TWI257713B - P-N junction type boron phosphide-based semiconductor light-emitting device and production method thereof - Google Patents

P-N junction type boron phosphide-based semiconductor light-emitting device and production method thereof Download PDF

Info

Publication number
TWI257713B
TWI257713B TW92103840A TW92103840A TWI257713B TW I257713 B TWI257713 B TW I257713B TW 92103840 A TW92103840 A TW 92103840A TW 92103840 A TW92103840 A TW 92103840A TW I257713 B TWI257713 B TW I257713B
Authority
TW
Taiwan
Prior art keywords
based semiconductor
semiconductor layer
light
boron phosphide
boron
Prior art date
Application number
TW92103840A
Other languages
Chinese (zh)
Other versions
TW200305295A (en
Inventor
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW200305295A publication Critical patent/TW200305295A/en
Application granted granted Critical
Publication of TWI257713B publication Critical patent/TWI257713B/en

Links

Abstract

The purpose of the present invention is that in the boron phosphide-based semiconductor light emitting device, the extension of the IV family element from the light-emitting layer to the external portion is suppressed, and the atomic concentration of the IV family element in the light-emitting layer is maintained at the best concentration from the view of the light-emitting intensity. The present invention is a boron phosphide-based semiconductor light-emitting device formed as a P-N junction type hetero junction structure, comprises of the first boron phosphide-based semiconductor layer, the light-emitting layer formed as the III-V family semiconductor layer structure in which the IV family element is add, and the second boron phosphide-based semiconductor layer, wherein the first boron phosphide-based semiconductor layer is formed from the first conduction type of the boron phosphide-based semiconductor in which the IV family element is undope, and the second boron phosphide-based semiconductor layer is formed from the second conduction type of the boron phosphide-based semiconductor in which the IV family element is contained.

Description

1257713 玖、'發明說明 , 1 — sj ί ί -ί* ^ 1 ^ ϊ -V ,4^> Γ Γί- % ί (發明說明應敘明:發明所屬之技術領域、先前技術 < -s X ·、 ’ ^ 广 ./τ > ‘·《 π ”矿> -、ί”Α :$夕 > *广 \ 、 「,七二二” 乂一’ ,μ v:以:a〆。.,uks4^:.VU、:: 內容、實施方式及圖式簡單說明) (一) 發明所屬之技術領域: .本發明有關於用以構成具備有異質接合構造之磷化硼系 半導體元件之技術,特別有關於用以獲得具有高發光強度 之磷化硼系半導體發光元件之技術。 (二) 先前技術 在習知技術中,m-v族化合物半導體之一種習知者有 磷化硼(BP)(參照 Nature,179,No· 45 6 9 ( 1 9 5 7 ),1 0 7 5 頁) 。另外,因爲磷化硼(BP )是間接遷移型之半導體(參照 寺本嚴著,「半導體裝置槪論」(1995年3月30日,( 股)培風館發行初版),2 8頁),所以要形成半導體發光元 件之發光層時,必需使用較佳之材料。因此,在形成習知 之具備有磷化硼系半導體層之磷化硼系半導體發光二極體 (LED)時,磷化硼等之磷化硼系半導體層專門用來構成被 設在由矽單結晶(矽形成之基板上之緩衝層(參照美國專利 案6,06 9,021號)。另外,雷射二極體(LD)例如被利用作 爲用以裝.置歐姆(ohmic)電極之接觸(contact)層(參照曰 本國專利案特開平2 - 2 8 8 3 8 8號公報)。 另外一方面,在半導體發光元件,發光層通常由放射再 結合效率比間接遷移型優良之直接遷移型之半導體材米構 成。在磷化硼系半導體LED中,習知技術之發光層主要的 由氮化鎵-銦G a x I n i. XN ( 0 € X € 1 )構成(參照日本國專利案 -5 - 12577131257713 玖, 'Inventive Note, 1 — sj ί ί -ί* ^ 1 ^ ϊ -V , 4^> Γ Γί- % ί (Invention should be stated: the technical field to which the invention belongs, prior art < -s X ·, ' ^ 广 ./τ > '· " π " mine > -, ί" Α : $ 夕 > * 广 \ , ", 七二二 乂 一 ', μ v: to: a〆 . . , uks4^:.VU,:: content, implementation, and schematic description) (1) Technical field to which the invention pertains: The present invention relates to constituting a boron phosphide-based semiconductor device having a heterojunction structure The technology is particularly related to a technique for obtaining a boron phosphide-based semiconductor light-emitting element having high luminous intensity. (B) Prior Art In the prior art, one of the conventional mv compound semiconductors is boron phosphide (BP) (refer to Nature, 179, No. 45 6 9 (1 9 5 7 ), 1 0 7 5 ). In addition, since boron phosphide (BP) is an indirect migration type semiconductor (refer to the strictness of the temple, "Semiconductor Device Paradox" (March 30, 1995, the first edition of the "Public Pavilion"), 28 pages), so When forming the light-emitting layer of the semiconductor light-emitting element, it is necessary to use a preferable material. Therefore, when a conventional boron phosphide-based semiconductor light-emitting diode (LED) having a boron phosphide-based semiconductor layer is formed, a boron phosphide-based semiconductor layer such as boron phosphide is specifically used for the structure. Crystallization (a buffer layer on a substrate formed by ruthenium (refer to U.S. Patent No. 6,06,021). In addition, a laser diode (LD) is used, for example, as a contact for mounting an ohmic electrode. (Contact) layer (refer to Japanese Patent Laid-Open No. Hei 2-28 8 8 8 8). On the other hand, in the semiconductor light-emitting device, the light-emitting layer is usually of a direct migration type which is superior in radiation recombination efficiency to indirect migration type. In the phosphide-based semiconductor LED, the luminescent layer of the prior art is mainly composed of gallium nitride-indium G ax I n i. XN ( 0 € X € 1 ) (refer to the Japanese patent case) -5 - 1257713

特公昭5 5 - 3 8 3 4號公報)。特別是一般之通例是利用故意 添加有砂(Si),鍺(Ge)等之元素週期表上之第IV族元素 之GaxIni.xN(〇SX€l),用來構成發光層(參照曰本國專利 案特開平6-260680號公報)。利用第IV族元素之摻雜 (doping)可以提供具有高強度之發光之(GaJn^NWSXS 1)(參照日本國專利案第2560963號公報)。在半導體發光 元件’爲著要獲得高強度之發光,通常成爲由發光層,和 包夾該發光層之p型或η型之障壁(clad)層構成之pn接 合型之雙異質(double he tero : DH)構造(參照日本國專利 案特開平6 - 2 6 0 2 8 3號公報)。Special Gong Zhao 5 5 - 3 8 3 4 bulletin). In particular, a general example is to use a GaxIni.xN (〇SX€l) element of a group IV element on the periodic table of elements of sand (Si), germanium (Ge), etc., to form a light-emitting layer (refer to the country of origin). Patent Publication No. 6-260680). By doping with a Group IV element, it is possible to provide a high-intensity luminescence (GaJn^NWSXS 1) (refer to Japanese Patent No. 2560963). In order to obtain high-intensity light emission, the semiconductor light-emitting element generally has a pn junction type double hetero composed of a light-emitting layer and a p-type or n-type clad layer sandwiching the light-emitting layer. : DH) Structure (refer to Japanese Patent Laid-Open No. 6-2 2 0 2 8 3).

