻分複用幀;和 基帶處理模組可連接用於: 接收所述複數正交頻分複用幢,其中每一正交頻分複用幢 包括具有訓練資訊和信號資訊的前置資料,其中每—所述複 數正交頻分複用巾貞包括複數資料欄,其中每一所述複數正交鲁 頻分複用幅的每-所述資料攔包括複數副载波頻率,其中, 藉由信號資訊的指派,至少_個所述複數正交頻分複用巾貞的 至少部分所述複數資料攔至多包括三個被分派一控制信號的 所述複數副載波頻率; 將所述複數正交頻分複用幀轉換為複數資料流;和 將所述複數貧料流轉換為一個資料流。 41、 如申請專利範圍第40項所述之射頻接收器,其中所述至少一鲁 個之複數正交頻分複用巾貞的至少部分之複數資料攔包括: 副載波+7和-7來傳送資料和每一副載波+21和_21來傳送控 制信號。 42、 如申請專利範圍第40項所述之射頻接收器,其中所述至少一 個之複數正交頻分複用幀的至少部分之複數資料欄包括·· 副載波+21和-21來傳送資料和每一副載波+7和_7來傳送控 47 1261429 制信號。 43、 如申請專利範圍第4〇項所述之射頻接收器,其中所述至少一 個之複數正交頻分複用幀的至少部分之複數資料攔包括: 對至少一個所述至少部分之複數資料攔,從副載波+7和_7 恢復貧料;和 對至少另一個所述至少部分之複數資料攔,從副載波+21 和-21恢復資料。 44、 如申請專利範圍第40項所述之射頻接收器,其中所述複數正鲁 交頻分複用幀包括: 第一正交頻分複用幀包括具有四個控制信號的所述複數 貢料棚,和 母一剩餘正交頻分複用幀包括具有少於四個控制信號的所 述複數資料攔。The stalk receives the OFDM frame from a narrow bandwidth channel, wherein the π 觅 channel has a channel width of less than twenty a megahertz. 15. The method as claimed in claim _n as in the no-received positive multiplex method, wherein the step of receiving the complex data block further comprises: sub-carriers from each of the at least partial data blocks +7 and 39 1261429. The method of receiving orthogonal frequency division of wireless communication according to Item 13, wherein said receiving said plurality of data blocks comprises:, 7 recovering data; and 1 recovering zero data. The frequency division f--the at least part of the data intercepted subcarriers +7 and _ from each of the at least part of the #substance subcarriers +1 and _17,:;:=_13 said _^^^ In the method, the receiving the data intercepting step includes: feeding; and L, shelling, recovering from the subcarriers +7 and -7; 18 = less - the smoke is increased by _, from the sub-load (four) (four) complex data The method for receiving orthogonality for multi-person and multi-output wireless communication includes: a method of frequency division multiplexing frame, receiving a number of positive-female frequency division multiplexing frames, and smashing 4 anvils, and thousands The mother-father-father frequency division multiplexing frame includes a pre-Beibei with 3 Sichuan, Dongbei and signal information, and the mother-orthogonal frequency division multiplexing frame includes the number of —-Bei-Bai, each 沭. ^ The positive-father frequency 7-knife multiplexed frame data block includes a plurality of sub-carrier frequencies, wherein the complex-crossing frequency-resetting information of at least one of the decent control signals that cannot be output by the signal is included The three are divided into: a number of subcarrier frequencies; the plurality of frequency divisions are divided into __jumps «streams; and the plurality of data streams are converted into one data stream. 40 1261429. The method of receiving a positive frequency multiplexed duck for multi-input and multi-output wireless communication according to claim 18, wherein at least one of the plurality of orthogonal frequency division multiplexing blocks Part of the complex data includes: Field 1J carrier +7 and -7 to transmit data and each subcarrier +21 and _21 to transmit control signals. The method for receiving an Orthogonal Frequency Division Multiplexing (OFDM) frame for multiple-input multiple-output wireless communication according to the above-mentioned claim, wherein at least part of the complex data of the at least one complex OFDM frame The block includes: Xin subcarriers +21 and -21 to transmit data and each subcarrier +7 and -7 to transmit control signals. The method for receiving an Orthogonal Frequency Division Multiplexing (OFDM) frame for multi-input and multi-output wireless communication according to claim 18, wherein at least one of the at least one complex OFDM frame The plurality of data blocks includes: for at least one of said at least partial plurality of data fields, recovering tributaries from sub-loads +7 and -7, and ^ for at least one of said at least part of said plurality of data columns, from subcarriers +21 and -21 Recovery data. 22. The method for receiving an Orthogonal Frequency Division Multiplexing (OFDM) frame for multiple input and multiple outgoing wireless communication according to claim 18, wherein the complex orthogonal frequency division multiplexing frame comprises: a first orthogonal frequency The sub-multiplexed frame includes the complex data having four control signals, and 41 1261429 L, the human frequency division multiplexing frame includes the complex-to-poor block having less than four control signals. 