TW200531465A - A method for generating OFDM frame for wireless communications - Google Patents

A method for generating OFDM frame for wireless communications Download PDF

Info

Publication number
TW200531465A
TW200531465A TW93121533A TW93121533A TW200531465A TW 200531465 A TW200531465 A TW 200531465A TW 93121533 A TW93121533 A TW 93121533A TW 93121533 A TW93121533 A TW 93121533A TW 200531465 A TW200531465 A TW 200531465A
Authority
TW
Taiwan
Prior art keywords
data
frequency division
orthogonal frequency
complex
division multiplexing
Prior art date
Application number
TW93121533A
Other languages
Chinese (zh)
Other versions
TWI261429B (en
Inventor
Christopher J Hansen
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/778,754 external-priority patent/US7162204B2/en
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW200531465A publication Critical patent/TW200531465A/en
Application granted granted Critical
Publication of TWI261429B publication Critical patent/TWI261429B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

A method for generating an orthogonal frequency division multiplexing (OFDM) frame for wireless communications by generating a preamble of the OFDM frame, wherein the preamble includes training information and signal information. The method continues by generating a plurality of data fields includes a plurality of subcarriers, wherein at least some of the plurality of data fields includes, at most, three of the plurality of subcarriers allocated for a pilot signal.

Description

200531465 九、發明說明: 【發明所屬之技術領域】 本發明係關於無綠^7^ 支與無線通訊系統間、的不同袼式。、別係關於無線通訊設備分 【先前技術】 ~ ° 連接有電子設叙_之觀肋已為人熟知。通訊網路 之具體例子包括有線分組資料網路、無線分组資料網路、有線 電话網路、無線電話網路、以及衛星通訊網路等。通常這些通 訊網路包括紐數客戶端賴提供服務之_雜。公共交換 甩糊(PSTN)可能是最為熟知的通訊網路實例,並已出現 很多年。網際網路(Internet)是另一熟知的通訊網路實例,其 也已出現多年。這些通訊網路可使客戶端設備在全球範圍内互 相通Λ。有線區域網(LAN)如乙太網(驰咖⑻也很普通, 其可支援服務區_ _路電_其他設_通訊。區域網通 常也和廣域網及網際網路連接。這些網路中的每—個通常被認 為是“有線”的網路,即使某些網路,如pSTN,可能包括可 用於無線連接的發射通道。 與有線網路相比,無線網路出現的時間相對要短許多,如 仃動電話瓣、無輕酬(WLANs)、魅通賴等。無線 區域網通常根據-或複數標準建立,如ffiE膽 (b)、·η (g)等,這些標準可統稱為“IEEE802 11網,,。在 典型的IEEE802.il網中,複數無線接入點(Accessp〇ints,Aps) 200531465 菱無線通訊設備(如包括相容I 線"面的電腦)進行無線通訊。A ,,,、 無線區域_部_路之能力。 H屬^共訪問 當使用行動電腦、行動資料終端、以及其他物固定 的、亚可州有線區域網連接的設鱗行動設備時, 網有著縣之優點。然,與麵區域網W3_比 無齡_供相對較低的f料率。目前配置之有線網路可提 ^^.1 (Gigabit) , 可提供_秒的帶寬。而由於在服務行動設備方面的優勢, 無線區域網常常覆蓋了有線網路的服務區域。在上述設備中, 與有線區域網連接的設備多為固找,如桌上型電腦;而與無 線區域網連接的設備主要是軸的,如行動電腦。而行動電腦 也可有有、_域網連接’使其在不移鱗可獲得較高帶寬之服 務0 新的無線網路標準支援相對較高的資料率。例如,# IEEE8〇2.ll(a)標準支援的資料率達到54百萬位元⑽魏) 每心,IEEE8〇2.ll (g)也達到了上述資料率。舰膽m⑷ 使用了正交頻分㈣(ΒΜ&η 層’財援上述聽率。藉由OFDM 物理層,可用載波被微分為許複數副载波或通道(油隱化贏 tones),每-副載波傳送多路信號資料流的—部分。胚 6 200531465 (a)OFDM物理層包括48位元元資料傳輸通道和$位控制信 號通道,空間/帶寬為〇·3125ΜΗζ。如®| 1所示,副載波〇、副 載波27〜32、以及副載波_27一31未使用。副載波+/_7、副載波 +八21作為4個控制信號通道或信號。副載波1〜6、副載波 8〜20、副載波22〜26、副載波-1〜-6、副載波-8〜-2〇、以及副載 波-22〜-26組成了 48個用於傳送資料之資料傳輸通道。 田將第圖之副載波分配標準化,並支援較寬變化的無線 區域網應科,還存在—些不_上述副載波分配之無線區域 網應用。例如,若通道帶寬較窄或用於多入多處(Multiplei叩说 multiple output,ΜΙΜΟ)無線通訊時,第一圖之副載波分配可 能並非最理想的和/或可實現的。 因此’需要出現—種正交頻分複㈣生成設備和方法,以 用於窄通道應用和/或ΜΙΜ〇應用。 【發明内容】 本發明之正父頻分複用幀之格式完全符合上述和其他的 要求。在-貫施例巾,揭露了—用於無線通訊的產生正交頻分 複用巾貞的方法,首先產生所述正交頻分個巾貞之前置資料,其 中該前置資料包括訓練資訊和信號資訊。該方法接著產生所述 正交頻分複用幀的複數資料攔,其中每一複數資料欄包括複數 副載波,其巾至少部分所述複數資料攔包括,至多三個被分派 控制信號的所述複數副載波。 在另一貫施例中,揭露了一用於多入多出無線通訊的產 200531465 生正交頻分複用幀之方法,‘首先轉換一個資料流為複數資料· 流。該方法接著轉換該複數資料流為複數正交頻分複用幀,其 · 中每一所述複數正交頻分複用幀包括具有訓練資訊和信號資 訊的别置資料’其中每一所述複數正交頻分複用Φ貞包括複數資 料欄,其中每一所述複數正交頻分複用幀之每一複數資料攔包 括複數副載波,其中至少一個所述複數正交頻分複用幀的至少 部分該複數資料攔包括,至多三個被分派控制信號的所述複數 副載波。 春 在再一實施例中,揭露了一用於無線通訊的接收正交頻 分複用幀之方法,首先接收所述正交頻分複用幀之前置資料, 其中該前置資料包括訓練資訊和信號資訊。所述方法接著接收 邊正父頻分複用幀的複數資料欄,其中每一所述複數資料攔包 括複數副載波頻率,其中藉由信號資訊的指示,至少部分該複 數資料攔包括,至多三個被分派控制信號的所述複數副載波頻 率。所述方法接著轉換所述複數資料攔為内部資料(inb〇und _ data)。 在進一步的實施例中,一或複數這樣的方法可以為_射頻 發射器和/或一射頻接收器。 【實施方式】 第二圖示出了一個通訊系統10的原理結構圖,其中包括 複數基站(Base station,BS)和/或接入點(Access p〇i邮,处) 12 16 ’複數無線通訊設備18-32,以及一網路硬體部件%。 8 200531465 其中之無線通訊設備18-32可以是膝上型電腦主機邮%、 個人數位助理主離DA)2G和3G、個人_域%和%、和 /或行動電話主機22和28。後面將結合附第三圖對這些無線通 訊設備作更詳細的說明。 基站或接入點12-16可操作地藉由區域網(LAN)36、38和 40與網路硬體34連接。網路硬體34可為路由器、轉換器、網 橋 '數據機、系統控制器等,它可為通訊系統1〇提供一廣域 網(WAN)連接42。每-基站或接入點⑽有一關聯之天線或 天線陣列,以實現與其所在區域内之無線軌設制的通訊。 通常,無線通訊設備會註冊到一特定之基站或接入點 從通訊系統U)接收服務。對於直接連接_對點通訊),無線 通訊設備之間會藉由一指定之通道直接通訊。 —通常於行動電話系統及類㈣統,接人點則用於 家庭或建築物内之絲瓣。忽略通訊系統之特定麵,每一 無線通訊設備中包含有一内建無線收發器和/或被連接到一益 線收發器。應注意的是,-或複數接入點及其附屬之無線通訊 設備可能在同一建築物内。 第三圖示出了一無線通訊設備之原理結構圖,其中包括主 機設備18-32和-關聯無線收發器6〇。對於行動電話主機,該 無線收發器60是它的—個内建部件。對於個人數位助理Z 機、膝上型電駐機、和/細人f駐機,縣職發器⑼ 200531465 可以是其喊部件’也可岐糾接連接部件。 從圖中可以看出,主機設備㈣中包括—處理模組5〇、 記憶體52、-個無線收發器介面M、—個輸人介面%、以及 -個輸出介面56。處賴組5G和記鐘52執行通常由主機設 備完成的對應指令。例如’對於行動電話主機設備,處理模組 5〇會根據-特定的行動電話標準執行對應之通訊功能。 無線收發ϋ介面54驗實現與無發^⑹之間的資料 接收和發送。對於從無線收發請接㈣刺(即入站資料 inbound data)’無線收發器介面54會將該資料提供給處理模组 5〇以作進—步處理和/祕送錢出介面56。輸出介面56提 :與輸出顯示設備間之連接,例如顯示器、監視器、揚聲器等, :而使接收到的資料可被顯示出來。無線收發器介面Μ還可 攸處理模組5G向無線收發器6〇提供資料。處理模組%可藉 由輪二介面58接收鍵盤、小難、麥克風等輸人設備傳來之 =站貝料(outb_d data),或自己生成該資料。對於藉由輪入 ^面58接收之資料’處理模組5〇可對該資料執行一對應的主 機功能和/錢由無線收締介面54_細#送到無線 器60 〇 久 么無線收發器60中包括-主機介面62、數位接收器處理模 *員比數位轉換 (analog-to_digital converter, ADC)66, —濾波/增域組68、— IF混合下變換模組7Q、—接收器㈣ 200531465 遽波器7卜-低雜訊放大器.(L〇wn〇ise amplifier,LNA) 72、· 一發送/接收(Tx/Rx)轉換開關73、—本地振盪模組%、記憶體. 75、-數位發送器處理模組%、—數位類比轉換器 (digital-to-analog converter,DAC)78、一濾波/增益模組 8〇、一 IF混合上變換模,组82、一功率放大器咖篇卿贩调糾、 -發送器(Tx)濾'波器模組85、以及天線%。所述天線%可以 是在發送/接收轉換開關73的控制下由發送和接收路徑共用之 單天線,或者針對發送路徑和接收路徑分別設有不同之天線。φ 天線的實祕依賴於無線通訊設備所赫之蚊標準。 數位接收器處理模組64和數位發送器處理模組%與存有 操作指令之記,_ ?5結合,分職行數位接㈣功能和數位 發运益功能。數位接收器功能包括但不限於:數位中頻至基帶 轉換(baseband Conversion)、解調(如__〇11)、組合解映射 (constellation demapping)、解碼(dec〇ding)、和 / 或解密 (descmmbling)。數位發送器功能包括但不限於:加二· (scram論g)、編碼(encoding)、組合映射(c〇nsteiiaJn mapping)、調製(modulation)、和/或數位基帶至正轉換。要實 現數位接收器和發送器處理模組64和76,可使用一共用處理 設備、分別使用-處理設備、或者使用複數處理設備。所述處 理設備可以是微處理器、微控制器、數位信號處理器、微型電 腦、中央處理單元、現場可編程問陣列(flddpn)grammabiegate 200531465 ^_)、可、_輯設備、狀態機,電 ί。75 存攸 &存結叹備可以是唯讀記憶體、隨機存取 記憶體、織記憶體、靜態記憶體、動態記憶體^ 體、和/或任何可存儲數位資訊的設備。應注意的是,當處= 拉組64和/或76藉由狀態機、類比電路、數位電路、和^邏 輯魏實現其-錢數魏時,存儲有相絲作齡的記2 將被肷入到包含有所述狀態機、類比電路、數位電路口:或 邏輯電路之電路中。 现 、 乍$…、、、泉收發态60藉由主機介面62接收一組出站: 料(outbound data)94。主機介面62將出站資料94傳送到數^200531465 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to different modes between the non-green ^ 7 ^ support and the wireless communication system. The other is about wireless communication equipment. [Prior technology] ~ ° Rivets connected with electronic devices are well known. Specific examples of the communication network include a wired packet data network, a wireless packet data network, a wired telephone network, a wireless telephone network, and a satellite communication network. Usually these communication networks include services provided by New Zealand clients. Public Switch Tumble (PSTN) is probably the best known example of a communication network and has been around for many years. The Internet is another well-known example of a communication network, which has also been around for many years. These communication networks enable client devices to communicate with each other globally. A wired local area network (LAN) such as Ethernet (Chicao is also very common, which can support service areas _ _ roads _ other settings _ communication. Local area networks are also usually connected to wide area networks and the Internet. Every network that is generally considered "wired", even though some networks, such as pSTN, may include transmit channels that can be used for wireless connections. Compared to wired networks, wireless networks have been around for a relatively short time , Such as mobile phone flaps, no gratuitous (WLANs), charm, etc. Wireless area networks are usually established according to-or multiple standards, such as ffiEdan (b), · η (g), etc. These standards can be collectively referred to as " IEEE802 11 network. In a typical IEEE802.il network, a plurality of wireless access points (Accesspoints, Aps) 200531465 Ling wireless communication equipment (such as computers including compatible I-line " surface) for wireless communication. A ,,,, Wireless area _Ministry ~ Road capacity. H belongs to ^ Together visit when using mobile computers, mobile data terminals, and other fixed mobile devices connected to the wired network of Yaco County, the network has a county Advantages, of course, compared with the area network W3_ No age_for a relatively low data rate. The current wired network can provide ^^ 1 (Gigabit), which can provide _ seconds of bandwidth. Due to its advantages in serving mobile devices, wireless LANs often cover Service area of the wired network. Among the above devices, most of the devices connected to the wired LAN are fixed, such as desktop computers; while the devices connected to the wireless LAN are mainly axis, such as mobile computers. Mobile computers There can also be, _domain network connection 'to make it possible to obtain higher bandwidth services without scaling. New wireless network standards support relatively high data rates. For example, # IEEE8〇2.ll (a) standard The supported data rate is 54 million bits. Wei) IEEE80.ll (g) has reached the above data rate per heart. The ship's gall m⑷ uses orthogonal frequency division (BM & η layer 'financial aid to the above). Hearing rate. With the OFDM physical layer, the available carriers are differentiated into a plurality of subcarriers or channels (oil hidden wins tones), and each-subcarrier transmits a part of the multiple signal data stream. Embryo 6 200531465 (a) OFDM physics Layer includes 48-bit metadata transmission channel and $ -bit control signal channel The space / bandwidth is 0.3125MΗζ. As shown in ® | 1, the subcarriers 0, 27 ~ 32, and subcarriers _27 to 31 are not used. The subcarriers + / _ 7, and the subcarriers + 8 21 are used as the four controls. Signal channel or signal. Subcarriers 1 to 6, subcarriers 8 to 20, subcarriers 22 to 26, subcarriers -1 to -6, subcarriers -8 to -20, and subcarriers -22 to -26 48 data transmission channels for transmitting data. Tian standardized the subcarrier allocation in the figure and supports a wide range of wireless LAN applications. There are also some wireless LAN applications that do not have the above-mentioned subcarrier allocation. For example, if the channel bandwidth is narrow or used for multiple-input multiple-output (MIMO) wireless communication, the subcarrier allocation in the first picture may not be optimal and / or achievable. Therefore, there is a need for an orthogonal frequency division complex chirp generation device and method for narrow channel applications and / or MIMO applications. [Summary of the Invention] The format of the positive-parent frequency division multiplexing frame of the present invention fully meets the above and other requirements. In the example embodiment, a method for generating an orthogonal frequency division multiplexing frame for wireless communication is disclosed. First, the orthogonal frequency division one frame is generated in advance, wherein the pre-data includes training information. And signal information. The method then generates a plurality of data blocks of the orthogonal frequency division multiplexing frame, wherein each of the plurality of data fields includes a plurality of subcarriers, and at least part of the plurality of data blocks includes, at most, three of the control signal dispatched. Plural subcarriers. In another embodiment, a method for producing orthogonal frequency division multiplexed frames for multiple-input multiple-output wireless communication is disclosed. ‘First convert a data stream into a complex data stream. The method then converts the complex data stream into complex orthogonal frequency division multiplexed frames, wherein each of the complex orthogonal frequency division multiplexed frames includes separate data with training information and signal information, each of which Complex Orthogonal Frequency Division Multiplexing (ΦOFDM) includes a complex data column, wherein each complex data block of each of the complex Orthogonal Frequency Division Multiplexing frames includes a complex subcarrier, wherein at least one of the complex Orthogonal Frequency Division Multiplexing The plurality of data blocks of at least a portion of the frame include up to three of said plurality of subcarriers to which control signals are assigned. In yet another embodiment, a method for receiving orthogonal frequency division multiplexed frames for wireless communication is disclosed. Firstly, the pre-positioned data of the orthogonal frequency division multiplexed frame is received, where the pre-data includes training Information and signal information. The method then receives a plurality of data columns of a side-to-parent frequency division multiplexed frame, wherein each of the plurality of data blocks includes a plurality of subcarrier frequencies, and at least some of the plurality of data blocks include, at the most, three, as indicated by signal information. The plurality of subcarrier frequencies to which control signals are assigned. The method then converts the plurality of data into internal data (inband_data). In a further embodiment, one or more such methods may be a radio frequency transmitter and / or a radio frequency receiver. [Embodiment] The second figure shows a schematic structural diagram of a communication system 10, which includes a plurality of base stations (Base stations, BS) and / or access points (Access points) 12 16 'plural wireless communication Devices 18-32, and a network hardware component. 8 200531465 Among them, the wireless communication devices 18-32 may be laptop computer hosts, personal digital assistants, 2G and 3G, personal domains and%, and / or mobile phone hosts 22 and 28. These wireless communication devices will be described in more detail in conjunction with the third figure. Base stations or access points 12-16 are operatively connected to network hardware 34 via local area networks (LAN) 36, 38, and 40. The network hardware 34 may be a router, a converter, a bridge, a modem, a system controller, etc., and it may provide a wide area network (WAN) connection 42 for the communication system 10. Each base station or access point does not have an associated antenna or antenna array to achieve communication with the wireless rail system in its area. Generally, a wireless communication device is registered to a specific base station or access point to receive services from the communication system U). For direct connection (point-to-point communication), wireless communication devices will communicate directly through a designated channel. —Usually used in mobile phone systems and similar systems, access points are used in homes or buildings. Ignoring specific aspects of the communication system, each wireless communication device includes a built-in wireless transceiver and / or is connected to a wireless transceiver. It should be noted that-or multiple access points and their attached wireless communication equipment may be in the same building. The third figure shows a schematic block diagram of a wireless communication device, which includes a host device 18-32 and an associated wireless transceiver 60. For a mobile phone host, the wireless transceiver 60 is its built-in component. For the personal digital assistant Z machine, laptop electric parking machine, and / or smart phone f parking machine, the county professional hair machine ⑼ 200531465 can be its shouting component or it can be connected to the connecting component. It can be seen from the figure that the host device ㈣ includes a processing module 50, a memory 52, a wireless transceiver interface M, an input interface%, and an output interface 56. The processing group 5G and the clock 52 execute corresponding commands that are usually completed by the host device. For example, 'for a mobile phone host device, the processing module 50 will perform a corresponding communication function according to a specific mobile phone standard. The wireless transmitting and receiving interface 54 checks the data transmission and reception between data transmission and transmission. For wireless transmission and reception, please receive inbound data (ie, inbound data). The wireless transceiver interface 54 will provide the data to the processing module 50 for further processing and / or secret money sending interface 56. The output interface 56 provides a connection with an output display device, such as a monitor, a monitor, a speaker, etc., so that the received data can be displayed. The wireless transceiver interface M can also provide the processing module 5G with data to the wireless transceiver 60. The processing module% can receive the input data from the input device such as keyboard, distress, microphone, etc. through round interface 58, or generate the data by itself. For the data received by the turn-in interface 58, the processing module 5 can perform a corresponding host function and / or money to the data from the wireless receiving interface 54_ 细 # to the wireless device 60. What is the wireless transceiver? 60 includes-host interface 62, digital receiver processing module analog-to-digital converter (analog-to_digital converter, ADC) 66,-filter / increment domain group 68,-IF mixed down conversion module 7Q,-receiver ㈣ 200531465 7 wave filter-low noise amplifier. (L〇wn〇ise amplifier (LNA) 72, · a send / receive (Tx / Rx) changeover switch 73,-local oscillation module%, memory. 75,- Digital transmitter processing module%, digital-to-analog converter (DAC) 78, a filter / gain module 80, an IF mixed up conversion module, group 82, a power amplifier Variance correction,-transmitter (Tx) filter module 85, and antenna%. The antenna% may be a single antenna shared by the transmission and reception paths under the control of the transmission / reception changeover switch 73, or different antennas may be provided for the transmission path and the reception path, respectively. The essence of the φ antenna depends on the mosquito standard that wireless communication equipments have. The digital receiver processing module 64 and the digital transmitter processing module are combined with a record of operation instructions, _? 5, a branch line digital connection function and a digital shipping benefit function. Digital receiver functions include, but are not limited to, digital intermediate frequency to baseband conversion, demodulation (such as __〇11), combination demapping, decoding, and / or decryption ( descmmbling). Digital transmitter functions include, but are not limited to: scram theory, encoding, combination mapping, modulation, and / or digital baseband-to-positive conversion. To implement the digital receiver and transmitter processing modules 64 and 76, a common processing device, a separate-processing device, or a plurality of processing devices may be used. The processing equipment may be a microprocessor, a microcontroller, a digital signal processor, a microcomputer, a central processing unit, a field programmable array (flddpn) grammabiegate 200531465, a programmable device, a state machine, an electrical ί. 75 Memory & memory can be read-only memory, random access memory, weave memory, static memory, dynamic memory ^, and / or any device that can store digital information. It should be noted that when == 64 and / or 76 is implemented by state machine, analog circuit, digital circuit, and logic logic, the number 2 where the phase is stored will be deleted. Into a circuit including the state machine, analog circuit, digital circuit port: or logic circuit. Now, at a glance, the receiving and sending states 60 receive a set of outbound data 94 through the host interface 62. Host interface 62 sends outbound data 94 to the data ^

舍达裔處理她76,顿者侧特定之無_訊標準(例; IEEE80Z1卜藍牙等)對所述出站資料94進行處理,並生¥ 出站基帶信號96。出站基帶信號%中包含有〇FDM幀,❾ 以疋-數位基帶信號(例如有一個〇 IF)或者是一數位低I 信號,所舰IF的頻率範圍通常在ΙΟΟΚΗζ至幾百萬Hz間。 數位類比轉換器78將出站基帶信號%從數位域轉換到類 比域。慮波/增益模組8G用於在將類比信號傳送給IF混合上變 換杈組82之前,對該類比信號進行濾波和/或調整該類比信號 的增益。IF混合上變換模組82基於由本地振盪模組%所提供 12 200531465 的發送器本地顧信號(TxLO)83,將 號轉換成RF賴。解放A胃δ4 ___大= 成出站RF信號98,並送到發送器缝器模組85進行 天線86則將該出站rp信號98發送到目標設備,例如^站、° 接入點和/或另一無線通訊設備。 無線收發器60還藉由天線86接收由基站、接入點或另一 無線通訊設觸發來之人站即錢88。天線_由發送/接 收轉換開關73將該入站職號88提供給接收器遽波器模組麵 7卜所述接收器濾波器模組71對所述入站卵信號狀進行帶 通濾波。接收器濾波器模組71將濾、波後之即信號提供給低雜 訊放大器72,後者對信號88進行放大以生成一放大的入站财 信號。低雜訊放大器72再將放大後之入站即信號提供給正 混合下變換模組70,後者基於由本地振盈模組74所提供之接 收器本地振盪信號(RxL〇)81,將所述放大後的入站即信號轉 換成入站低IF信號或基帶信號。π?混合下變換模組7〇將所述_ 入站低IF信號或基帶信號提供給濾波/增益模組68。然後由濾 波/增益模組68對入站低IF信號或基帶信號進行濾波和/或調 整其增盈,以生成一濾波後的入站信號。 類比數位轉換器66將濾波後的入站信號從類比域轉換到 數位域,以生成一入站基帶信號9〇,所述入站基帶信號90中 含有OFDM幀,它可以是數位基帶信號或數位低IF信號,所 13 200531465 述數位低IF的頻率範圍通常在1〇〇KHz至幾百萬^^門 接收器處理模組64對入站基帶信號9〇進行解碼、解定數位 射、和/或解調,以根據被無線收發器6〇所採用的特=無秦雨 成才示準恢復出一組入站資料(inbound data)92。主機介面、、、^ 由無線收發器介面54將所恢復出的入站資料9 ^ 備18_32。 ㈣給主機設 本領域的普通技術人員可以理解的是,第三圖中所八的無 線通訊設備可使用-或複數積體電路來實現。例如,域:備 可在-積體電路上實現,數位接收器處理模組64、數位ς送 器處理模組76和記憶體75可在一第二積體電路上實現,= 收發器60的其餘部件(天線86除外)可在—第三積體電路上 實現。在另一例子中,無線收發器6〇可在單個積體電路上實 現^另一例子中’主機設備的處糊且50與數位接收器和 發达益處理模組64和76可以是在單個積體電路上實現的一公 共處理設備。另外,記㈣52和75可在單個频電路上纽 ^或與主機設備的處理模組50、數位接收器和發送器處理模 、、且64和76所在的公共處賴組仙—積體電路上。 第四圖是兩個無線通訊設備間的無線通訊示意圖。從圖中 可以看出’第-無線通訊設備中有一發送器觸,第二無線通 2備中有-接收器102。每一無線通訊設備可參照前面的描 述钕圖3所示結構圖來實現。 14 200531465 從圖中可以看出’接收器觸接收一組出站資料94,並將-其轉換成出站RF信號98。包含有〇FDM幀1〇4的即信號98 . 從發送器100傳送到接收器102。接收器102將㈣㈣1〇4 接收為入站RF信號88,並將它們轉換成一組入站資料92。 在OFDM帻1〇4中包含一前置資料部分1〇6和一資料部分 108。所述前置資料部分106巾包括訓練資訊n〇和信號資訊 m。以8〇2.lla應用或其他8〇211應用為例,訓練資訊ιι〇 中可包含-個短訓練序列、複數防護間隔以及複數長訓練序# 列。信號資訊部分112可以是與802.lla或其他8〇211規則一 致的一信號場,它提供與0FDM幀1〇4的長度、資料率等有 關的資訊。另外,信號資訊112中可能含有一指示,以指出在 OFDM ψ貞的資料部分的複數副載波中哪些會作為控制信號或 通道。 育料部分108中包括複數防護間隔(guardintervals,GI)及複 數資料欄1 mis。每一資料攔中含有的資料位於〇fdm小貞的春 64個副載波内。如第四圖所示,在一個實施例中,資料欄116 中含有64個以RF信號98的RF頻率為中心的副載波。對於 一 20MHz的通道,副載波間之間距為312·5ΚΗζ,並由第四圖 中之各個箭頭來代表。 k圖中還可以看出,某些副載波未被使用。具體是副載波 〇釗載波27至32、副載波-27至-31未被使用。本例中只使 15 200531465 用了兩個控制信號,並位於副載波21和副載波-21。本實施例 中,副載波7和-7被用來攜帶資料,而在8〇2.11a的規則中它 們被用作導引通道。這樣—來,就可藉由用較多副載波來傳送 貢料、並用較少副載波來傳送控制信號,使得一特定的資料欄 可表示更多資料。 第五圖不出了 OFD1V[幀中的副載波的另一配置方案。其 中,控制k唬位於副載波7與位置,而副載波21和_21被用 於攜f貧料。應注意的是,在〇FDM幀的資料欄與資料欄之 間,釗載波的配置可按某些預定的模式,一區一區地從圖4所 不狀怨、交成第五圖所示狀態,或者是固定為第四圖或第五圖所 示的配置狀態。 第六圖示出了 OFDM幀中的副載波的另一配置方案。其 中’副載波0、27至32、以及_27至_32未被使用。副載波j 至6 8至20、22至26、-1至-6、-8至-20、以及-22至_26被 用於攜帶讀。本實蝴巾,副銳+/_7和副餘+/_2丨可被 用來榀f資料或控制信號。同樣,副載波+/_7和副載波+⑵ 中的〇至4個可被用來攜帶導引通道。 第七圖不出了按本發明的一實施例運行的一物理層的特 陡本發明中,該物理層駐留於一 1〇MHz的通道,並以 :、、、土楚匕與8〇2·11⑻的物理層有很多相似點也有一些不同 2第3圖將本發明的1〇MHZ〇FDM物理層與IEEE802.il⑻ 16 200531465 的物理層進行了比較。本發明的10 MHz OFDM物理層可運行, 於夕種頻帶,包括4.9-5.0GHZ頻帶和5.03-5.091GHZ頻帶。該· 物理層運行時,具有3Km的最大範圍、25Gmw的最大許可發 射功率、250〇mwEIRP、以及1〇〇蘭的最大非許可發射功率。 邊物理層的路徑損耗(障礙通道)模型可由公式為少 + /如來描述,其中,在典型值5〇恤、 116dB+/-9.3 dB 時,柄,,鐵『25次「咭乂。該 物理層的延遲張開的平均值為275 9ns,並有一個352仍的標肇 準偏移。因該物理層的延遲張開大於IEEE8〇2 n⑻物理層的 延遲張開(50ns延遲張開通道),所以需要一防護間隔(迴圈 首碼)。而且’因該物理層的路徑損耗大於IEEE8〇211⑻物理 層的路徑損耗,支撐該物理層的接收器應具有較高的靈敏度。 與IEEE802.il⑻物理層對比,當接收器的帶寬被一個因數 2所減小時,該物理層的SNR會提高3犯。防護間隔(迴圈首 碼)的長度會翻倍至1.6ms。符號長度被加倍以維持與鲁 IEEE802.11(a)相同的防護間隔開銷。正如IEEE8〇2 n⑻物理 層一樣,在該物理層也可使用一個64點快速傅裏葉變換(Fast Fourier Transform, FFT) 第八圖是根據本發明實施例,描述物理層通道的控制方 式。因為物理層的帶寬減小(相對於IEEE8〇211 (a)物理層 的f見而s ),中心通道,通道-1和通道+i更接近於dc。在 17 200531465 w處,許多接收器連接喝波德波器。 正常頻率補償有效地將凹槽遠離声交終端之間的 處,頻率補償的作用更加苛 处。在靠近通道的間隔 補償™波她;頻率 因此,根據本發明,内部的兩個資:刀。 道被去除/不再用於調 (通射和通 物理層在通道]和+1上^ =利用脏咖.η⑷ 通道-12,-7,7和21的^= Γ移動到承載控制信號 4Q7 28KH / “正後,物理層包括一個 4〇7·28ΚΗζ+接收器凹槽帶寬的死區帶寬。 在種運用中,物理層根據k=符號索引模6 (從零信號符 唬開始)交替使用通道·· 口儿 -7}上的資料 k=l ;卜21、,乃 k=3 ; {-7,7} k=5 ; {7,21} k=〇 ;在通道{-21 k=2 ; {々I,21} k=4 ; [7,21}The Sheda people processed her 76, and the specific non-communication standard (for example, IEEE80Z1, Bluetooth, etc.) was processed on the outbound data 94, and the outbound baseband signal 96 was generated. The outbound baseband signal% includes 0FDM frames. The frequency range of the IF is usually between 100KHz and several million Hz, with 疋 -digital baseband signals (for example, a 0IF) or a digital low-I signal. The digital analog converter 78 converts the outbound baseband signal% from the digital domain to the analog domain. The wave considering / gaining module 8G is used to filter and / or adjust the gain of the analog signal before transmitting the analog signal to the IF hybrid up-shift group 82. The IF hybrid up-conversion module 82 converts the signal into an RF signal based on the transmitter Local Gu Signal (TxLO) 83 provided by the Local Oscillator Module% 12 200531465. Liberation A stomach δ4 ___ Big = into an outbound RF signal 98 and send it to the transmitter stitcher module 85 for antenna 86, then send the outbound rp signal 98 to the target device, such as ^ station, ° access point and / Or another wireless communication device. The wireless transceiver 60 also receives, through the antenna 86, the personal station 88 which is triggered by a base station, an access point or another wireless communication device. Antenna_The inbound job number 88 is provided to the receiver's wave filter module face by the send / receive switch 73. The receiver filter module 71 performs band-pass filtering on the inbound egg signal. The receiver filter module 71 provides the filtered and waved signal to the low-noise amplifier 72, which amplifies the signal 88 to generate an amplified inbound financial signal. The low-noise amplifier 72 then supplies the amplified inbound signal to the forward hybrid down-conversion module 70, which is based on the receiver local oscillation signal (RxL0) 81 provided by the local vibratory module 74, The amplified inbound signal is converted into an inbound low IF signal or baseband signal. The π? hybrid down conversion module 70 provides the _ inbound low IF signal or baseband signal to the filter / gain module 68. The filtering / gain module 68 then filters the inbound low IF signal or baseband signal and / or adjusts its gain to generate a filtered inbound signal. The analog-to-digital converter 66 converts the filtered inbound signal from the analog domain to the digital domain to generate an inbound baseband signal 90. The inbound baseband signal 90 contains an OFDM frame, which can be a digital baseband signal or a digital Low IF signal, so the frequency range of the digital low IF is generally between 100KHz and several million ^^ The gate receiver processing module 64 decodes the inbound baseband signal 90, resolves the digital radio, and / Or demodulate to recover a set of inbound data 92 according to the characteristics adopted by the wireless transceiver 60. The host interface, ..., ^ will be restored by the wireless transceiver interface 54 inbound data 9 ^ 18_32. (1) Setting the host. Those of ordinary skill in the art can understand that the wireless communication equipment shown in the third figure can be implemented by using-or a complex integrated circuit. For example, the domain: can be implemented on a -integrated circuit, the digital receiver processing module 64, the digital transmitter processing module 76, and the memory 75 can be implemented on a second integrated circuit, = of the transceiver 60 The remaining components (except antenna 86) can be implemented on the third integrated circuit. In another example, the wireless transceiver 60 can be implemented on a single integrated circuit. In another example, the 'host device's ambiguity and 50 with the digital receiver and the advanced processing module 64 and 76 can be in a single A common processing device implemented on an integrated circuit. In addition, the memory 52 and 75 can be connected on a single frequency circuit or with the processing module 50 of the host device, the digital receiver and transmitter processing modes, and the common locations where 64 and 76 are located are group circuits. The fourth figure is a schematic diagram of wireless communication between two wireless communication devices. It can be seen from the figure that there is a transmitter touch in the first wireless communication device, and a receiver 102 in the second wireless communication device. Each wireless communication device can be implemented by referring to the structure diagram shown in FIG. 3 of the foregoing description of neodymium. 14 200531465 It can be seen from the figure that the receiver receives a set of outbound data 94 and converts it into an outbound RF signal 98. The signal 98, which contains the 0FDM frame 104, is transmitted from the transmitter 100 to the receiver 102. The receiver 102 receives Q104 as an inbound RF signal 88 and converts them into a set of inbound data 92. In OFDM # 104, a pre-data part 106 and a data part 108 are included. The pre-data part 106 includes training information no and signal information m. Taking 802.lla application or other 8021 application as an example, the training information may include a short training sequence, a complex guard interval, and a complex long training sequence. The signal information part 112 may be a signal field consistent with 802.lla or other 80211 rule, and it provides information related to the length, data rate, etc. of the OFDM frame 104. In addition, the signal information 112 may include an indication to indicate which of the plurality of subcarriers in the data portion of the OFDM signal will be used as a control signal or channel. The breeding section 108 includes a plurality of guard intervals (GI) and a plurality of data fields 1 mis. The data contained in each data block is located in the 64 subcarriers of Ofdm Xiaozhen's spring. As shown in the fourth figure, in one embodiment, the data column 116 contains 64 subcarriers centered on the RF frequency of the RF signal 98. For a 20MHz channel, the spacing between subcarriers is 312.5KΗζ and is represented by the arrows in the fourth figure. It can also be seen in the k-picture that some subcarriers are not used. Specifically, the subcarriers 27 to 32 and the subcarriers -27 to -31 are not used. In this example, only 15 200531465 uses two control signals and is located on subcarrier 21 and subcarrier-21. In this embodiment, the subcarriers 7 and -7 are used to carry data, and they are used as guide channels in the rule of 802.11a. In this way, by using more subcarriers to send data and fewer subcarriers to send control signals, a particular data column can represent more data. The fifth figure does not show another configuration scheme for OFD1V [subcarriers in a frame. Among them, the control k is located at the sub-carrier 7 and the position, and the sub-carriers 21 and _21 are used to carry the data. It should be noted that between the data column and the data column of the 0FDM frame, the configuration of the carrier wave can be based on some predetermined patterns, one by one, from the dissatisfaction shown in Fig. 4 to the fifth picture. State, or fixed to the configuration state shown in the fourth or fifth figure. The sixth figure shows another configuration scheme of the subcarriers in the OFDM frame. Among these, 'subcarriers 0, 27 to 32, and _27 to _32 are not used. The subcarriers j to 6 8 to 20, 22 to 26, -1 to -6, -8 to -20, and -22 to _26 are used for carrying reading. In the real butterfly, the sub-sharp + / _ 7 and the sub-shave + / _ 2 丨 can be used for data or control signals. Similarly, 0 to 4 of the subcarrier + / _ 7 and subcarrier + ⑵ can be used to carry the pilot channel. The seventh figure does not show the extreme steepness of a physical layer operating according to an embodiment of the present invention. In the present invention, the physical layer resides in a channel of 10 MHz, and is: The physical layer of 11⑻ has many similarities and some differences. Figure 3 compares the physical layer of 10MHZFDM of the present invention with the physical layer of IEEE802.il⑻ 16 200531465. The 10 MHz OFDM physical layer of the present invention is operable in various frequency bands, including the 4.9-5.0GHZ frequency band and the 5.03-5.091GHZ frequency band. When the physical layer is running, it has a maximum range of 3 Km, a maximum permitted transmission power of 25 Gmw, a maximum of 250 MW EIRP, and a maximum unlicensed transmission power of 100 lan. The path loss (obstacle path) model of the edge physical layer can be described by the formula: L / +, where, at a typical value of 50 shirts, 116dB +/- 9.3 dB, the handle, and iron "25 times" 咭 乂. The physical layer The average value of delay spread is 275 9ns, and there is still a standard deviation of 352. Because the delay spread of this physical layer is greater than the delay spread of the IEEE802 (n = 50ns delay spread channel), Therefore, a guard interval (the first code of the loop) is needed. Moreover, because the path loss of the physical layer is greater than the path loss of the IEEE8020⑻ physical layer, the receiver supporting the physical layer should have higher sensitivity. With IEEE802.il⑻physics Layer comparison, when the receiver's bandwidth is reduced by a factor of 2, the physical layer's SNR will be increased by 3. The length of the guard interval (loop first code) will be doubled to 1.6ms. The symbol length is doubled to maintain the same The same guard interval overhead as in IEEE 802.11 (a). Just like the IEEE 802 n⑻ physical layer, a 64-point Fast Fourier Transform (FFT) can also be used in this physical layer. The eighth figure is based on this Invention Example, Description The control method of the physical layer channel. Because the bandwidth of the physical layer is reduced (compared with f of the physical layer of IEEE8021 (a)), the center channel, channel-1 and channel + i are closer to dc. On 17 200531465 At w, many receivers are connected to the Podwave. Normal frequency compensation effectively moves the groove away from the acoustic communication terminal, and the role of frequency compensation is even more severe. In the close-to-channel interval compensation ™ wave, the frequency is therefore According to the present invention, the two internal resources: the knife. The channel is removed / no longer used for tuning (the radio and physical layers are on the channel) and +1 ^ = the use of dirty coffee. Η 通道 channel -12, -7, ^ = Γ of 7 and 21 moves to the bearing control signal 4Q7 28KH / "Positively, the physical layer includes a dead band bandwidth of 407 · 28KΗζ + receiver groove bandwidth. In this application, the physical layer is based on the k = sign The index modulo 6 (starting from the zero-signal bluff) alternately uses the data on the channel · Kou-7} k = l; Bu 21,, Na k = 3; {-7, 7} k = 5; {7, 21} k = 〇; in the channel {-21 k = 2; {々I, 21} k = 4; [7,21}

廷種方案保持了控制信號的頻率的多樣性。而且,除了用 :IFFT的日守間週期因為因數2而增長,與脏膽2.11⑷部 刀17.3·3同樣方式產生短和長訓練符號。支援PHY等級3, 4·5 6 ’ 9 ’ 12 ’ 18,25,27Mbps。 乂些加長的符號時間和空氣傳播時間需要MAC時間變化 、才於IEEE802.ll (a)物理層而言)。這些時間變化概述如 下: 18 200531465 aCCATime從4增力口到8微秒 aAirPropagationTime從遠遠小於1微秒增加到2微秒 ’ aSlotTIME=14 微秒 aSIFTIME=16微秒(無變化) PIFS=30 微秒(SIF+SLOT) DIFS=44 微秒(SIF+2*SLOT) 第九圖是一個用於窄通道的OFDM幀的副载波分配圖。 窄通道可以有一個小於20MHz的帶寬,在一個實施例中可以· 是10MHz。這種實例中,參考附圖8,副載波〇和+1和a不 使用。另外,副載波27到32和-27到32也不使用。在該實例 中’為替代副載波-1和+1的損失通道,使用副載波+7和-7或 者+21和-21用於傳輸資料,而使用另一對副載波傳送控制信 號。在本實例中,副載波+1和4用於傳輸空資料(nulldata)。 弟十圖是多入多出無線(multiple_input_multiple_output, ΜΙΜΟ)的無線通訊結構示意圖。在本實例中,無線通訊設備鲁 的發射器120接收出站的資料流124,並將其轉換成複數RF 信號’每一個RF信號包括有複數〇FDM幀126。接收器122 接收所述複數RF信號,並將其轉換成入站資料流128。發射 器120和接收器122將進一步結合第十一圖的無線通訊設備說 明。 在附圖中,每一個OFDM幀126可以是第六圖所示的副 19 200531465 且,從通路到通路,副载波分配方式可以不 同例如’如果有四個益綠'S ^ 器⑵之間,_中的每=路存在於發射_和接收 Λ、。術以有不同的副载波分配方 "°個.、、、線通路可以沒有控號通道 有四個控制信號诵憎,品年丨 为個可以 机號通運,而剩下的兩個其中之一可以是邪_7、 另一侧㈣。本領域技術人員可知,因 之間的多通訊通路,從一個通路發出的控編虎 “可以__步和/或指向另—通路, 關聯同步和/或指向多通路。 ’用於 f十圖疋包括主機設備18_32和關聯無線收發器副的 的結構示意圖。在行動電話中,無線收發請 f建,、且件。對於個人數位助理主機、膝上型電腦主機,和/ 或個人電腦主機’無線收發器16〇可以是内建或外置結合组 件0 如圖所不’主機設備18_32包括處理模組5〇、記憶體52、( …、線收毛w丨面Μ、輸入介面58和輸出介面%。處理模組 5〇和記憶體52執行那些通常在主機設備上完成的通訊指令。 例如’饤動電話主機,處理模組5〇根據具體行動電話標準完 成通§fL通功能。 ',無線收發11介面54實現資料從無線收發ϋ 160的接收和 發送。無線收發器介面54將這些從無線收發器⑽接收的資 20 200531465 到Γ 組5G騎進—步處理和/或發送 面56。輸出介面56連接顯示器、監視器、揚聲器等 卢輪出顯不設傷以顯示接收的資料。無線收發% ^猎由輸人介面58則_、_、麥核議入設備 的貧料或者本身產生資料。對於藉由輸人介面%接收的資 枓,處理模組5G可以提供資料方面的相應的主機功能和/或將 貧料藉由無線收發器介面54傳送到無線收發器刚。 無線收發器廳包括主機介面162、一個基帶處擊且 164、記憶體166、複數無線頻率⑽發射器⑽指、發射 /接收(T/R)模組174、複數天線182_186,複數虾接收器 176-180以及本地振錄0)模組2〇〇。與存儲於記憶體脱的 操作指令相結合的基帶處理模組刚,分概行數位接收器功 能和數位發射器功能。數位接收器功能包括但不限於:數字中 頻到基帶的轉換、解調、組合解映射、解碼、去交叉 (de-interleaving)、快速傅裏葉變換、週期前置去除(c⑽^ p論 removal)、空間域和時間域的解碼、和/或歸一化 (descmmbling)。數位發送器功能包括但不限於:不規則化 (scrambling)、編碼、交又、組合映射、調製、反快速傅裏葉變 換、週期月ίΐ置、空間域和時間域的編碼’和/或數位基帶向數 位中頻的轉化。基帶處理模組164可以由_個或複數處理設備 21 200531465 實現。這種處理設傷可 。 理器、微型電腦、中央處理單 設備、狀態機、邏輯電路、類路7陣列、可編程邏輯 可基於操作齡處黯^舰叹㉟魏 或任广 憶體腿可以是單記憶體或多記憶體。這種侧可=。§己 =’=存取_、易失記憶體、非易_體: 資體,記憶體’和/_具有存儲數位 :;二顧。注意當處理模組64藉由靜態機、類比電路、 數位笔路、和/或邏輯電路執行一個或複數功能時,存儲通訊 #作指令的記憶體被嵌人包括靜態機、類比電路、數位電路、 以及/或者邏輯電路的電路中。 树仃中’無線收發器刚藉由主機介面⑹從主機接收 出站資料流188。基帶處理模組164接收出站資料流⑽,並 基於板式選擇信號2G2纽—個或複數出站符號流⑽,每一 個出站符號流包括0FDM幢。模式選擇信號搬表示的具體鲁 模式在模式選擇表中具體說明,詳見本文末尾。例如模式選擇 域202 ’可參照表i所示的頻帶為2 4GHz、通道帶寬如或 22MHz以及最大位元率54百萬位元每秒。在通常的類型中, 模式選擇信號還表明—具體頻率範圍從1百萬位元每秒到54 百萬位兀每秒。另外,模式選擇信號表明調製的具體類型,包 括但不限於,巴克碼調製、BPSK、QPSK、CCK、16QAM、 22 200531465 和/或64QAM。如表卜還給出了編碼率:每個〇FDM副戴頻· 上的數據bit數(NBPSC)、每個〇FDM符號中的已編碼池_ 的個數(NCBPS)、每個OFDM符號中將包含的資料盼的位 數(NDBPS)、分貝中的錯誤向量量級(EVM)、表示要求獲 得目標資料包錯誤率的最大接收容量的敏感度(例如,在 IEEE802.Ha中為1〇%)、相鄰通道拒斥(ACR),以及交替相 .鄰通道拒斥(AACR)。 模式選擇信號2〇2也表明具體通道化的方式,以用於通訊φ 核式’用於表1中的資訊的該通訊模式在表2中有所說明。如 表2所示,表2中包括通道數以及通訊中心頻率。模式選擇信 號還可以表明表3所示的用於表i的功率譜密度(power㈣㈣ density,PSD)遮罩碼值。模式選擇信號2〇2可以表示表*中的 具有5GHz頻帶、20MHz通道帶寬以及最大位元率%百萬位 率值。如果具體模式選擇已^,則表5表明其載波的 選擇。還可以選擇,如圖6所示,模式選擇信號1〇2可以表示鲁 2/孤頻帶、20MHz通道帶寬以及最大位元率192百萬位元 母秒的率值。在圖6中大量的天線可以用於獲得更高帶寬。在 本心】中模式遥擇還表明所用的天線的數量。表7說明用於表 6的載波的選擇。表8說明在24GHz頻帶、π遍z通道帶寬 以及最大位元率192百萬位元每秒的情況下的另-選擇模 弋對應的表8包括使用2-4天線以及在表中表示的空間時間 23 200531465 編碼率表化範圍從12百萬位元每秒到216百萬位元每秒的各 ^位凡率。表9表示用於表8的載波的選擇。模式選擇信號加 β '表丁表10中所不的具體操作模式,相應於頻帶, 其具有40MHZ頻帶、4〇MHz通道帶寬以及最大位元率條百 萬位凡每秒。如表1G所示’利用M個天線以及對應通訊空 間日"間編碼率,位元率變化範圍可以從13.5百萬位元每秒到 伽百萬位元每秒。们0還表明具體編碼配置編碼率以及 值表Π給出了用於表1〇的功率譜密度遮罩碼值, 表12給出表10的載波的選擇。 基於模式選擇信號202的基帶處理模組164,從出站資料 產生個或複數出站符號流19〇,該出站符號流⑽包 括=文中所述的0FDM幅。例如,如果模式選擇信號施表 明早發射天線正用於已選擇的具體模式,則基帶處理模組脱 職生單出站符號流携。可選擇的,如果模式選擇信號表示 、或者4天線,基帶處理模組脱將從出站資料⑽產生相 應於天線數的2、3或4出站符號流 190 〇 依,由基帶處理模組164產生的出站符號流携的數量, H數里的即發射器168-172將可以用來將出站符號流190 。、成出站RF信號192。發射/接收模組174接收出站職 唬192 ’亚為出站处信號提供通訊天線此脱。 田無線收發器〗6〇在接受模式狀態時,發射/接收模組⑺ 24 200531465This kind of scheme maintains the diversity of the frequency of the control signal. Moreover, except that the inter-day interval with the: IFFT is increased by a factor of 2, the short and long training symbols are generated in the same way as in the viscera 2.11 crotch knife 17.3.3. Supports PHY level 3, 4 · 5 6 ′ 9 ′ 12 ′ 18, 25, 27 Mbps. Some of the longer symbol times and air propagation times require MAC time changes, as far as the IEEE802.ll (a) physical layer is concerned). These time changes are summarized as follows: 18 200531465 aCCATime increased from 4 booster to 8 microseconds aAirPropagationTime increased from much less than 1 microsecond to 2 microseconds' aSlotTIME = 14 microseconds aSIFTIME = 16 microseconds (no change) PIFS = 30 microseconds Second (SIF + SLOT) DIFS = 44 microseconds (SIF + 2 * SLOT) The ninth figure is a subcarrier allocation diagram for a narrow channel OFDM frame. The narrow channel may have a bandwidth of less than 20 MHz, and in one embodiment may be 10 MHz. In this example, referring to Fig. 8, the subcarriers 0 and +1 and a are not used. In addition, the subcarriers 27 to 32 and -27 to 32 are not used. In this example, 'is a loss channel that replaces subcarriers -1 and +1, and subcarriers +7 and -7 or +21 and -21 are used to transmit data, and another pair of subcarriers is used to transmit control signals. In this example, the subcarriers +1 and 4 are used to transmit null data. Figure 10 is a schematic diagram of the wireless communication structure of multiple-input multiple-output wireless (multiple_input_multiple_output, MIMO). In this example, the transmitter 120 of the wireless communication device Lu receives the outbound data stream 124 and converts it into a complex RF signal. Each RF signal includes a complex OFDM frame 126. A receiver 122 receives the complex RF signal and converts it into an inbound data stream 128. The transmitter 120 and the receiver 122 will be further described in conjunction with the wireless communication device of FIG. In the drawing, each OFDM frame 126 may be a sub 19 200531465 shown in the sixth figure, and from channel to channel, the subcarrier allocation method may be different. For example, 'if there are four beneficial green' devices, _ Each of the paths exists in transmitting and receiving Λ ,. There are different subcarrier allocation methods. There are four control signals on the channel. There are no control channels. There are four control signals. The product year can be transported by machine number, and the remaining two are among them. One can be evil _7, the other side ㈣. Those skilled in the art may know that due to the multiple communication paths between the control and editing tigers sent from one path "can __step and / or point to another path, associate synchronization and / or point to multiple paths.疋 Includes the structure diagram of the host device 18_32 and the associated wireless transceiver pair. In mobile phones, please set up wireless transmission and reception. For personal digital assistant host, laptop host, and / or personal computer host ' The wireless transceiver 16 can be a built-in or external integrated component. As shown in the figure, the host device 18_32 includes a processing module 50, a memory 52, (..., a cable receiving surface, an input interface 58, and an output. The interface%. The processing module 50 and the memory 52 execute those communication commands usually completed on the host device. For example, 'the mobile phone host, the processing module 50 performs the communication function according to the specific mobile phone standard.', The wireless transceiver 11 interface 54 realizes the receiving and sending of data from the wireless transceiver ϋ 160. The wireless transceiver interface 54 transfers the data received from the wireless transceiver 20 20 200531465 to the Γ group 5G riding-in process and / or The sending interface 56. The output interface 56 is connected to a display, monitor, speakers, etc. The display is not damaged to display the received data. Wireless transmission and reception% ^ Hunting by the input interface 58 Data or data generated by itself. For the data received through the input interface%, the processing module 5G can provide the corresponding host function in data and / or transmit the poor data to the wireless transceiver through the wireless transceiver interface 54. Wireless Transceiver Hall includes host interface 162, a baseband and 164, memory 166, multiple wireless frequency (transmitter) fingers, transmit / receive (T / R) module 174, multiple antennas 182_186, multiple shrimp receivers 176-180 and local vibration recording 0) module 200. The baseband processing module combined with the operation instructions stored in the memory is divided into two lines: digital receiver function and digital transmitter function. Digital receiver function Including but not limited to: digital IF to baseband conversion, demodulation, combined demapping, decoding, de-interleaving, fast Fourier transform, c 前置 ^ p theory removal, spatial domain with Time domain decoding, and / or descmmbling. Digital transmitter functions include but are not limited to: scrambling, encoding, interleaving, combined mapping, modulation, inverse fast Fourier transform, periodic month Encoding, spatial and time domain coding 'and / or the conversion of digital baseband to digital intermediate frequency. The baseband processing module 164 can be implemented by one or more processing equipment 21 200531465. This processing can be done without damage. Microcomputers, central processing single devices, state machines, logic circuits, class 7 arrays, and programmable logic can be based on the age of the operation. Ship or Wei Guang Ren's legs can be single memory or multiple memories. This side may =. § Ji = ’= access_, volatile memory, non-volatile memory: data, memory’ and / _ have storage digits:; Note that when the processing module 64 executes one or more functions by a static machine, analog circuit, digital pen circuit, and / or logic circuit, the memory storing the communication # instruction is embedded in the static machine, analog circuit, and digital circuit. , And / or logic circuits. The 'wireless transceiver' in the tree has just received the outbound data stream 188 from the host through the host interface. The baseband processing module 164 receives the outbound data stream, and based on the plate selection signal 2G2, one or more outbound symbol streams, each of the outbound symbol streams includes 0FDM blocks. The specific mode indicated by the mode selection signal is described in the mode selection table. For details, see the end of this article. For example, the mode selection field 202 'may refer to Table i. The frequency band is 24 GHz, the channel bandwidth is 22 MHz, and the maximum bit rate is 54 million bits per second. In the usual type, the mode selection signal also indicates that the specific frequency ranges from 1 million bits per second to 54 million bits per second. In addition, the mode selection signal indicates the specific type of modulation, including, but not limited to, Barker code modulation, BPSK, QPSK, CCK, 16QAM, 22 200531465, and / or 64QAM. As shown in the table, the coding rate is also given: the number of data bits (NBPSC) on each OFDM frequency, the number of coded pools (NCBPS) in each OFDM symbol, and the number of OFDM symbols in each OFDM symbol. The number of bits (NDBPS) of the data to be included, the magnitude of the error vector (EVM) in decibels, and the sensitivity to indicate the maximum receiving capacity required to obtain the target packet error rate (for example, 10% in IEEE802.Ha ), Adjacent channel rejection (ACR), and alternate phase. Adjacent channel rejection (AACR). The mode selection signal 202 also indicates a specific channelization mode, which is used for communication φ core type '. The communication mode used in the information in Table 1 is described in Table 2. As shown in Table 2, Table 2 includes the number of channels and the frequency of the communication center. The mode selection signal can also indicate the power spectrum density (PSD) mask code values shown in Table 3 for Table i. The mode selection signal 202 can indicate a value in the table * with a 5 GHz band, a 20 MHz channel bandwidth, and a maximum bit rate% megabit rate. If the specific mode selection has been made, Table 5 indicates the carrier selection. Alternatively, as shown in FIG. 6, the mode selection signal 102 can represent a Lu 2 / solitary band, a 20 MHz channel bandwidth, and a maximum bit rate of 192 million bit mother-seconds. A large number of antennas in FIG. 6 can be used to obtain higher bandwidth. Mode selection in Intrinsic] also indicates the number of antennas used. Table 7 illustrates the choice of carriers for Table 6. Table 8 shows the alternative-selection mode corresponding to the case of the 24 GHz band, the π-pass z-channel bandwidth, and the maximum bit rate of 192 million bits per second. Table 8 includes the use of 2-4 antennas and the space shown in the table. Time 23 200531465 The encoding rate is expressed at various bit rates from 12 million bits per second to 216 million bits per second. Table 9 shows the selection of carriers for Table 8. The mode selection signal plus β ′ indicates the specific operation mode not shown in Table 10, which corresponds to the frequency band, which has a 40 MHz band, a 40 MHz channel bandwidth, and a maximum bit rate of one million bits per second. As shown in Table 1G ', using M antennas and corresponding communication space-day coding rates, the bit rate can vary from 13.5 million bits per second to gamma million bits per second. We also indicate that the specific coding configuration coding rate and value table II gives the power spectral density mask code values used in Table 10, and Table 12 gives the carrier selection of Table 10. The baseband processing module 164 based on the mode selection signal 202 generates one or a plurality of outbound symbol streams 19o from the outbound data, and the outbound symbol streams include the 0FDM frames described in the text. For example, if the mode selection signal indicates that the transmitting antenna is being used in the selected specific mode tomorrow, the baseband processing module will send outbound single-stream symbol stream. Optionally, if the mode selection signal indicates or 4 antennas, the baseband processing module will generate 2, 3, or 4 outbound symbol streams corresponding to the number of antennas from the outbound data 190, and the baseband processing module 164 The number of outbound symbol streams generated. The transmitters 168-172 in H number can be used to convert the outbound symbol stream 190. , Into an outbound RF signal 192. The transmitting / receiving module 174 receives the outbound signal 192 ′ and provides a communication antenna for the outbound signal. Tian Wireless Transceiver〗 6.When in the receiving mode, the transmitting / receiving module ⑺ 24 200531465

藉由天線182-186接收一個或複數入站RF信號。發射/接收模 組174為一個或複數RF接收器ι76_180提供入站卵信號 194。处接收器176_180將輸入RF信號194轉換成相應包括 文中所述的OFDM幀的入站信號流196的通訊資料。入站庐 號流196的數量相應於資料接收的具體模式(該模式可以是表 1一12表示的任意一種模式)。基帶處理模組164接收入站符號 流190並將其轉換成入站資料流198,該資料流藉由主機介面 162提供給主機18-32。One or more inbound RF signals are received through antennas 182-186. The transmit / receive module 174 provides an inbound egg signal 194 to one or more RF receivers 76_180. The receiver 176_180 converts the input RF signal 194 into communication information corresponding to the inbound signal stream 196 including the OFDM frame described herein. The number of inbound stream 196 corresponds to the specific mode of data reception (this mode can be any of the modes shown in Table 1-12). The baseband processing module 164 receives the inbound symbol stream 190 and converts it into an inbound data stream 198, which is provided to the hosts 18-32 through the host interface 162.

正如本領域撕人請知,第十―圖巾之鱗軌設備可 以利用-個或複數積體電路實現。例如,主機設備可以在一低 積體電路上實現,基帶處理模組164和記憶體166可以在第二 積體電路實現,麵除了场18議的無魏鄉⑽的组 件可以在第三積體電路上實現。在另—實施辦,無線收發哭 ⑽可以在單積體電路上實現。另一例子,主機設備的處理模 ㈣和基帶處理模組164可以是在單積體電路上共用處理設 ^而且’記憶體52和記憶體166可以在單積體電路上和/或 ^㈣卿處衡164的_細_樣的積體 电裕上貫現。 『斗‘ 又Μ貝所知,文中所使用的,術語“充分 及心近似地,,,提供—種1業允制可姆的通訊術語以 及/或者術語之__性。這種工業允許的相容範圍從低於 25 200531465 篇’以及相應的但不限於,元件值、積體電路處理變 化、溫度Μ化、升高和降低錄,以及/或者熱噪音。這種 語間的相關性從較小的百分比差異到大#_的差異。本領域 -般技術人員還可知,文中所使㈣,術語“可操作的連 接”’包鋪㈣他元件、元素、電路、或麵組直接連接和 間接連接,然而’間接連接、交互元件、元素、電路或模組並 不修改信號資訊但需要調節電料級、電鱗級以及/或者能 量等級。如本領域一般技術人員所知,可推知的連接(也就是" -個元件藉由介面連接到另一元件)包括在元件之間直接以及 間接連接關樣的方式也就是“可操作連接,,。本領域一般技 術人員可知,文中所使用的,術語“有效比較,,,表示兩個又或 更多元件、術語、信號等等的比較,提供—個可預知的聯繫。 例如,可預知聯繫是信號丨比信號2具有更大數量級,也就是, 當信號1的數量級比信號2的數量級大時或者信號2的數量級 比信號1的小的情況下,可以得到有效比較。 上述討論公開了各種用於產生和接收0FDM鴨的方法和 設備。本領域-般技術人員可知,在不超出權利要求範圍的情 況下由本發明所教授方法可得到其他實施例。 模式選擇表: 位 元 率As everyone knows in the art, the tenth-scale scale rail device can be realized by using one or plural integrated circuits. For example, the host device can be implemented on a low-integral circuit, the baseband processing module 164 and the memory 166 can be implemented on a second integrated circuit, and the components without Weixiang Village except for the field 18 can be implemented in a third integrated circuit. Implemented on the circuit. In another implementation office, wireless transceiver can be implemented on a single integrated circuit. For another example, the processing mode of the host device and the baseband processing module 164 may be shared processing devices on the single-integrated circuit and the memory 52 and the memory 166 may be on the single-integrated circuit and / or The _fine_like integrated electric power of the weighing 164 is realized. "Dou" is also known by Mbei, and the term "sufficiently and similarly," as used herein, provides a communication term and / or terminology that permits Kom. This industry allows Compatibility ranges from less than 25 200531465 articles, and corresponding but not limited to, component values, integrated circuit processing changes, temperature changes, raising and lowering, and / or thermal noise. The inter-language correlation is from Small percentage difference to large #_ difference. Those skilled in the art can also know that the term "operably connected" used in the text to cover other components, elements, circuits, or surface groups directly connected and Indirect connection, however, 'indirect connection, interactive components, elements, circuits or modules do not modify the signal information but need to adjust the electrical level, scale and / or energy level. As known to those skilled in the art, it can be inferred Connection (that is, "a component is connected to another component through an interface") includes direct and indirect connections between components, such as "operably connected." Those of ordinary skill in the art may know that the term "effective comparison," as used herein, means a comparison of two or more elements, terms, signals, etc., to provide a predictable link. For example, the predictable link is Signal 丨 has a larger order of magnitude than signal 2, that is, when the magnitude of signal 1 is greater than the magnitude of signal 2 or the magnitude of signal 2 is smaller than the magnitude of signal 1, effective comparison can be obtained. The above discussion discloses various uses Methods and equipment for generating and receiving OFDM ducks. Those skilled in the art can know that other embodiments can be obtained by the method taught by the present invention without exceeding the scope of the claims. Mode selection table: Bit rate

調製 編碼 NBPSC 率 NCBPS NDBPS EVM 靈 ACR AACR 敏 度 26 200531465Modulation coding NBPSC rate NCBPS NDBPS EVM smart ACR AACR sensitivity 26 200531465

功率譜密度遮罩碼頻率偏移 ~ ldBr — ~"—~~ — -9MHz〜9 MHz ~ 0 --——~~ +/-11 MHz -20 ----~~- +/-20 MHz ' -28 ----- 十/*ou ivinz汉又八 ------ ~^50~ ~--- 表4 : 5GHz,20MHz通^寬,54Mbps最大位元率Power spectral density mask code frequency offset ~ ldBr — ~ " — ~~ — -9MHz ~ 9 MHz ~ 0 ------ ~~ +/- 11 MHz -20 ---- ~~-+/- 20 MHz '-28 ----- ten / * ou ivinz Han and eight ------ ~ ^ 50 ~ ~ --- Table 4: 5GHz, 20MHz wide, 54Mbps maximum bit rate

位 I 調製 =ZL·^_丨 NDBPS 丨 EVM 丨靈 | ACR 丨 AACR 27 200531465 元 率 碼 率 敏 度 6 BPSK 0.5 1 48 24 -5 -82 16 32 9 BPSK 0.75 1 48 36 -8 -81 15 31 12 QPSK 0.5 2 96 48 -10 -79 13 29 18 QPSK 0.75 2 96 72 -13 -77 11 27 24 16-QAM 0.5 4 192 96 -16 -74 8 . 24 36 16-QAM 0.75 4 192 144 -19 -70 4 20 48 64-QAM 0.666 6 288 192 -22 -66 0 16 54 64-QAM 0.75 6 288 216 -25 -65 -1 15 表5 :表4的載波的選擇Bit I modulation = ZL · ^ _ 丨 NDBPS 丨 EVM 丨 Spirit | ACR 丨 AACR 27 200531465 Yuan rate code rate sensitivity 6 BPSK 0.5 1 48 24 -5 -82 16 32 9 BPSK 0.75 1 48 36 -8 -81 15 31 12 QPSK 0.5 2 96 48 -10 -79 13 29 18 QPSK 0.75 2 96 72 -13 -77 11 27 24 16-QAM 0.5 4 192 96 -16 -74 8. .24 36 16-QAM 0.75 4 192 144 -19- 70 4 20 48 64-QAM 0.666 6 288 192 -22 -66 0 16 54 64-QAM 0.75 6 288 216 -25 -65 -1 15 Table 5: Carrier selection in Table 4

通道 頻率(MHz) 國家 通道 頻率(MHz) 國家 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA/Europe 34 5170 Japan 40 5200 USA/Europe 38 5190 Japan 44 5220 USA/Europe 42 5210 Japan 48 5240 USA/Europe 46 5230 Japan 52 5260 USA/Europe 56 5280 USA/Europe 60 5300 USA/Europe 64 5320 USA/Europe 100 5500 USA/Europe 104 5520 USA/Europe 108 5540 USA/Europe 112 5560 USA/Europe 116 5580 USA/Europe 120 5600 USA/Europe 124 5620 USA/Europe 128 5640 USA/Europe 132 5660 USA/Europe 136 5680 USA/Europe 140 5700 USA/Europe 149 5745 USA 153 5765 USAChannel frequency (MHz) National channel frequency (MHz) Country 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA / Europe 34 5170 Japan 40 5200 USA / Europe 38 5190 Japan 44 5220 USA / Europe 42 5210 Japan 48 5240 USA / Europe 46 5230 Japan 52 5260 USA / Europe 56 5280 USA / Europe 60 5300 USA / Europe 64 5320 USA / Europe 100 5500 USA / Europe 104 5520 USA / Europe 108 5540 USA / Europe 112 5560 USA / Europe 116 5580 USA / Europe 120 5600 USA / Europe 124 5620 USA / Europe 128 5640 USA / Europe 132 5660 USA / Europe 136 5680 USA / Europe 140 5700 USA / Europe 149 5745 USA 153 5765 USA

28 20053146528 200531465

157 5785 USA 161 5805 USA 165 5825 USA 表6 : 2.4GHz,20MHz通道帶寬,192Mbps最大位元率 位元率 TX 天線 ST 編碼率 調製 編碼率 NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64-QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16-QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216157 5785 USA 161 5805 USA 165 5825 USA Table 6: 2.4GHz, 20MHz channel bandwidth, 192Mbps maximum bit rate Bit rate TX antenna ST code rate modulation code rate NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64-QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16 -QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216

表7 :表6的載波的選擇Table 7: Carrier selection of Table 6

通道 頻率(MHz) 1 2412 2 2417 3 2422 4 2427 5 2432 6 2437 7 2442 8 2447 9 2452 10 2457 11 2462 12 2467 29 200531465 表8 : 5GHz,20MHz通道帶寬,192Mbps最大位元率 位元率 TX 天線 ST 編碼率 調製 編碼率 NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64-QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16-QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216Channel frequency (MHz) 1 2412 2 2417 3 2422 4 2427 5 2432 6 2437 7 2442 8 2447 9 2452 10 2457 11 2462 12 2467 29 200531465 Table 8: 5GHz, 20MHz channel bandwidth, 192Mbps maximum bit rate, bit rate TX antenna ST code rate modulation code rate NBPSC NCBPS NDBPS 12 2 1 BPSK 0.5 1 48 24 24 2 1 QPSK 0.5 2 96 48 48 2 1 16-QAM 0.5 4 192 96 96 2 1 64-QAM 0.666 6 288 192 108 2 1 64- QAM 0.75 6 288 216 18 3 1 BPSK 0.5 1 48 24 36 3 1 QPSK 0.5 2 96 48 72 3 1 16-QAM 0.5 4 192 96 144 3 1 64-QAM 0.666 6 288 192 162 3 1 64-QAM 0.75 6 288 216 24 4 1 BPSK 0.5 1 48 24 48 4 1 QPSK 0.5 2 96 48 96 4 1 16-QAM 0.5 4 192 96 192 4 1 64-QAM 0.666 6 288 192 216 4 1 64-QAM 0.75 6 288 216

表9:表8的載波的選擇Table 9: Carrier selection in Table 8

通道 頻率(MHz) 國家 通道 頻率(MHz) '國家 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA/Europe 34 5170 Japan 40 5200 USA/Europe 38 5190 Japan 44 5220 USA/Europe 42 5210 Japan 48 5240 USA/Europe 46 5230 Japan 52 5260 USA/Europe 56 5280 USA/Europe 60 5300 USA/Europe 64 5320 USA/Europe 100 5500 USA/Europe 104 5520 USA/Europe 108 5540 USA/Europe 112 5560 USA/Europe 30 200531465 表10 ·· 5GHz,和40MHz通道和486Mbps最大串列傳輸位元率 位元率 TX 天線 ST 編碼率 調製 編碼率 NBPSC 13.5Mbps 1 1 BPSK 0.5 1 27Mbps 1 1 QPSK 0.5 2 54Mbps 1 1 16-QAM 0.5 4 108Mbps 1 1 64-QAM 0.666 6 121.5Mbps 1 1 64-QAM 0.75 6 27Mbps 2 1 BPSK 0.5 1 54Mbps 2 1 QPSK 0.5 2 108Mbps 2 1 16-QAM 0.5 4 216Mbps 2 1 64-QAM 0.666 6 243Mbps 2 1 64-QAM 0.75 6 40.5Mbps 3 1 BPSK 0.5 1 81Mbps 3 1 QPSK 0.5 2 162Mbps 3 1 16-QAM 0.5 4 324Mbps 3 1 64-QAM 0.666 6 365.5Mbps 3 1 64-QAM 0.75 6 54Mbps 4 1 BPSK 0.5 1 108Mbps 4 1 QPSK 0.5 2 216Mbps 4 1 16-QAM 0.5 4 432Mbps 4 1 64-QAM 0.666 6 486 Mbps 4 1 64-QAM 0.75 6Channel frequency (MHz) National channel frequency (MHz) 'Country 240 4920 Japan 244 4940 Japan 248 4960 Japan 252 4980 Japan 8 5040 Japan 12 5060 Japan 16 5080 Japan 36 5180 USA / Europe 34 5170 Japan 40 5200 USA / Europe 38 5190 Japan 44 5220 USA / Europe 42 5210 Japan 48 5240 USA / Europe 46 5230 Japan 52 5260 USA / Europe 56 5280 USA / Europe 60 5300 USA / Europe 64 5320 USA / Europe 100 5500 USA / Europe 104 5520 USA / Europe 108 5540 USA / Europe 112 5560 USA / Europe 30 200531465 Table 10 · 5GHz, 40MHz channel and 486Mbps maximum serial transmission bit rate bit rate TX antenna ST code rate modulation code rate NBPSC 13.5Mbps 1 1 BPSK 0.5 1 27Mbps 1 1 QPSK 0.5 2 54Mbps 1 1 16-QAM 0.5 4 108Mbps 1 1 64-QAM 0.666 6 121.5Mbps 1 1 64-QAM 0.75 6 27Mbps 2 1 BPSK 0.5 1 54Mbps 2 1 QPSK 0.5 2 108Mbps 2 1 16-QAM 0.5 4 216Mbps 2 1 64 -QAM 0.666 6 243Mbps 2 1 64-QAM 0.75 6 40.5Mbps 3 1 BPSK 0.5 1 81Mbps 3 1 QPSK 0.5 2 162Mbps 3 1 16-QAM 0.5 4 324Mbps 3 1 64-QAM 0.6 66 6 365.5Mbps 3 1 64-QAM 0.75 6 54Mbps 4 1 BPSK 0.5 1 108Mbps 4 1 QPSK 0.5 2 216Mbps 4 1 16-QAM 0.5 4 432Mbps 4 1 64-QAM 0.666 6 486 Mbps 4 1 64-QAM 0.75 6

116 5580 USA/Europe 120 5600 USA/Europe 124 5620 USA/Europe 128 5640 USA/Europe 132 5660 USA/Europe 136 5680 USA/Europe 140 5700 USA/Europe 149 5745 USA 153 5765 USA 157 5785 USA 161 5805 USA 165 5825 USA 表11 :表10的功率譜密度遮罩碼 功率譜密度遮罩碼頻率偏移 I 2dBr 31 200531465 -9MHz〜9 MHz -- ---------— 〇 ___— +/-21 MHz - -20 . +/-30 MHz -28 +/-40 MHz及更大 -50 __—- 表12 :表10的載波的選擇 通道 頻率(MHz) 國家 通道 頻率(MHz) 國家 242 4930 Japan __ 250 4970 〜'〜 —〜— Japan .一 12 5060 Japan 一^一— 38 5190 — USA/Europe 36 5180 Japan 46 5230 — USA/Europe 44 5520 JaPiiL·- 54 5270 USA/Europe __一— 62 5310 ~ —-— USA/Europe ---一— 102 5510 USA/Europe ------ 110 5550 ^一 USA/Europe ___一-- 118 5590 s— USA/Europe ____— 126 5630 USA/Europe 134 5670 ^ USA/Europe 一——— 151 5755 一 USA 159 5795 ' USA ____ 【圖式簡單說明】 第一圖係為現有的OFDM幀的副載波分配的示意圖; 第二圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的無線通訊系統的結構方塊圖; 第三圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的無線通訊設備的結構方塊圖; 第四圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的無線通訊的示意圖, 第五圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的OFDM幀副載波分配的示意圖; 32 200531465 第六圖係為本發明無線通訊中產生正交頻分複用巾貞的設備及 方法的另一 OFDM幀副載波分配的示意圖; 第七圖係為8G2.11a和本發明的窄通道應用的對照表; 第八圖係為本發明無線通訊中產生正交頻分複用幢的設備及 方法的OFDM基帶錢以及對應的直流陷波濾、波器的 示意圖; 第九圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的於窄通道的0DFM巾貞副載波分配的示意圖;# 第十圖係為本發明無線通訊中產生正交頻分複用幀的設備及 方法的多入多出無線通訊系統的結構方塊圖; 第十一圖係為本發明無線通訊中產生正交頻分複用幀的設備 及方法的無線通訊設備的結構方塊圖。 【主要元件符號說明】 通訊系統 10 基站或訪問點 】2、14、16 膝上型電腦主機18、26 個人數位助理主機20、30 行動電話主機 22 > 28 個人電腦主機 24、32 網路硬體 34 區域網連接 36、38、40 廣域網連接 42 處理模組 50 記憶體 52、75 無線收發器介面 54 輸出介面 56 輸入介面 58 無線收發器 60 主機介面 62 數位接收為處理模組64 類比數位轉換器 66 33 200531465 濾波/增益模組 68、80 接收器濾波模組 71 發送接收轉換開關 73 數位發送器處理模組76 接收器本地振盪信號81 發送本地振盪信號83 發送器濾、波器模組 85 入站RF信號 88 入站資料 92 出站基帶信號 96 發射器 100 oroM幀 104 資料部分 108 信號資訊 112 無線收發器 160 記憶體 166 Τ/R模組 174 天線 182 、184 、 186 出站符號流 190 入站RF信號 194 輸入資料 198 • IF混合下變換模組7〇 低雜訊放大器 72 本地振盪模組 74 數位類比轉轉換器 78 IF混合上變換模組82 功率放大器 84 天線 86 輪出資料 188 出站RF信號 192 入站符號流 196 LO模組 200 90 · 94 98 102 106 110 入站基帶信號 出站資料 出站射頻信號 接收器 前置資料 訓練資訊 資料域 基帶處理模組 RF發射器 RF接收器 114、116、118 164 168、170、172 176、178、180116 5580 USA / Europe 120 5600 USA / Europe 124 5620 USA / Europe 128 5640 USA / Europe 132 5660 USA / Europe 136 5680 USA / Europe 140 5700 USA / Europe 149 5745 USA 153 5765 USA 157 5785 USA 161 5805 USA 165 5825 USA Table 11: Power Spectral Density Mask Codes of Table 10 Power Spectral Density Mask Codes Frequency Offset I 2dBr 31 200531465 -9MHz ~ 9 MHz------------ 〇 ___— +/- 21 MHz--20. +/- 30 MHz -28 +/- 40 MHz and more -50 __ —- Table 12: Selected channel frequency of the carrier of Table 10 (MHz) National channel frequency (MHz) Country 242 4930 Japan __ 250 4970 ~ '~ — ~ — Japan .Mon 12 5060 Japan Mon ^ 38 — 38 5190 — USA / Europe 36 5180 Japan 46 5230 — USA / Europe 44 5520 JaPiiL ·-54 5270 USA / Europe __ 一 — 62 5310 ~ —-— USA / Europe --- A— 102 5510 USA / Europe ------ 110 5550 ^ A USA / Europe ___A-118 5590 s— USA / Europe ____— 126 5630 USA / Europe 134 5670 ^ USA / Europe I ——— 151 5755 I USA 159 5795 'USA ____ [Schematic Brief description] The first diagram is a schematic diagram of subcarrier allocation of an existing OFDM frame; the second diagram is a structural block diagram of a wireless communication system for an apparatus and method for generating an orthogonal frequency division multiplex frame in wireless communication according to the present invention; The third figure is a block diagram of the structure of a wireless communication device for the device and method for generating an orthogonal frequency division multiplexing frame in wireless communication according to the present invention; the fourth figure is a block diagram for generating an orthogonal frequency division multiplexing frame in wireless communication according to the present invention; Schematic diagram of wireless communication of equipment and method. The fifth diagram is a schematic diagram of OFDM frame subcarrier allocation of the equipment and method for generating orthogonal frequency division multiplexing frames in wireless communication of the present invention. 32 200531465 The sixth diagram is wireless of the present invention. Another schematic diagram of the subcarrier allocation of the OFDM frame in the device and method for generating orthogonal frequency division multiplexing in communication; the seventh diagram is a comparison table between 8G2.11a and the narrow channel application of the present invention; the eighth diagram is Schematic diagram of OFDM baseband money and corresponding DC notch filters and wave generators for the equipment and method for generating orthogonal frequency division multiplex buildings in wireless communication according to the present invention; the ninth figure is generated during wireless communication according to the present invention. Schematic diagram of the device and method for cross-frequency division multiplexing frames for narrow channel 0DFM frame subcarrier allocation; # The tenth figure is a multiple access device and method for generating orthogonal frequency division multiplexing frames in wireless communication according to the present invention. A block diagram of a structure of a wireless communication system is provided. The eleventh figure is a block diagram of a structure of a wireless communication device of the device and method for generating an orthogonal frequency division multiplex frame in the wireless communication of the present invention. [Description of main component symbols] Communication system 10 base station or access point] 2, 14, 16 Laptop host 18, 26 Personal digital assistant host 20, 30 Mobile phone host 22 > 28 Personal computer host 24, 32 Network hardware Body 34 LAN connection 36, 38, 40 WAN connection 42 Processing module 50 Memory 52, 75 Wireless transceiver interface 54 Output interface 56 Input interface 58 Wireless transceiver 60 Host interface 62 Digital reception as processing module 64 Analog digital conversion Receiver 66 33 200531465 Filter / gain module 68, 80 Receiver filter module 71 Send / receive switch 73 Digital transmitter processing module 76 Receiver local oscillation signal 81 Send local oscillation signal 83 Transmitter filter, waver module 85 Inbound RF signal 88 Inbound data 92 Outbound baseband signal 96 Transmitter 100 oroM frame 104 Data section 108 Signal information 112 Wireless transceiver 160 Memory 166 T / R module 174 Antenna 182, 184, 186 Outbound symbol stream 190 Inbound RF signal 194 Input data 198 • IF hybrid down conversion module 70 Low noise amplifier 72 Local oscillation Group 74 Digital to Analog Converter 78 IF Hybrid Up-Conversion Module 82 Power Amplifier 84 Antenna 86 Wheel Out Data 188 Outbound RF Signal 192 Inbound Symbol Stream 196 LO Module 200 90 90 94 98 102 106 110 Inbound Baseband Signal Out Station data outbound RF signal receiver front data training information data domain baseband processing module RF transmitter RF receiver 114, 116, 118 164 168, 170, 172 176, 178, 180

34 200531465 模式選擇信號 20234 200531465 Mode selection signal 202

3535

Claims (1)

200531465 十、申請專利範圍: 1 種用於無線通訊的產生正交頻分複用(orthogonal frequency division multiplexing,0FDM)幀的方法,包括以下步驟: 產生正交頻分複用幀的前置資料,其中所述前置資料包括訓 練資訊和信號資訊;和 產生複數正交頻分複用幀的資料攔,其中每個資料攔包括 複數副載波,其中至少部分資料攔包括最多三個被分派有控 制k "5虎的副載波。 2、 如申請專利範圍第1項所述之用於無線通訊的產生正交頻分 複用幀的方法,進一步包括: 在一個窄帶通道傳送所述正交頻分複用幀,其中所述窄帶 通道具有小於20百萬赫茲(mega-Hertz)的通道寬度。 3、 如申請專纖圍第丨柄述之用於鱗軌的產生正交頻分 複用幀的方法,其中所述產生複數資料攔步驟包括: 利用每一所述至少部分資料欄的副載波+7和_7來傳遞資 料’和對每一所述至少部分資料攔的副載波+1和-i調零。 4、 如申請專利範圍第i項所述之用於無線通訊的產生正交頻分 複用幢的方法,其憎述產生複數聽攔步驟包括: 利用每-所述至少部分資料攔的副載波+21和_21來傳遞資 料’和對每一所述至少部分資料襴的副载波+1和]調零。、 5、 Μ請專利範_丨柄述之祕無線通訊的產生正交頻分 複用幢的方法,其中所述產生複數簡攔步驟包括: 36 200531465 對每至少部分之複數資料攔的副載波+1和-1位調零;· 對至少一個所述至少部分資料欄,利用副載波+7和-7來, 傳遞資料;和 對至少另一個所述至少部分資料攔,利用副載波和 -21來傳遞資料。 6、 如申請專利範圍第1項所述之用於無線通訊的產生正交頻分 複用巾貞的方法,其中產生前置資料步驟包括: 產生L唬貝汛以指示出哪一所述複數副載波頻率將分派控鲁 制信號。 7、 種用於夕入夕出(multiple input multiple output,ΜΙΜΟ)無線 通訊的產生正交頻分複用幀的方法,所述方法包括: 轉換一個資料流為複數資料流;和 將所述複數資·轉換域數正錢分複㈣,其中每一 所述正交頻分複用幢包括具有訓練資訊和信號資訊的前置資 料,每一所述正交頻分複用幀包括複數資料欄,每一所述正鲁 交頻分複關資侧包括複_載_率,其巾至少部分正 父頻刀複用幢資料攔包括至多三個被分派控制信號的副載波 頻率。 8、 如申凊專利範圍第7項所述之用於多入多出無線通訊的產生 正父頻分複用幀的方法,其中所述正交頻分複用幀至少部分 資料欄包括: 37 200531465 副載波+7和-7來傳送資料和每一副載波+21和_21來傳送控. 制信號。 . 9、 如申請專利範圍第7項所述之用於多入多出無線通訊的產生 正交頻分複用幀的方法,其中正交頻分複用幀所述至少部分 資科攔包括: 副載波+21和-21來傳送資料和每一副載波+7和々位元來傳 送控制信號。 10、 如申請專利範圍第7項所述之用於多入多出無線通訊的產生鲁 正交頻分複用幀的方法,其中正交頻分複用幀所述至少部分 資料棚包括: 對至少一個所述至少部分資料欄,利用副載波+7和_7來傳 送資料,和 、 對至少另一個所述至少部分資料欄,利用副載波+21和_21 來傳送資料。 11、 如申請專利範圍第7項所述之用於多入多出無線通訊的產生⑩ 正交頻分複用幀的方法,進一步包括: 產生信號資訊以指示出哪一所述複數副載波頻率將被分派 為控制信號。 12、 如申請專利範圍第7項所述之用於多入多出無線通訊的產生 正交頻分複用幀的方法,其中將所述複數資料流轉換為複數 正交頻分複用幀步驟包括: 38 200531465 產生第-正交頻分複用幢,所述第一正交頻分複用幢包括. 具有四個控制信號的複數資料攔,和 、 產生剩餘的正交頻分複用幢,所述剩餘的正交頻分複用顿 包括少於四個控制信號的複數資料攔。 I3、-種用於無線通訊的接收正交頻分複用_方法,所述方法 包括: 接收所述正交頻分複用悄的前置資料,所述前置資料包拉 訓練資訊和信號資訊; # 接收所述正交頻分複用幢的複數資料搁,其中每一所述資 料攔包括複朗載波,其中,藉由信_訊指示出的、多少 部分資料攔最多包括三個被分派控制信號的副載波頻率;和 將所述複數資料攔轉換為内部資料。 1心如申物咖第13猶叙麟無_賴接收衫, 複用幀的方法,進一步包括·· 猎由-窄帶寬通道接收所述正交頻分複用鳩,其中所述攀獷 帶寬通道具有小於二十百萬赫朗通道寬度。 15 =申5月專利乾圍第1:3項所述之用於無線通訊的接收正交頻分 複用,的方法’其巾接收所述複數資料攔步驟還包括: …練-所述至少部分資料攔的副載波+7和_7恢復資料;和 每所述至/心貝料攔的副載波+1和小恢復零資料一 data) ° ' 39 200531465 第13項所述之祕鱗通_魏正交頻分 其中所述接收所述複數資料攔句括: 16、如申請專利範圍 複用幀的方法, A每所述至y分貢料攔的副載波巧和_7恢復資料;和 從母-所述至少部分資料攔的副載波+ι㈣恢復零資料。 7、=申請專利範圍第13項所述之用於無線通訊的接收正交頻分 複用幢的方法,所述接收所述龍欄步驟包括: 母彳这至人p分資料攔的副載波+1和_1恢復零資料; 對至少一個所述至少部分資料欄,從副載波η和_7恢復資 料;和 對至少另-個所述至少部分資料欄,從副載波+21和_21恢 復資料。 18、-種用於多人多出無線通訊的接收正交頻分複用巾貞的方法, 所述方法包括: 接收複數正交頻分複用幀,其中每一正交頻分複用幀包括 具有訓練資訊和信號資訊的前置資料,每一正交頻分複用幀 包括複數資料攔,每一所述正交頻分複用幀資料欄包括複數 副載波頻率,其中藉由信號資訊指示出的、至少一個所述正 交頻分複用幀資料欄最多包括三個被分派控制信號的所述複 數副載波頻率; 將所述複數正交頻分複用幀轉換為複數資料流;和 將所述複數資料流轉換為一個資料流。 200531465 19、如申請專利範圍第18項所述之用於多入多出無線通訊的接收-正交頻分複用幀的方法,其中所述至少一個之複數正交頻分, 複用幀的至少部分之複數資料攔包括: 副載波+7和-7來傳送資料和每一副載波+21和_21來傳送控 制信號。 20如申请專利範圍第18項所述之用於多入多出無線通訊的接收 正父頻分複用幀的方法,其中所述至少一個之複數正交頻分 複用幀的至少部分之複數資料攔包括: φ 副載波+21和-21來傳送資料和每一副載波+7和_7來傳送控 制信號。 如申明專利範圍第18項所述之用於多入多出無線通訊的接收 正父頻分複用幀的方法,其中所述至少一個之複數正交頻分 複用幀的至少部分之複數資料欄包括: 對至少-個所述至少部分之複數資料欄,從副載+7和_?恢 復資料;和 籲 對至少另-倾述至少部分之複數資料欄,從副載波+21 和-21恢復資料。 22、如中請專利範圍第18韻述之驗多人多出無線通訊的接收 =交頻分複m貞的方法,射複數正錢分巾貞包括: 第正父頻分複用幢包括具有四個控制信號的所述複數資料 搁;和 41 200531465 剩餘正父頻分複用幀包括具有少於四個控制信號的所述複數 資料攔。 23、一種射頻發射器,包括: 基帶處理模組,可連接用於產生正交頻分複用幀,藉由: 產生所述正交頻分複用幀的前置資料,其中所述前置資料包 括训練資訊和信號資訊,和 產生所述正交頻分複用幀的複數資料攔,其中每一所述複 ^身料攔包括複數職波,其巾至少部分所賴數資料搁至 夕匕括一個被分派控制信號的所述複數副載波頻率;和 射頻傳达部分可連接用於將所述正交頻分複用巾貞轉換為輸 出RF信號。 24 25200531465 10. Scope of patent application: A method for generating orthogonal frequency division multiplexing (OFM) frames for wireless communication, including the following steps: generating pre-data of orthogonal frequency division multiplexing frames, The preceding data includes training information and signal information; and data blocks for generating complex orthogonal frequency division multiplexing frames, wherein each data block includes a plurality of subcarriers, and at least some of the data blocks include a maximum of three assigned control blocks. k " 5 tiger subcarrier. 2. The method for generating an orthogonal frequency division multiplexed frame for wireless communication according to item 1 of the scope of the patent application, further comprising: transmitting the orthogonal frequency division multiplexed frame on a narrowband channel, wherein the narrowband The channel has a channel width of less than 20 mega-Hertz. 3. For the method for generating orthogonal frequency division multiplexed frames for scales described in the application for special fiber enclosures, wherein the step of generating plural data blocks includes: using each of the subcarriers of at least part of the data columns +7 and _7 to pass data 'and zero the subcarriers +1 and -i for each of the at least part of the data block. 4. The method for generating an orthogonal frequency division multiplexing building for wireless communication as described in item i of the scope of the patent application, wherein the step of generating a plurality of listening blocks includes: using each of the subcarriers of the at least part of the data block +21 and _21 to pass data 'and zeroing the subcarriers +1 and] of each of said at least part of the data. 5, 5, please apply for a patent. The method of generating orthogonal frequency division multiplexing wireless communication, wherein the step of generating a complex block includes: 36 200531465 subcarriers for each at least part of the complex data block +1 and -1 bits are zeroed; · For at least one of the at least part of the data column, use subcarriers +7 and -7 to transfer data; and for at least one of the other at least part of the data block, use the subcarrier and- 21 to pass information. 6. The method for generating orthogonal frequency division multiplexing frames for wireless communication as described in item 1 of the scope of the patent application, wherein the step of generating pre-data includes: generating L to be used to indicate which of said complex numbers The subcarrier frequency will be assigned a control signal. 7. A method for generating orthogonal frequency division multiplexed frames for multiple input multiple output (MIMO) wireless communication, the method comprising: converting a data stream into a complex data stream; and converting the complex data stream The number of data conversion domains is positive, and each of the orthogonal frequency division multiplexing blocks includes pre-data with training information and signal information. Each of the orthogonal frequency division multiplexing frames includes a complex data column. Each of the Zhenglu crossover frequency division multiplexing resources includes a complex _load_rate, which includes at least a part of the positive frequency multiplexing data block including up to three subcarrier frequencies to which control signals are assigned. 8. The method for generating a positive-parent frequency-division multiplexed frame for multiple-input multiple-output wireless communication as described in item 7 of the scope of patent application, wherein at least part of the data columns of the orthogonal frequency-division multiplexed frame includes: 37 200531465 Subcarriers +7 and -7 to transmit data and each subcarrier +21 and _21 to transmit control signals. 9. The method for generating an orthogonal frequency division multiplexing frame for multiple-input multiple-output wireless communication as described in item 7 of the scope of the patent application, wherein the at least part of the resources in the orthogonal frequency division multiplexing frame includes: Subcarriers +21 and -21 are used to transmit data and each subcarrier is +7 and 々 bits to transmit control signals. 10. The method for generating orthogonal frequency division multiplex frames for multiple-input multiple-output wireless communication as described in item 7 of the scope of patent application, wherein at least part of the data shed in the orthogonal frequency division multiplex frame includes: At least one of the at least part of the data columns uses subcarriers +7 and _7 to transmit data, and at least one of the at least part of the data columns uses subcarriers +21 and _21 to transmit data. 11. The method for generating MIMO wireless communication as described in item 7 of the scope of the patent application, further comprising: generating signal information to indicate which of the plurality of subcarrier frequencies Will be dispatched as a control signal. 12. The method for generating an orthogonal frequency division multiplexing frame for multiple-input multiple-output wireless communication as described in item 7 of the scope of patent application, wherein the step of converting the complex data stream into a complex orthogonal frequency division multiplexing frame step Including: 38 200531465 generating a first orthogonal frequency division multiplexing block, the first orthogonal frequency division multiplexing block includes a complex data block with four control signals, and generating the remaining orthogonal frequency division multiplexing block The remaining orthogonal frequency division multiplexing frame includes a plurality of data blocks of less than four control signals. I3. A method for receiving orthogonal frequency division multiplexing_ for wireless communication, the method comprising: receiving the orthogonal frequency division multiplexed pre-data, the pre-data packet pulling training information and signals Information; # receive the plurality of data shelves of the orthogonal frequency division multiplexing building, wherein each of the data blocks includes a complex carrier, wherein, as indicated by the message, how many partial data blocks include a maximum of three data blocks; Assigning a subcarrier frequency of a control signal; and converting the plurality of data blocks into internal data. One heart is like the thing. The thirteenth syrian Lin Wu Lai receiving shirt, the method of multiplexing the frames, further includes ... hunting the narrow-bandwidth channel to receive the orthogonal frequency division multiplexing dove, wherein the climbing bandwidth The channel has a channel width of less than twenty million Herrons. 15 = The method of receiving orthogonal frequency division multiplexing for wireless communication described in item 1: 3 of the May patent application, its method of receiving the plurality of data, and the step of blocking further includes: ...--said at least Partial data block subcarriers +7 and _7 recover data; and each subcarrier to / heart shell block ++ 1 and small recovery zero data-data) ° '39 200531465 Secret scale communication described in item 13 _ Wei Orthogonal Frequency Division, where the receiving of the complex data block includes: 16. For the method of multiplexing frames in the scope of the patent application, each of the sub-carriers to y points is used to recover the data; And recovering zero data from the subcarrier + ι 至少 of the mother-said at least part of the data block. 7. = The method for receiving orthogonal frequency division multiplexing building for wireless communication as described in item 13 of the scope of patent application, the step of receiving the dragon bar includes: a mother carrier to a subcarrier of a p-block data block +1 and _1 restore zero data; for at least one of the at least part of the data columns, recover data from the subcarriers η and _7; and for at least one of the other at least part of the data columns, the subcarriers +21 and _21 Restore data. 18. A method for receiving orthogonal frequency division multiplexing frames for multiple people and multiple wireless communications, the method comprising: receiving a plurality of orthogonal frequency division multiplexing frames, wherein each orthogonal frequency division multiplexing frame Including pre-data with training information and signal information, each orthogonal frequency division multiplexed frame includes a complex data block, and each of the orthogonal frequency division multiplexed frame data columns includes a plurality of subcarrier frequencies, wherein the signal information The indicated at least one orthogonal frequency division multiplexing frame data column includes at most three complex subcarrier frequencies to which control signals are assigned; converting the complex orthogonal frequency division multiplexing frame into a complex data stream; And converting the plurality of data streams into one data stream. 200531465 19. The method for receiving-orthogonal frequency division multiplexing frames for multiple-input multiple-output wireless communication as described in item 18 of the scope of patent application, wherein the at least one of the complex orthogonal frequency division multiplexing frames At least part of the complex data block includes: subcarriers +7 and -7 to transmit data and each subcarrier +21 and _21 to transmit control signals. 20 The method for receiving a positive-parent frequency-division multiplexed frame for multiple-input multiple-output wireless communication according to item 18 of the scope of patent application, wherein the at least one of the plurality of orthogonal frequency-division multiplexed frames has a complex number The data block includes: φ subcarriers +21 and -21 to transmit data and each subcarrier +7 and _7 to transmit control signals. The method for receiving positive-parent frequency-division multiplexed frames for multiple-input multiple-output wireless communication as described in claim 18 of the patent scope, wherein at least one of the plurality of orthogonal frequency-division multiplexed frames has at least a part of the complex data Columns include: for at least one of the at least part of the plural data column, recover data from the subload +7 and _ ?; and call for at least another-to say at least part of the plural data column, from the subcarrier +21 and -21 Restore data. 22. As described in the patent, please refer to the 18th rhyme of the patent. The reception of multiple wireless communications = the method of crossover frequency division and multiplication. The number of positive divisions includes: The plurality of data signals of the four control signals are suspended; and 41 200531465 the remaining positive parent frequency division multiplexed frame includes the plurality of data signals having less than four control signals. 23. A radio frequency transmitter comprising: a baseband processing module that can be connected to generate an orthogonal frequency division multiplexed frame by: generating pre-data of the orthogonal frequency division multiplexed frame, wherein the pre- The data includes training information and signal information, and a plurality of data blocks for generating the orthogonal frequency division multiplexing frame, wherein each of the complex body blocks includes a plurality of job waves, and at least part of the data on which it depends is stored until A plurality of sub-carrier frequencies to which a control signal is assigned; and a radio frequency transmitting part can be connected for converting the orthogonal frequency division multiplexing frame to an output RF signal. 24 25 、如申請專利範圍第μ項所述之射輕能,進—步包括: 產生用於傳送所述正交頻分複用鴨的窄帶寬通道,其中所述 窄帶寬通道具有小於二十百萬赫兹的通道寬度。2. The radio-light energy described in item μ of the patent application scope, further comprising: generating a narrow bandwidth channel for transmitting the orthogonal frequency division multiplex duck, wherein the narrow bandwidth channel has less than twenty million Hertz channel width. =申請專利_ B項所述之射頻發射器,其中該產生所述 複數資料攔包括: /用母所述至少部分之複數資料搁的副載波巧和 送貢料;和 26 A ^所述至少部分之複數資料攔的副載波+1和―1調零。 26、如申^專利範圍第23項 、 之射頻發射器,其中該產生所 複數貢料攔包括: 42 200531465 母所述至少部分之複數資料攔的副载波+21和-21來傳· 送資料;和 „ 母所述至少部分之複數資料攔的副载+1和-1調零。 27、 如申請專利範圍第23項所述之射頻發射器,其中該產生所述 複數資料攔包括: 每一所述至少部分之複數資料攔的副載波+1和-1調零; 對至少-個所述至少部分之複數資料攔,利用副載波+7和 _7來傳送資料;和 ^ 對至少另一個所述至少部分之複數資料攔,利用副載波 和-21來傳送資料。 28、 如申請專利範圍帛Μ項所述之射頻發射器,其中該產生所述 前置資料,包括: 、 產生所述k號資訊來指示出哪一所述複數副載波頻率將分 派控制信號。 29、 一種射頻發射器,包括: 鲁 基帶處理模組,可連接用於產生用於多入多出無線通訊的正 交頻分複用幀,藉由: 將一資料流轉換為複數資料流,和 將所述複數資料流轉換為複數正交頻分複用幀,其中每一 正交頻分複用幀包括具有訓練資訊和信號資訊的前置資料, 每一正交頻分複用幀包括複數資料攔,其中每一所述複數正 43 200531465 交頻分複用幀的每一所述複數資料欄包括複數副载波頻率,. 其中至少一個所述複數正交頻分複用幀的至少部分所述複數, 貝料欄至多包括三個被分派一控制信號的所述複數副載波頻 率;和 射頻傳送部分可連接用於轉換所述複數正交頻分複用幀為 複數輸出RF信號。 30、 如申請專利範圍第29項所述之射頻發射器,其中所述至少一 個之複數正交頻分複用幀的至少部分之複數資料欄,包括:籲 副載波+7和-7傳送資料和每一副載波+21和_21傳送控制信 號。 31、 如申請專利範圍第29項所述之射頻發射器,其中所述至少一 個之複數正父頻分複用幀的至少部分之複數資料欄,包括: 鈉载波+21和-21傳送資料和每一副載波+7和_7傳送控制信 號。 32、 如申請專利範圍第29項所述之射頻發射器,其中所述至少一鲁 個之複數正交頻分複用幀的至少部分之複數資料欄,包括: 對至少一個所述至少部分之複數資料攔,利用副載波+7和_7 來傳送資料;和 對至少另一個所述至少部分之複數資料攔,利用副載波 和-21來傳送資料。 33如申清專利範圍第29項所述之射頻發射器,其中戶斤述基帶處 44 200531465 理模組進一步具有以下功能: ’ 產生所述信號資訊來指示出哪一所述複數副載波頻率將分 · 派控制信號。 34、 如申請專利範圍第29項所述之射頻發射器,其中該轉換所述 複數資料流為複數正交頻分複用幀包括: 產生第一正交頻分複用幀包括具有四個控制信號的所述複 數資料攔;和 產生剩餘正父頻分複用巾貞包括具有少於四個控制信號的所鲁 述複數資料攔。 35、 一種射頻接收器,包括: 射頻接收部分可連接用於轉換輸入RF信號為正交頻分複 用中貞;和 基帶處理模組可連接用於: 接收所述正交頻分複用幀的前置資料,其中所述前置資料 包括訓練資訊和信號資訊;和 · 接收所述正交頻分複用幀的複數資料攔,其中每一所述複 數資料攔包括複數贼波辭,其巾,#由信號:#訊的指派, 至少部分所述複數資料攔最多包括三個被分派一控制信號的 所述複數副載波頻率;和 將所述複數資料攔轉換為輸入資料。 36、 如申請專利範圍第35項所述之射頻接收器,其中所述射頻接 45 200531465 收器還用於:藉由—窄帶通道接收正交頻分複用幀,其中所 述窄帶通道帶寬小於2〇mHz。 37、如申請專利範圍第35項所述之射頻接收器,其中該接收所述 複數貧料棚,包括: 藉由每一所述至少部分之複數資料攔的副載波+7和_7來恢 復貧料;和 藉由母所述至少部分之複數資料攔的副載波和_l來恢 復与資料(null data)。 38、如申請專利範圍第35項所述之射頻接收器,其中該接收所述 複數資料攔,包括: 貨料;和 攸每所述至少部分之複數資料攔的副載波和_21恢復 "每所述至)部分之複數資料攔的副载波+1和]恢復零 如申請專纖圍第35項所述之射頻接收 複數資料攔,包括: 器,其中該接收所述 從每—所述至少部分之複數資料攔的 和來恢復 零貧料; 對至少一 恢復資料;和 對至少另 個所迷至少部分之魏資料搁, ,從副載波+7和-7= Applicable patent_ The RF transmitter described in item B, wherein the generating of the plurality of data blocks includes: / Subcarriers and tribute materials held by at least part of the plurality of data described by the mother; and 26 A ^ said at least The subcarriers of some complex data blocks are +1 and -1 zeroed. 26. The RF transmitter according to item 23 of the patent application, wherein the plurality of tribute blocks include: 42 200531465 at least part of the subcarriers of the plurality of data blocks described in the parent +21 and -21 to transmit and send data ; And „at least a part of the plurality of data blocks of the data carrier are supplemented by +1 and -1 to zero. 27. The radio frequency transmitter according to item 23 of the scope of patent application, wherein generating the plurality of data blocks includes: each One of the at least part of the plurality of subcarriers +1 and -1 are zeroed; for at least one of the at least part of the plurality of subcarriers, the subcarriers +7 and _7 are used to transmit data; and ^ for at least another One said at least part of the plurality of data blocks, using subcarriers and -21 to transmit data. 28. The radio frequency transmitter as described in the patent application scope of item MM, wherein the generating of said pre-data includes: The k number information is used to indicate which of the plurality of subcarrier frequencies will be assigned a control signal. 29. A radio frequency transmitter includes: a baseband processing module that can be connected to generate positive signals for multiple-input multiple-output wireless communication Crossover frequency Use frames by: converting a data stream into a complex data stream, and converting the complex data stream into a complex orthogonal frequency division multiplexing frame, where each orthogonal frequency division multiplexing frame includes training information and signals The pre-data of the information, each orthogonal frequency division multiplexing frame includes a complex data block, wherein each of the complex numbers is 43 200531465 each of the complex data columns of the cross frequency division multiplexing frame includes a complex subcarrier frequency, At least one of the complex orthogonal frequency division multiplexed frames has at least a part of the complex number, and the shell material column includes at most three complex subcarrier frequencies to which a control signal is assigned; and the radio frequency transmission part can be connected for converting The complex orthogonal frequency division multiplexing frame is a complex output RF signal. 30. The radio frequency transmitter according to item 29 of the scope of patent application, wherein at least a part of the complex number of the at least one complex orthogonal frequency division multiplexing frame The data column includes: call for subcarriers +7 and -7 to transmit data and each subcarrier +21 and _21 for control signals. 31. The RF transmitter according to item 29 of the patent application scope, wherein The at least one complex data column of at least one part of the complex positive-parent frequency division multiplex frame includes: sodium carrier +21 and -21 transmission data and each subcarrier +7 and _7 transmission control signal. 32. Such as the scope of patent application The radio frequency transmitter according to item 29, wherein the at least one complex data column of the at least one complex orthogonal frequency division multiplexed frame includes: using at least one of the at least one complex data block, and Carrier +7 and _7 to transmit data; and to at least another said at least part of the plural data block, using the subcarrier and -21 to transmit the data. 33 RF transmitter as described in claim 29 of the patent scope, Among them, the baseband unit 44 200531465 further has the following functions: 'Generate the signal information to indicate which of the plurality of sub-carrier frequencies will assign control signals. 34. The radio frequency transmitter according to item 29 of the scope of patent application, wherein converting the complex data stream into a complex orthogonal frequency division multiplexing frame includes: generating a first orthogonal frequency division multiplexing frame including four controls The plurality of data blocks of the signal; and generating the remaining positive parent frequency division multiplexing frame includes the plurality of data blocks having less than four control signals. 35. A radio frequency receiver comprising: a radio frequency receiving part connectable for converting an input RF signal into an orthogonal frequency division multiplexing medium; and a baseband processing module connectable for: receiving the orthogonal frequency division multiplexing frame Pre-data, wherein the pre-data includes training information and signal information; and · receiving a plurality of data blocks for the orthogonal frequency division multiplexing frame, wherein each of the plurality of data blocks includes a complex thief wave term, which The assignment of # 由 信号: # 讯 at least part of the plurality of data blocks includes at most three of the plurality of subcarrier frequencies to which a control signal is assigned; and converting the plurality of data blocks into input data. 36. The radio frequency receiver according to item 35 of the scope of patent application, wherein the radio frequency receiver 45 200531465 receiver is further configured to receive an orthogonal frequency division multiplexing frame through a narrowband channel, wherein the narrowband channel has a bandwidth less than 20mHz. 37. The radio frequency receiver according to item 35 of the scope of patent application, wherein receiving the plurality of lean materials sheds comprises: recovering by each of the at least partial subcarriers of the plurality of data blocks +7 and _7 to recover Poor data; and recovery of null data with subcarriers and _l of at least part of the complex data block described by the parent. 38. The radio frequency receiver according to item 35 of the scope of patent application, wherein the receiving of the plurality of data blocks includes: goods and materials; and each of the at least part of the plurality of data blocks of subcarriers and _21 recovery " The subcarriers of the multiple data blocks of each of the to) part +1 and] restore to zero. The RF data receiving complex data block as described in item 35 of the application for a special fiber channel includes: a device, wherein the receiving said from each—the The sum of at least part of the complex data is used to restore zero poverty; for at least one of the restored data; and for at least one other part of the Wei data that is lost, from the subcarriers +7 and -7 ,從副載波+21 46 200531465 和-21恢復資料。 · 40、 一種射頻接收器,包括·· 。 用於多入多出無線通訊的RF接收部分,可連接用於轉換輸 入RFk號為複數正交頻分複用悄;和 基帶處理模組可連接用於·· 接收所述複數正交頻分複用幀,其中每一正交頻分複用幀 包括具有訓練資訊和信號資訊的前置資料,其中每一所述複 數正交頻分複用幀包括複數資料攔,其中每一所述複數正交籲 頻分複用幀的每一所述資料攔包括複數副載波頻率,其中, 藉由仏號資訊的指派,至少一個所述複數正交頻分複用幀的 至少部分所述複數資料欄至多包括三個被分派一控制信號的 所述複數副載波頻率; 、 將所述複數正交頻分複用幀轉換為複數資料流;和 將所述複數貧料流轉換為一個資料流。 41、 如申請專利範圍第40項所述之射頻接收器,其中所述至少〆^ 個之複數正交頻分複用巾貞的至少部分之複數資料欄包括·· 副載波+7和-7來傳送資料和每一副載波+2丨和丨來傳送控 制信號。 42、 如申請專利範圍第40項所述之射頻接收器,其中所述至少/ 個之複數正交頻分複用幀的至少部分之複數資料欄包括·· 副載波+21和-21來傳送資料和每一副載波+7和_7來傳送控 47 200531465 制信號。 ^ 43、 如申請專利範圍第40項所述之射頻接收器,其中所述至少—、 個之複數正交頻分複用幀的至少部分之複數資料欄包括: 對至少一個所述至少部分之複數資料欄,從副載波+7和_7 恢復資料;和 對至少另一個所述至少部分之複數資料攔,從副載波+21 和-21恢復資料。 44、 如申請專利範圍第40項所述之射頻接收器,其中所述複數正鲁 交頻分複用幀包括: 第一正交頻分複用幀包括具有四個控制信號的所述複數 資料棚,和 每一剩餘正父頻分複用幀包括具有少於四個控制信號的所 述複數資料欄。 48Recover data from the subcarriers +21 46 200531465 and -21. 40. A radio frequency receiver, including ... The RF receiving part for MIMO wireless communication can be connected for converting the input RFk number to complex orthogonal frequency division multiplexing; and the baseband processing module can be connected for receiving the complex orthogonal frequency division Multiplexing frame, wherein each orthogonal frequency division multiplexing frame includes pre-data with training information and signal information, wherein each said complex orthogonal frequency division multiplexing frame includes complex data blocks, wherein each said complex number Each of the data blocks of the orthogonal frequency division multiplexing frame includes a plurality of subcarrier frequencies, wherein at least one part of the complex data of the at least one of the plurality of orthogonal frequency division multiplexing frames is assigned by a signal of the yoke information. The column includes at most three of the complex subcarrier frequencies to which a control signal is assigned; converting the complex orthogonal frequency division multiplexed frame into a complex data stream; and converting the complex lean stream into a data stream. 41. The radio frequency receiver according to item 40 of the scope of patent application, wherein at least part of the complex data columns of the at least ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ subcarriers +7 and -7 To transmit data and each subcarrier +2 丨 and 丨 to transmit control signals. 42. The radio frequency receiver according to item 40 of the scope of patent application, wherein the at least part of the at least part of the complex orthogonal frequency division multiplexed frame includes at least a part of the complex data column including the subcarriers +21 and -21 for transmission Data and each subcarrier +7 and _7 are used to transmit control signals. ^ 43. The radio frequency receiver according to item 40 of the scope of the patent application, wherein the plurality of data columns of at least part of the at least one or more complex orthogonal frequency division multiplexing frames include: for at least one of the at least part of Plural data columns, recovering data from subcarriers +7 and _7; and recovering at least another said at least part of the plural data blocks, recovering data from subcarriers +21 and -21. 44. The radio frequency receiver according to item 40 of the scope of application for a patent, wherein the complex positive-frequency cross-multiplexing frame includes: a first orthogonal frequency-division multiplexing frame including the complex data with four control signals The shed, and each remaining positive parent frequency division multiplexed frame includes the plurality of data columns with less than four control signals. 48
TW93121533A 2003-07-18 2004-07-19 A method for generating OFDM frame for wireless communications TWI261429B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48853103P 2003-07-18 2003-07-18
US52452803P 2003-11-24 2003-11-24
US10/778,754 US7162204B2 (en) 2003-11-24 2004-02-13 Configurable spectral mask for use in a high data throughput wireless communication

Publications (2)

Publication Number Publication Date
TW200531465A true TW200531465A (en) 2005-09-16
TWI261429B TWI261429B (en) 2006-09-01

Family

ID=34799583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121533A TWI261429B (en) 2003-07-18 2004-07-19 A method for generating OFDM frame for wireless communications

Country Status (2)

Country Link
CN (1) CN100502376C (en)
TW (1) TWI261429B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI345395B (en) * 2005-10-20 2011-07-11 Issc Technologies Corp System and method for providing 3-dimensional joint interleaver and circulation transmissions
CN201114636Y (en) * 2007-09-14 2008-09-10 中兴通讯股份有限公司 Indication device and mobile terminal for update SN advance of control information table
EP2297881B1 (en) * 2008-05-31 2016-02-24 Coherent Logix Incorporated Transmission of multimedia streams to mobile devices with uncoded transport tunneling
US8942320B2 (en) * 2011-10-27 2015-01-27 Marvell World Trade Ltd. Data unit format for multi-user data in long-range wireless local area networks (WLANs)
WO2014012233A1 (en) * 2012-07-19 2014-01-23 华为技术有限公司 Method for transmitting control signaling, method for receiving same, network device, and ue
CN105338601A (en) * 2015-10-13 2016-02-17 济南大学 Wireless communication system used for multiple access

Also Published As

Publication number Publication date
CN1625163A (en) 2005-06-08
CN100502376C (en) 2009-06-17
TWI261429B (en) 2006-09-01

Similar Documents

Publication Publication Date Title
RU2335852C2 (en) Wireless local area network system with multiple inputs and multiple outputs
US8767873B2 (en) Systems and methods for communication over a plurality of frequencies and streams
US8750192B2 (en) Multi-user uplink communications within multiple user, multiple access, and/or MIMO wireless communication systems
US10999033B2 (en) System and method for communicating an orthogonal frequency division multiplexed (OFDM) frame format
TWI311010B (en) Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
RU2380845C2 (en) Transmission with multiple carriers using multiple sizes of ofdm symbols
US9130705B2 (en) Transmitting high rate data within a MIMO WLAN
JP6386169B2 (en) Efficient resource allocation for wireless communication
US20120218947A1 (en) Rules for multiplexing data of different access categories in multi user mimo wireless systems
CN107040297B (en) Method and apparatus for determining spatial channels in a Spatial Division Multiple Access (SDMA) -based wireless communication system
WO2018171491A1 (en) Wireless communication method, network device and terminal device
US20210152272A1 (en) Transmitting apparatus, receiving apparatus, method, and recording medium
TW201014230A (en) Asynchronous multi-user transmission
CN101978754A (en) Reconfigurable multiple-input multiple-output systems and methods
US10863351B2 (en) Distribution network support
TW200531465A (en) A method for generating OFDM frame for wireless communications
WO2009097805A1 (en) A method, system and device for broadband radio mobile communication
Fettweis et al. WIGWAM: System concept development for 1 Gbit/s air interface
CN117063449A (en) Signal transmission method and device
WO2023241215A1 (en) Communication method and device
AU2018301048A1 (en) Wireless communication method and wireless communication device
RU2485699C2 (en) System of wireless local computer network with multiple inputs and multiple outputs
Bandyopadhyay et al. Network Throughput Improvement in Wi-Fi 6 over Wi-Fi 5: A Comparative Performance Analysis
CN116599556A (en) Implementation method and network equipment of non-cellular wireless access network
TW202415041A (en) Cyclic prefix orthogonal frequency division multiplexing sequence configuration of a downlink / uplink