在習知技術中,P型之磷化硼系半導體層之獲得通常是 故意添加(摻雜)屬於元素週期表之第Π族之鎂(Mg)或鋅 (Zn)等(參照日本國專利案(1)特開平2 - 27 5682號,(2)特 開平2 - 2883 7 1號公報,(3)特開平2 - 288388號公報,(4) 特開平10-242515號公報,和(5)特開平10-242567號公 報)。在此種習知技術例中,用以形成pn接合型DH構造 之發光部之p型障壁層,由摻雜有Mg或Zn等之p型磷化 硼系半導體層構成。另外,η型障壁層由摻雜有矽之η型 磷化硼系半導體層構成(參照日本國專利案特願2001-1 5 8282 號)° 另外一方面,第IV族元素之矽(Si)被指正,對於磷化 硼系半導體,與對於其他之瓜-V族化合物半導體之情況 同樣的’具有作爲兩性雜質(amphoteric impurity)之作 用(參照庄野克房者著,「半導體技術(上)」(1992年6 一 6 - 1257713 月2 5日,(財)東京大學出版會發行9版,7 7頁)。另外 ,對於磷化硼半導體層所揭示之技術是以不故意添加雜質 ,亦即在所謂之未摻雜(Un dope)狀態經由適當地選擇磷 化硼層之氣相成長溫度,以獲得η型或P型之半導體層( 參照上述之「半導體技術(上)」,7 6〜7 7頁)。未摻雜之 磷化硼半導體層之傳導型之決定係與硼空位和磷空位的存 在有關(參照庄野克房著,「超LSI時代之半導體技術1〇〇 集[I I I ](日本昭和5 7年4月1日,(股)歐姆公司發行, 「電子雜誌Electronics」,第27卷第4號附錄)。 (三)發明內容 在習知技術中,經由摻照各種不同種類之雜質(dopant :摻雜劑),可以獲得傳導型不同之磷化硼系半導體層。 要獲得由磷化硼系半導體層構成之pri接合構造時所發生 之問題,是必需依照傳導型,變更各種之摻雜劑種類,藉 以獲得η型或p型之磷化硼系半導體層,所以煩雜。另外 ’爲了避免此種煩雜之摻雜劑操作,即使利用未摻雜之磷 化硼系半導體層當作障壁層,例如嘗試想要得到prl接合 型之DH構造之發光部,也不能充分抑制在發光層中所摻 雜的第I V族元素對未摻雜之磷化硼系半導體障壁層的擴 散。另外,爲了要獲得如上所述之高強度發光,摻雜的第 I V族元素(例如矽)對未摻雜的磷化硼半導體層之擴散程 度會變動,故從發光層射出的發光之強度變爲不穩定,因 此不能獲得呈現穩定發光強度之磷化硼系半導發光元件。 例如,在以摻雜有第I V族元素當作雜質之半導體層作 -7- 1257713 爲發光層之pn接合型DH構造之磷化硼系半導體發光元件 中,可以抑制第IV族元素對簡便形成的未摻雜之磷化硼 系半導體層的擴散。因此,對於爲了獲得高發光強度而添 加較佳濃度之發光層,假如提供可以避免發光層內部之第 I V族元素濃度減少之構造時,則可以有效的獲得呈現穩 定高發光強度之磷化硼系半導體發光元件。在本發明中, 特別提供可以有效獲得高發光強度之磷化硼系半導體發光 元件之異質接合構造之發光部之構造。 亦即,本發明是: (1) 一種pn接合型磷化硼系半導體發光元件,具備有 由第1磷化硼系半導體層,發光層,和第2磷化硼系半導 體層構成之pn接合型異質(異類)接合構造,包含有:基 板,由第1傳導型之矽(S i )單結晶構成;第1傳導型之第 1磷化硼系半導體層,被設在該基板上;發光層,被設在 第1磷化硼系半導體層上,具有第1或第2傳導型,由故 意添加有元素週期表上之第IV族元素之顶-V族半導體層 構成;和第2傳導型之第2磷化硼系半導體層,被設在發 光層上;其特徵是:第1磷化硼系半導體層由包含有第IV 族元素之未摻雜之第1傳導型之磷化硼系半導體構成,第 2磷化硼系半導體層由包含有第IV族元素之與第1傳導 型相反之第2傳導型之磷化硼系半導體層構成。 (2) 上述之(1)項之pn接合型磷化硼系半導體發光元 件,其中在第1磷化硼系半導體層包含有與發光層所含之 同一種之第IV族元素。 -8- 1257713 (3) 上述之(1)或(2)項之pn接合型磷化硼系半導體發 光元件,其中第1磷化硼系半導體層所含之第IV族元素 之原子濃度就相對於發光層內部之第IV族元素之原子濃 度而言係在± 3 0 %以內。 (4) 上述之(1)至(3)項之任一項之pn接合型磷化硼系 半導體發光元件,其中第1磷化硼系半導體層和發光層所 含之第IV族元素爲矽(Si)。 (5 )述之(1 )至(4 )項之任一項之pn接合型磷化硼系半 導體發光元件,其中第2磷化硼系半導體層由未摻雜第2 傳導型之磷化硼系半導體層構成。 (6)上述之(1)至(4)項之任一項之pn接合型磷化硼系 半導體發光元件,其中第2磷化硼系半導體層由故意添加 有第I V族元素之第2傳導型之磷化硼系半導體層構成。 (7 )上述之(1 )至(1 0 )項之任一項之ρ η接合型磷化硼 系半導體發光元件,其中在第2磷化硼系半導體層包含有 與發光層所含之同一種之第IV族元素。 (8) 上述之(1)至(7)項之任一項之pn接合型隣化硼系 半導體發光元件,其中第2磷化硼系半導體層所含之第Iv 族元素之原子濃度就相對於發光層內部之第I V族元素之 原子濃度而言係在± 30%以內。 (9) 上述之(1)至(8)項之任一項之pn接合型磷化硼系 半導體發光元件,其中第2磷化硼系半導體層和發光層所 含之第IV族元素爲矽(Si)。 (10) 上述之(4)項之pn接合型磷化硼系半導體發光元 1257713 件,其中使第1磷化硼系半導體層所含之矽之原子濃度, 成爲佔用硼空位之磷原子之濃度,或佔用磷空位之硼原子 之濃度之任何一個濃度以下。 (11) 上述之(9)項之pn接合型磷化硼系半導體發光元 件,其中使第2磷化硼系半導體層所含之矽之原子濃度, 成爲佔用硼空位之磷原子之濃度,或佔用磷空位之硼原子 之濃度之任何一個濃度以下。 (12) 另外,本發明是上述之(1)至(11)項之pn接合型 磷化硼系半導體發光元件之製造方法,其特徵是利用 MOCVD法,以1 000〜1 20 0 °C之溫度形成p型之磷化硼系半 導體層,和以750〜95(TC之溫度形成η型之磷化硼系半 導體層。 (四)實施方式 在本發明之第1實施形態中,基板可以利用以{ 1 00 }, {110},或{111}結晶面作爲表面之{100} -,{110} -,{111} -矽(s i )單結晶。另外’例如亦可以利用從π 1 1 }結晶面 起之角度爲數度之傾斜結晶面作爲表面之矽單結晶作爲基 板。特別是在鑽石[d i a m ο n d ]結晶構造型之矽單結晶之{ 1 1 1 } 結晶面,當與U 〇 〇 }結晶面等比較時,存在有更高密度之 矽原子。因此,{ 1 1 1 } - S i單結晶成爲有效之基板可以防 止構成上層之磷化硼系半導體層之硼(B)原子和鱗(P)原子 朝向S i單結晶基板之內部侵入或擴散。矽單結晶之傳導 型可以是η型或p型。成爲基板之矽單結晶之傳導型在本 發明中稱爲第1傳導型。假如以導電性之矽單結晶作爲基 - 10 - 1257713 板時,在基板之背面可以敷設任何極性之電阻(Ohmic)性 電極作爲背面電極,可以促成簡便的構成發光元件。特別 是電阻率爲1毫歐姆(πιΩ)以下(更好爲0.1 ιηΩ以下)之低 比電阻(電阻率)之'導電性單結晶基板,對於成爲低順向電 壓(所謂之Vf)之LED具有貢獻。另外,可以有效的構成 散熱效率優良而且能穩定振盪之LD。 積層在矽單結晶基板表面上之第1磷化硼系化合物半導 體層由包含有硼(B)和磷(P)作爲構成元件之例如ΒαΑ1^ GarIn1.a./3.rP1.5As5(0< a £1 » 0^/3< 1 > 0^r< 1 ? 〇< a + /3 + r ‘ 1,〇 $ (5 < 1 )構成。另外,亦可以例如由B a A 1沒 GarIn1.a.^.rP1.,N<5(0< α^Ι » β < 1 > 0^r< 1 » 〇< α + θ + r^l,〇$5<1)構成。第1磷化硼系半導體層是被 設置成在位置上使後面所述之第2磷化硼系半導體更接近 矽單結晶基板之表面之半導體層。另外,該第1磷化硼系 半導體層之傳導型是與成爲基板之矽單結晶之傳導型一致 之第1傳導型。其一實例是在p型之丨u丨} - S i單結晶基 板上,設置高電阻之p型磷化硼系半導體層。 第1磷化硼化合物半導體層之構成特別適合於使用硼(B ) 之成分( = α)和磷(p)之成分( = 1- 5)均爲〇·5( = 5〇%)以上之 包含有硼和磷作爲主體者,例如BaAhGaJnmiPuAs 5(0·5$α$1, 〇$/3<〇.5, 〇$了<〇.5, 〇·5< α + /3 + τ$ 1 ’ 0S(5<0.5)或 , 0S/3C0.5, 0^γ<〇·5, 0·5< a + /3 + r^l, 0$ 占 <0·5) 。使硼(Β )和磷(ρ )之成分分別爲〇 · 5以上,利用以包含硼 - 1 1 - 1257713 和磷作爲主體之磷化硼系半導混晶可以不必故意添加(=摻 雜)用以控制傳導型之雜質,和可以獲得第1或第2傳導 型之導電性之磷化硼系半導體層爲其優點。亦即,以未摻 雜可以形成第1傳導型之磷化硼系半導體層磷化硼系半導 體層,所以可以避免在形成第1傳導型之磷化硼系半導體 層時依照傳導形變化所添加雜質之麻煩。 當具有與基板之矽單結晶相同之第1傳導型之第1磷化 砸系,由包含有第IV族元素之未摻雜層構成時,可以免 除摻雜雜質之煩雜操作,和因爲放射之發光之強度增加, 所以可以抑制摻雜在發光層內之第I V族元素侵入和擴散 到第1磷化硼系半導體層內爲其效果。第1磷化硼系半導 體層所含之第IV族元素不一定必需限制爲1種。第1傳 導型之第1磷化硼系半導體層所含有之第I V族元素例如 可以使用碳(C),矽(Si),鍺(Ge),錫(Sn)等。該等之第 IV族元素中之碳(C),和矽(Si),因爲在磷化硼系半導體 層等之m - v族化合物半導體內不會顯著的擴散,所以特 別適合。另外,特別是假如使第‘1磷化硼系半導體層所含 之第IV族元素成爲與摻雜到發光層之第IV族元素相同時 ,抑制發光層之第I v族元素侵入和擴散到第1磷化硼系 半導體層之效果可以提高。本發明之第2實施形態是對於 矽摻雜發光層設置含有矽之第1磷化硼系半導體層之情況 。另外之實例是在含有碳之第1磷化硼系半導體層上設置 碳摻雜發光層。 .含有碳(c)或矽(Si)之第1傳導型之第1磷化硼系半導 - 12 - 1257713 體層’不需要故意添加該等之第IV族元素亦可以形成爲 其優點。例如,含有矽之第1磷化硼系半導體層,經由以 矽單結晶作爲基板,可以簡便的獲得。當將矽單結晶基板 保持在7 5 0 °c〜1 2 0 0 °C,特別是在2 8 5 °C以上1 2 0 0 t:以下 之溫度時,從矽單結晶游離之矽最好是成爲混入到第1磷 化硼系半導體層之內部,可以形成含有矽之第1磷化硼系 半導體層。另外,要成膜第1磷化硼系半導體層時,假如 以附加有包含碳(C)之官能基(function group),特別是 側鏈狀或直鏈狀之飽和或不飽和脂肪族官能基之有機硼化 合物,作爲硼(B )源時,則可以簡易的形成含有碳之第1 磷化硼系半導體層。亦即,例如不改用甲烷(CH4)三甲基 砷((CH3)3AS),四氯化碳(CC14)或四溴化碳(CBr4)等之含 碳化合物作爲碳之阻擋部,和例如利用三甲基硼((CH3 ) 3B ) 或三乙基硼((C2H5)3B)等之烷基(alkyl)硼化合物因熱分 解而產生之碳時,則可以簡便的形成含有碳之第1磷化硼 系半導體層。換言之,以該等之院基硼化合物作爲硼源, 利用有機金屬化學式堆積法(M0CVD法)等之氣相成長裝置 可以簡便的形成。 第1傳導型之第1磷化硼系半導體層所含之矽(S i )或碳 (C)等之第IV族元素之原子濃度,最好成爲發光層所含之 第I V族元素之原子濃度之大約〇 . 5倍以上,大約〇 · 2倍 以下。當第1磷化硼系半導體層內之第IV族元素之原子 濃度超過發光層者之大約2倍成爲高濃度時,會產生第IV 族元素從第1磷化硼系半導體層朝向發光層擴散,會有發 -13- 1257713 光層內之第IV族元素之原子濃度急速變成高濃度之 。相反的,在所包含之第IV族元素成爲發光層內之^ 族元素之原子濃度之大約0 . 5倍以下之低濃度之第1 硼系半導體層中,第IV族元素顯著的發生從發光層 第1磷化硼系半導體層之內部擴散,因此發光層內部 IV族元素之原子濃度減少,會產生高強度之發光之 情況。第1磷化硼系半導體層內之第IV族元素之合 原子濃度,更好是與發光層內之第IV族元素之原子 大致均等,亦即其原子濃度在發光層內之第IV族元 原子濃度之± 30%之範圍內。當發光層和磷化硼半導 之第IV族元素之原子濃度之差異越小時,越可以抑 於其原子濃度之差所引起之第IV族元素之互相擴散 好是使第1磷化硼系半導體層之第IV族元素之原子 ,與發光層之原子濃度具有相同之濃度。第1磷化硼 導體層之內部之第IV族元素之原子濃度,與發光層 況同樣的,例如可以利用2次離子質量分析(S I MS ), (Auger)電子分光分析法等之分析裝置進行定量。 作爲本發明之第3實施形態之一手段,例如爲於含 IV族元素之矽(Si)之第1磷化硼系半導體層中,調 膜溫度,以發光層之原子濃度作爲基準,使層內之5夕 濃度成爲在其± 30%以內。當成膜溫度,亦即矽單結 板之保持溫度越高溫時,或高溫之保持時間越長時, 使層內之矽原子濃度成爲越高濃度。例如,在被保持 膜溫度之1 0 5 (ΓC之p型{ 1 1 1丨-S i單結晶基板上,可 問題 I IV 磷化 朝向 之第 不良 計之 濃度 素之 體層 制由 。最 濃度 系半 之情 俄歇 有第 整成 原子 晶基 可以 於成 以形 -14- 1257713 成矽原子濃度爲大約4x 10"原子/ cm3 , 化硼(BP )層。當使成膜溫度成爲超過 易於形成菱面體結晶構造之B6P或B13 化硼結晶。在立方晶閃鋅礦結晶型之第 層內,當產生磷化硼多量體時,由於結 層內發生畸變,或由於結晶缺陷使矽單 顯著的產生侵入。因此,當第1磷化硼 之原子濃度超過5xl019原子/cm3時, ,會造成第1磷化硼系半導體層之結晶 〇 另外,當在矽單結晶基板上,於與第 層之中間,設置非晶質或多結晶之緩衝 種結晶形態構成之緩衝層,用來緩和矽 磷化硼系半導體層之晶格失配,和具有 之矽原子之成用。因此,在第1磷化硼 來之矽原子之濃度,當與第1磷化硼系 在矽單結晶基板表面之情況比較時,被 衝層之厚越厚時,被緩衝層捕獲之矽原 第1磷化硼系半導體層之矽原子濃度亦 層之層厚進行控制。包含矽之第1磷化 層內之砂之原子濃度最好小於佔用硼S 磷(P)原子,或佔用磷之空位之硼(B)原 持該濃度之關係,即使使矽進行兩性雜 雜狀態,可以簡便的獲得ri型或p型雙 之未摻雜之P型磷 1 2 0 0 °C之高溫時, %等之多量體之磷 1磷化硼系半導體 晶型之不同因而在 結晶基板朝向層內 系半導體層內之矽 急速的變成高濃度 性成爲雜亂之不良 1磷化硼系半導體 層之情況時,由此 單結晶基板與第1 捕獲從基板擴散來 系半導體層內擴散 半導體層直接接合 抑制成較低。當緩 子就越多。亦即, 可以經由調節緩衝 硼系半導體層,其 :空位(vacancy)之 子之濃度。經由維 質之作用,在未摻 方之傳導型之半導 - 15- 1257713 體層,可以維持磷化硼系半導體之優良性。In the prior art, the P-type phosphide-based semiconductor layer is usually obtained by intentionally adding (doping) magnesium (Mg) or zinc (Zn) belonging to the third group of the periodic table (refer to the Japanese patent case). (1) Unexamined-Japanese-Patent No. 2 - 27 5682, (2) Unexamined-Japanese-Patent No. 2 - 2883 7 1st, (3) Unexamined-Japanese-Patent No. 2 - 288388, (4) Unexamined-Japanese-Patent No. 10-242515, and (5) Japanese Patent Laid-Open No. Hei 10-242567). In such a prior art example, the p-type barrier layer for forming the light-emitting portion of the pn junction type DH structure is composed of a p-type phosphide-based semiconductor layer doped with Mg or Zn or the like. In addition, the n-type barrier layer is composed of an n-type phosphide-based semiconductor layer doped with antimony (refer to Japanese Patent Application No. 2001-1 5 8282). On the other hand, a group IV element (Si) It is said that the boron phosphide-based semiconductor has the same function as the amphoteric impurity as in the case of other melon-V compound semiconductors (refer to Zhuangye Kefang, "Semiconductor Technology (I)" (1992, June 6 - 12,577,13, 25, 2005, The University of Tokyo Press Conference, 9th Edition, 7 7 pages.) In addition, the technology disclosed in the boron phosphide semiconductor layer is to intentionally add impurities, that is, In the so-called undoped state, the vapor phase growth temperature of the boron phosphide layer is appropriately selected to obtain an n-type or p-type semiconductor layer (refer to the above-mentioned "semiconductor technology (top)", 7 6~ 7 7)) The conductivity type of the undoped phosphide semiconductor layer is related to the existence of boron vacancies and phosphorus vacancies (refer to Zhuang Yekefang, "Semiconductor Technology in the Super LSI Era [III] (Japan, Showa, April 1, 1975, Share) issued by Ohm Corporation, "Electronic Magazine Electronics", Vol. 27, No. 4 Appendix). (III) SUMMARY OF THE INVENTION In the prior art, by incorporating various kinds of impurities (dopant: dopant), A boron phosphide-based semiconductor layer having different conductivity types. In order to obtain a problem in the pri junction structure composed of a boron phosphide-based semiconductor layer, it is necessary to change various dopant types in accordance with the conductivity type to obtain an n-type or The p-type boron phosphide-based semiconductor layer is cumbersome. In addition, in order to avoid such troublesome dopant operation, even if an undoped boron phosphide-based semiconductor layer is used as a barrier layer, for example, an attempt is made to obtain a prl junction. The light-emitting portion of the DH structure of the type cannot sufficiently suppress the diffusion of the group IV element doped in the light-emitting layer to the undoped boron phosphide-based semiconductor barrier layer. In addition, in order to obtain the high strength as described above. The degree of diffusion of the light-emitting, doped Group IV element (for example, yttrium) on the undoped phosphide semiconductor layer varies, so that the intensity of the luminescence emitted from the luminescent layer becomes unstable, A phosphide-based semiconductor light-emitting element exhibiting stable luminescence intensity cannot be obtained. For example, phosphating of a pn junction type DH structure in which a semiconductor layer doped with a Group IV element as an impurity is used as a light-emitting layer In the boron-based semiconductor light-emitting device, it is possible to suppress the diffusion of the Group IV element to the easily formed undoped phosphide-based semiconductor layer. Therefore, it is possible to provide a light-emitting layer having a preferable concentration in order to obtain high light-emitting intensity. When the structure in which the concentration of the Group IV element in the light-emitting layer is reduced is avoided, a boron phosphide-based semiconductor light-emitting device exhibiting stable high light-emitting intensity can be effectively obtained. In the present invention, in particular, phosphating which can effectively obtain high luminous intensity can be obtained. The structure of the light-emitting portion of the heterojunction structure of the boron-based semiconductor light-emitting device. In other words, the present invention is: (1) A pn junction type boron phosphide semiconductor light-emitting device comprising a pn junction comprising a first phosphide-based semiconductor layer, a light-emitting layer, and a second phosphide-based semiconductor layer; The heterogeneous (heterogeneous) junction structure includes a substrate formed of a single conductivity type (S i ) single crystal, and a first conductivity type first boron phosphide semiconductor layer provided on the substrate; The layer is provided on the first boron phosphide-based semiconductor layer, and has a first or second conductivity type, and is composed of a top-V semiconductor layer in which a group IV element of the periodic table is intentionally added; and a second conduction layer; The second boron phosphide-based semiconductor layer is provided on the light-emitting layer, and the first boron phosphide-based semiconductor layer is made of an undoped first conductivity type boron phosphide containing a group IV element. In the semiconductor structure, the second boron phosphide-based semiconductor layer is composed of a phosphide-based boron semiconductor layer including a Group IV element and a second conductivity type opposite to the first conductivity type. (2) The pn junction type boron phosphide-based semiconductor light-emitting device of the above (1), wherein the first boron phosphide-based semiconductor layer contains a Group IV element which is the same as that of the light-emitting layer. In the pn junction type boron phosphide semiconductor light-emitting device of the above item (1) or (2), the atomic concentration of the group IV element contained in the first boron phosphide-based semiconductor layer is relatively The atomic concentration of the Group IV element inside the light-emitting layer is within ± 30%. The pn junction type boron phosphide-based semiconductor light-emitting device according to any one of the above-mentioned, wherein the first group of the phosphide-based semiconductor layer and the light-emitting layer are a group IV element. (Si). (5) The pn junction type boron phosphide-based semiconductor light-emitting device according to any one of (1) to (4) wherein the second boron phosphide-based semiconductor layer is made of undoped second conductivity type boron phosphide It is composed of a semiconductor layer. The pn junction type boron phosphide-based semiconductor light-emitting device according to any one of the above aspects, wherein the second boron phosphide-based semiconductor layer is deliberately added with the second conduction of the group IV element. A boron phosphide-based semiconductor layer is formed. (7) The ρ-joining type boron phosphide-based semiconductor light-emitting device according to any one of the items (1) to (10), wherein the second phosphide-based semiconductor layer contains the same as the luminescent layer A group IV element. (8) The pn junction type boron hydride-based semiconductor light-emitting device according to any one of the above (1), wherein the atomic concentration of the group Iv element contained in the second boron phosphide-based semiconductor layer is relatively The atomic concentration of the Group IV element inside the light-emitting layer is within ± 30%. The pn junction type boron phosphide-based semiconductor light-emitting device according to any one of the above aspects, wherein the second phosphide-based semiconductor layer and the group IV element contained in the light-emitting layer are germanium. (Si). (10) The pn junction type boron phosphide-based semiconductor light-emitting element 1257713 according to the above item (4), wherein the atomic concentration of germanium contained in the first boron phosphide-based semiconductor layer is a concentration of phosphorus atoms occupying boron vacancies Or any concentration below the concentration of boron atoms occupying phosphorus vacancies. (11) The pn junction type boron phosphide-based semiconductor light-emitting device of the above (9), wherein the atomic concentration of germanium contained in the second boron phosphide-based semiconductor layer is a concentration of a phosphorus atom occupying a boron vacancy, or Any concentration below the concentration of boron atoms occupying phosphorus vacancies. (12) The method for producing a pn junction type boron phosphide-based semiconductor light-emitting device according to the above (1) to (11), which is characterized in that it is 1 000 to 120 ° C by MOCVD. The p-type boron phosphide-based semiconductor layer is formed at a temperature, and the n-type phosphide-based semiconductor layer is formed at a temperature of 750 to 95. (Fourth Embodiment) In the first embodiment of the present invention, the substrate can be used. The {1 00 }, {110}, or {111} crystal plane is used as the surface {100} -, {110} -, {111} - 矽 (si) single crystal. In addition, 'for example, it can also be used from π 1 1 } The angle of the crystal surface is several degrees of the inclined crystal surface as the surface of the single crystal as the substrate. Especially in the diamond [diam ο nd] crystal structure type of the single crystal { 1 1 1 } crystal surface, when with U比较}Comparative crystal planes, etc., there are higher density tantalum atoms. Therefore, {1 1 1 } - S i single crystal becomes an effective substrate to prevent boron (B) constituting the upper layer of phosphide-based semiconductor layer The atoms and scale (P) atoms invade or diffuse toward the interior of the S i single crystal substrate. The conductivity of the single crystal can be η type Or p-type. The conductivity type of the single crystal which becomes the substrate is referred to as the first conductivity type in the present invention. If the conductive single crystal is used as the base - 10 - 1257713 plate, any polarity can be applied to the back surface of the substrate. An electric resistance (Ohmic) electrode can be used as a back surface electrode to facilitate a simple configuration of a light-emitting element. In particular, a low specific resistance (resistivity) of a specific resistance of 1 milliohm (πιΩ) or less (more preferably 0.1 ηηΩ or less) The single crystal substrate contributes to the LED which has a low forward voltage (so-called Vf), and can effectively form an LD which is excellent in heat dissipation efficiency and can stably oscillate. The first boron phosphide laminated on the surface of the single crystal substrate The compound semiconductor layer is composed of boron (B) and phosphorus (P) as constituent elements, for example, ΒαΑ1^ GarIn1.a./3.rP1.5As5 (0< a £1 » 0^/3< 1 > 0^ r< 1 ? 〇< a + /3 + r ' 1, 〇$ (5 < 1 ). Alternatively, for example, B a A 1 without GarIn1.a.^.rP1., N<5( 0< α^Ι » β < 1 >0^r< 1 » 〇< α + θ + r^l, 〇$5<1). The first boron phosphide half The bulk layer is a semiconductor layer which is disposed so as to bring the second boron phosphide-based semiconductor described later closer to the surface of the single-crystal substrate. The conductivity type of the first boron phosphide-based semiconductor layer is a substrate. The first conductivity type is the same as the conduction type of the single crystal. An example of this is to provide a p-type boron phosphide-based semiconductor layer of high resistance on a p-type 丨u丨}-S i single crystal substrate. The composition of the first boron phosphide compound semiconductor layer is particularly suitable for using a component of boron (B) (=α) and a component of phosphorus (p) (=1-5), both of which are 〇·5 (= 5〇%) or more. Containing boron and phosphorus as the main body, for example, BaAhGaJnmiPuAs 5 (0·5$α$1, 〇$/3<〇.5, 〇$了<〇.5, 〇·5< α + /3 + τ$ 1 '0S(5<0.5) or, 0S/3C0.5, 0^γ<〇·5, 0·5< a + /3 + r^l, 0$ occupies <0·5). The components of boron (yttrium) and phosphorus (ρ) are respectively 〇·5 or more, and the boron phosphide-based semiconducting mixed crystal containing boron-1 1 - 1257713 and phosphorus as a main body can be deliberately added (=doped). It is an advantage of controlling the impurity of the conduction type and the phosphide-based semiconductor layer which can obtain the conductivity of the first or second conductivity type. In other words, since the boron nitride semiconductor layer of the first conductivity type can be formed without being doped, it is possible to avoid the addition of the first conductivity type boron phosphide semiconductor layer in accordance with the change in the conduction shape. The trouble of impurities. When the first phosphide system of the first conductivity type having the same single crystal as the substrate is composed of an undoped layer containing a group IV element, the troublesome operation of doping impurities can be eliminated, and the radiation is eliminated. Since the intensity of the luminescence is increased, it is possible to suppress the intrusion and diffusion of the Group IV element doped in the luminescent layer into the first phosphide-based semiconductor layer. The Group IV element contained in the first boron phosphide-based semiconductor layer is not necessarily limited to one type. For the Group I V element contained in the first boron phosphide-based semiconductor layer of the first conductivity type, for example, carbon (C), germanium (Si), germanium (Ge), tin (Sn) or the like can be used. Among the Group IV elements, carbon (C) and cerium (Si) are particularly suitable because they do not significantly diffuse in the m-v group compound semiconductor such as a boron phosphide-based semiconductor layer. In addition, in particular, if the Group IV element contained in the first boron phosphide-based semiconductor layer is made the same as the Group IV element doped to the light-emitting layer, the intrusion and diffusion of the Group Iv element of the light-emitting layer are suppressed. The effect of the first boron phosphide-based semiconductor layer can be improved. In the second embodiment of the present invention, the first phosphide-based semiconductor layer containing germanium is provided for the erbium-doped light-emitting layer. Another example is to provide a carbon-doped light-emitting layer on the first boron phosphide-based semiconductor layer containing carbon. The first phosphide-based boron-based semiconductor 12-1252713 layer containing the first conductivity type of carbon (c) or ytterbium (Si) may be formed without the intentional addition of the Group IV element. For example, the first boron phosphide-based semiconductor layer containing ruthenium can be easily obtained by using ruthenium single crystal as a substrate. When the 矽 single crystal substrate is maintained at 75 ° C ~ 1 2 0 0 ° C, especially at a temperature above 2 8 5 ° C above 1 2 0 0 t: The first boron phosphide-based semiconductor layer containing germanium can be formed by being mixed into the first boron phosphide-based semiconductor layer. Further, when a first boron phosphide-based semiconductor layer is to be formed, if a functional group containing carbon (C) is added, a saturated or unsaturated aliphatic functional group, particularly a side chain or a linear chain, is added. When the organic boron compound is used as a boron (B) source, the first boron phosphide-based semiconductor layer containing carbon can be easily formed. That is, for example, methane (CH4) trimethyl arsenic ((CH3)3AS), a carbonaceous compound such as carbon tetrachloride (CC14) or carbon tetrabromide (CBr4) is not used as a barrier to carbon, and for example When carbon generated by thermal decomposition of an alkyl boron compound such as trimethylboron ((CH3)3B) or triethylboron ((C2H5)3B) is used, the first one containing carbon can be easily formed. A boron phosphide-based semiconductor layer. In other words, the gas phase growth apparatus such as the organometallic chemical deposition method (M0CVD method) can be easily formed by using the hospital-based boron compound as a boron source. The atomic concentration of the group IV element such as cerium (S i ) or carbon (C) contained in the first boron phosphide-based semiconductor layer of the first conductivity type is preferably an atom of the group IV element contained in the light-emitting layer. The concentration is about 〇. 5 times or more, about 〇·2 times or less. When the atomic concentration of the Group IV element in the first boron phosphide-based semiconductor layer is more than twice as high as that of the light-emitting layer, diffusion of the Group IV element from the first boron phosphide-based semiconductor layer toward the light-emitting layer occurs. The atomic concentration of the Group IV element in the light layer of the -13 - 1257713 is rapidly changed to a high concentration. In contrast, in the first boron-based semiconductor layer having a low concentration of about 0.5 times or less of the atomic concentration of the group IV element in the light-emitting layer, the group IV element remarkably occurs from the light emission. Since the inside of the first boron phosphide-based semiconductor layer is diffused, the atomic concentration of the group IV element in the light-emitting layer is reduced, and high-intensity light emission is generated. The atomic concentration of the Group IV element in the first boron phosphide-based semiconductor layer is more preferably substantially equal to the atom of the Group IV element in the light-emitting layer, that is, the Group IV element whose atomic concentration is in the light-emitting layer. Within the range of ± 30% of the atomic concentration. When the difference in atomic concentration between the light-emitting layer and the group IV element of the boron phosphide semiconductor is small, the more the mutual diffusion of the group IV element caused by the difference in atomic concentration is made, the first boron phosphide is made. The atom of the group IV element of the semiconductor layer has the same concentration as the atomic concentration of the light-emitting layer. The atomic concentration of the Group IV element in the first boron phosphide conductor layer can be carried out, for example, by an analytical apparatus such as secondary ion mass spectrometry (SI MS ) or (Auger) electron spectrometry. Quantitative. In one embodiment of the third embodiment of the present invention, for example, in the first boron phosphide-based semiconductor layer containing bismuth (Si) of a group IV element, the film formation temperature is determined based on the atomic concentration of the light-emitting layer. The concentration within 5 mph is within ± 30%. When the film formation temperature, that is, the higher the holding temperature of the single-junction plate, or the longer the holding time of the high temperature, the higher the concentration of the germanium atom in the layer. For example, in the case of the film temperature of 1 0 5 (ΓC p 1 { 1 1 1 丨-S i single crystal substrate, the body layer of the concentration factor of the problem I IV phosphating may be the worst. The half-hearted Auger has the first atomic crystal group which can form a germanium atomic concentration of about -14 x 1257713 to about 4x 10" atom/cm3, boron (BP) layer. When the film formation temperature is made easier Forming a B6P or B13 boron crystal of a rhombohedral crystal structure. In the first layer of the cubic sphalerite crystal form, when a boron phosphide multi-body is produced, distortion occurs in the layer, or due to crystal defects When the atomic concentration of the first boron phosphide exceeds 5 x 019 atoms/cm 3 , the crystallization of the first boron phosphide-based semiconductor layer is caused, and on the single crystal substrate, In the middle of the layer, a buffer layer composed of an amorphous or polycrystalline buffer crystal form is provided for alleviating the lattice mismatch of the bismuth phosphide-based semiconductor layer and having a germanium atom. 1 concentration of bismuth atom of boron phosphide, when When the first boron phosphide is compared on the surface of the tantalum single crystal substrate, the thicker the thickness of the punched layer, the thickness of the germanium atom concentration of the first boron phosphide semiconductor layer captured by the buffer layer is also the layer thickness of the layer. Controlling. The atomic concentration of the sand in the first phosphating layer containing bismuth is preferably smaller than the boron-rich phosphorus (P) atom or the boron vacancies occupying the phosphorus (B). The amphoteric heterogeneous state can easily obtain the difference of the crystal form of the phosphorus-phosphorus-based semiconductor of the hexa-type or p-type double undoped P-type phosphorus at a temperature of 1 2 0 0 °C. Therefore, when the crystal substrate is rapidly turned into a defective one-phosphorus boron-based semiconductor layer having a high concentration in the in-layer semiconductor layer, the single crystal substrate and the first trap are diffused from the substrate to form a semiconductor layer. The direct diffusion semiconductor layer directly inhibits the bonding to be lower. The more the retardation is, that is, the boron-based semiconductor layer can be buffered by adjustment: the concentration of the vacancy of the sub-mass. Conductive type semi-conductor - 15- 125 The 7713 bulk layer can maintain the superiority of boron phosphide semiconductors.

在包含第IV族元素之碳(C)之第1磷化硼系半導體層’ 層內之碳原子濃度可以利用成膜溫度之調整進行控制。當 成膜溫度,亦即,矽單結晶基板之保持溫度越高溫時,可 以使層內之碳原子濃度成爲越高濃度·。但是,在成膜溫度 超過1 200 °C之高溫時,易於形成菱面體結晶構成之B6P或 B13P2等之多量體之磷化硼結晶,會有獲得成分均質之磷 化硼系半導體層之不良。另外,當硼(B )源對該有機硼化 合物之成膜環境內供給之濃度越增加時,可以使第1磷化 硼系半導體層內之碳濃度成爲越高濃度。但是,在包含有 碳之第1磷化硼系半導體層中,層內之碳之原子濃度最好 小於佔用硼之空位(vacancy )之磷(P)原子,或佔用磷之空 位之硼(B )原子之濃度。經由維持該濃度之関係,即使使 碳進行兩性雜質之作用時,在未摻雜狀態,可以維持結果 之第1傳導型。佔用磷空位之硼原子之濃度,或佔用硼空 位之磷原子之濃度分別成爲硼-硼(B-B)鍵之濃度,或磷 -磷(P - P)鍵之濃度"可以使用拉曼(Ram a η)分光法,核 磁共振(NMR)法等之手段進行計劃。 本發明之由瓜-V族化合物半導體構成之發光層,例如 可以由氮化鎵-銦(GaxInuN: 0SXS1)或氮磷化鎵(GaxNi. γΡγ : ‘ Y $ 1 )等之瓜族氮化物半導體構成。特別是最好例 如利用故意添加(doping)有第IV族元素之Π[族氮化物半 導體層作爲發光層。摻雜在發光層之雜質例如可以使用矽 (Si) ’碳(C)等。特別是矽,當與其他之第IV族元素之鍺 -16- 1257713 (Ge)或錫(Sii)比較時,較難朝向發光層之外部擴散,另外 ,當與碳(C )之情況比較時,較容易進行摻雜,所以最好 利用矽。發光層之內部之第I V族元素之較佳濃度大致爲 lx 1017原子/ cm3〜lx 1019原子/ cm3。特別是最好爲大約5 xlO18原子/ cm3〜大約7xl018原子/ cm3。當超過lx 1〇19 原子/ cm3時,在摻雜有第IV族元素之發光層,結晶性會 劣化,不能獲得高強度之發光之發光層。發光層之傳導型 成爲第1或第2之傳導型。在第2傳導型之發光層之情況 時,經由與第1傳導型之第1磷化硼系半導體層接合,可 以構成單一異質(single hetero: SH)接合型pn接合構造 。另外,例如構建成在第1傳導型之發光層接合後面所述 第2傳導型之第2磷化硼系半導體層時,可以構建成包含 有發光層和第2磷化硼系半導體層之pn接合構造之雙異 質(double he tero :英文簡稱DH)構造之發光部。本發明 之第4實施形態之一例是使第1磷化硼系半導體層當作含 有矽之未摻雜之磷化硼-鎵(BxGai.xP: 0.5SXS1)層,進 行摻雜矽,使矽之原子濃度成爲2 X 1 0 17原子/ c m3,利用 氮磷化鎵(GatVYPY : OS 1 )用來構成發光層。 發光層可以由單一量子井構造(SQW)或多重量子井構造 (MQW)構成。在利用載子(carrier)之穿險(tunnel)效應之 量子井構造中,比井(wel 1 )厚之障壁(barrier)層亦必需 由薄膜構成。在由具有連續性之薄膜構成之量子井構造之 發光層,在成膜之前預先在內壁覆蓋包含有硼(B)和磷(P) 之被膜,使用成長爐獲得在矽單結晶基板上成膜之磷化硼 -17- 1257713 系半導體層,以其作爲底層。該被膜可以抑 壁或附著在內壁之分解產生物作爲根源之矽 板表面之物質之放出,對於獲得表面之平坦 良之磷化硼系半導體層具有有效之作用,適 面之平坦性和連續性優良之發光層。 當將射出波長爲λ之光之發光層,設在對 具有30%以上之反射率之層厚之第1磷化硼 ,成爲積層構造時,爲著利用第1磷化硼系 來自發光層之一部份之發光,所以構成將發 外部之效應優良之LED。例如,將發出波長: 紫光之發光層,設在層厚大約3 00 nm之第1 體層上成爲積層構造爲其一實例。在第1磷 層由單體之磷化硼(BP )構成之情況時,波長 420 $λ^ 490 )之發光,和對其具有 30%以上 1磷化硼系半導體層之層厚(單位:nm)之間 關係式(1 )之關係。 λ =0. 135 · d + 3 80 · · •關係式(1 ) 在本發明之第5實施形態中,設在發光層 型之第2磷化硼系半導體層由未摻雜之磷化 構成。第2磷化硼系半導體層,與第1磷化 之情況同樣的,例如由Β α A 1 $ G a 7 I n L m ] 0 £ β < l ^ 0 £ γ < l ^ 0< a + β + γ 成。另外,例如亦可以由B α A 1 $ G a τ I n i. α ^ a ^ 0 £ β < l ^ 0 ^ r < 1 ^ 0< a + β + r 制以及應爐內 污染單結晶基 性和連續性優 於用來形成表 波長爲λ之光 系半導體層上 半導體層反射 光取出到元件 爲420nm之藍 磷化硼系半導 化硼系半導體 λ (單位 n m ; 之反射率之第 ,具有下列之 上之第2傳導 硼系半導體層 硼系半導體層 P[- 5 As “0 < a ,0 S (5 < 1 )構 .rPi.5N^(0< ,0 S (5 < 1 )構 1257713 成°第2磷化硼系半導體層,設置成以包夾發光層之方式 ’成爲面對上述之第1磷化硼系半導體層。另外,導電性 之半導體層與第1磷化硼系半導體層一起包夾發光層,用 來構成pn接合型DH構造之發光部。第2磷化硼系半導體 層之傳導型與成爲基板之矽單結晶和第1磷化硼系半導體 層成爲相反。例如,對於p型之{ 1 1 1 } - S i單結晶和p型 之第1磷化硼系半導體層,該第2磷化硼系半導體層成爲 η型層。 特別是硼(Β)之成分(=α)和磷(Ρ)之成分( = 1- 5)均爲 0.5(=5 0%)以上,包含有硼和磷作爲主體時,其構成最好 使用例如1八1沒0&卩1111.沒.7?1.5八5(5(0.5^^:€1,0^/3< 0.5’ 〇‘r<0.5,0.5< α + 0 + rSl,0S(5<0.5)或 ΒαΑ1 々GaJnhmPiiNaO.SSa ‘卜 〇^0<〇·5,0Sr<0.5 ,0·5< a + /3 + r^l,Ο · 5 )。利用包含有硼(B )和磷 (P )作爲主體之磷化硼系半導體混晶,即使不故意添加(= 摻雜)用以控制傳導型之雜質,亦可以獲得第2傳導型之 導電性之磷化硼系半導體層爲其優點。亦即,未摻雜亦可 以簡便的獲得第2傳導型之磷化硼系半導體層爲優點。 當可以避免由於雜質種類之變更而進行之摻雜操作,和 第1和第2磷化硼系半導體層由未摻雜層構成之情況時, 經由變更與硼(B)或磷(P)之空位有關之施體(donor)或受 體(a c c e p t 〇 r )成分之相對之濃度比率,可以很容易以高載 體濃度獲得低電阻之導電層爲其優點。例如,使載體濃度 超過大約5x 1018 cm·3,可以獲得低電阻之n型磷化硼系半 -19- 1257713 導體層。另外,假如未摻雜時,超過大約lxl019cm·3之 載子濃度可以簡便的構成低電阻之p型磷化硼系半導體層 。例如,多量的摻雜硫(S)或硒(Se)等之第VI族元素之η 型雜質時,難以穩定的產生如上述未摻雜情況之高電子濃 度,反而是經由添加多量之雜質’又能獲得表面雜亂而且 欠缺連續性之半導體層。另外’當多量的摻雜第II族元 素之鋅(Ζη),鎘(Cd)等之難以與硼(Β)形成化合物之ρ型 雜質時,不能穩定地獲得上述之高電洞濃度之低電阻之磷 化硼系半導體層’只能獲得雜亂表面之不連續之半導體層 。亦即,即使獲得η型或ρ型之任何一種之傳導型之磷化 硼系半導體層之情況時,亦需利用不故意添加雜質之未摻 雜手段。 未摻雜之磷化硼系半導體層之傳導型可以經由調節成膜 溫度進行控制。適於獲得η型之未摻雜磷化硼系半導體層 之成膜溫度大約爲7 50°C〜950°C。另外一方面,適於獲得 未摻雜之P型磷化硼系半導體層者爲大約1000 °C〜大約 1 200°C。特別是最好在大約1 0 2 5 °C〜1 100°C之範圍。在以 超過大約1 000 °C之高溫成膜之磷化硼系半導體層,特別 是包含有使U 1 1 } —結晶面成爲雙晶境界面之雙晶 (twinning)之單體之隣化硼(boron monophosphide)層, 適於被利用作爲第1或第2磷化硼系半導體層。層之內部 所含之雙晶可以例如緩和與發光層之晶格之配錯(m i s f i t ) 等’有利於獲結晶性優良之磷化硼系半導體層。另外,對 於供給到成膜反應系之硼(B )等之第皿族之構成元件之合 - 20- 1257713 計濃度,磷(P)等之第V族構成元件之合計濃度之比率, 亦即所謂之V /瓜比率亦會影響到傳導型之控制。在使成 膜溫度成爲相同之情況,使v / m比率成爲越高比率時, 越容易獲得未摻雜之η型磷化硼系半導體層。 在本發明之第6實施形態中,利用故意添加有第IV族 元素之第2傳導型之磷化硼系半導體層,用來構成第2磷 化硼系半導體層。第2磷化硼系半導體層被配置在比第1 磷化硼系半導體層更遠離矽單結晶基板之位置。因此,當 與第1磷化硼系半導體層之情況比較時,會有以基板之矽 單結晶作爲根源擴散而來之矽原子之濃度變成減少之狀況 。因此,與第1磷化硼系半導體層之情況不同的,將第IV 族元素添加到第2磷化硼系半導體層之添加是用以獲得上 述之較佳第I V族元素之原子濃度之較佳手段。所添加之 第IV族元素之實例有碳(c)、矽(Si)、鍺(Ge)、錫(Sn)。 碳之添加源例如可以使用含有甲烷(CH4),三甲基磷 ((CH3)3P),或四溴化碳(CBr4)等之含碳化合物。矽之摻 雜源例如可以使用矽烷(SiH4)或二矽烷(Si2H6)等之含'矽 氣體。 因爲即使不添加η型或p型雜質,亦可以未摻雜狀態獲 得如上述之高載體濃度之導電層,所以在此處不添加第IV 族元素(其添加目的是用來控制第2磷化硼系半導體層之 傳導型)。亦即,經由抑制添加在發光層之第I V族元素之 朝向第2磷化硼系半導體層之內部之擴散,可以使發光層 內之第IV族元素之原子濃度維持在可以獲高強度之發光 - 21- 1257713 之濃度。第IV族元素用來支配第2磷化硼系半導體層之 傳導型,其濃度小於佔用硼空位之磷原子,或佔用磷空位 子硼原子之濃度。當空位超過有關之施體或受體成分之濃 度時,即使多量的添加第IV族元素,亦只能獲得表面之 平坦性受損之第2磷化硼系半導體層。 在本發明之第7實施形態中,第2磷化硼系半導體層所 含之第IV族元素和添加在發光層之第IV族雜質成爲相同 。經由使存在於發光層和第2磷化硼系半導體層之第I V 族元素成爲相同,可以抑制兩層間之第I V族元素之互相 擴散。況且,假如使兩層之第I V族元素之原子濃度大致 相同時,經由抑制第I V族元素之從發光層朝向第2磷化 硼系半導體層之擴散,和相反的,抑制其從第2磷化硼系 半導體層朝向發光層擴散雙方,可以更進一層的提高效果 。發光層和第2磷化硼系半導體層之層內之第IV族元素 之原子濃度,可以以第IV族元素之摻雜量調節。第IV族 元素之原子濃度之配合基準是被選擇可以獲得高強度之發 光之發‘光層之第IV族元素之原子濃度。當第1或第2磷 化硼系半導體層之第IV族元素之原子濃度與發光層之最 佳原子濃度不一致之情況時,最好將第1和第2磷化硼系 半導體層內之第IV族元素之原子濃度調整成爲以發光層 之最佳濃度作爲基準,其差異在土 3 0 %以內。另外,雖然 使第1和第2磷化硼系半導體層之第I V族元素之原子濃 度成爲與發光層者一致,但是最好是抑制第I V族元素之 互相擴散,藉以獲得具有高強度之發光之發光層。 -22 - 1257713 另外,發光層和第2磷化硼系半導體層之間之第I V族 元素之原子濃度之差異越大時,發光層和第2磷化硼系半 導體層之間之第IV族元素之擴散就越顯著。因此,第2 磷化硼系半導體層之第IV族元素之原子濃度,最好與發 光層之第IV族元素之原子濃度成爲相同。至少,要使其 原子濃度在發光層之第IV族元素之濃度之±30%之範圍。 本發明之第8實施形態之較佳例是使矽原子濃度被調節成 爲3xl018原子/ cm3之η型磷化硼層所構成之第2磷化硼 系半導體層,接合在矽原子濃度爲3χ1018原子/cm3之η 型發光層。在第2磷化硼系半導體層之內部,特別是在層 厚方向之第I V族元素之原子濃度之分布越均一時,抑制 第I V族元素從發光層朝向第2磷化硼系半導體層擴散之 效果就越高。經由利用同一材料和同一層厚之半導體層, 構成包夾發光層之傳導型不同之第1和第2磷化硼系半導 體層,假如從發光層之上下方向施加到發光層之畸變量成 爲均等時,則抑制第I V族元素從發光層朝向第1和第2 磷化硼系半導體層擴散之效果可以更高。 1 在本發明之第9實施形態中,存在於第2磷化硼系半導 體層和發光層之第IV族元素是矽(Si)。矽是第IV族元素 中之較難擴散之元素,例如適於抑制其從第2磷化硼系半 導體層朝向發光層擴散。另外,以發光層之矽之原子濃度 作爲基準,具有矽原子濃度之差異在± 3 0%以內之第2磷 化硼系半導體層,可以更有效地抑制矽原子之朝向發光層 擴散,和最佳的維持發光層內之矽原子濃度。例如,其一 -23- 1257713 構造例是砂原子濃度大約4x 1〇18原子/ cm3之η型Gaxlrii. xN(OSXS 1 )發光層,和矽原子濃度大約5x 1〇18原子/ cm3 之第1和第2磷化硼(BP )層之異質接合構造。 假設第1傳導型爲p型之情況時,第· 1磷化硼系半導體 層例如可以由未摻雜之P型之磷化硼(BP)層構成。在未摻 雜之P型磷化硼(BP)存在有多量之作爲受體成分和佔用磷 空位之硼原子。因此,在成爲第1磷化硼系半導體層之未 摻雜之 P型磷化硼(BP)層,如上述所的含有 1018 cm3〜 10 19cnT3以下之原子濃度之矽原子,但是未摻雜p型磷化 硼(BP )層之電洞(ho 1 e )濃度不減少,因此傳導型不變。另 外一方面,在第1傳導型爲η型,例如由未摻雜之η型磷 化硼(ΒΡ )構成第1磷化硼系半導體層之情況時,在未摻雜 之η型ΒΡ層,以高濃度(例如使1018cm3〜1019cnT3以下之 濃度之矽原子提高大約1 〇〇倍程度)存在有施體成分之佔 用硼空位之磷原子。因此,即使兩性雜質之矽具有作爲受 體之作用,亦不能充分的電補償(c 〇 m p e n s a t e )與空位有關 之多量之施體,所以第1磷化硼系半導體層之傳導型維持 爲η型。因此,在本發明之第1 〇實施形態中,使第IV族 元素之原子濃度小於與上述空位有關之施體或受體成分之 濃度,用來構成第1和第2磷化硼系半導體層。爲了電補 償該等空位之有關之施體或受體,所以摻雜多量之第IV 族元素,但是變成施加超過固溶度之多量之摻雜,造成包 含有摻雜劑之析出物之出現等’只能獲得粗雜和欠缺平坦 性之磷化硼系半導體層。對於發光層,例如用以構成障壁 一 24- 1257713 (c U d )層之低電阻之磷化硼系半導體層,如本發明所述, 可以利用未摻雜之磷化硼系半導體層,最佳而且簡便的構 成。 傳導型不同之第1和第2磷化硼系半導體層所含之第IV 族元素,所具有之作用是對於故意添加(摻雜)在發光層之 第IV族元素,抑制其朝向第1和第2磷化硼系半導體層 擴散,和所具之作用是使發光層之內部之第I V族元素之 原子濃度,維持在獲得高強度之發光之最佳濃度。 第1和第2磷化硼系半導體層所含之第IV族元素之矽 所具有之作用是作爲有效之第I V族元素種,在未摻雜狀 態,第1和第2磷化硼系半導體層之傳導型不變,可以抑 制從兩層朝向發光層之原子擴散,或其相反方向之擴散。 [實施例] (第1實施例) 使上述之第1傳導型成爲η型,第2傳導型成爲p型, 利用η型之第1磷化硼系半導體層和ρ型之磷化硼系半導 體層,用來構成磷化硼系半導體LED,以此情況爲例用來 具體地說明本發明。 第1圖表示第1實施例之LED1B之平面槪略圖。另外 ,第2圖表示沿著第1圖所示之虛線X - X ’之LED 1 B之剖 面槪略圖。 LED1B用途之積層構造體1A是形成以(丨丨丨)結晶面作 爲表面之摻雜銻(S b )之η型S i單結晶作爲基板1 0 1。在 基板101上,利用三乙基硼((C2H5)3B) /磷酸鹽(PH3) /氫(H2) -25 - 1257713 系常壓MOCVD法,以3 5 0 °C,as - grown狀態,堆積 質作爲主體之磷化硼所構成之緩衝層102。緩衝層 層厚成爲5nm。 在完成緩衝層102之成膜之後,使基板1〇1之溫 到 1 0 5 0 °C。在升溫後,利用上述之M0CVD氣相成 ,在緩衝層102之表面上積層由未摻雜之η型磷化 層構成之層厚大約3 3 0 nm之第1磷化硼系半導體層 在完成第1傳導型(在本第1實施例中爲η型)之第 硼系半導體層103之成膜後,在1 050 °C,在混合 鹽(PH3)和氫(H2)之氣體環境內,將該層保持10分 成從矽單結晶基板1 〇 1擴散來之矽原子被取入到第 硼系半導體層103之內部。利用一般之2次離子質 法(SIMS)將第1磷化硼系半導體層103之內部之矽 度定量在大約4x 1018cnT3。第1磷化硼系半導體層 載體濃度大約爲8x 1018 cnr3。另外,形成第1磷化 導體層1 0 3之單體之BP層在室溫之帶隙,利用折躬 和衰減係數(a:)之積値(=2 · ;? · /c )之光子能量相 求得大約爲3 . 0 e V。 在第 1磷化硼系半導體層 103上,利用三 ((CH3 )3Ga ) / 三甲基銦((CH3 )3In) / 氨(NH3 ) / H2 系常宅 法,在850°C,積層由η型之氮化鎵-銦(GaQ.94Inc 成之發光層104。在發光層104之成膜時,使用 (Si2H6)-氫(H2)混合氣體,摻雜矽(Si )。矽對發光 之摻雜量被設定成爲使該層104內之矽原子濃度變 - 2 6 - 由非晶 102之 度上升 長手段 硼(BP) 103 ° 1磷化 有磷酸 鐘,促 1磷化 量分析 原子濃 103之 硼系半 .率() 關性, 甲基鎵 :M0CVD .〇 6 N )構 二矽烷 層 104 成大約 1257713 5x 1018cm·3。發光層104之層厚成爲50nm。 在發光層104之表面上,積層由第2傳導型之p型之磷 化硼(BP)構成之第2磷化硼系半導體層105。第2傳導型 (在本第1實施例中爲P型)之第2磷化硼系半導體層1 0 5 ,與第 1磷化硼系半導體層之情況同樣的,利用 (C2H5)3B/PH3/H2 系常在 MOCVD 法,以 8 5 0 °C成膜。在第 2 磷化硼系半導體層105之成膜時,殘留(residual)該層105 內之矽之原子濃度大約爲2x 10 17 cm·3,合計之矽原子濃度 成爲大約4x 1018cnT3,以此方式利用二矽烷-氫混合氣體 摻雜矽。第2磷化硼系半導體層1 0 5之載體濃度大約爲1 X 1019cnT3。層厚與第1磷化硼系半導體層103同爲大約 330nm。第2磷化硼系半導體層105,亦與第1磷化硼系 半導體層103同樣的,由室溫之帶隙大約爲3 . OeV之單體 之磷化硼(BP)構成。 利用此種方式構成由不同傳導型之第1和第2磷化硼系 半導體層103、104與發光層104形成之pn接合型雙異質 接合(DH)構造型之發光部。第3圖表示利用一般之SIMS 分析,對構成發光部之各個構成層103〜105之深度方向 之矽原子濃度定量之結果。以發光層104之矽原子濃度作 爲基準,第1和第2磷化硼系半導體層103、105之矽原 子濃度成爲大約0.8倍。亦即,當與發光層104之矽原子 濃度比較時,成爲大約低20%之濃度。另外,如第3圖所 示,可以確認在各個構成層103〜10 5.之深度方向(膜厚方 向),矽原子之分布大致一樣。在內部發光層1 0 4和第1 - 27 - 1257713 和第2磷化硼系半導體層1 〇 3、1 Ο 5,矽原子濃度保持均 衡,和包夾發光層104之第1和第2磷化硼系半導體層103 、105使用同物質,而且由同一層厚之半導體材料(=ΒΡ) 構成,所以判斷爲可以抑制矽原子之從發光層1 04朝向第 1或第2磷化硼系半導體層103、105之擴散,和其反方 向之擴散。 在Ρ之第2磷化硼系半導體層105之表面之中央部,於 與該層105接觸之例,設置表面電極106,由配置有Au-Zn/鎳(Ni )/金(An)之3層構造構成。兼作連線用之襯墊 (pad)電極之表面電極106成爲直徑大約120//m之圓形之 電極。另外,在η型S i單結晶基板1 0 1之背面之大致全 面,配置作爲背面電極107之由鋁-銻(Al-Sb)合金形成 之歐姆電極,用來構成LED1B。Al-Sb蒸著膜之膜厚大 約爲2 e m。在形成表面和背面電極1 0 7、1 0 7之後,在[2 1 1 ] 方向之平行和垂直方向,切斷成爲基板101之Si單結晶 ,成爲一邊大約350/zm之正方形之LED1B。 在表面電極1 0 6和背面電極1 0 7之間,當有順向之2 0 毫安培(mA)之動作電流流通時,就從LED1B發出波長大 約43 Onm之藍紫帶光。利用一般之積分球所測定到之晶片 (chip)狀態之亮度成爲9毫燭光(mcd),可以提供高發光 強度之LED1B。另外,順向電壓(Vf )大約爲3V(順向電流 = 2 0mA),反向電壓(VR)爲5V以上(反向電流=10 /Z A)。利 用此種良好之整流特性,可以抑制發光層1 04與第1和第 2磷化硼系半導體層1 0 3、1 0 5之間之因爲矽原子擴散在 一 28- 1257713 異質接合界面之雜亂化(參照光技術共同硏究所編著,「 光電子積體電路之基礎技術」(1989年8月20日,歐姆 公司發行,第1版),371〜384頁)。 (第2實施例) 使第1傳導型成爲p型,第2傳導型成爲η型,利用p 型之第1磷化硼系半導體層和η型之第2磷化硼系半導體 層,用來構成磷化硼系半導體LED,以此情況爲例用來具 體的說明本發明。 第4圖表示本第2實施例之LED2B之剖面槪略圖。在第 4圖所示之積層構造體2A中,對於與第1圖和第2圖所 示之積層構造體1 A相同之構成元件,附加與第1圖和第 2圖相同之符號。 LED2B用途之積層構造體2A是形成以(111)結晶面爲表 面之摻雜硼(B )之p型S i單結晶作爲基板1 0 1。 在基板101之表面,利用(C2H5)3B/PH3/H2系減壓MOCVD 法,以1 07 5 °C,未摻雜的積層由p型磷化硼(BP)層構成 之第1磷化硼系半導體層103。成1膜時之壓力保持大約爲 0.2大氣壓。在進行第1傳導型(在本第2實施例中爲p 型)之第1磷化硼系半導體層103之成膜之15分鐘之期間 ,由於從矽單結晶基板1 〇丨侵入而擴散來到之矽原子,使 層103之內部之矽原子濃度達到大約7x 1018cm·3。矽原子 濃度成爲此種高濃度時,因爲會產生熱電動勢(參照本文 中記載之「半導體技術(上)」之.119〜120頁),該層103 維持P型之傳導性,其載體濃度爲大約2x 1019cnT3,另外 -29- 1257713 的被確認。另外,第1磷化硼系半導體層1 03之層厚大約 210nm。形成第1磷化硼系半導體層1〇3之單體之BP層在 室溫之帶隙大約爲3 . 0 e V。 另外,第1磷化硼系半導體層103因爲使對MOCVD反應 系供給之PH3和(C2H5)3B之供給量比率(=^1/((:2[15)33)成 爲90’和使成膜速度成爲30nm/分的進行成膜,所以在內 部以大致均一之密度包含有雙晶1 〇 8。雙晶1 0 8以磷化硼 (BP )之丨1 1 1 }-結晶面作爲雙晶境界面。雙晶是一種積層 缺陷(stacking fault )(參照坂公恭著,「結晶電子顯 微鏡學」(1997年11月25日,(股)內田老鶴圃發行第1 版),1 11〜1 1 2頁),不能明確的判別是本質(i n t r i n s i c ) 型或含雜質(extrinsic)型之那一種方式之積層缺陷(參照 上述之「結晶電子顯微鏡學」,114頁)。 在第1磷化硼系半導體層103上,利用(CH3)3G a/ (CH3)3In/NH3/H2系減壓MOCVD法,800°C,積層由摻雜有 Si之η型氮化鎵•銦(Gamin。.1()N)構成之發光層104。 發光層104在大約0.8大氣壓之減壓下成膜。膜厚大約爲 50nm。在發光層104之成膜時,使用Si2H6 — H2混合氣體 ’摻雜矽使層內之矽原子濃度成爲大約7x 1018cnT3。第1 磷化硼系半導體層1 0 3之內部之該矽元素濃度,比佔用磷 (P)空位之硼(B)原子之濃度之位數低,該層1〇3之表面成 爲平坦性優良者。因此,形成在第1磷化硼系半導體層1 0 3 上之發光層104之表面亦成爲無突起之平坦者。 在發光層104之表面上,積層由η型之磷化硼(BP)構成 一 3 0 - 1257713 之第2磷化硼系半導體層105。在第2傳導型(在本第2 實施例爲η型)之第2磷化硼系半導體層105之成膜時, 該層105內之矽原子之殘留濃度大約爲約4x 1017cm·3,合 計之矽原子濃度大約爲約7 X 1 0 18 c m ·3,以此方式利用二硅 烷-氫混合氣體摻矽。該矽原子濃度遠低於佔用硼(B)之 空位之磷(P)原子之濃度,因此未發現有第2磷化硼系半 導體層之傳導型之反轉。另外,在此種矽原子濃度,未發 現有含矽之析出物之發生,第2磷化硼系半導體層105具 有平坦之表面成爲連續膜。第2磷化硼系半導體層105之 載體濃度大約爲lx 1019cm·3。層厚與第1磷化硼系半導體 層103同爲大約210nm。第2磷化硼系半導體層105由室 溫之帶隙大約爲3 . 0 e V之單體之磷化硼(BP )構成。利用傳 導型不同之第1和第2磷化硼系半導體層103、105和發 光層104用來構成pn接合型雙異質接合(DH)構造型之發 光部。 在η型之第2磷化硼系半導體層1〇5之表面之中央部, 配置表面電極106。表面電極1 106使接觸在第2磷化硼系 半導體層105之側成爲金-鍺(Au-Ge)合金膜,由Au-Ge/Ni/Au3之膜構成。兼作襯墊電極之圓形之表面電極106 之直徑大約爲1 1 0 β m。在p型S i單結晶基板1 0 1之背面 之大致全面,配置由作爲背面電極107之鋁(A1)構成之歐 姆電極,用來構成LED2B。A1真空蒸著膜之膜厚大約爲3 #m。在形成表面和背面電極1〇6、107之後,在[211]方 向之平行方向和垂直方向將S i單結晶1 0 1切斷,成爲一 -31- 1257713 邊大約爲350#m之正方向之LED2B。 在表面電極106和背面電極107之間’當在順向有20 毫安培(mA )之動作電流流動時,發光中心波長成爲大約 440nm。發光層104與障壁層之第1和第2磷化硼系半導 體層1 0 3、1 0 5之矽原子濃度成爲相同,因爲可以抑制由 於擴散而造成之發光層104內之矽原子濃度之變動’所以 利用一般之積分球所測定到之晶片(c h i p )狀態之亮度變成 爲大約10毫燭光(mcd),可以提供高發光強度之LED2B。 另外,良好之整流特性被發揮,利用電流-電壓(I - V )特 性所求得之順向電壓(=V f )大約爲 3 V (其中,順向電流 = 20mA),反向電壓爲7V(其中,反向電流=1〇/ζΑ),可以 提供高耐壓之LED2B。 依照本發明時,因爲在由矽單結晶構成之基板上’設置 由III-V族半導體構成之發光層,其中包含有第IV族元 素,以可以獲得高強度之發光之最佳原子濃度添加’將發 光層接合到包含有第I V族元素之傳導型不同之第1和第 2磷化硼系半導體層,用來構成P型接合型異質接合構造 ,所以具有可以抑制第I V族元素從發光層擴散到外部之 效果,從發光強度之觀點來看,可以使發光層內之第IV 族元素之原子濃度維持在最佳之濃度,可以提供高發光強 度之發光元件。 特別是在本發明中,因爲使用具有與發光層大致同等之 第IV族元素之原子濃度之第1或第2傳導型之導電性半 導體層,用來構成包夾發光層成爲異質接合構造之第1或 一 32- 1257713 第2磷化硼系半導體層,所以可以更有效的抑制由於原子 濃度之差異所引起之第I V族元素之互相擴散,從發光強 度之觀點來看,可以將發光層內之第IV族元素之原子濃 度維持在最佳濃度,可以有助於獲得高發光強度之發光元 件。 另外,特別是在本發明中,因爲利用包含有與摻雜在發 光層者相同之第IV族元素之第1或第2傳導型之導電性 半導體層,用來構成包夾發光層成爲異質接合構造之第1 或第2磷化硼系半導體層,所以可以更有效的抑制由於原 子濃度之差異而引起之第I V族元素之互相擴散,從發光 強度之觀點來看,可以將發光層內之第IV族元素之原子 濃度維持在最佳濃度,可以獲得高發光強度之發光元件。 另外’特別是在本發明中,因爲利用包含有與摻雜在發 光層者相同之第I V族元素和大致相同之原子濃度之第1 或第2傳導型之導電性半導體層,用來構成包夾發光層成 爲異質接合構造之第1或第2磷化硼系半導體層,所以可 以更有效的抑制由於原子濃度之差異所引起之第I V族元 素之互相擴散’從發光強度之觀點來看,可以將發光層內 之第I V族元素之原子濃度維持在最佳濃度,可以獲得高 發光強度之發光元件。 另外’在本發明中,因爲使具有第IV族元素之原子濃 度小於佔用硼(B)空位之磷(P)原子或佔用磷空位之硼(B) 原子之濃度之第1或第2傳導型之磷化硼系半導體層接合 在發光層成爲積層構造,所以可以有效的維持未摻雜狀態 -33 - 1257713 之傳導型,和獲得表面之平坦性優良之發光層,如此一來 可以避免由於傳導型之不同而摻雜不同之雜質之煩雜性, 可以簡便的提供能夠獲得高強度之發光之發光元件。 (五)圖式簡單說明 第1圖是本發明之第1實施例之LED之平面槪略圖。 第2圖是沿著第1圖所示之LED之虛線X-X’之剖面槪 略圖。 第3圖表示本發明之第1實施例之LED中之矽原子之深 度方向之濃度分布。 第4圖是本發明之第2實施例之LED之剖面槪略圖。 