1261083 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明係關於作爲在上述旋轉體的上述預定位置鄰近 之旋轉速度的函數,而檢測使內燃機的旋轉體從預定位置 前進指定角度之所需要的角度因應時間之旋轉角度檢測裝 置的角度修正方法,特別是有關於不論內燃機的旋轉速度 變動如何,都能進行正確的角度檢測之旋轉角度檢測裝置 的角度修正方法。 【先前技術】 在內燃機,其點火時機或燃料噴射時機等之各種作動 時機,係由內燃機的旋轉角度所得到。爲此,在與內燃機 同步並旋轉的旋轉體,藉由沿著其圓周方向而以等間隔設 置有複數個脈衝產生器或齒狀突起,而將此以磁性拾波器 或光感測器來檢測,構成如在旋轉體旋轉一圈之間以等角 度間隔輸出有脈衝訊號。 可是,在脈衝產生器或突起的設置數量,係因爲具有 限制條件,所以很難得到足夠的角度分解能力。於是,例 如在專利文獻1、2,從檢測有第J個的脈衝訊號而求取前 進角度θχ的作動時機之情況,計測其上一個的脈衝間時 間At。然後,相當於脈衝間區間的旋轉角度,例如如果 1〇°,從第J個的脈衝訊號被檢測而前進角度θχ之所需要 的角度因應時間Τχ,係以上述第J個的脈衝訊號之檢測時 機當作基準而以次式來求得。 -4- (2) 1261083 T x — Δ t χ ( θχ / 10) [專利文獻1]日本特開平5 - 1 3 72 94號公報 [專利文獻2 ]日本特開平6 - 2 1 3 1 2 2號公報 【發明內容】 [發明所欲解決之課題] 眾所皆知,引擎的旋轉速度係對應於行程而變化,如 果4衝程引擎的話,從壓縮行程之後半加上爆發行程之前 半,與其他行程比較,其旋轉速度較低,該傾向係在單氣 缸引擎更爲顯著。 可是,在上述之先前技術,如圖5(a)所示,係假設 本次的脈衝間時間Ata與上一個的脈衝間時間Atb同樣, 另外求取到達所指定的作動時機角度θ χ的時間Τ χ。因此 ,伴隨引擎旋轉數變動,如同圖(b )所示Z\ta < Atb,或 相反地,如同圖(c )所示Ata > Atb,具有所謂在作動時 機產生偏差的技術課題。 本發明的目的係解決上述之先前技術的課題,且具有 提供能正確地求取作爲內燃機的旋轉角度而可給予的作動 時機之旋轉角度檢測裝置的角度修正方法。 [用以解決課題之手段] 爲了達成上述目的,因此本發明之特徵爲:製作成在 本次之一周期中,以在其上一個的脈衝間區間Gn - 1之旋 轉速度來代表在包含作動時機的脈衝間區間Gn之旋轉速 -5- (3) 1261083 度時,根據在上一次之一周期的同一區間之旋轉速度變動 (Kt ),而修正伴隨在各脈衝間區間的旋轉速度變動的誤 差。 [發明效果] 根據本發明,因爲製作成在以內燃機的旋轉速度作爲 基準而定義的時間軸上變換成時機時刻,並檢測作爲內燃 機的旋轉角度而給予的作動時機之時,可修正伴隨於內燃 機的旋轉速度變動而產生的作動時機角度和達到該作動時 機角度之時間(角度因應時間)的誤差,所以可更正確地 檢測讓作動時機作爲基準的燃料噴射時期或點火時期,且 其結果,使省燃料或噴射性能提升。 【實施方式】 以下,參照圖面並詳細地說明關於本發明之較佳的實 施形態。圖1係適用本發明之內燃機的旋轉角度檢測裝置 的方塊圖,且具備儘管內燃機的旋轉速度變動也能進行正 確的角度檢測之角度修正功能。在本實施形態,將以4行 程引擎的旋轉角度作爲其曲柄軸的旋轉角度而檢測的情況 作爲範例並說明。 曲柄軸1 〇係一體裝設有圓盤狀的旋轉體1 1,且在其 外側面係沿著圓周方向,而以等間隔設置有作爲被檢測部 之複數個突起12。上述突起12係可藉由相向配置於上述 旋轉體1 1的外側面之磁性拾波器、或檢測從上述突起i 2 -6 - (4) 1261083 來的反射光或由上述突起1 2的光路遮斷之有無的光感測 器等之接近感測器1 3而檢測。上述接近感測器1 3係如圖 2所示檢測上述突起1 2的緣部,且脈衝訊號產生部2 8係 上述感測器輸出之啓動,亦即每檢測有上述突起12的前 緣就生成反轉的脈衝訊號P。因此,該脈衝訊號P的負荷 比係在引擎旋轉數不變動之理想狀態下爲5 0 %。 ^ 基準同步脈衝產生部2 1係輸出較上述脈衝訊號P還 夠快的基準同步脈衝。脈衝間時間計測部2 2係使用上述 基準同步脈衝而計測上述脈衝訊號p的脈衝間時間。 在脈衝間時間表2 4係儲存有較本次的脈衝間時間△ t 更前面720° (—周期)的脈衝間時間^〔一 72〕、較本次 的脈衝間時間△ t更前面7 1 0。的脈衝間時間△ t〔一 7 1〕… 本次的脈衝間時間At之上一個的脈衝間時間At〔 〇〕。脈 衝間時間更新登記部2 3係更新登記上述所計測的脈衝間 • 時間△ t於脈衝間時間表2 4。時機修正係數(Kt )運算部 25係如後詳述’求取較本次的脈衝間時間At更前面72〇。 的脈衝間時間△ t〔一 7 2〕、及更前面7 1 0。的脈衝間時間 △ t〔 一 71〕之比(~— 71〕/ ^^〔 — 72〕),以此作 爲時機修正係數(Kt)而設定。 角度因應時間(Tx)運算部26,係將作爲曲柄軸1〇 的旋轉角度而指定的作動時機角度(θχ),轉換成,以脈 衝訊號作爲基準的時間之函數也就是角度因應時間(丁χ ) ’並且根據上述時機修正係數(Kt )而修正伴隨於引擎的 旋轉數變動而產生的作動時機角度(θχ )與角度因應時間 (5) 1261083 (Tx )之誤差。作動訊號產生部2 7係根據上述角度因應 時間(Tx ),而產生顯示燃料的噴射時機或點火時機等的 作動時機訊號。 圖3係顯示本實施形態的動作的流程圖,圖4係其時 機圖表。在本實施形態,將以等間隔而在曲柄軸1 0的旋 轉體1 1設置有3 6個突起的情況爲例而說明。因此,在本 實施形態係相當於各脈衝間區間之引擎的旋轉角度爲10° 〇 當輸入上述脈衝訊號ρ時,在步驟s 1,藉由上述脈 衝間時間計測部22而計測有脈衝間時間At。在步驟S2, 移動有儲存於上述脈衝間時間表2 4的脈衝間時間之履歷 ,例如使710°前的脈衝間時間At〔一 71〕更新登記爲 720°前的脈衝間時間At〔 — 72〕。同樣地,700°前的脈衝 間時間At〔一 70〕更新登記爲7 10°前的脈衝間時間^〔 一 7 1〕。以下同樣地,η °前的脈衝間時間△ t〔 η〕,是更 新登記爲(η— 10 )。前的脈衝間時間At〔 η— 1〕。 在步驟S 3,使以上述步驟S 1所計測的脈衝間時間 作爲上一個脈衝間時間At〔 0〕而被更新登記在上述脈衝 間時間表24。在步驟S4,在上述Kt運算部25,根據次 式(1 )而求取時機修正係數Kt。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to detecting a required rotation of a rotating body of an internal combustion engine from a predetermined position as a function of a rotational speed adjacent to the predetermined position of the rotating body. The angle correction method of the rotation angle detecting device of the angle response time, in particular, the angle correction method of the rotation angle detecting device capable of performing accurate angle detection regardless of the fluctuation of the rotational speed of the internal combustion engine. [Prior Art] In the internal combustion engine, various timings of the ignition timing or the fuel injection timing are obtained from the rotation angle of the internal combustion engine. For this reason, in a rotating body that is synchronized with and rotated by the internal combustion engine, a plurality of pulse generators or dentations are provided at equal intervals along the circumferential direction thereof, and this is made by a magnetic pickup or a photo sensor. The detection is configured to output a pulse signal at equal angular intervals between one rotation of the rotating body. However, since the number of the pulse generators or protrusions is set because of the restriction conditions, it is difficult to obtain sufficient angular resolution. Then, for example, in Patent Documents 1 and 2, the timing of the previous interpulse At is measured from the case where the J pulse signal is detected and the advancement angle θ χ is obtained. Then, corresponding to the rotation angle of the inter-pulse interval, for example, if 1 〇°, the angle corresponding to the J-th pulse signal is detected and the advance angle θ is required, the detection of the J-th pulse signal is performed. Timing is used as a benchmark and is obtained in a sub-style. -4- (2) 1261083 T x - Δt χ ( θ χ / 10) [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei 5 - 1 3 72 94 [Patent Document 2] Japanese Patent Laid-Open No. 6 - 2 1 3 1 2 2 [Invention] [Problems to be Solved by the Invention] It is well known that the rotational speed of the engine varies depending on the stroke. If the 4-stroke engine is used, the second half of the compression stroke plus the first half of the explosion stroke, and the other The stroke speed is lower, and the tendency is more pronounced in a single cylinder engine. However, in the above prior art, as shown in Fig. 5(a), it is assumed that the current interpulse time Ata is the same as the previous interpulse time Atb, and the time to reach the specified actuation timing angle θ 另外 is also obtained. Τ χ. Therefore, as the number of engine rotations fluctuates, Z\ta < Atb as shown in Fig. (b), or conversely, Ata > Atb as shown in Fig. (c) has a technical problem of causing a deviation in the timing of the operation. An object of the present invention is to solve the above problems of the prior art, and to provide an angle correction method for a rotation angle detecting device capable of accurately obtaining an operation timing which can be given as a rotation angle of an internal combustion engine. [Means for Solving the Problem] In order to achieve the above object, the present invention is characterized in that, in one of the current periods, the rotation speed of the pulse interval Gn-1 in the previous one is represented as being included in the operation. When the rotation speed of the inter-pulse interval Gn is -5 (3) 1261083 degrees, the rotation speed variation (Kt) in the same section of the previous one cycle is corrected, and the rotation speed variation accompanying the inter-pulse interval is corrected. error. [Effect of the Invention] According to the present invention, when the timing of the time axis defined by the rotational speed of the internal combustion engine is converted into the timing and the timing of the operation as the rotational angle of the internal combustion engine is detected, the correction can be accompanied by the internal combustion engine. The error of the timing of the operation caused by the fluctuation of the rotational speed and the time (the angle of response time) at which the timing of the actuation is reached, so that the fuel injection period or the ignition timing with the timing of the actuation as the reference can be more accurately detected, and as a result, Save fuel or injection performance. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Fig. 1 is a block diagram showing a rotation angle detecting device of an internal combustion engine to which the present invention is applied, and an angle correcting function capable of performing accurate angle detection even when the rotational speed of the internal combustion engine fluctuates. In the present embodiment, a case where the rotation angle of the four-stroke engine is detected as the rotation angle of the crankshaft will be described as an example. The crankshaft 1 is integrally provided with a disk-shaped rotating body 1 1 and has a plurality of projections 12 as detecting portions at equal intervals on the outer side surface thereof in the circumferential direction. The protrusions 12 are formed by a magnetic pickup that is disposed opposite to the outer surface of the rotating body 11 or that detects reflected light from the protrusions i 2 -6 - (4) 1261083 or the optical path of the protrusions 1 2 The presence or absence of a photosensor or the like is detected by the proximity sensor 13 . The proximity sensor 13 detects the edge of the protrusion 12 as shown in FIG. 2, and the pulse signal generating unit 28 is activated by the sensor output, that is, every time the leading edge of the protrusion 12 is detected. An inverted pulse signal P is generated. Therefore, the load ratio of the pulse signal P is 50% in an ideal state in which the number of engine revolutions does not change. The reference sync pulse generating unit 2 1 outputs a reference sync pulse which is faster than the pulse signal P. The inter-pulse time measuring unit 2 2 measures the inter-pulse time of the pulse signal p using the reference synchronization pulse. The inter-pulse schedule 24 is stored with an interpulse time ^[72] which is 720° (-cycle) earlier than the current interpulse time Δt, and is earlier than the current interpulse time Δt 7 1 0. Interpulse time Δ t [7-11]... Interpulse time At[ 〇] above the interpulse time At. The inter-pulse time update registration unit 2 3 updates and registers the above-mentioned measured inter-pulse time Δ t between the inter-pulse schedules 24 . The timing correction coefficient (Kt) calculation unit 25 is as described later in detail, and is obtained 72 seconds ahead of the current interpulse time At. The interpulse time Δ t [7-12], and the previous 7 1 0. The ratio of the interpulse time Δ t [71] (~ 71] / ^^ [ - 72]) is set as the timing correction coefficient (Kt). The angle response time (Tx) calculation unit 26 converts the actuation timing angle (θχ) specified as the rotation angle of the crankshaft 1〇 into a function of the time at which the pulse signal is used as a reference, that is, the angle response time (Ding Wei) And the error of the actuation timing angle (θχ) and the angle response time (5) 1261083 (Tx) caused by the fluctuation of the number of revolutions of the engine is corrected based on the above-described timing correction coefficient (Kt). The actuation signal generating unit 27 generates an operation timing signal indicating the injection timing or the ignition timing of the fuel based on the angle response time (Tx). Fig. 3 is a flow chart showing the operation of the embodiment, and Fig. 4 is a timing chart thereof. In the present embodiment, a case where 36 protrusions are provided in the rotating body 1 1 of the crankshaft 10 at equal intervals will be described as an example. Therefore, in the present embodiment, the rotation angle of the engine corresponding to each inter-pulse interval is 10°. When the pulse signal ρ is input, the inter-pulse time measuring unit 22 measures the inter-pulse time in step s1. At. In step S2, the history of the inter-pulse time stored in the inter-pulse schedule 24 is moved, for example, the inter-pulse time At [71] before 710° is registered as the inter-pulse time At [720] before 720°. ]. Similarly, the interpulse time At [700] before 700° is registered as the interpulse time ^ [71] before 7 10°. Similarly, the interpulse time Δ t [ η ] before η ° is updated as (η - 10 ). The pre-pulse time At[ η - 1]. In step S3, the inter-pulse time measured by the above-described step S1 is updated and registered in the inter-pulse schedule 24 as the previous inter-pulse time At[0]. In step S4, the Kt calculation unit 25 obtains the timing correction coefficient Kt based on the following equation (1).
Kt= t〔 — 71〕/ At〔一 72〕... ( 1 ) 在步驟S 5 ’判定作動時機角度θχ是否被指定。如果 未被指定’返回上述步驟S1而重複上述之各處理。當作 動時機角度θχ被指定時進行步驟S6。在步驟S6,在上述 -8- (6) 1261083 T x運算部2 6,根據次式(2 )而求取有修正依存於引擎的 周期性的旋轉速度變動之時機誤差的角度因應時間τ x。Kt = t [ - 71] / At [72] (1) It is determined in step S 5 ' whether or not the actuation timing angle θ 被 is specified. If it is not specified 'returned to the above step S1, the above-described respective processes are repeated. When the timing θ is specified as the timing, step S6 is performed. In step S6, the above-mentioned -8-(6) 1261083 T x computing unit 2 6 obtains an angle response time τ x for correcting the timing error depending on the periodic rotational speed variation of the engine based on the following equation (2). .
Tx = ( At [ 0 ] xGxxKt ) /10°... ( 2 ) 亦即,在本實施形態係引擎的旋轉速度變動依存於行 程,且如果爲單氣缸的4衝程引擎’著眼於以曲柄軸的2 旋轉(7 2 0° )作爲1周期而規則性地變動者。然後,在本 次的一周期中將在包含作動時機的脈衝間區間Gn的旋轉 B 速度,以在其上一個脈衝間區間Gn - 1的旋轉速度來代表 時,製作成在上一次的一周期之根據在同一區間的旋轉速 度變動(Kt )而修正伴隨於在各脈衝間區間的旋轉速度變 動的誤差。 而且,如果以上一個的脈衝間時間作爲At,且以在上 一次的周期之同一行程的旋轉速度之變動比(Kt )作爲( △ t2/ Atl ),且藉由上述突起12 而使內燃機的一次旋 轉被Μ等分,上式(2 )係能以次式(3 )而一般化。 ^ Τχ= Δίχ { θχ/(3 60〇/Μ)} χ (Δΐ2/Δί 1)... ( 3) 在步驟S7,從上述脈衝間區間Gn的開始時機起算的 經過時間與上述角度因應時間Tx比較,且當經過時間到 達角度因應時間Tx時,在步驟S 8中從上述作動訊號產生 部27輸出有預定的作動時機訊號。 而且’在上述的實施形態,雖然根據內燃機的2旋轉 (720° )前之在同一區間的旋轉速度變動(Kt )而修正角 度因應時間Τ X的誤差,但是如果內燃機爲2衝程引擎, 根據1旋轉(3 60° )前之在同一區間的旋轉速度變動而修 -9 - (7) (7)1261083 正者較佳。 【圖式簡單說明】 •圖1係本發明的內燃機之旋轉角度檢測裝置的方塊圖 Ο 圖2係脈衝訊號的波形圖。 圖3係顯示本實施形態的動作之流程圖。 圖4係顯示本實施形態的動作之時機圖表。 圖5係用來說明先前技術之課題的波形圖。 【主要元件符號說明】 1 〇 ...曲柄軸 11.. .旋轉體 12…突起 13.. .接近感測器 2 1...基準同步脈衝產生部 22.. .脈衝間時間計測部 2 3...脈衝間時間更新登記部 24.. .脈衝間時間表 2 5...時機修正係數(Kt)運算部 26.. .角度因應時間(Tx)運算部 2 7...作動訊號產生部 2 8...脈衝訊號產生部 -10-Tx = ( At [ 0 ] xGxxKt ) /10° (2) That is, in the present embodiment, the rotational speed of the engine varies depending on the stroke, and if the single-cylinder 4-stroke engine is focused on the crankshaft The 2 rotations (7 2 0° ) are regularly changed as one cycle. Then, in the current cycle, the rotation B speed of the inter-pulse interval Gn including the timing of the actuation is represented by the rotation speed of the previous inter-pulse interval Gn-1, and is made in the previous cycle. The error accompanying the fluctuation of the rotational speed in each inter-pulse interval is corrected based on the rotational speed variation (Kt) in the same section. Further, if the interpulse time of the above one is At, and the variation ratio (Kt) of the rotational speed of the same stroke in the previous cycle is (Δt2/Atl), and the internal combustion engine is once made by the above-described protrusions 12 The rotation is divided into equal parts, and the above formula (2) can be generalized by the following formula (3). ^ Τχ = Δίχ { θχ/(3 60〇/Μ)} χ (Δΐ2/Δί 1) (3) In step S7, the elapsed time from the start timing of the interpulse interval Gn and the above angle response time When Tx is compared, and when the elapsed time reaches the angle response time Tx, a predetermined operation timing signal is output from the above-described actuation signal generating portion 27 in step S8. Further, in the above-described embodiment, the error of the angle response time Τ X is corrected according to the rotational speed variation (Kt ) in the same section before the 2 rotation (720°) of the internal combustion engine, but if the internal combustion engine is a 2-stroke engine, according to 1 It is better to change the rotation speed in the same section before the rotation (3 60°). - (7) (7) 1261083 is preferred. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of a rotation angle detecting device for an internal combustion engine of the present invention. Fig. 2 is a waveform diagram of a pulse signal. Fig. 3 is a flow chart showing the operation of this embodiment. Fig. 4 is a timing chart showing the operation of the embodiment. Fig. 5 is a waveform diagram for explaining the subject of the prior art. [Description of main component symbols] 1 〇... Crankshaft 11.. Rotating body 12...protrusion 13.. Proximity sensor 2 1...reference sync pulse generating section 22. Interpulse time measuring section 2 3... Inter-pulse time update registration unit 24. Inter-pulse schedule 2 5... Timing correction coefficient (Kt) calculation unit 26: Angle response time (Tx) calculation unit 2 7... actuation signal Generation unit 2 8...pulse signal generation unit -10-