23, a type of radio frequency transmitter, comprising: a base processing module, connectable for generating orthogonal frequency division multiplexing frames, by generating a preamble of the orthogonal frequency division multiplexing frame, The pre-data includes training information and signal information, and a plurality of data blocks for generating the orthogonal frequency division multiplexing block, wherein each of the plurality of data blocks includes a plurality of subcarriers, wherein at least part of the plurality of data blocks The plurality of subcarrier frequencies to which the control signal is assigned are coupled to the radio frequency transmitting portion for converting the orthogonal frequency division multiplexing frame into an output RF signal. 24. The radio frequency transmitter of claim 23, further comprising: generating a narrow bandwidth channel for transmitting the orthogonal frequency division multiplexing frame, wherein the narrowband see channel has less than twenty million Hertz's channel width. 25. The radio frequency transmitter of claim 23, wherein the generating the _ complex data block comprises: transmitting the tribute by using at least part of the plurality of sub-carriers +7 and _7 of the data block And each of the at least part of the plurality of data intercepted subcarriers +1 and ―丨 zero. 26. The radio frequency transmitter of claim 23, wherein the generating the plurality of data fields comprises: 42 1261429 ^ mother - at least part of the sub-carriers of the plurality of data columns + 21 and - 21 to convey The tribute; and the 27 jins to the partial data block of the sub-load +1 and · 1 zero. , please call the _23 item Chengzhi _ hair (four), its number of tribute blocks include:: the sub-load S+1 and -1 zero of the plural data column of the nuclear part; 7 = to ^ At least part of the plurality of data blocks, using subcarriers +7 and _7 to transmit data; and to the other at least part of the plurality of data fields, using subcarriers +21 and to transmit data. , Shen. The radio frequency transmission || described in item 23 of the patent of Feu, wherein the generating the pre-data includes: generating the signal information to indicate which of the plurality of sub-carrier frequencies will distribute the control signal. 29. An RF transmitter, comprising: a base V processing her, can be coupled to generate an orthogonal frequency division multiplexing frame for multi-person wireless communication, by: converting a data stream into a complex data stream, and Converting the complex data stream into a complex orthogonal frequency division multiplexing frame, wherein each orthogonal frequency division multiplexing frame includes preamble data with training information and signal information, and each orthogonal frequency division multiplexing frame includes a plurality of data blocks, wherein each of said plurality of positive radii multiplexed sheds includes a plurality of sub-chopping frequencies, wherein at least one of said complex Orthogonal Frequency Division Multiplexing frames At least a portion of the complex/data column includes at most three complex subcarrier frequencies to which a control signal is assigned; and a radio frequency transmitting portion operative to convert the complex OFDM frame into a complex output RF signal. 30. The radio frequency transmitter of claim 29, wherein at least part of the plurality of complex orthogonal frequency division multiplexing frames comprises: xin subcarriers +7 and -7 transmitting data And each subcarrier +21 and -21 transmits a control signal. 31. The radio frequency transmitter of claim 29, wherein the at least one of the plurality of complex orthogonal frequency division multiplexing frames has at least a portion of a plurality of data fields, including: subcarriers +21 and -21 transmitting data and Each subcarrier +7 and _7 transmits a control signal. 32. The radio frequency transmitter of claim 29, wherein the at least one of the complex data columns of at least one of the plurality of orthogonal frequency division multiplexing frames comprises: for at least one of the at least one portion The complex data field transmits data using subcarriers +7 and -7; and transmits data using at least another of said at least partial data blocks using subcarriers +21 and -21. 33. The radio frequency transmitter of claim 29, wherein the baseband 44 1261429 module further has the following functions: - generating the signal information to indicate which of the plurality of subcarrier frequencies will be divided , send control signals. 34. The radio frequency transmitter of claim 29, wherein the converting the complex data stream into a complex OFDM frame comprises: generating a first OFDM frame comprising four controls The plurality of lean packets of the signal are placed; and the generating the remaining positive-parent frequency division multiplexing frame includes a sequence of multiple data blocks having less than four control signals. 35. A radio frequency receiver, comprising: the radio frequency receiving part can be used as an orthogonal frequency division multiplexing frame; and the baseband processing module can be connected to receive the orthogonal frequency division multiplexing Pre-data of the frame, wherein the pre-data includes training information and signal information; and a plurality of data blocks that receive the orthogonal frequency division complex, wherein each of the resetting sides includes a plurality of subcarrier frequencies, wherein , by the assignment of the signal f, the complex data block includes at most three complex subcarrier frequencies to which one control signal is assigned; and converts the complex data column into input data. The RF receiver of claim 35, wherein the RF transceiver 45 1261429 is further configured to receive an orthogonal frequency division by a narrowband channel, wherein the narrowband channel bandwidth is less than 20 MHz. 37. The radio frequency receiver of claim 1 , wherein the receiving the plurality of data blocks comprises: restoring data by sub-carriers +7 and _7 of each of said at least part of said plurality of data blocks And recovering null data by subcarriers +1 and "" of each of said at least partial complex data blocks. _ 38. The radio frequency receiver as claimed in claim 35, wherein the receiving the plurality of data blocks comprises: recovering from the subcarriers +21 and _21 of each of the at least part of the plurality of data blocks And recovering zero data from subcarriers +1 and -1 of each of said at least partial complex data blocks. 39. The radio frequency receiver according to claim 35, wherein the receiving the lure data block comprises: recovering zero from each of the at least part of the plurality of sub-carriers +1 and _1 of the data block Data; recovering data from at least one of said at least partial complex data blocks from subcarriers +7 and _7; and recovering from at least one of said at least one of said plurality of data blocks, recovering from subcarriers +21 46 1261429 and -21. data. 40. A radio frequency receiver, comprising: a receiving part for multi-input and multi-output wireless communication, which can be connected to convert a input RiM speech into a complex orthogonal frequency division multiplexing frame; and a baseband processing module can be connected for Receiving the complex OFDM frame, wherein each OFDM frame includes preamble data having training information and signal information, wherein each of the complex OFDM frames includes a plurality of data columns, wherein each of said data blocks of said complex orthogonal frequency division multiplexing multiplex includes a plurality of subcarrier frequencies, wherein at least one of said complex Orthogonal Frequency Divisions is assigned by signal information At least a portion of the plurality of data blocks of the multiplex frame includes at least three complex subcarrier frequencies to which a control signal is assigned; converting the complex OFDM frame into a complex data stream; and The complex lean stream is converted into a data stream. 41. The radio frequency receiver of claim 40, wherein the at least one of the plurality of complex orthogonal frequency division multiplexing frames comprises at least a portion of the data block comprising: subcarriers +7 and -7. The data and each subcarrier +21 and _21 are transmitted to transmit the control signal. 42. The radio frequency receiver of claim 40, wherein at least part of the plurality of data fields of the at least one complex OFDM frame comprises ·· subcarriers +21 and -21 for transmitting data And each subcarrier +7 and _7 to transmit control 47 1261429 signal. 43. The radio frequency receiver of claim 4, wherein the at least one of the plurality of complex orthogonal frequency division multiplexing frames comprises: at least one of the at least one of the plurality of data blocks And recovering the poor material from the subcarriers +7 and _7; and recovering the data from the subcarriers +21 and -21 for at least one of the at least one of the plurality of data blocks. 44. The radio frequency receiver of claim 40, wherein the complex positive cross-frequency division multiplexing frame comprises: the first orthogonal frequency division multiplexing frame comprising the plurality of tributaries having four control signals The shed, and the parent-remaining orthogonal frequency division multiplexing frame includes the complex data block having less than four control signals. 4848
TW93121533A 2003-07-18 2004-07-19 A method for generating OFDM frame for wireless communications TWI261429B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48853103P 2003-07-18 2003-07-18
US52452803P 2003-11-24 2003-11-24
US10/778,754 US7162204B2 (en) 2003-11-24 2004-02-13 Configurable spectral mask for use in a high data throughput wireless communication

Publications (2)

Publication Number Publication Date
TW200531465A TW200531465A (en) 2005-09-16
TWI261429B true TWI261429B (en) 2006-09-01

Family

ID=34799583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121533A TWI261429B (en) 2003-07-18 2004-07-19 A method for generating OFDM frame for wireless communications

Country Status (2)

Country Link
CN (1) CN100502376C (en)
TW (1) TWI261429B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI345395B (en) * 2005-10-20 2011-07-11 Issc Technologies Corp System and method for providing 3-dimensional joint interleaver and circulation transmissions
CN201114636Y (en) * 2007-09-14 2008-09-10 中兴通讯股份有限公司 Indication device and mobile terminal for update SN advance of control information table
EP3002895A1 (en) * 2008-05-31 2016-04-06 Coherent Logix Incorporated Transmission of multimedia streams to mobile devices with uncoded transport tunneling
EP2772034B1 (en) * 2011-10-27 2017-05-24 Marvell World Trade Ltd. Data unit format signalling for wireless local area networks (wlan)
CN103703733A (en) * 2012-07-19 2014-04-02 华为技术有限公司 Method for transmitting control signaling, method for receiving same, network device, and ue
CN105338601A (en) * 2015-10-13 2016-02-17 济南大学 Wireless communication system used for multiple access

Also Published As

Publication number Publication date
TW200531465A (en) 2005-09-16
CN1625163A (en) 2005-06-08
CN100502376C (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US11343684B2 (en) Self organizing backhaul radio
TWI321916B (en) Mixed mode preamble for mimo wireless communication
CN110537337B (en) Multi-site MIMO communication system with hybrid beamforming in L1 split architecture
TWI338480B (en) A reconfigurable orthogonal frequency division multiplexing (ofdm) chip supporting single weight diversity
TWI334719B (en) Programmable transmitter
CN102598557A (en) Control signaling in wireless communications
CN110547031A (en) Communication device, base station device, method, and recording medium
US20220070836A1 (en) Signal design associated with concurrent delivery of energy and information
TW201212572A (en) Cyclic shift delay (CSD) short training field (STF) for orthogonal frequency division multiplexing (OFDM) signaling within multiple user, multiple access, and/or MIMO wireless communications
US20100173640A1 (en) Single User Multiple Input Multiple Output User Equipment
TW200833135A (en) Methods and apparatus related to power control and/or interference management in a mixed wireless communications system supporting WAN signaling and peer to peer signaling
WO2009024911A2 (en) Method and apparatus for providing channel feedback information
TWI261429B (en) A method for generating OFDM frame for wireless communications
US11588923B2 (en) Adaptive fixed point mapping for uplink and downlink fronthaul
WO2017047210A1 (en) Device and method
TW201108841A (en) Multichannel architecture for high throughput modems
EP1645057B1 (en) Technique for video broadcasting in a wireless lan
US20040114548A1 (en) Polarization division multiplex access system
WO2023241215A1 (en) Communication method and device
Jain et al. A Short Review on 4G Technology
WO2024119135A1 (en) Space-frequency precoding for hybrid frequency multi-hop links with line-of-sight multiple-input and multiple-output on an intermediate hop
CN203261491U (en) Mobile terminal
Alam et al. Multiplexing Technique for All-IP 4G Heterogeneous Network
Design LTE Benefits v 3.3