元件符號說明 1A, 2A 積層構造體 1B, 2B LED 101 基板 102 緩衝層 103 第1磷化硼系半導體層 104 發光層 105 第2磷化硼系半導體層 106 表面電極 107 背面電極 10S 雙晶 一 34 -The carbon atom concentration in the first boron phosphide-based semiconductor layer layer containing the carbon (C) of the group IV element can be controlled by adjusting the film formation temperature. When the film formation temperature, i.e., the higher the holding temperature of the ruthenium single crystal substrate, the higher the concentration of carbon atoms in the layer. However, when the film formation temperature exceeds a high temperature of 1,200 ° C, it is easy to form a phosphide crystal of a large amount such as B6P or B13P2 composed of a rhombohedral crystal, and there is a defect that a phosphide-based semiconductor layer having a homogeneous composition is obtained. . Further, when the concentration of the boron (B) source supplied to the film forming environment of the organic boron compound increases, the carbon concentration in the first boron phosphide-based semiconductor layer can be made higher. However, in the first boron phosphide-based semiconductor layer containing carbon, the atomic concentration of carbon in the layer is preferably smaller than the phosphorus (P) atom occupying the vacancy of boron, or the boron occupying the vacancy of phosphorus (B) The concentration of atoms. By maintaining the relationship of this concentration, even if carbon is subjected to the action of the amphoteric impurity, the resulting first conductivity type can be maintained in the undoped state. The concentration of the boron atom occupying the phosphorus vacancies, or the concentration of the phosphorus atom occupying the boron vacancies respectively becomes the concentration of the boron-boron (BB) bond, or the concentration of the phosphorus-phosphorus (P-P) bond " Raman can be used (Ram a η) Spectrophotometry, nuclear magnetic resonance (NMR) method, etc. are planned. The light-emitting layer composed of the melon-V compound semiconductor of the present invention may be, for example, a gallium nitride semiconductor such as gallium nitride-indium (GaxInuN: 0SXS1) or gallium phosphide (GaxNi. γΡγ: 'Y $ 1 ). Composition. In particular, it is preferable to use, for example, a ruthenium group semiconductor layer having a group IV element to be doped as a light-emitting layer. As the impurity doped in the light-emitting layer, for example, iridium (Si) 'carbon (C) or the like can be used. In particular, when compared with other Group IV elements, 锗-16-1252713 (Ge) or tin (Sii), it is more difficult to diffuse toward the outside of the luminescent layer, and when compared with the case of carbon (C) It is easier to dope, so it is best to use hydrazine. The preferred concentration of the Group I V element inside the light-emitting layer is approximately lx 1017 atoms/cm3 to lx 1019 atoms/cm3. In particular, it is preferably about 5 x 10 18 atoms/cm 3 to about 7 x 1018 atoms/cm 3 . When it exceeds lx 1 〇 19 atoms/cm3, the crystal layer is deteriorated in the light-emitting layer doped with the group IV element, and a light-emitting layer of high-intensity luminescence cannot be obtained. The conduction type of the light-emitting layer is the first or second conductivity type. In the case of the second-conduction type light-emitting layer, a single hetero-SH bonding type pn junction structure can be formed by bonding to the first conductivity type first boron phosphide-based semiconductor layer. Further, for example, when the second conductivity type second phosphide-based semiconductor layer is bonded to the first conductivity type light-emitting layer, the pn layer including the luminescent layer and the second phosphide-based semiconductor layer can be formed. A light-emitting portion of a double hetero (DH) structure of a joint structure. In an example of the fourth embodiment of the present invention, the first boron phosphide-based semiconductor layer is made of an undoped phosphide-gallium (BxGai.xP: 0.5SXS1) layer containing germanium, and is doped with germanium. The atomic concentration is 2 X 1 0 17 atoms/cm 3 , and gallium phosphide (GatVYPY : OS 1 ) is used to constitute the light-emitting layer. The luminescent layer can be composed of a single quantum well structure (SQW) or a multiple quantum well structure (MQW). In a quantum well structure utilizing the tunnel effect of a carrier, a barrier layer thicker than the well (wel 1 ) must also be composed of a thin film. In a light-emitting layer of a quantum well structure composed of a film having continuity, a film containing boron (B) and phosphorus (P) is preliminarily covered on the inner wall before film formation, and a growth furnace is used to obtain a film on a single crystal substrate. The film of boron phosphide-17- 1257713 is a semiconductor layer, which serves as a bottom layer. The film can suppress the release of the material on the surface of the clamping plate, which is a source of decomposition of the inner wall, and has an effective effect on obtaining a flat phosphide-based semiconductor layer having a flat surface, and the flatness and continuity of the conformal surface. Excellent luminescent layer. When the light-emitting layer that emits light having a wavelength of λ is provided in the first phosphide having a layer thickness of 30% or more and has a laminated structure, the first phosphide-based boron is used from the light-emitting layer. A part of the light, so it constitutes an LED that will have an excellent external effect. For example, a light-emitting layer of a wavelength: violet light is provided on the first bulk layer having a layer thickness of about 300 nm as a laminated structure. In the case where the first phosphorus layer is composed of a monomeric boron phosphide (BP), the light emission of the wavelength 420 $ λ ^ 490 ) and the layer thickness of the boron phosphide semiconductor layer having 30% or more of the first phosphorus layer (unit: The relationship between the relations (1) between nm). λ =0.135 · d + 3 80 · · Relationship (1) In the fifth embodiment of the present invention, the second phosphide-based semiconductor layer of the light-emitting layer type is composed of undoped phosphating . The second boron phosphide-based semiconductor layer is similar to the case of the first phosphating, for example, Β α A 1 $ G a 7 I n L m ] 0 £ β < l ^ 0 £ γ < l ^ 0< a + β + γ is formed. In addition, for example, B α A 1 $ G a τ I n i. α ^ a ^ 0 £ β < l ^ 0 ^ r < 1 ^ 0< a + β + r Crystallinity and continuity are superior to those used to form a semiconductor layer on a light-based semiconductor layer having a wavelength of λ, and the light is extracted to a blue phosphide-based boron nitride semiconductor semiconductor λ having a cell size of 420 nm (unit nm; reflectance) The second conductivity boron-based semiconductor layer boron semiconductor layer P[- 5 As "0 < a , 0 S (5 < 1 ) structure. rPi.5N^(0<, 0 S (5) The structure of the second phosphide-based semiconductor layer of 1257713 is formed so as to face the first boron phosphide-based semiconductor layer so as to sandwich the light-emitting layer. Further, the conductive semiconductor layer A light-emitting layer is interposed between the first phosphide-based semiconductor layer and the first phosphide-based semiconductor layer to form a light-emitting portion of the pn junction type DH structure. The conductivity type of the second boron phosphide-based semiconductor layer and the single crystal and the first phosphating to be a substrate The boron-based semiconductor layer is reversed. For example, for the p-type { 1 1 1 } -S i single crystal and the p-type first boron phosphide semiconductor layer, the second boron phosphide The semiconductor layer is an n-type layer. In particular, the components of boron (germanium) (=α) and phosphorus (germanium) (=1-5) are both 0.5 (=50%) or more, and contain boron and phosphorus as main components. In terms of composition, it is preferable to use, for example, 1 8.1 without 0 amp; 卩 1111. no. 7? 1.5 八 5 (5 (0.5^^: €1, 0^/3 < 0.5' 〇 'r < 0.5, 0.5 < α + 0 + rSl,0S(5<0.5) or ΒαΑ1 々GaJnhmPiiNaO.SSa 'Bu 〇^0<〇·5,0Sr<0.5,0·5< a + /3 + r^l, Ο · 5 ). By using a boron phosphide-based semiconductor mixed crystal containing boron (B) and phosphorus (P) as a main body, conductivity of the second conductivity type can be obtained even if the impurity of the conduction type is not intentionally added (= doping). The boron phosphide-based semiconductor layer is advantageous in that it is easy to obtain the second-conducting type boron phosphide-based semiconductor layer without being doped. When doping operation due to the change of the impurity type can be avoided And when the first and second boron phosphide-based semiconductor layers are composed of an undoped layer, by changing the donor or acceptor associated with the vacancy of boron (B) or phosphorus (P) (accept 〇 r) relative composition The concentration ratio makes it easy to obtain a low-resistance conductive layer at a high carrier concentration. For example, if the carrier concentration exceeds about 5×10 18 cm·3, a low-resistance n-type boron phosphide system half-19-1957713 can be obtained. Conductor layer. Further, if it is not doped, a low-resistance p-type boron phosphide-based semiconductor layer can be easily formed by a carrier concentration exceeding about lxl019 cm·3. For example, when a large amount of an n-type impurity of a Group VI element such as sulfur (S) or selenium (Se) is doped, it is difficult to stably generate a high electron concentration such as the above undoped condition, but instead add a large amount of impurities. It is also possible to obtain a semiconductor layer which is disordered in surface and lacks continuity. In addition, when a large amount of doped Group II element zinc (Ζη), cadmium (Cd) or the like is difficult to form a p-type impurity of a compound with boron (Β), the low hole resistance of the above-mentioned high hole concentration cannot be stably obtained. The boron phosphide-based semiconductor layer 'only obtains a discontinuous semiconductor layer of a disordered surface. That is, even in the case of obtaining a conductive type boron phosphide-based semiconductor layer of either of the n-type or p-type, it is necessary to use an undoped means which does not intentionally add impurities. The conductivity type of the undoped boron phosphide-based semiconductor layer can be controlled by adjusting the film formation temperature. The film forming temperature suitable for obtaining the n-type undoped phosphide-based semiconductor layer is about 750 ° C to 950 ° C. On the other hand, it is suitable for obtaining an undoped P-type boron phosphide-based semiconductor layer of from about 1000 ° C to about 1 200 ° C. In particular, it is preferably in the range of about 1 0 2 5 ° C to 1 100 ° C. A boron phosphide-based semiconductor layer formed at a high temperature of more than about 1 000 ° C, particularly a boron-containing boron containing a twinning monomer which makes the U 1 1 }-crystal plane a double crystal interface The (boron monophosphide) layer is suitably used as the first or second boron phosphide-based semiconductor layer. The twin crystal contained in the inside of the layer can, for example, alleviate the mismatch (m i s f i t ) with the crystal lattice of the light-emitting layer, and is advantageous for obtaining a boron phosphide-based semiconductor layer excellent in crystallinity. Further, the ratio of the total concentration of the constituent elements of the Group V constituent elements such as phosphorus (P) supplied to the constituent elements of the Group of the boron (B) or the like in the film formation reaction system, that is, the ratio of the total concentration of the Group V constituent elements such as phosphorus (P) The so-called V / melon ratio also affects the conduction type control. When the film formation temperature is made the same, when the v / m ratio is made higher, the undoped n-type boron phosphide-based semiconductor layer is more easily obtained. In the sixth embodiment of the present invention, the second conductivity type boron phosphide-based semiconductor layer in which the group IV element is intentionally added is used to form the second boron phosphide-based semiconductor layer. The second boron phosphide-based semiconductor layer is disposed at a position farther from the single crystal substrate than the first boron phosphide-based semiconductor layer. Therefore, when compared with the case of the first boron phosphide-based semiconductor layer, the concentration of germanium atoms diffused by the single crystal of the substrate as a root source is reduced. Therefore, unlike the case of the first boron phosphide-based semiconductor layer, the addition of the group IV element to the second boron phosphide-based semiconductor layer is used to obtain the atomic concentration of the above-mentioned preferred group IV element. Good means. Examples of the added Group IV element are carbon (c), cerium (Si), germanium (Ge), and tin (Sn). As the carbon addition source, for example, a carbon-containing compound containing methane (CH4), trimethylphosphine ((CH3)3P), or carbon tetrabromide (CBr4) or the like can be used. For the doping source of cerium, for example, a gas containing cerium (SiH4) or dioxane (Si2H6) may be used. Since the conductive layer having a high carrier concentration as described above can be obtained in an undoped state even without adding an n-type or p-type impurity, a group IV element is not added here (the purpose of which is added to control the second phosphating) Conductive type of boron-based semiconductor layer). In other words, by suppressing the diffusion of the Group IV element added to the light-emitting layer toward the inside of the second boron phosphide-based semiconductor layer, the atomic concentration of the Group IV element in the light-emitting layer can be maintained at a high intensity. - Concentration of 21- 1257713. The Group IV element is used to govern the conductivity type of the second boron phosphide-based semiconductor layer at a concentration lower than that of the phosphorus atom occupying the boron vacancies or occupying the phosphorus vacancies. When the vacancy exceeds the concentration of the relevant donor or acceptor component, even if a large amount of the Group IV element is added, only the second phosphide-based semiconductor layer whose surface flatness is impaired can be obtained. In the seventh embodiment of the present invention, the Group IV element contained in the second boron phosphide-based semiconductor layer and the Group IV impurity added to the light-emitting layer are the same. By making the elements of the group I V existing in the light-emitting layer and the second boron phosphide-based semiconductor layer the same, it is possible to suppress the mutual diffusion of the group I V elements between the two layers. Moreover, if the atomic concentrations of the Group IV elements of the two layers are substantially the same, the diffusion from the light-emitting layer toward the second boron phosphide-based semiconductor layer is suppressed by suppressing the Group IV element, and conversely, the second phosphorus is suppressed. The boron-based semiconductor layer diffuses toward both of the light-emitting layers, and the effect of improving the layer can be further improved. The atomic concentration of the Group IV element in the layer of the light-emitting layer and the second boron phosphide-based semiconductor layer can be adjusted by the doping amount of the Group IV element. The basis for the atomic concentration of the Group IV element is the atomic concentration of the Group IV element of the light layer which is selected to obtain a high intensity of light. When the atomic concentration of the Group IV element of the first or second boron phosphide-based semiconductor layer does not match the optimum atomic concentration of the light-emitting layer, it is preferable to use the first and second boron phosphide-based semiconductor layers. The atomic concentration of the group IV element is adjusted so as to be based on the optimum concentration of the light-emitting layer, and the difference is within 30% of the soil. In addition, although the atomic concentration of the Group IV element of the first and second boron phosphide-based semiconductor layers is the same as that of the light-emitting layer, it is preferable to suppress the mutual diffusion of the Group IV elements to obtain a light having high intensity. The luminescent layer. -22 - 1257713 Further, when the difference in atomic concentration of the group IV element between the light-emitting layer and the second boron phosphide-based semiconductor layer is larger, the group IV between the light-emitting layer and the second boron phosphide-based semiconductor layer The more diffuse the element is. Therefore, the atomic concentration of the Group IV element of the second boron phosphide-based semiconductor layer is preferably the same as the atomic concentration of the Group IV element of the light-emitting layer. At least, the atomic concentration is such that it is within ± 30% of the concentration of the Group IV element of the light-emitting layer. A preferred embodiment of the eighth embodiment of the present invention is a second boron phosphide-based semiconductor layer comprising an n-type boron phosphide layer having a germanium atom concentration adjusted to 3 x 1018 atoms/cm 3 and bonded to a germanium atom concentration of 3χ1018 atoms. /cm3 η-type luminescent layer. In the second boron phosphide-based semiconductor layer, particularly when the atomic concentration distribution of the group IV element in the layer thickness direction is uniform, the diffusion of the group IV element from the light-emitting layer toward the second boron phosphide-based semiconductor layer is suppressed. The effect is higher. By using the same material and the same thickness of the semiconductor layer, the first and second boron phosphide-based semiconductor layers having different conductivity types of the light-emitting layer are formed, and if the distortion is applied from the upper and lower sides of the light-emitting layer to the light-emitting layer, the distortion is equal. In other cases, the effect of suppressing the diffusion of the Group IV element from the light-emitting layer toward the first and second boron phosphide-based semiconductor layers can be made higher. In the ninth embodiment of the present invention, the Group IV element existing in the second boron phosphide-based semiconductor layer and the light-emitting layer is germanium (Si). Niobium is an element which is more difficult to diffuse among the Group IV elements, and is suitable, for example, for suppressing diffusion from the second boron phosphide-based semiconductor layer toward the light-emitting layer. In addition, the second boron phosphide-based semiconductor layer having a difference in the concentration of germanium atoms within ± 30% based on the atomic concentration of the light-emitting layer can more effectively suppress the diffusion of germanium atoms toward the light-emitting layer. It is preferred to maintain the concentration of germanium atoms in the light-emitting layer. For example, a -23-1252713 structural example is an n-type Gaxlrii. xN (OSXS 1 ) luminescent layer having a sand atom concentration of about 4 x 1 〇 18 atoms/cm 3 , and a first atomic concentration of about 5 x 1 〇 18 atoms/cm 3 . And a heterojunction structure of the second boron phosphide (BP) layer. When the first conductivity type is a p-type, the first boron phosphide-based semiconductor layer can be made of, for example, an undoped P-type boron phosphide (BP) layer. In the undoped P-type phosphide (BP), there are a large amount of boron atoms as acceptor components and occupying phosphorus vacancies. Therefore, the undoped P-type boron phosphide (BP) layer to be the first boron phosphide-based semiconductor layer has a germanium atom having an atomic concentration of 1018 cm 3 to 10 19 % T3 or less as described above, but is not doped with p. The concentration of holes (ho 1 e ) in the boron phosphide (BP) layer is not reduced, so the conductivity type is unchanged. On the other hand, when the first conductivity type is an n-type, for example, when the first boron phosphide-based semiconductor layer is composed of undoped n-type phosphide (ΒΡ), the undoped n-type germanium layer is Phosphorus atoms occupying boron vacancies are present in the high concentration (for example, increasing the enthalpy atom at a concentration of 1018 cm 3 to 1019 cn T3 or more by about 1 〇〇). Therefore, even if the amphiphilic impurity has a function as a receptor, it is not possible to sufficiently compensate (c 〇mpensate) the amount of the donor associated with the vacancy, so that the conductivity type of the first phosphide-based semiconductor layer is maintained as n-type. . Therefore, in the first embodiment of the present invention, the atomic concentration of the group IV element is smaller than the concentration of the donor or acceptor component related to the vacancy, and the first and second phosphide-based semiconductor layers are formed. . In order to electrically compensate for the donor or acceptor associated with the vacancies, a large amount of the Group IV element is doped, but the amount of doping that exceeds the solid solubility is applied, resulting in the presence of precipitates containing dopants, etc. 'Only a phosphide-based semiconductor layer of coarse and lacking flatness can be obtained. For the light-emitting layer, for example, a low-resistance boron phosphide-based semiconductor layer constituting a barrier- 24-1257713 (c U d ) layer, as described in the present invention, an undoped boron phosphide-based semiconductor layer can be utilized. Good and simple composition. The Group IV element contained in the first and second boron phosphide-based semiconductor layers having different conductivity functions to intentionally add (doping) the Group IV element in the light-emitting layer and suppress the orientation toward the first and The second boron phosphide-based semiconductor layer diffuses and functions to maintain the atomic concentration of the group IV element inside the light-emitting layer at an optimum concentration for obtaining high-intensity light emission. The lanthanum of the group IV element contained in the first and second phosphide-based semiconductor layers functions as an effective group IV element, and the first and second phosphide-based semiconductors are in an undoped state. The conductivity of the layer is constant, and the diffusion of atoms from the two layers toward the luminescent layer or the diffusion in the opposite direction can be suppressed. [Embodiment] (First embodiment) The first conduction type is made n-type, the second conduction type is p-type, and the n-type first phosphide-based semiconductor layer and p-type phosphide-based semiconductor are used. The layer is used to constitute a boron phosphide-based semiconductor LED, and the present invention is exemplified in this case. Fig. 1 is a plan view showing the outline of the LED 1B of the first embodiment. Further, Fig. 2 is a schematic cross-sectional view showing the LED 1 B along the broken line X - X ' shown in Fig. 1. The laminated structure 1A for LED1B use is a single crystal of n-type S i formed with a doped ytterbium (S b ) having a (丨丨丨) crystal plane as a surface. On the substrate 101, using triethylboron ((C2H5)3B) / phosphate (PH3) / hydrogen (H2) -25 - 1257713 atmospheric pressure MOCVD method, stacked at 350 ° C, as - grown state The buffer layer 102 is made of boron phosphide as a main body. The buffer layer has a layer thickness of 5 nm. After the film formation of the buffer layer 102 is completed, the temperature of the substrate 1〇1 is brought to 1 0 50 °C. After the temperature rise, the first phosphide-based semiconductor layer having a layer thickness of about 3 3 0 nm composed of an undoped n-type phosphating layer is laminated on the surface of the buffer layer 102 by using the above-described MOCVD gas phase. After the formation of the boron-based semiconductor layer 103 of the first conductivity type (n-type in the first embodiment), in a gas atmosphere of mixed salt (PH3) and hydrogen (H2) at 1 050 °C, The germanium atoms which are held in the layer 10 and are diffused into the single crystal substrate 1 〇1 are taken into the inside of the boron-based semiconductor layer 103. The inside of the first boron phosphide-based semiconductor layer 103 is quantified to about 4 x 1018 cT3 by a general secondary ionization method (SIMS). The first boron phosphide-based semiconductor layer has a carrier concentration of about 8 x 1018 cnr3. Further, the BP layer of the single phosphating conductor layer 1 0 3 is formed at a band gap at room temperature, and photons of the product of enthalpy and attenuation coefficient (a:) (=2 · ; ? · /c ) are used. The energy phase is approximately 3. 0 e V. On the first boron phosphide-based semiconductor layer 103, a three ((CH3)3Ga) / trimethylindium ((CH3)3In) / ammonia (NH3) / H2 system is used, and the layer is laminated at 850 ° C. Η-type gallium nitride-indium (GaQ.94Inc luminescent layer 104. When forming the luminescent layer 104, a (Si2H6)-hydrogen (H2) mixed gas is used, and yttrium (Si) is doped. The doping amount is set such that the concentration of germanium atoms in the layer 104 becomes -2 6 - is increased by the degree of amorphous 102. The means of boron (BP) 103 ° 1 is phosphatized with a phosphoric acid clock, and the amount of phosphating is analyzed. The boron system of 103 is a half (rate), methyl gallium: M0CVD. 〇6 N ) dioxane layer 104 is about 1257713 5x 1018 cm·3. The layer thickness of the light-emitting layer 104 was 50 nm. On the surface of the light-emitting layer 104, a second boron phosphide-based semiconductor layer 105 composed of a p-type boron phosphide (BP) of a second conductivity type is laminated. The second boron phosphide-based semiconductor layer 1 0 5 of the second conductivity type (P-type in the first embodiment) is the same as the case of the first boron phosphide-based semiconductor layer, and (C2H5)3B/PH3 is used. The /H2 system is usually formed by a MOCVD method at 850 °C. When the second boron phosphide-based semiconductor layer 105 is formed, the atomic concentration of germanium in the layer 105 is about 2 x 10 17 cm·3, and the total germanium atom concentration is about 4 x 1018cnT3. The ruthenium is doped with a dioxane-hydrogen mixed gas. The carrier concentration of the second boron phosphide-based semiconductor layer 105 is approximately 1 X 1019cnT3. The layer thickness is approximately 330 nm as the first boron phosphide-based semiconductor layer 103. Similarly to the first boron phosphide-based semiconductor layer 103, the second boron phosphide-based semiconductor layer 105 is composed of a single-layer boron phosphide (BP) having a band gap of about 3.0 OeV at room temperature. In this manner, a pn junction type double heterojunction (DH) structure type light-emitting portion formed of the first and second boron phosphide-based semiconductor layers 103 and 104 of different conductivity types and the light-emitting layer 104 is formed. Fig. 3 shows the results of quantifying the concentration of germanium atoms in the depth direction of the respective constituent layers 103 to 105 constituting the light-emitting portion by a general SIMS analysis. The concentration of the erbium atoms of the first and second boron phosphide-based semiconductor layers 103 and 105 is about 0.8 times based on the atomic concentration of the luminescent layer 104. That is, when compared with the atomic concentration of germanium in the light-emitting layer 104, it becomes a concentration which is about 20% lower. Further, as shown in Fig. 3, it can be confirmed that the distribution of germanium atoms is substantially the same in the depth direction (film thickness direction) of each of the constituent layers 103 to 10 . In the inner light-emitting layer 1 0 4 and the first - 27 - 1257713 and the second boron phosphide-based semiconductor layer 1 〇 3, 1 Ο 5, the germanium atom concentration is kept balanced, and the first and second phosphorus of the light-emitting layer 104 are sandwiched. Since the boron-based semiconductor layers 103 and 105 are made of the same material and are made of the same thick semiconductor material (=ΒΡ), it is determined that the germanium atom can be prevented from the light-emitting layer 104 toward the first or second boron phosphide semiconductor. The diffusion of layers 103, 105, and the diffusion in the opposite direction. In the central portion of the surface of the second boron phosphide-based semiconductor layer 105 of the crucible, the surface electrode 106 is provided in contact with the layer 105, and is provided with Au-Zn/nickel (Ni)/gold (An). Layer structure. The surface electrode 106 which doubles as a pad electrode for wiring is a circular electrode having a diameter of about 120 / / m. Further, an ohmic electrode formed of an aluminum-niobium (Al-Sb) alloy as the back surface electrode 107 is disposed on substantially the entire surface of the back surface of the n-type S i single crystal substrate 010 to constitute the LED 1B. The film thickness of the Al-Sb evaporated film is about 2 e m. After the surface and back electrodes 1 0 7 and 1 0 7 are formed, Si single crystals which become the substrate 101 are cut in parallel and perpendicular directions in the [2 1 1 ] direction, and become square LEDs 1B having a side of about 350/zm. Between the surface electrode 106 and the back electrode 1 0 7 , when there is an operating current of 20 mA (mA) in the forward direction, a blue-violet band having a wavelength of about 43 Onm is emitted from the LED 1B. The brightness of the chip state measured by a general integrating sphere is 9 milli-candles (mcd), which can provide LED1B with high luminous intensity. In addition, the forward voltage (Vf) is approximately 3V (forward current = 20 mA), and the reverse voltage (VR) is 5V or more (reverse current = 10 / Z A). By using such a good rectifying property, it is possible to suppress the disorder of the heterojunction interface between the light-emitting layer 104 and the first and second boron phosphide-based semiconductor layers 1 0 3 and 1 0 5 because the germanium atoms are diffused at a 28-1257713 heterojunction interface. (refer to the "Technology of Optoelectronic Integrated Circuits" (August 20, 1989, Issued by Ohm Corporation, 1st Edition), pp. 371-384). (Second embodiment) The first conductivity type is p-type, the second conductivity type is n-type, and the p-type first boron phosphide-based semiconductor layer and the n-type second phosphide-based semiconductor layer are used. The phosphide-based semiconductor LED is configured as an example, and the present invention will be specifically described. Fig. 4 is a schematic cross-sectional view showing the LED 2B of the second embodiment. In the laminated structure 2A shown in Fig. 4, the same components as those of the laminated structure 1A shown in Fig. 1 and Fig. 2 are denoted by the same reference numerals as those in Figs. 1 and 2 . The laminated structure 2A for LED2B use is a p-type S i single crystal doped with boron (B) having a (111) crystal plane as a substrate. On the surface of the substrate 101, the first phosphide consisting of a p-type boron phosphide (BP) layer is formed by a (C2H5)3B/PH3/H2 decompression MOCVD method at 1 07 5 ° C, an undoped layer. The semiconductor layer 103 is used. The pressure at the time of film formation was maintained at about 0.2 atm. During the 15 minutes of film formation of the first boron phosphide-based semiconductor layer 103 of the first conductivity type (p-type in the second embodiment), it is diffused from the ruthenium single crystal substrate 1 and diffused. After the atom is reached, the concentration of germanium atoms in the layer 103 is about 7 x 1018 cm·3. When the concentration of germanium atoms is such a high concentration, a thermoelectromotive force is generated (refer to pages 119 to 120 of "Semiconductor Technology (Top)" described herein), and this layer 103 maintains the conductivity of the P type, and the carrier concentration thereof is Approximately 2x 1019cnT3, and another -29-1257713 was confirmed. Further, the layer thickness of the first boron phosphide-based semiconductor layer 103 is about 210 nm. The BP layer of the monomer forming the first boron phosphide-based semiconductor layer 1〇3 has a band gap of about 3.0 V at room temperature. In addition, the ratio of the supply amount of PH3 and (C2H5)3B supplied to the MOCVD reaction system (=^1/((:2[15)33) is 90'), and the film formation is performed on the first boron phosphide-based semiconductor layer 103. Since the film is formed at a speed of 30 nm/min, the twin crystal 1 〇8 is contained in a substantially uniform density inside. The twin crystal 1 8 is a twin crystal of phosphine boron (BP) 丨1 1 1 }-crystal plane. The interface is double-layered as a stacking fault (see 坂公恭, "Crystal Electron Microscopy" (November 25, 1997, (share) Uchida, Hehe issued the first edition), 1 11~ 1 1 2), it is not possible to clearly identify the layer defects of the intrinsic type or the extrinsic type (see "Crystal Electron Microscopy" above, page 114). In the first phosphating On the boron-based semiconductor layer 103, a (CH3)3G a/(CH3)3In/NH3/H2-based decompression MOCVD method was carried out at 800 ° C to laminate a layer of n-type gallium nitride indium doped with Si (Gamin. 1()N) constitutes the light-emitting layer 104. The light-emitting layer 104 is formed under a reduced pressure of about 0.8 atm. The film thickness is about 50 nm. When the light-emitting layer 104 is formed, The concentration of germanium atoms in the layer is about 7×1018cnT3 by doping with Si2H6—H2 mixed gas. The concentration of germanium in the interior of the first boron phosphide-based semiconductor layer 10 3 is higher than that of boron occupying phosphorus (P) vacancies. (B) The number of bits of the atomic concentration is low, and the surface of the layer 1〇3 is excellent in flatness. Therefore, the surface of the light-emitting layer 104 formed on the first boron phosphide-based semiconductor layer 1 0 3 is also free from protrusions. On the surface of the light-emitting layer 104, a second boron phosphide-based semiconductor layer 105 of 30 - 1257713 is formed by n-type boron phosphide (BP), and is formed in the second conductivity type (in the second In the case where the second phosphide-based semiconductor layer 105 of the n-type) is formed, the residual concentration of germanium atoms in the layer 105 is about 4 x 1017 cm·3, and the total germanium atom concentration is about 7 X 1 . 0 18 cm · 3, in this way, doped with a disilane-hydrogen mixed gas. The concentration of the germanium atom is much lower than the concentration of phosphorus (P) atoms occupying the vacancy of boron (B), so no second phosphating is found. The inversion of the conduction type of the boron-based semiconductor layer. In addition, in the concentration of such germanium atoms, no analysis of the inclusion of germanium was found. The second boron phosphide-based semiconductor layer 105 has a flat surface and is a continuous film. The carrier concentration of the second boron phosphide-based semiconductor layer 105 is approximately lx 1019 cm·3. The layer thickness and the first boron phosphide semiconductor The layer 103 is approximately 210 nm, and the second boron phosphide-based semiconductor layer 105 is composed of a single-layer boron phosphide (BP) having a band gap of about 3.0 volts at room temperature. The first and second boron phosphide-based semiconductor layers 103 and 105 and the light-emitting layer 104 having different conductivity types are used to constitute a pn junction type double heterojunction (DH) structure type light-emitting portion. The surface electrode 106 is disposed at the center of the surface of the n-type second phosphide-based semiconductor layer 1〇5. The surface electrode 1 106 is made into a gold-yttrium (Au-Ge) alloy film on the side of the second boron phosphide-based semiconductor layer 105, and is made of a film of Au-Ge/Ni/Au3. The circular surface electrode 106 which doubles as the pad electrode has a diameter of about 1 10 β m. An ohmic electrode made of aluminum (A1) as the back surface electrode 107 is disposed substantially entirely on the back surface of the p-type Si single crystal substrate 110, and is used to constitute the LED 2B. The film thickness of the A1 vacuum evaporation film is about 3 #m. After the surface and back electrodes 1〇6, 107 are formed, the Si single crystal 10 1 is cut in the parallel direction and the vertical direction of the [211] direction, and becomes a positive direction of about 350#m on the side of -31-1252713. LED2B. Between the surface electrode 106 and the back electrode 107, when an operating current of 20 milliamperes (mA) flows in the forward direction, the illuminating center wavelength becomes about 440 nm. The concentration of germanium atoms in the first and second boron phosphide-based semiconductor layers 1 0 3 and 1 0 5 of the light-emitting layer 104 and the barrier layer are the same, because fluctuations in the concentration of germanium atoms in the light-emitting layer 104 due to diffusion can be suppressed. 'So the brightness of the chip state measured by the general integrating sphere becomes about 10 milli-candles (mcd), which can provide LED2B with high luminous intensity. In addition, a good rectification characteristic is exerted, and the forward voltage (=V f ) obtained by the current-voltage (I - V ) characteristic is about 3 V (in which the forward current = 20 mA), and the reverse voltage is 7 V. (Which reverse current = 1 〇 / ζΑ), LED2B with high withstand voltage can be provided. According to the present invention, since a light-emitting layer composed of a group III-V semiconductor is provided on a substrate composed of a single crystal, which contains a group IV element, an optimum atomic concentration of light having high intensity can be obtained by adding ' Since the light-emitting layer is bonded to the first and second boron phosphide-based semiconductor layers having different conductivity types including the group IV element to form a P-type junction type heterojunction structure, it is possible to suppress the group IV element from the light-emitting layer. The effect of diffusing to the outside can maintain the atomic concentration of the Group IV element in the light-emitting layer at an optimum concentration from the viewpoint of luminous intensity, and can provide a light-emitting element having high luminous intensity. In particular, in the present invention, the first or second conductivity type conductive semiconductor layer having an atomic concentration of a Group IV element substantially equivalent to the light-emitting layer is used, and the occlusion light-emitting layer is configured to be a heterojunction structure. 1 or a 32- 1257713 second boron phosphide-based semiconductor layer, so that the interdiffusion of the group IV elements due to the difference in atomic concentration can be more effectively suppressed, and from the viewpoint of luminescence intensity, the luminescent layer can be incorporated The atomic concentration of the Group IV element is maintained at an optimum concentration, which can contribute to obtaining a light-emitting element having high luminous intensity. Further, in particular, in the present invention, since the first or second conductivity type conductive semiconductor layer containing the same Group IV element as that of the light-emitting layer is used, the inclusion of the light-emitting layer becomes a heterojunction. Since the first or second boron phosphide-based semiconductor layer is structured, it is possible to more effectively suppress mutual diffusion of the Group IV elements due to the difference in atomic concentration, and from the viewpoint of luminescence intensity, the luminescent layer can be used. The atomic concentration of the Group IV element is maintained at an optimum concentration, and a light-emitting element having high luminous intensity can be obtained. Further, in particular, in the present invention, a conductive semiconductor layer containing a first or second conductivity type containing the same Group IV element and substantially the same atomic concentration as that of the light-emitting layer is used to constitute a package. Since the light-emitting layer is a first or second boron phosphide-based semiconductor layer having a heterojunction structure, it is possible to more effectively suppress interdiffusion of a group IV element due to a difference in atomic concentration, from the viewpoint of luminous intensity. The atomic concentration of the Group IV element in the light-emitting layer can be maintained at an optimum concentration, and a light-emitting element having high light-emitting intensity can be obtained. Further, in the present invention, the first or second conductivity type is such that the atomic concentration of the element having the group IV element is smaller than the concentration of the phosphorus (P) atom occupying the boron (B) vacancy or the boron (B) atom occupying the phosphorus vacancy. Since the phosphide-based semiconductor layer is bonded to the light-emitting layer to have a laminated structure, the conductive type of the undoped state -33 - 1257713 can be effectively maintained, and the light-emitting layer having excellent surface flatness can be obtained, so that conduction due to conduction can be avoided. The complication of doping different impurities is different in type, and it is possible to easily provide a light-emitting element capable of obtaining high-intensity light emission. (5) Brief Description of Drawings Fig. 1 is a plan view showing the outline of an LED according to a first embodiment of the present invention. Fig. 2 is a schematic cross-sectional view taken along the dotted line X-X' of the LED shown in Fig. 1. Fig. 3 is a view showing the concentration distribution in the depth direction of germanium atoms in the LED of the first embodiment of the present invention. Fig. 4 is a schematic cross-sectional view showing an LED of a second embodiment of the present invention. DESCRIPTION OF REFERENCE NUMERALS 1A, 2A laminated structure 1B, 2B LED 101 substrate 102 buffer layer 103 first boron phosphide-based semiconductor layer 104 light-emitting layer 105 second boron phosphide-based semiconductor layer 106 surface electrode 107 back electrode 10S double crystal one 34 -

Claims (1)

125771 __圈1___ ____ ;'· V U'f ·、申請專利範圍.::. ./:;:... .,·/;" ;;Λ - 第92103840號「PN接合型磷化硼系半導體發光元件及其製法 (93年7月12日修正) 一種pn接合型磷化硼系半導體發光元件,具備有由第 1磷化硼系半導體層、發光層和第2磷化硼系半導體層 構成之pn接合型異質接合構造’包含有:基板’由第 1傳導型之砂(S i )單結晶構成;第1傳導型之第1磷化 硼系半導體層,被設在該基板上;發光層,被設在第1 磷化硼系半導體層上,具有第1或第2傳導型’由故意 添加有元素週期表上之第IV族元素之Π-V族半導體層 構成;和第2傳導型之第2磷化硼系半導體層’被設在 發光層上;其中第1磷化硼系半導體層由包含有第IV 族元素之未摻雜之第1傳導型之磷化硼系半導體構成’ 第2磷化硼系半導體層由包含有第IV族元素之與第1 傳導型相反之第2傳導型之磷化硼系半導體層構成;該 第1磷化硼系半導體層包含有與發光層所含之同一種之 第IV族元素;該第1磷化硼系半導體層所含之第IV族 元素之原子濃度就相對於發光層內部之第I V族元素之 原子濃度而言係在± 30%以內;該第2磷化硼系半導體 層所含之第I V族元素之原子濃度就相對於發光層內部 之第IV族元素之原子濃度而言係在土 30%以內。 2 .如申請專利範圍第1項之pn接合型磷化硼系半導體發 光元件,其中第1磷化硼系半導體層和發光層所含之 -1- 1257713 第IV族元素爲矽(Si)。 3 .如申請專利範圍第1項之pn接合型磷化硼系半導體發 光元件,其中第2磷化硼系半導體層由未摻雜第2傳 導型之磷化硼系半導體層構成。 4 ·如申請專利範圍第1項之pn接合型磷化硼系半導體發 光元件,其中第2磷化硼系半導體層由故意添加有第IV 族元素之第2傳導型之磷化硼系半導體層構成。125771 __圈1___ ____ ;'· V U'f ·, the scope of application for patents.::. ./:;:. .,·/;";;Λ - No. 92103840 "PN-bonded phosphating A boron-based semiconductor light-emitting device and a method for producing the same (as amended on July 12, 1993) A pn junction type boron phosphide semiconductor light-emitting device comprising a first boron phosphide-based semiconductor layer, a light-emitting layer, and a second boron phosphide system The pn junction type heterojunction structure of the semiconductor layer structure includes a substrate which is composed of a single conductivity type sand (S i ) single crystal, and a first conductivity type first phosphide boron semiconductor layer provided on the substrate. The light-emitting layer is provided on the first boron phosphide-based semiconductor layer, and has a first or second conductivity type consisting of a germanium-V semiconductor layer intentionally added with a group IV element of the periodic table; The second conductivity type second boron phosphide-based semiconductor layer 'is provided on the light-emitting layer; wherein the first boron phosphide-based semiconductor layer is made of an undoped first conductivity type boron phosphide containing a group IV element Semiconductor composition: The second boron phosphide-based semiconductor layer is composed of a second conductivity type phosphorus which is opposite to the first conductivity type including the group IV element. a boron-based semiconductor layer comprising: a Group IV element of the same type as that of the light-emitting layer; and an atom of a Group IV element contained in the first boron phosphate-based semiconductor layer The concentration is within ± 30% with respect to the atomic concentration of the Group IV element inside the light-emitting layer; the atomic concentration of the Group IV element contained in the second boron phosphide-based semiconductor layer is relative to the inside of the light-emitting layer The atomic concentration of the group IV element is within 30% of the soil. The pn junction type boron phosphide-based semiconductor light-emitting device of the first aspect of the invention, wherein the first boron phosphide-based semiconductor layer and the light-emitting layer are The pn-bonding type boron phosphide-based semiconductor light-emitting device of the first aspect of the invention, wherein the second phosphide-based semiconductor layer is undoped The pn-bonding type boron phosphide-based semiconductor light-emitting device according to the first aspect of the invention, wherein the second boron phosphide-based semiconductor layer is intentionally added with the group IV The second conductivity type boron phosphide semiconductor layer of the element Composition. 5 .如申請專利範圍第1項之ρ η接合型磷化硼系半導體發 光元件,其中第2磷化硼系半導體層包有與發光層所 含之同一種之第I V族元素。 6 .如申請專利範圍第1項之pn接合型磷化硼系半導體發 光元件,其中第2磷化硼系半導體層和發光層所含之 第I V族元素爲矽(S i )。 7 .如申請專利範圍第2項之pri接合型磷化硼系半導體發5. The pn-joining type boron phosphide-based semiconductor light-emitting device according to the first aspect of the invention, wherein the second boron phosphide-based semiconductor layer contains the same group I V element as that of the light-emitting layer. 6. The pn junction type boron phosphide-based semiconductor light-emitting device according to the first aspect of the invention, wherein the second phosphide-based semiconductor layer and the group I V element contained in the light-emitting layer are bismuth (S i ). 7. Pri-joined boron phosphide semiconductors according to item 2 of the patent application scope 光元件,其中第1磷化硼系半導體層所含之矽之原子濃 度,係爲佔用硼空位之磷原子之濃度’或佔用磷空位之 硼原子之濃度之任何一個濃度以下。 8 .如申請專利範圍第6項之ρ η接合型磷化硼系半導體發 光元件,其中第2磷化硼系半導體層所含之矽之原子濃 度,係爲佔用硼空位之磷原子之濃度’或佔用磷空位之 硼原子之濃度之任何一個濃度以下。 一 2-In the optical element, the atomic concentration of ruthenium contained in the first boron phosphide-based semiconductor layer is equal to or lower than any concentration of the concentration of the phosphorus atom occupying the boron vacancy or the concentration of the boron atom occupying the phosphorus vacancy. 8. The pn-joining type boron phosphide-based semiconductor light-emitting device of claim 6, wherein the atomic concentration of germanium contained in the second boron phosphide-based semiconductor layer is a concentration of a phosphorus atom occupying a boron vacancy Or any concentration below the concentration of boron atoms occupying phosphorus vacancies. minus 2-
TW92103840A 2002-02-25 2003-02-25 P-N junction type boron phosphide-based semiconductor light-emitting device and production method thereof TWI257713B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047457A JP3900968B2 (en) 2002-02-25 2002-02-25 Pn-junction boron phosphide-based semiconductor light-emitting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200305295A TW200305295A (en) 2003-10-16
TWI257713B true TWI257713B (en) 2006-07-01

Family

ID=28660510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92103840A TWI257713B (en) 2002-02-25 2003-02-25 P-N junction type boron phosphide-based semiconductor light-emitting device and production method thereof

Country Status (2)

Country Link
JP (1) JP3900968B2 (en)
TW (1) TWI257713B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026525B2 (en) 2004-03-05 2011-09-27 Showa Denko K.K. Boron phosphide-based semiconductor light-emitting device
JP4658641B2 (en) * 2004-03-05 2011-03-23 昭和電工株式会社 Boron phosphide-based semiconductor light emitting device
TWI258876B (en) * 2004-03-29 2006-07-21 Showa Denko Kk Compound semiconductor light-emitting device and production method thereof
CN113697786B (en) * 2021-09-22 2022-12-23 中山大学 Preparation method of needle-shaped cobalt phosphide with phosphorus vacancies and application of needle-shaped cobalt phosphide in seawater electrolysis hydrogen production

Also Published As

Publication number Publication date
JP3900968B2 (en) 2007-04-04
JP2003249679A (en) 2003-09-05
TW200305295A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
US20080217646A1 (en) Nitride semiconductor light emitting device
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
US6835962B2 (en) Stacked layer structure, light-emitting device, lamp, and light source unit
JP2002368260A (en) Compound semiconductor light-emitting element, manufacturing method therefor, lamp and light source
JP3461112B2 (en) Group III nitride semiconductor light emitting device
US6831304B2 (en) P-n junction type boron phosphide-based semiconductor light-emitting device and production method thereof
TWI257713B (en) P-N junction type boron phosphide-based semiconductor light-emitting device and production method thereof
US6831293B2 (en) P-n junction-type compound semiconductor light-emitting device, production method thereof, lamp and light source
JP4285837B2 (en) AlGaInP light emitting device with window layer
TW201232824A (en) Transparent thin film, light emitting device comprising the same, and methods for preparing the same
CN102498585A (en) Semiconductor light-emitting device
JP2001007396A (en) Iii nitride semiconductor light emitting device
JP3399407B2 (en) Group III nitride semiconductor light emitting device
TWI273724B (en) Boron phosphide-based semiconductor light-emitting device, production method thereof and light-emitting diode
CN109509828B (en) Light emitting diode chip and preparation method thereof
JP3470074B2 (en) Optical semiconductor device
JP2021072394A (en) Light emitting element and manufacturing method thereof
JP3711966B2 (en) Vapor phase growth method of group III nitride semiconductor layer and group III nitride semiconductor device
JP2002246643A (en) Group iii nitride semiconductor light emitting element and manufacturing method thereof
JP2001007395A (en) Iii nitride semiconductor light emitting element
JP2002270896A (en) Iii nitride semiconductor light-emitting element and its manufacturing method
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP3723314B2 (en) Semiconductor light emitting device
US7018728B2 (en) Boron phosphide-based semiconductor device and production method thereof
JP3649170B2 (en) Laminated structure and light emitting element, lamp, and light source using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees