TWI258008B - Temperature measurement circuit calibrated through shifting a conversion reference level - Google Patents
Temperature measurement circuit calibrated through shifting a conversion reference level Download PDFInfo
- Publication number
- TWI258008B TWI258008B TW94135898A TW94135898A TWI258008B TW I258008 B TWI258008 B TW I258008B TW 94135898 A TW94135898 A TW 94135898A TW 94135898 A TW94135898 A TW 94135898A TW I258008 B TWI258008 B TW I258008B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- current
- temperature
- thermal sensor
- measurement
- Prior art date
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
Abstract
Description
1258008 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種溫产景 平r喈屮5奴/ ’、]电路’尤其關於一種藉由 十私頒比至數位轉換電路 正功能之溫度量測電路。換剛位而達成誤差校 【先前技術】 由於二極體元件之半導體 極與射極間之半導…面二體元件之基 其間的電流係彼此相關聯並且為溫产 ’位轰與流經 路技術領域中廣泛利用此等半導::文故在積體電 η知的溫度量測電路1〇之電路組態示意圖。典 奧溫度1測電路10係設置來監測外界系統2〇之溫 又。牛例而言,外界系、统20得為—電腦、電子裝置、或 特定的電路區域,其中設有可提供—半導冑Μ接面以偵 測脱度之熱感測器2卜如圖所示,熱感測器21得由一 又載子電晶體所貫施,其基極與射極間之半導體叩接面 用以偵測溫度。 ^在溫度量測電路1〇中,電流源電路u之開關&與 S2係由控制電路12決定導通與不導通,以便分別允許不 同的電流I〗與I2施加至熱感測器2 i。假設電流L施加至 熱感測器21所造成的基極與射極間之電位差為Vbei而電 流I2施加至熱感測器21所造成的基極與射極間之電位差 為,則計算電路13使電位差Vbei與Vbe2彼此相減 1258008 後可得到下列方程式(1): ΔΥΒΕ = VBE1 -VBE2 =^lniilL ^ .j/Re+^ (1)1258008 IX. INSTRUCTIONS: [Technical field of invention] The present invention relates to a temperature production Jingping r喈屮5 slave / ',] circuit', especially regarding a positive function of a digital conversion ratio to a digital conversion circuit Measuring circuit. Replacing the rigid bit to achieve error correction [Prior Art] Due to the semiconductor between the semiconductor pole and the emitter of the diode element, the current between the two body elements is associated with each other and is a warm-production 'bit bang and flow through These semi-conductors are widely used in the field of road technology: a schematic diagram of the circuit configuration of the temperature measuring circuit 1 in the integrated body. The typical temperature 1 measuring circuit 10 is set to monitor the temperature of the external system. In the case of cattle, the external system and system 20 are - computers, electronic devices, or specific circuit areas, in which there is a thermal sensor 2 that can provide a semi-conductive surface to detect the degree of dislocation. As shown, the thermal sensor 21 is applied by a carrier transistor, and the semiconductor junction between the base and the emitter is used to detect temperature. In the temperature measuring circuit 1 ,, the switches & and S2 of the current source circuit u are controlled by the control circuit 12 to be turned on and off so as to allow different currents I and I2 to be applied to the thermal sensor 2 i, respectively. Assuming that the potential difference between the base and the emitter caused by the application of the current L to the thermal sensor 21 is Vbei and the potential difference between the base and the emitter caused by the current I2 applied to the thermal sensor 21 is calculated, the calculation circuit 13 After the potential difference Vbei and Vbe2 are subtracted from each other by 12580008, the following equation (1) can be obtained: ΔΥΒΕ = VBE1 - VBE2 = ^lniilL ^ .j/Re+^ (1)
-、 4 \l2 y v P J 其中κ為波茲曼(B〇ltzmann)常數、T為絕對溫度、q為基 本電何、Re為射極之串聯寄生電阻、Rb為基極之串聯寄生 甩阻並且β為電晶體之增益係數(gain)。因此,計算電 、,3所產生的電位差AVbe係一隨溫度變化而可代表溫度 鲁之類比信號。隨後,類比至數位轉換電路咖 =>nvmer,ADC)14使此類比温度信號轉換成一數位溫度 攸方程式(1)可知,熱感測器21之串聯寄生電阻&與 =丨二-與溫度無關之常數項,亦即(η·#,。為 :示此種串聯寄生電阻Re與^所造成的 ..., —種或更夕種不同的電流,依序激發相同的 ’以期達成準確的溫度量測結果。然而,使用 二: = 流之習知技藝激發方式不僅造成 變動。即使在丄 更導致不必要的能量消耗與溫度 夂7丨便呆作頻率維姓m ^ 電流之依序激發m 疋之條件下’愈多種不同的 環所需的\ :無可避免地延長每次溫度量測循 另:1!而降低溫度量測電路1。之反應速度。 形成有熱“!器:度實際上所量測的是其上 果可能與外界系統I體基板的溫度,而此一量測結 而言,當外界系統0之真正代表性溫度並不相同。舉例 ^ 20係一電腦時,吾人有興趣的通常是 1258008 =、】卜界/系統20之散熱板22的溫度,而非設置有熱感測 器21之半導體基板的溫度。在此情況中,外界系統2〇之 =造商提供有關散熱板22與熱感測器21之基板間存在的 溫度差異數據ΔΤ,以便習知的溫度量測電路10將其儲存 =暫存态1 5中。隨後,加法電路i 6將類比至數位轉換 電路14之數位輸出與暫存器15中之溫度差異數據△丁彼 此相加,以便產生一最終的溫度信號Tmp。 【發明内容】 有鑒於W述問題,本發明之目的在於提供一種溫度量 測電路,藉由平移類比至數位轉換電路之轉換參考準位而 達成誤差校正功能。 依據本發明之一悲樣提供一種溫度量測電路,具有一 電流激發電路、一計算電路、一校正值產生電路、以及一 類比至數位轉換電路。電流激發電路依序施加至少二個電 ^ 々,L至一熱感測裔,使得該熱感測器對應地產生至少二個輸 出信號。回應於該至少二個輸出信號,計算電路計算出一 類比溫度信號,其代表該熱感測器所偵測到之一溫度。校 正值產生電路產生一校正值。類比至數位轉換電路依據一 轉換參考準位而將該類比溫度信號轉換成一數位溫度信 號。該轉換參考準位係依據該校正值而平移調整。 * 該熱感測器具有一半導體Pn接面,使得該至少二個 電流係依序流經該半導體pn接面而在其上分別產生至少 兩個電位差,作為該至少二個輸出信號。該校正值係藉由 1258008 該:流激發電路依序施加至少三個電流至該熱感測器而 计异出’使得該校正值用以修正該類比溫度信號之—常數 項誤差1熱感測器係'設置於_外界系、統之—基板中。該 技正值係由錢界系統所提供,藉以修正該熱感測哭所偵 測到的該溫度與該外界系統之—代表性溫度間之^旦。 依據本發明之另-態樣提供—種溫度量測方法,且有 列步驟。首先,依序施加至少二個電流至一熱感剩哭:、使 :該熱感測器對應地產生至少二個輸出信號。回應:該至 二:=出I信號::算出一類比溫度信號,其代表該熱感 集m』到之—溫度。產生-校正值。依據-轉換參考 類比溫度信號轉換成一數位溫度信號。該轉換 多考準位係依據該校正值而平移調整。 依據本發明之又一能样 ^ 心枚楗七、一種電流激發電路,用以 政發一熱感測器。該雷法 電/;,L〉放發電路具有一量測電流源電 、-杈正電流源電路、一校正控制電路、以及_量測控 制電路。量測電流源電路 ^ ^ 二 捉1、弟一置測電流與一第二量 測電k。校正電流源電 ^ 7电路钕供一扠正電流。校正控制電路 允卉忒弟一置測電流、-旦 μ弟一1測電流、與該校正電流依 序施加至该熱感測器, 旦 I话Μ兰θ 用以里测有關於該熱感測器之一常 : = = !測控制電路允許該第-量測電流與該第二量 、w右 ^ ^ …、感測為,用以量測該熱感測器之〜 k度。該校正控制電路 ^ ^ 係比該1測控制電路更早被啟動以 進仃該常數項誤差之量測。 1258008 【實施方式】 下文中之說明與附圖將使本發明之前述與其他目 的、特徵、與優點P日日曰s 更月頒。茲將參照圖式詳細說明依據本 發明之較佳實施例。 一立圖2 員不依據本發明之溫度量測電路^之電路組態 〜圖在/m度里測電路30中,一種電流激發電路係由 一量測電流源電路3 !、_ 才父正電流源電路3 2、一量測控 制電路33、以及一妒不协… &正控制電路34所共同構成。量測電 流源電路31具有第-與第二量測電流…,分別經由 開關Si與s2而供應至熱感測器21之射極。校正電流源電 :32具冑則父正電流“,經由開關&而供應至熱感測 器二射極。在溫度量測電% 3〇開始量測熱感測器η 卜度$彳又正拴制電路3 4必須先被啟動以控制第一與 第一 1測電流11與12以及校正電流“依序施加至熱感測 器21。叙没電流11、、與“對於熱感測器21所造成的 _與射極間之電位差分別為VbE1、VBE2、與Vbe3,則計 异電路35可計异出—方程式(2)所下所示: △Vbei = VBE1 - Vj κτ βε2 ~ —1ηq Ιι + (I「I2(Re 今 κτ △mfln +(vURe +-, 4 \l2 yv PJ where κ is the Bozmann (B〇ltzmann) constant, T is the absolute temperature, q is the basic electrical, Re is the series parasitic resistance of the emitter, and Rb is the series parasitic resistance of the base and β is the gain coefficient of the transistor. Therefore, the potential difference AVbe generated by the calculation of electricity, 3, can represent the analog signal of the temperature as a function of temperature. Subsequently, the analog to digital conversion circuit => nvmer, ADC) 14 converts such a specific temperature signal into a digital temperature equation (1), the series parasitic resistance of the thermal sensor 21 & The irrelevant constant term, that is, (η·#, is: shows the series parasitic resistance Re and ^ caused by ..., or a different kind of current, sequentially exciting the same 'in order to achieve accuracy The temperature measurement results. However, the use of two: = flow of the skill of the art to stimulate not only causes changes. Even in the case of unnecessary energy consumption and temperature 夂7 呆 呆 呆 频率 频率 频率 频率 频率 m m m m m m m m m Under the condition of exciting m ' 'the more different rings required \ : Inevitably extend each temperature measurement cycle: 1! And reduce the temperature measurement circuit 1. The reaction speed. Formed with heat "! The degree actually measured is the temperature of the substrate with the external system I, and the actual representative temperature of the external system 0 is not the same for this measurement. For example, ^20 is a computer. When I am interested, it is usually 12580008 =,] Boundary / System The temperature of the heat sink 22 of 20 is not the temperature of the semiconductor substrate on which the thermal sensor 21 is disposed. In this case, the external system 2 = manufacturer provides the substrate between the heat sink 22 and the thermal sensor 21 The temperature difference data ΔΤ is present so that the conventional temperature measuring circuit 10 stores it in the temporary storage state 15. Subsequently, the adding circuit i 6 compares the digital output of the analog to digital conversion circuit 14 with the register 15 The temperature difference data Δ dings are added to each other to generate a final temperature signal Tmp. SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a temperature measuring circuit that converts by shifting analog to digital conversion circuits. The error correction function is achieved by reference to the reference level. According to one of the present invention, a temperature measurement circuit is provided, which has a current excitation circuit, a calculation circuit, a correction value generation circuit, and an analog to digital conversion circuit. And applying at least two electrical signals, L to a thermal sensing, such that the thermal sensor correspondingly generates at least two output signals. In response to the at least two output signals The calculation circuit calculates a temperature signal representative of a temperature detected by the thermal sensor. The correction value generating circuit generates a correction value. The analog to digital conversion circuit compares the analog reference level according to a conversion reference level. The temperature signal is converted into a digital temperature signal. The conversion reference level is adjusted according to the correction value. * The thermal sensor has a semiconductor Pn junction such that the at least two current systems sequentially flow through the semiconductor pn junction And generating at least two potential differences respectively as the at least two output signals. The correction value is determined by 12580008: the stream excitation circuit sequentially applies at least three currents to the thermal sensor to make a difference The correction value is used to correct the constant temperature error of the analog temperature signal. The thermal sensor system is disposed in the substrate of the external system. The positive value of the technique is provided by the money system to correct the temperature detected by the thermal sensing crying and the representative temperature of the external system. A temperature measurement method is provided in accordance with another aspect of the present invention, and has a number of steps. First, at least two currents are sequentially applied to a thermal sensation: so that the thermal sensor correspondingly generates at least two output signals. Response: The two to: = out I signal:: Calculate an analog temperature signal, which represents the thermal sense set m to the temperature. Generate - correction value. The conversion-based analog temperature signal is converted into a digital temperature signal. The conversion multi-test level is adjusted in translation according to the correction value. According to another aspect of the present invention, a current excitation circuit is used for a thermal sensor. The lightning method/;, L> emitting circuit has a measuring current source, a positive current source circuit, a correction control circuit, and a measurement control circuit. Measuring the current source circuit ^ ^ 2 catch 1, the first one to measure the current and one second to measure the electricity k. Correct the current source. The circuit is supplied with a positive current. The correction control circuit allows the generator to measure the current, and the current is applied to the thermal sensor in sequence, and the correction current is sequentially applied to the thermal sensor. One of the detectors is often: = = ! The measurement control circuit allows the first-measurement current and the second amount, w right ^ ^ ..., sensed to measure the k-degree of the thermal sensor. The correction control circuit ^ ^ is activated earlier than the 1 test control circuit to measure the constant term error. 1258008 [Embodiment] The foregoing description of the present invention and other objects, features, and advantages of the present invention will be made more recent. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments in accordance with the present invention will be described in detail with reference to the drawings. A diagram 2 is not based on the temperature measurement circuit of the present invention. The circuit configuration is shown in the /m degree measurement circuit 30. A current excitation circuit is a measurement current source circuit 3!, _ The current source circuit 3 2, a measurement control circuit 33, and a control circuit 34 are collectively constructed. The measuring current source circuit 31 has first and second measuring currents ... supplied to the emitter of the thermal sensor 21 via switches Si and s2, respectively. Correction current source power: 32 胄 父 父 positive current ", supplied to the thermal sensor two emitters via the switch & the temperature measurement electricity % 3 〇 start measuring the thermal sensor η 卜 degree $ 彳 again The positive clamping circuit 34 must be activated first to control the first and first 1 sense currents 11 and 12 and the correction current "sequentially applied to the thermal sensor 21. When the current is less than 11, and "the potential difference between the _ and the emitter caused by the thermal sensor 21 is VbE1, VBE2, and Vbe3, respectively, the difference circuit 35 can be calculated - the equation (2) Show: △Vbei = VBE1 - Vj κτ βε2 ~ —1ηq Ιι + (I “I2(Re 今κτ △mfln +(vURe +
Rb β β) (2) dAVBE = ΔνΒΕΙ - AVBE2 == in h_h. +(^-2I2-I3)iReRb β β) (2) dAVBE = ΔνΒΕΙ - AVBE2 == in h_h. +(^-2I2-I3)iRe
^ V *-^2 J V R I 茲再假設電流Ii、、與i3間滿足下列比 例條 件(3): 8 (3) 1258008 I] . I2 · I3 = A2 : A : 1 亦即第一量測電流Ii4第二量測電 二量測電流l2為校正電流l3之…:A倍,亚且第 方程式⑺可更進—步簡化成如下所;的、::式:零,則 (4) β dAVBE=(A-l)2^ V *-^2 JVRI It is assumed that the following ratio conditions (3) are satisfied between the currents Ii, and i3: 8 (3) 1258008 I] . I2 · I3 = A2 : A : 1 is the first measurement current Ii4 The second quantity measuring electric quantity two measuring current l2 is the correction current l3...: A times, and the equation (7) can be further advanced and simplified into the following;::: formula: zero, then (4) β dAVBE= (Al)2
因此,藉著校正電流1幫 3 <專助,计异電路 測出由串聯寄生電阻 有效也偵 HAV 歧> /、 b所&成的常數項誤差 dAVBE。隨後,此常數項差 ㈣項M dAVBE即傳送至校正值產生 電路36用以產生_仿丨不枯+ 座生才乂正值CF。在一較佳實施例中,此校 正值CF係於任何溫度㈣循㈣始之前即必須預先測定 女當,以提供後續戶斤有溫度量測循環之誤差校正使用。 圖3(A)至3(C)顯不依據本發明之計算電路35在偵測 常數項誤差dAVBE時之操作狀態圖。在圖3(A)中,開關Therefore, by correcting the current 1 gang 3 < special help, the difference circuit measures the constant term error dAVBE formed by the series parasitic resistance and also detects HAV &> /, b & Subsequently, the constant term difference (4) term M dAVBE is sent to the correction value generating circuit 36 for generating a positive value CF. In a preferred embodiment, the correction value CF is pre-determined before any temperature (4) cycle (4) to provide an error correction for the subsequent measurement cycle of the temperature measurement cycle. 3(A) to 3(C) show operational state diagrams of the calculation circuit 35 according to the present invention when detecting the constant term error dAVBE. In Figure 3 (A), the switch
Sa導通、開關Sb導通、開關Se使電容Cc耦合至差動放大 器AM之非反相輸入端(+ )、並且開關心使電容Q耦合至 差動放大器AM之反相輸入端(-)。再者,開關s〗導通且開 關S2與S3皆不導通,因而僅允許第一量測電流l施加至 熱感測器2 1而產生基極與射極間之第一電位差vBE2。在 此第一階段中,由於差動放大器AM之非反相輸入端(+ ) 與反相輸入端(-)處之電壓皆為零,故差動放大器am之輸 出電壓Vout⑴為零。在圖3(B)中,開關sa與Sb皆變為不 導通。此外,開關S2導通且開關S!與S3皆不導通,因而 9 1258008 僅允_弟一罝測電流I:施加至熱感測哭2 1 射極間之第一電位差VBE2。在此第二階段 … ° 大器AM之非反相輸入端(+ )與反相輸 、動放 ^ 而卜)處之雷厭幽 為(VBE1-VBE2)/2,故差動放大器AM之輪出泰芦 土、 (Vbe〗-VBE2)。在圖3(C)中,開關、變成使電容θ c DUi=為 差動放大l§ AM之反相輸入端卜),並且 至 r老人”、,名l , 厂節 1 ~受成使電容 d輕a至1動放大器AM之非反相輸人端(+ )。再 關S3導通且開M Sl# 82皆不導通,因而僅允許校正電: “施加至熱感測器21而產生基極與射極間之第二+ 2 ^ :二在此第三階段中,差動放大器ΑΜ<輸出電;;,) 又…(vbe1-vBE2)-(VbE2_VbE3),亦即所欲偵測的方程式 與(4)之常數項誤差dAVBE。 請注意依據本發明中之校正電流源電路U盥校正杵 =路34在完成前述的常數項誤差咖邮之㈣程序^ 輪出至校正值產生電路36後’即停止操作。換言之,在 ^丁溫度量測循環時’溫度量測電路3〇僅使用量測控制 33^制量測電流源電路31依序施加第一與第二量測 、則y 1 /、12至熱感測器2 1。因此,計算電路35在溫度量 ^循環中之操作狀態僅侷限於圖3(A)與3(B)。在滿足比例 下j L且已'則得方程式(4)之常數項誤差dAVBE的情況 ,叶算電路35所獲得的基極與射極間之電位差ΔνΒΕ可 表示如下: ΔΥ, beSa is turned on, switch Sb is turned on, switch Se is coupled to capacitor Cc to the non-inverting input terminal (+) of the differential amplifier AM, and the switch core couples capacitor Q to the inverting input terminal (-) of the differential amplifier AM. Furthermore, the switch s is turned on and the switches S2 and S3 are not turned on, so that only the first measurement current l is allowed to be applied to the thermal sensor 21 to generate a first potential difference vBE2 between the base and the emitter. In this first phase, since the voltages at the non-inverting input terminal (+) and the inverting input terminal (-) of the differential amplifier AM are both zero, the output voltage Vout(1) of the differential amplifier am is zero. In Fig. 3(B), both switches sa and Sb become non-conductive. In addition, the switch S2 is turned on and the switches S! and S3 are not turned on, so that the current difference I is applied to the first potential difference VBE2 between the emitters of the thermal sensing cry 2 1 . In this second phase... ° The non-inverting input (+) and the inverting input and the moving amplifier of the AM are both (VBE1-VBE2)/2, so the differential amplifier AM Take out the tailu soil, (Vbe〗-VBE2). In Fig. 3(C), the switch becomes such that the capacitance θ c DUi = is the inverting input terminal of the differential amplification l § AM, and to the old man, the name l, the factory section 1 ~ accepts the capacitor d light a to 1 non-inverting input terminal (+) of the mobile amplifier AM. S3 is turned off and M Sl# 82 is not turned on, so only correction power is allowed: "Apply to the thermal sensor 21 to generate the base The second between the pole and the emitter + 2 ^ : two In this third phase, the differential amplifier ΑΜ < output power;;,) again ... (vbe1-vBE2) - (VbE2_VbE3), that is, the desired detection The constant term error dAVBE of the equation and (4). Please note that the correction current source circuit U 盥 in accordance with the present invention corrects 杵 = path 34 after the completion of the aforementioned constant term error (4) program ^ turns out to the correction value generating circuit 36, i.e., stops the operation. In other words, during the temperature measurement cycle, the temperature measurement circuit 3 〇 only uses the measurement control 33 to measure the current source circuit 31 to sequentially apply the first and second measurements, then y 1 /, 12 to heat Sensor 2 1. Therefore, the operational state of the calculation circuit 35 in the temperature amount cycle is limited to Figs. 3(A) and 3(B). In the case where the ratio j d is satisfied and the constant term error dAVBE of the equation (4) is obtained, the potential difference Δν 间 between the base and the emitter obtained by the leaf circuit 35 can be expressed as follows: ΔΥ, be
Vbei-VBE2 KT q 1η(Α)+ί-~^ΔΥΒΕ (5) 10 l258〇〇8 口此依據本發明中,利用第一盘-旦 所獲得的電位差Λν σ -、弟一夏測電流1丨與 mvbe盘比例因 M只要被平移調整了一個常數項誤差 列:ΓΓ (A_1)之乘積’即可產生正確的溫度量 由於此常數項誤差〜已經預先經由校正電、、ώ 3之協助而偵測出並儲存於校 爪 每-溫度量測猶環中再反覆重新偵測/路Μ故無須於 除了常數項誤差Μ、之外,校 可接收由外界李矫挤担糾本 玍电路36亦 22門之、…所拎供之有關熱感測器21與散熱板 差里们:又差異數據…由於常數項誤差與溫度 ”數據ΔΤ皆屬於可平移校正的誤差,故校正值產生電 路36可將其整合成單一的校正值CF。基於此校正值CF, ^移校正型類比至數位轉換電路37決定適當的轉換參考 垂位圖4頰不依據本.發明之平移校正型類比至數位轉換 二路3 7之知作原理不意圖。廣義而言,類比至數位轉換 電路37依據-預定的取樣頻率對於所接收的類比信號化 進仃取‘。P通後’所取樣而得的類比結果在數學概念上可 視為綞由數位對應# Dx而轉換成一數位信號,其中此數 位信號之實際值係取決於轉換參考準位REF之相對位 置。舉例而言,如圖4所示,原始的轉換參考準位REF向 下方平移了一杈正值CF後而形成一平移後的轉換參考準 4 REF — S對於原始的轉換參考準位REF而言,類比樣本 AS係轉換成數位信號DgU。惟對於平移後的轉換參考準 位REF_S而s,類比樣本AS則轉換成數位信號。因 此,藉由平移轉換參考準位Ref之方式,平移校正型類比 11 1258008 至數位轉換電路3 7可有效地在類比至數位的轉換過程中 進行常數項誤差^丨犯與溫度差異數據AT之校正而獲得 一正確的溫度量測結果,無須額外進行習知的加法運算程 ° 圖5顯示依據本發明之類比至數位轉換電路37之一 例子之詳細電路圖。取樣/調變電路5 i依據時脈產生器5 2 所提供之時脈信號CLK而對於從計算電路35而來的基極 φ與射極間之電位行取樣,並將取樣結果調二成 一脈衝序列信號。舉例而言,取樣/調變電路5丨得由一 Delta-Sigma類比至數位調變器所實施,因而此脈衝序列信 號係類比樣本所對應的數位信號。從取樣/調變電路5丨而 來的脈衝序列信號係施加至計數器53。在一預定的週期 内,計數器53數算所接收到的脈衝序列信號中之脈衝數 目。由於㈣1 53之數算彳式係從一計數基準值開始向 上遞增計數,故平移調整此計數基準值之效果即等同於平 •移調整計數器53所計算而得的計數結果,因此本發明人 將此技術原王里應用⑥溫度量測結果之常數項誤差校正上。 具體而[計數器53 <計數基準值係由校正值產生 電路36所提供的校正值CF所決在校正值產生電路^ 中’從計算電路35而來之常數項誤差⑽邮經由乘法器 41乘上比例因子ΜΑ·1),且隨後經由加法H 42而與從外 界系統20而來的溫度差異數據ΛΤ相加總,藉以合成所期 望的單-校正值CF並儲存於校正暫存器43内。換言之, 圖5所不之貫施例係藉由平移調整計數器μ之計數基準 12 1258008 值而達成圖4之平移轉換參考準位ref之目的。另一 面’除頻器54將時脈產生器52之時脈信號CLK除頻,以 產生-較低頻率的重設信號RST。在一實施例中,除頻界 二斤產生的重a又仏號RST之頻率係將時脈產生器52之時 唬CLK之頻率除以1〇24而得。因此,在時脈信號CLK 匕1024個週期後,計數器53會被重設回到計數基準 值則更重新開始計數。同樣地,此計數基準值係由校正 值產生電路36所提供的校正值CF所決定。此外,計數器 53在時脈信號咖之1()24個週期内所計數而得的結果 傳送至輸出暫存哭V ^ θ ’、 口口 5,作為》皿度1測結果Tmp而輪出至 外界。此溫度量浪I纟士里τ ^ 又里而、、、口果Tmp也依據重設信號RST之頻率 而更新。 、 雖然本發明業已藉由較佳實施例作為例示加以說 明’應瞭解者為:本發明不限於此被揭露的實施例。相反 地’本發明意欲涵蓋對於熟習此項技藝之人士而言係明顯 的各種修改與相似W ro ,L . ^ .. ^ ^ 配置。因此,申清專利範圍之範圍應根 據取廣㈣釋,以包容所有此類修改與相似配置。 【圖式簡單說明】 圖1頦:白知的温度量測電路之電路組態示意圖。 ^ ’、、、、依據本發明之溫度量測電路之電路組態示意 圖。 圖3(A)至3(c)顯示依據本發明之計算電路之操作狀 態圖。 13 1258008 圖4顯示依據本發明之平移校正型類比至數位轉換電 路之操作原理示意圖。 圖5顯示依據本發明之類比至數位轉換電路之一 之詳細電路圖。Vbei-VBE2 KT q 1η(Α)+ί-~^ΔΥΒΕ (5) 10 l258〇〇8 According to the present invention, the potential difference Λν σ - obtained by the first disk is measured, and the current is measured by the summer. The ratio of 丨 to mvbe disk is adjusted by a constant term error column as long as M is translated: 乘 (A_1) product can generate the correct temperature amount. Since this constant term error ~ has been assisted by the correction of electricity, ώ 3 Detected and stored in the claws per temperature measurement in the loop and then re-detected / path, so it is not necessary to be in addition to the constant term error Μ, the school can receive the external Lee correction and correct the circuit 36 Also, the 22-way, ... is related to the thermal sensor 21 and the heat sink difference: the difference data... Since the constant term error and the temperature "data ΔΤ are all errors that can be translated, the correction value generating circuit 36 It can be integrated into a single correction value CF. Based on the correction value CF, the shift correction analog to digital conversion circuit 37 determines the appropriate conversion reference vertical map. FIG. 4 does not according to the present invention, the translation correction analog to digital conversion The principle of the knowledge of the second road is not intended. In a broad sense, The analog-to-digital conversion circuit 37 converts the received analog signal into a 'according to a predetermined sampling frequency'. The analog result obtained by sampling after P-pass is mathematically regarded as 缍 converted to a digital corresponding to #Dx. The digital signal, wherein the actual value of the digital signal depends on the relative position of the conversion reference level REF. For example, as shown in FIG. 4, the original conversion reference level REF is translated downward by a positive value CF. Forming a translated conversion reference quasi 4 REF — S For the original conversion reference level REF, the analog sample AS is converted into a digital signal DgU. For the translated reference reference level REF_S and s, the analog sample AS is Converted into a digital signal. Therefore, by translationally converting the reference level Ref, the translation correction analog analog 11 1258008 to the digital conversion circuit 37 can effectively perform constant term error and temperature during the analog to digital conversion process. Correction of the difference data AT to obtain a correct temperature measurement result without additional conventional addition procedure. FIG. 5 shows an analog to digital conversion according to the present invention. A detailed circuit diagram of an example of the circuit 37. The sampling/modulation circuit 5 i is based on the clock signal CLK provided by the clock generator 52 for the potential between the base φ and the emitter from the calculation circuit 35. Line sampling, and the sampling result is adjusted into a pulse sequence signal. For example, the sampling/modulation circuit 5 is implemented by a Delta-Sigma analog to digital modulator, and thus the pulse sequence signal is analogous to the sample. The corresponding digital signal is applied to the counter 53 from the sampling/modulation circuit 5. The counter 53 counts the number of pulses in the received pulse sequence signal for a predetermined period. Since the number of (4) 1 53 is counted up from a count reference value, the effect of shifting the count reference value is equivalent to the count result calculated by the flat shift adjustment counter 53, so the inventor will This technique was originally applied to the constant error correction of the 6 temperature measurement results. Specifically, the [counter 53 <counting reference value is determined by the correction value CF supplied from the correction value generating circuit 36 in the correction value generating circuit ^, and the constant term error (10) from the calculating circuit 35 is multiplied by the multiplier 41. The upper scale factor ΜΑ·1) is then summed with the temperature difference data 从 from the external system 20 via the addition H 42 to synthesize the desired single-correction value CF and stored in the correction register 43 . In other words, the embodiment of Fig. 5 does not aim to achieve the translation conversion reference level ref of Fig. 4 by shifting the value of the counter reference 12 1258008 of the counter μ. The other side of the frequency divider 54 divides the clock signal CLK of the clock generator 52 to produce a lower frequency reset signal RST. In one embodiment, the frequency of the weight a and the number RST generated by the frequency band of two kilograms is obtained by dividing the frequency of the clock generator 52 by the frequency of CLK by 1〇24. Therefore, after the clock signal CLK 匕 1024 cycles, the counter 53 is reset to the count reference value and the count is restarted. Similarly, this count reference value is determined by the correction value CF supplied from the correction value generating circuit 36. In addition, the result of the counter 53 counting in the 24 cycles of the clock signal is transmitted to the output temporary memory crying V^θ', the mouth 5, and is taken as the "1" measurement result Tmp. external. This temperature is measured by the frequency of the reset signal RST, and the Tmp is also updated according to the frequency of the reset signal RST. The present invention has been described by way of illustration of the preferred embodiments. It is understood that the invention is not limited to the disclosed embodiments. Rather, the invention is intended to cover various modifications and similarities to the skilled in the art. Therefore, the scope of the scope of the patent application should be based on the interpretation of the above (4) to accommodate all such modifications and similar configurations. [Simple description of the diagram] Figure 1: Schematic diagram of the circuit configuration of the temperature measurement circuit of Baizhi. ^ ',,,, schematic diagram of the circuit configuration of the temperature measuring circuit according to the present invention. 3(A) to 3(c) are diagrams showing the operational state of the calculation circuit in accordance with the present invention. 13 1258008 Figure 4 is a diagram showing the principle of operation of a translation correction type analog to digital conversion circuit in accordance with the present invention. Figure 5 shows a detailed circuit diagram of one of the analog to digital conversion circuits in accordance with the present invention.
【主要元件符號說明】 10 溫度量測電路 11 電流源電路 12 控制電路 13 計算電路 14 類比至數位轉換電路(ADC) 15 暫存器 16 加法電路 20 外界系統 21 熱感測器 22 散熱板 30 溫度量測電路 31 量測電流源電路 32 校正電流源電路 33 量測控制電路 34 校正控制電路 35 計算電路 36 校正值產生電路 37 平移校正型類比至數位轉換電路(ADC) 14 1258008 41 乘法器 42 加法器 43 校正暫存器 5 1 取樣/調變電路 52 時脈產生器 53 計數器 54 除頻器[Main component symbol description] 10 Temperature measurement circuit 11 Current source circuit 12 Control circuit 13 Calculation circuit 14 Analog to digital conversion circuit (ADC) 15 Register 16 Addition circuit 20 External system 21 Thermal sensor 22 Heat sink 30 Temperature Measurement circuit 31 Measurement current source circuit 32 Correction current source circuit 33 Measurement control circuit 34 Correction control circuit 35 Calculation circuit 36 Correction value generation circuit 37 Translation correction analog to digital conversion circuit (ADC) 14 1258008 41 Multiplier 42 addition 43 Correction register 5 1 Sampling/modulation circuit 52 Clock generator 53 Counter 54 Frequency divider
55 輸出暫存器 AM 差動放大器55 Output Register AM Differential Amplifier
Ca〜Cd電容 CF 校正值 CLK 時脈信號 I 1,I 2 量測電流 13 校正電流Ca~Cd Capacitor CF Correction Value CLK Clock Signal I 1, I 2 Measurement Current 13 Correction Current
Rb,Re 串聯寄生電阻 RST 重設信號Rb, Re series parasitic resistance RST reset signal
Sl5 S2, S3, Sa 〜Sd 開關Sl5 S2, S3, Sa ~Sd switch
Tmp 溫度量測結果 V b E 基極與射極間之電位差 dAVBE 常數項誤差 ΔΤ 溫度差異數據 15Tmp temperature measurement result V b E Potential difference between base and emitter dAVBE constant term error ΔΤ temperature difference data 15
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94135898A TWI258008B (en) | 2005-10-14 | 2005-10-14 | Temperature measurement circuit calibrated through shifting a conversion reference level |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW94135898A TWI258008B (en) | 2005-10-14 | 2005-10-14 | Temperature measurement circuit calibrated through shifting a conversion reference level |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI258008B true TWI258008B (en) | 2006-07-11 |
TW200714879A TW200714879A (en) | 2007-04-16 |
Family
ID=37765136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW94135898A TWI258008B (en) | 2005-10-14 | 2005-10-14 | Temperature measurement circuit calibrated through shifting a conversion reference level |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI258008B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114356020A (en) * | 2022-01-10 | 2022-04-15 | 中国科学院半导体研究所 | Circuit for eliminating parasitic resistance of far-end temperature sensor and control method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10727741B2 (en) * | 2016-06-29 | 2020-07-28 | Win Semiconductors Corp. | Thermal sensing acoustic wave resonator and acoustic wave filter having thermal sensing acoustic wave resonator |
US10763141B2 (en) * | 2017-03-17 | 2020-09-01 | Applied Materials, Inc. | Non-contact temperature calibration tool for a substrate support and method of using the same |
-
2005
- 2005-10-14 TW TW94135898A patent/TWI258008B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114356020A (en) * | 2022-01-10 | 2022-04-15 | 中国科学院半导体研究所 | Circuit for eliminating parasitic resistance of far-end temperature sensor and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW200714879A (en) | 2007-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7341374B2 (en) | Temperature measurement circuit calibrated through shifting a conversion reference level | |
US9658118B2 (en) | Precision temperature measurement devices, sensors, and methods | |
CN107367336B (en) | System and method for temperature sensing | |
US9804036B2 (en) | Temperature sensor calibration | |
US6736540B1 (en) | Method for synchronized delta-VBE measurement for calculating die temperature | |
US9726696B2 (en) | Precision reference circuit and related method | |
US20130301680A1 (en) | Temperature detection method and device with improved accuracy and conversion time | |
CN110940432B (en) | Temperature sensing circuit | |
TW200915040A (en) | Electronic system | |
WO2013123192A1 (en) | Method and apparatus for low cost, high accuracy temperature sensor | |
Meijer et al. | Smart temperature sensors and temperature sensor systems | |
Makinwa et al. | A CMOS Temperature-to-Frequency Converter With an Inaccuracy of Less Than $\pm\hbox {0.5}\,^{\circ}{\hbox {C}} $(3$\sigma $) From $-\hbox {40}\,^{\circ}\hbox {C} $ to 105$\,^{\circ}\hbox {C} $ | |
Yousefzadeh et al. | 9.3 A BJT-based temperature sensor with a packaging-robust inaccuracy of±0.3 C (3σ) from− 55 C to+ 125 C after heater-assisted voltage calibration | |
TWI258008B (en) | Temperature measurement circuit calibrated through shifting a conversion reference level | |
US20190204164A1 (en) | Self-referenced, high-accuracy temperature sensors | |
US10605676B2 (en) | Heater-assisted voltage calibration of digital temperature sensors | |
EP4191216A2 (en) | Temperature sensor with delta base-emitter voltage amplification and digital curvature correction | |
US10103050B2 (en) | System reference with compensation of electrical and mechanical stress and life-time drift effects | |
CN100445712C (en) | Temp. measuring circuit of corrected by translation conversion reference level | |
Pertijs et al. | Bitstream trimming of a smart temperature sensor | |
TWI847468B (en) | Adaptive temperature slope calibration method and associated system | |
Trancă et al. | A compact size signal conditioning circuit for thermocouple linearization and amplification for industrial IoT devices | |
CN111089609A (en) | Sensor circuit with offset compensation | |
Haile et al. | Oscillator circuits for RTD temperature sensors | |
TWI378226B (en) | Temperature measuring system and measuring method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |