1255195 玖、發明説明: 【發明所屬之技術領域】 人類每天生活仰賴吸收性物件。 【先前技術】 /及收性物件,包括成人失禁物件、触棉及尿布,-般由結合可滲透 上薄層、w诗至上騎的不滲透贿層,以及位於上薄層及麟層之間的 吸收芯。當穿戴物件時,可滲透的上薄層鄰接穿戴者聽。上薄層允許體 液通過吸收芯。轉透的上騎f助防止流體在吸收芯中減。吸收芯設 计成具有理想物質特性,例如高吸收容量及高吸收速率,因此體液可從穿 戴者肌膚運輸至可棄式吸收性物件。 本發明爲關於水膨脹、水不能溶解的超吸收體材料」此常常運用於吸 收,(也稱爲一吸收性複合物),此部份寶助“固定” 〇〇ck叩)流體進 入芯。換句話説,本發明適合在超吸收體材料的膠床中測量具有調整摩擦 角的超吸收麟料。可控制本伽之超吸收麟料的膠床雜肖,並伴隨 一預足圖案。本發明也關於在吸收性複合物及結合此吸收性複合物的吸收 性物件中使馳制膠床摩擦角吸收性材料。控制吸收性材料的膠床摩擦角 允雜制事項包括,但秘制:超吸收體材料瓣脹;在吸收性複合物中以 超吸收體材料與/或者其他原料(例如纖維)歷經壓力;含有超吸收體材料 的吸收性複合物之穿透性;與/或者吸收性複合物的吸收力、彈性、多孔性。 本發明爲關於超吸收體材料的處理方式,以操縱膠床摩擦角,以及具有理 想膠床角度特徵的新式超吸收體材料。 使用於吸收性物件的吸收性合成物一般由吸收性材料組成,比如吸收 性材料’此與含有天然與/或者合成纖維的合成基質。隨著流體進入吸收性 合成物’超吸收體材料隨吸收流體而膨脹。超吸收體材料隨著膨脹而接觸 四周基質成分以及可能其他超吸收體材料。包含超吸收體材料的吸收性複 合物上的壓力作用降低空間體積,如超吸收體材料、纖維、其他原料或一 E:\PATENT\PK-001 08\pk-001 -〇863\pk-0〇 1 -0863 .doc2004/l /8 1255195 些複合物間的空間(此不需連結至一特殊類推,以及僅爲説明目的,打算 在有氣孔的似海綿材料的一些單位面積上施力,以每單位面積的力量,即 壓力,作爲降低似海綿材料的厚度,以及氣孔的體積)。 隨著超吸收體材料的膨脹,可重新棑列成吸收性合成物基質的空間, 以及迅速擴張緊靠基質,以產生額外的空間。另外,隨著超吸收體材料膨 脹,吸收性合成物的壓力可增加,因爲至少部分超吸收體材料擴大,藉以 減少纖維、超吸收體材料、吸收性合成物中的其他原料或一些組合之間的 氣孔體積。能夠在合成基質内排列,以及合成基質内的壓力大小及範園, 乃明確依照幾個因素而定,包括超吸收體材料的膠床摩擦角而定。另外, 隨著超吸收體材料在合成基質内移動,超吸收體材料可接觸成分,如四周 基質的纖維及連結材料。因此,超吸收體材料的摩擦特性可影響材料的膨 脹及基質内的排列或移動,以及合成基質内的壓力範園。 理想的是,超吸收體材料能夠在吸收性合成物的空隙内旋轉,以允許 超吸收體材料同關閉整個膨脹容量般的可能膨脹於基質内。需要可更輕易 重新棑列於吸收性合成基質空間内的超吸收體材料。需要一方式來控制物 質機械部分:允許超吸收體材料重新排列於吸收性合成基質内;減少或使吸 收性合成物或本身原料内的壓力減至最低;與/或者減少可跟隨增強該壓力 的氣孔容積。一種新的能實現的超吸收體材料描述於K-C Docketl7991A, 2002年7月30曰,標題爲“具有低控制膠床摩擦角的超吸收體材料及其 製造的合成物“,二個共同未定申請書完全合併與此作爲參考。 亦,在此案子中吸收性複合物有最初高多孔性或完全膨脹,其最好有 重新排列於基底中的超吸收體材料,且因此由維持在複合物基底自由的空 間來維持多孔性及複合物的滲透性。 【發明内容】 我們已經發現具有控制的膠床摩擦角之超吸收體材料有一或更多需 求。因此,本發明爲針對具有控制膠床摩擦角的超吸收體材料。本發明的 E:\PATENTAPK-001 08\pk-001.0863\pk-00l.0863.doc2004/l/8 1255195 超吸收體材料具有膠床摩擦角,此接著控制膠床摩擦角圖案,此與傳統的 超吸收體材料之膠床摩擦角圖案有很大的不同。本發明的超吸收體材料可 使用非傳統製造作用製造,以獲得理想的膠床摩擦角,或在膨脹期間增 加、減少或以别的方法控制超吸收性膠床的摩擦角。根據莫爾庫侖的破壞 理論膠床摩擦角爲膠床或超吸收體材料的特性。 本發明的超吸收體材料可爲水膨脹、水不能溶解的超吸收體材料。水 膨脹、水不能溶解的超吸收體材料在約5.〇克的〇·9 wt%氣化納溶液/克超 吸收體材料及膠床摩擦角之超吸收體材料膨脹程度中具有第一膠床摩擦 角,在超吸收料麵程度約大於5·〇克的0·9 W%氣化齡液/克的超 及收體材料,等於或小於弟一膠床摩擦角。第一膠床摩擦角約爲如。或更 少。超吸收體材料進一步包含多數可濕纖維。 本發明的這些及其他特點、觀點及優點對下面描述、附加申請專利範 園及附圖將變得更加了解。 【實施方式】 負載吸收力(AUL)引用在機械載荷下的液體保留能力測量。此 以測量a9 wt%氣化麟液的數量(克)試驗啦,在應用載荷或抑制約〇 3 續/平方英叶(2,000 Pascals)下,1小時可吸收!克材料。在美國專利編 號第5,6〇1,542號中提供測定AUL的程序,其完全合併於此作爲參考。 “吸收性物件”包括,不受限制,尿布、兒童訓練用褲、游泳衣、吸 收性襯褲、寶寶用擦拭物、失禁製品、衛生棉及醫療用吸收性製品(舉例 來説,吸收性醫療用衣物、内襯、繃帶、懸布及醫療用擦拭物)。 纖維(Fiber )及纖維狀基質”(Fibrous Matrix )包括,但不受 限,天然纖維、合成纖維及其複合物。天然纖維的範例包括纖維素纖維(例 如木漿纖維)、棉布纖維、羊毛纖維、蠶絲纖維等等以及其複合物。合成 纖維可包括人造絲纖維、玻璃纖維、聚烯纖維、聚酯纖維、聚銨纖維、聚 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 1255195 丙婦纖維。如此處所使用,了解到“纖維狀基質”包括多數纖維。 “自由膨脹容量”(Free Swell Capacity )引用試驗結果,此測量水溶 性0.9 wt%的氣化鈉溶液數量,在可忽略的應用載荷下,1小時可吸收玉 克材料。 “膠床摩擦角 ”(Gel_bed fricti〇n angle )引用隨著以 jenike-Shulze 環 切試驗器測量或其他摩擦角測量技術,測量在膠床中的超吸收體材料之摩 擦角。 “梯度“(Gradient)引用物質數量大小中的量變化,如在各種不同 吸收襯墊位置中的超吸收體材料數量,或其他特徵如質量、密度等。 “膠床”(Gel-bed)引用容器,如環切室,内的超吸收體材料數量。 “同種混合”(Homogeneously mixed )引用合成物内二或更多物質的 相同混合,比如每個物質在合成物各處殘留一致的物質數量大小。 “失禁製品”(Incontinence products)包括,無限制)孩童的吸收性 襯衣、因身體殘疾而有特殊需要,如自閉症孩童或膀胱/腸控制問題,的孩 童或年輕人的吸收性衣物,以及失禁老人的吸收性衣物。 “溶吹式纖維”(Meltblown fiber)意謂當鑄造細絲或單纖維進入集 中高速熱氣(例如空氣)流,使融化熱塑性材料的單纖維變細,以縮小直徑, 變成微纖維直徑,時,由擠出融化熱塑性材料經過多數纖細且通常爲圓 形、印模毛細管而形成。之後,由高速氣流運送熔吹式纖維,並放置於一 聚集表面,以形成任意分散的熔吹式纖維。舉例來説,此過程由Butin等 人揭發於美國專利編號第3,849,241號。熔吹式纖維爲連續或間斷的微纖 、、隹’其~般約小於0·6丹尼爾(denier),且一般在放置於集中表面時則自 A連結。使用於本發明的熔吹式纖維有適當的連續長度。 莫爾環”(Mohr circle)引用加入一或更多力於材料内的壓力狀態 圖示。莫爾環更詳述於下。 E:\PATENTVPK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1 /8 g 1255195 “莫爾破壞包絡線“(Mohr failure envelope )引用在破壞平面中的破 壞切變壓力佩魏或剪力平社的-據力_。類猶包絡線更詳 述於下。 “聚合物”(Polymer)包括’但不受限’相同聚合物、共聚物,如 舉例來説成塊、接枝、任意及交替共錄、三聚物等,及混合物與其改造。 再者’除非不_確限制,此項“聚合物”包括材料所有可能的幾何形 狀。這些形狀包括,但不受限,全同立構、間規立構、不規則的對稱。 “超吸收性”(Sup—或“超吸收體材料”( material)引用在最有利的情況下,水可膨脹、水不能溶解有機或無機材料, 此吸收至少約爲本身重量的1G倍,纟其在含有Q 9略氣化靖水溶液中 至少約爲本身重量的20倍。超吸收體材料可爲天然、合成及改造天然聚 合物及材料。另外,超吸收麟料可爲無渐料,如氧舞膠,或有機複 合物,如交鍵聚合物。本發_超吸收體材射具體表面爲各種結構形 狀,包括顆粒、纖維、薄片狀及球形。 “圖案 ”(Pattern)或“預定圖案 ”(predetermined pattem)爲當上 下文提及膠床摩_時’在超吸收猶料的膨脹程度上仙翻的膠床摩 擦角。膠床摩擦角的圖案可引用超吸收體材料之膠床摩擦角中的變化作爲 超吸收體材料的膨脹程度作用。 “纺結纖維”(SpimbGuded fiber*)引削、直徑的纖維,此自具有圓形 或其他形狀吐絲口的多數纖細毛細管擠出融化熱塑性材料作爲單纖維,然 後具有直徑的擠出單纖維迅速減少,舉例來説,Appel等人的美國專利編 號第4,340,563號;Dorschner等人的美國專利編號第3,692,618 等人的美國專利編號第3,8(>2,817號;Kinney的美國專利編號第功8,992 號;Hartma皿的美國專利編號第3,5〇2,763號;petersen的美國專利編號第 3,5〇2,538號;以及Dobo等人的美國專利編號第3,542,615號,其每個完全 E:VPATENT\PK-001 08^〇〇l-〇863Vpk.〇〇1.〇863d〇c2〇^ 1255195 合併於此作爲參考。可聽輯料卻,且—録雜_ 膠黏。纺結纖維-織連輕,且常常具妓於α3的平^尼 介於0.6與1〇之間。 匕 >、、、’、 在剩下的説明書部分中,這些項目可由料術語定義。 連績機械、莫爾環及莫爾庫侖破壤理論 我們發現使絲自機械軟具制絲描述,爲錢起見,提供連續 機械概要、莫爾環及莫爾庫命破壞理論。需了解此概要的目的爲僅供解 釋’且不視爲限制揭發於此的本發明。 吸收性物件及合成物爲多孔性質。形成合成物(例如超吸收體材料及 纖維)的各種不同原料之間的開口間隔一般稱爲空間或氣孔空間。氣孔空 間作爲儲存液體與/或者提供將液體遍及吸收性合成物或物件的導管或路 径。每單位吸收性合成物之氣孔空間的容積一般稱爲“多孔性”。一般吸 收性能以增加多孔縣改善。舉例來説,吸收性合成物的穿透性,即合成 物促進液體鑛的能力,乃隨著多孔性(其他崎的因素,比如特定:面 面積及扭曲性)增加而增加。 總而言之,壓力在多孔性介質,如物件的吸收性合成物,上的用途已 知會引起介質的容量_,錢在轉向性壓力情种的切賴形。第一 圖描述多孔性介質的容量變形。第__最左影像標示“較高多孔性” (10),並顯示在沒有以重量運用於多孔性介質(12)的最高平面表面(⑷ (具有-些個别面積的最高平面面積)之多孔性介質(12)。第一圖的最 右邊影像標π “最鮮孔性”(Lgwct Porosity ) ( I6 ),鋪示相同多孔性 介質(12,),此以重量運用於多孔性介質⑴,)的最高平面表面(14,)。 爲反應重量(18 )的放置,此每單位面積產生壓力或標準力,π ( 2〇 ), 厚度減少(如以AL (22)表示)(注意:對本發明的目的而言,壓縮壓力表 示有正値)。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 .doc2004/l/8 10 1255195 總而s之’對個别原科形成的多孔性介質(i2),如超吸收性顆粒及 雜’(如Γ吸收性合成物),多孔性介質⑼的厚度變化有可能不由減 V個細这_的酬尺寸(減少的這些_厚度有可能小或微不足 取而代之的是,總而言之,減少娜介質(η)的厚度歸因於多 ^生(或類似的空間容量)的減少。所以,在描述於第—圖的範例中,每 早位面積σ (2〇)所增加的壓力減少多孔性介質⑴)的厚度从⑻, 並減少多孔性介質(12)的多孔性。(注意:在第_圖中,假使氣孔中的 流體爲可壓縮的氣體,然後在多孔性介f (12)表面上的標準壓力爲:壓 縮氣孔内的缝;或引域孔㈣碰部分_多孔性介質(⑴;或其 -些複合物組合。在此_的第—时,假使氣孔内的流體爲—不能壓縮 的液體’然後多孔性介質(12)表面上的鮮壓力引起液體部分離開多孔 性介質(12))。 时第-圖的纽性介質(12)可審查進—步分析多孔性介質(⑴内任 思早體的壓力。第二圖説明平衡中,將外部壓力〜⑷加入多孔性 介質⑶)内的任意單體,之任意單體㈤的壓力狀態,此處以立方體 面表X爲了此目的,把多孔性介質(32)内的任意單體㈤看成連續 性。在第二圖f,壓力狀態以二個標準壓力構件ah (36)水平作麟立方 體的表面上表不,且以…⑶)垂直作用於立方體的另—面上以及切變壓 力r ( 40 )表7F。壓力(36 )的標準構件與任意構件(3〇 )的面垂直,雖 然切變壓力(40 )與任意單體(30 )平行。 口而/主思、假使切變壓力(4〇)爲零(即r=〇),標準壓力(36)稱爲主 要恩力。再者,當r =0時,然後較大的二個標準壓力(36 )稱爲多數主要 壓力時,同時其他稱爲少數主要壓力。對此討論而言,二娜力假定爲主 要壓力,σ^σν。 一般至少二個貢獻爲壓力產生,此結合引起主要壓力,比如第二圖所 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1 /8 1255195 弟五圖描述使用一或更多膨脹構件(例如微粒超吸收體材料)的多孔 性介質之壓力發展範例。Y軸再次等於切變壓力r (1〇〇),且又軸再次等 於標準壓力σ (102 )。假使自多孔性介質作用於任意構成部分的少數主要 壓力σν (1〇4)剩下不會改變,然後壓力發展(舉例來説,隨同超吸收體 材料的膨脹)可看做莫爾環族(106),( 108),( 110),及(112),所有具 有相同最少壓力( 1〇4)。莫爾環(1〇6 ),( 1〇8 ),( 11〇),及(112 )的 級數一般稱爲壓力通道(114),更準確的是,對每個莫爾環(1〇6),( 1〇8), (110),及(112)而言,此線在同時在位於最大切變壓力及平均壓力的點 通過莫爾環((106 ),( 108 ),( 110 ),及(112 )組。 每個莫爾環(106),( 108),( 110),及(112)的中央,視爲與平均 壓力相等,測定特别任意構成部分内的氣孔空間之容量變形範園,並可由 超吸收體材料造成等於大概的壓力。 在多孔性介質中的壓力不可能不明確地增加,更確切的是,將會破 壞,此沿特别破壞平面(例如在超吸收體材料及纖維之間的切點,或在超 吸收體材料等等的個别顆粒之間的切點)伴隨滑動。莫爾庫侖破壞基準陳 述作用於破壞平面的切變力將與作用於相同平面的標準力爲線性比例,再 次破壞。因此,莫爾庫侖理論提供一破壞限制或包絡線,此超過穩定狀態 的壓力並不存在。假使等於此破壞限制的線重疊於切變壓力及標準壓力(描 述於莫爾環(106 ),( 108 ),( 110 ),及(112 ),此認爲等於所給予的狀態 或多孔性介質運用超吸收體材料膨脹的程度)的點陣上,然後在變得與包絡 線相切的範園内,莫爾環(106),(108),(110),及(112)僅可增加半徑 (如以多孔性介質與/或者運用多孔性介質的超吸收體材料)。 第六圖描述切變壓力r ( 122)對標準壓力(7 ( 124)之點陣上的破壞 包絡線(120)。此點陣上描述二個莫爾環(126)及(128),且每個莫爾 環具有不同最初壓力數値,即少數主要壓力( 130 )及(130,)的二個 E:\PATENT\PK-001 08\pk-001 -0863\pk-0〇 1 -0863. doc2004/1/8 13 1255195 不同數値。摩擦角0 ( 132)及凝聚力c ( 134)爲特别材料(如包含纖維 及超吸收體材料的吸收性合成物;膨脹之特别超吸收體材料的膠床等)的特 性。摩擦角0 ( 132)的切線,相當於基本物理學的靜電摩擦,測量增加 標準力,此允許更大極限的剪力。凝聚力c(134)表示在破壞平面上缺乏 任何標準力量退衰退之前所將忍受材料的切變壓力數量。增加三個變數的 任何一個摩擦角φ ( 132 )、凝聚力c ( 134 )或少數主要壓力σν ( 13〇 )及 (130,)將允許發展多孔材料中的較大壓力,即較大的莫爾環。摩擦角必 (132 )以及Μ聚力c ( 134 )爲材料性質,並可測量出(如使用試驗以及 描述於此的方法)。弟7Τ圖也描述數學關係r ( tan φ ) ( 136 ), 此關於摩擦角必(132)、凝聚力c( 134)、破壞2^(138)中的切變壓力 以及破壞σηίτ( 104)中的標準壓力。(注意:對此揭發目的而言,相 當於σίτ,此二説法表示在破壞中破壞平面上作用的標準壓力)。此關係更 詳述於下面詳細描述地區中。 如較早指定,一般優點爲使多孔性或空容積的減少減至最低或增加, 此游壓縮壓力對吸收性物件的應用。藉由挑選可限制壓力增加的材料(如 低控制膠床摩擦角超吸收體材料),可減少多孔性降低程度。舉例來説, 低控制膠床摩擦角超吸收體材料將在壓力上升至引起多孔性及渗透性相 當大損害之前促進破壞的徵兆。提供壓力的額外好處爲減輕低控制膠床摩 檫角材料,此使得超吸收體材料將保留無膨脹容量的較大部分,因爲已知 超吸收性容量隨著装填增加而減少。一種新的能實現的超吸收體材料描述 於K-CDocketl7991A,20〇2年7月3〇日,標題爲“具有低控制膠床摩擦 角的超吸收體材料及其製造的合成物“,二個共同未定申請書完全合併與 此作爲參考。 但一些前文中,有高膠床角度的超吸收體是有優點的。舉例,若吸收 性複合物在高膨脹狀態或高多孔性狀態,有高膠床角度的超吸收體可利用 於“鎖住“高多孔性結構。本發明描述此新的超吸收體材料。 本發明爲關於水可膨脹、水不能溶解的超吸收體材料,以及在吸收性 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 ,doc2004/l /8 丄 4 1255195 物件的吸收性合成物中使用的超吸收物。 吸收性物件的吸收性合成物一般含有超吸收體材料,在較高數量情形 中,比如在超吸收性纖維與/或者超吸收性顆粒的各種不同形式争,與基質 複合材料,如纖維素絨毛紙漿,同種類混合。超吸收體材料與纖維素絨毛 紙漿在吸收性合成物或超吸收體材料各處可爲同種類,此戰略上位於吸收 性合成物内,比如在纖維基質複合内形成一斜面。舉例來説,更多超吸收 體材料可在吸收性合成物的末端而不是在吸收性合成物的另一末端。或 者,沿吸收性合成物的上方表面有更多超吸收體材料,而不是沿吸收性合 成物的下方表面,或更多吸收性合成物沿吸收性合成物的下方表面,而不 疋沿吸收性合成物的上方表面。了解到各種不同實施例可利用吸收性合成 物。本發明的水可膨脹、水不能溶解的超吸收體材料可使用於吸收性合成 物的這些及其他各種不同實施例。 吸收性合成物一般包括一基質複合材料或泡沫狀材料,但精通的記憶 將了解合成基質的各種不同實施例。此纖維基質由纖維素絨毛紙漿製造。 纖維素絨毛紙漿可適當包括木質紙漿絨毛。纖維素紙漿絨毛可全部或部分 以合成聚合纖維(如熔吹纖維)替換。本發明的吸收性合成物中並不需要 合成纖維,但可包括在内。較佳類型的木質紙漿絨毛與貿易名稱cri654 (購自美國阿拉巴馬州Childersburg的Bowater )視爲同一,且爲漂白的含 有主要柔軟木質纖維的高吸收性木質紙漿。纖維素的絨毛紙漿可與超吸收 體材料同種類混合。在吸收性物件内,同種類的混合絨毛及超吸收體材料 可選擇性放置於較高濃度的理想地區,以更佳容納及吸收身體滲出物。舉 例來説,同種類混合絨毛及吸收性材料的質量可控制配置,使得在襯墊的 前方部分比襯墊的後方部分有更多基重。 本發明的吸收性合成物可適當含有約5至95%重的超吸收體材料,此 乃根據纖維、超吸收體材料與/或者任何其他成分。任意的是,在吸收性合 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 doc2004/1/8 15 1255195 成物中的超吸收體材料之質量合成物約爲2〇至80%。此外,在吸收性合 成物中的超吸收體材料之質量合成物可約爲40至60%。 使用於本發明的適當超吸收體材料可選自天然、合成及改造的天然聚 合物及材料。超吸收體材料可爲無機材料,如矽膠,或有機複合物,包含 天然材料,如洋菜、果膠、關華豆膠等,及合成材料,如合成水凝膠聚合 物。舉例來説,此水凝膠聚合物包括聚丙烯酸的鹼金屬鹽;聚丙烯醯胺; 聚乙稀醇;乙婦-順丁烯二酐共聚物;聚二乙烯醚;輕丙基纖維素 (hydroxypropylcellulose);聚乙埽嗎林g同(polyyinyi morpholinone );乙埽續 酸、聚丙烯酸酯、聚丙烯醯胺、乙烯基紕淀聚合物及共聚物;多元胺;及 其複合物。其他適當的聚合物包括水解的丙烯晴分枝澱粉、丙烯酸分枝的 澱粉及異丁烯-順丁烯二酐共聚物及其複合物。水凝膠聚合物可適當稍微交 鍵’以提供水不能溶解的材料。舉例來説,交键可由照射或共價、離子、 凡得瓦力或氫键結而完成。本發明的超吸收體材料可爲使用於吸收性結構 中的任何形式,包括顆粒、纖維、薄片狀、球形等。 一般超吸收性聚合物可在〇·9 wt%氣化鈉水溶液中吸收至少約10倍 的本身重量’且尤其可在0.9 wt%氣化鈉水溶液中吸收至少約2〇倍的本身 重量。依照本發明,爲了適當處理或改造,超吸收性聚合物獲自各種不同 商業販賣者,比如位於美國密西根州中部地區的Dow化學公司及美國北卡 羅來納格陵斯堡的Stockhausen有限公司。依照本發明,爲了適當處理或 改造,其他超吸收性聚合物由Melius等人在1997年2月U曰頒布而描述 於美國專利編號第5,601,542號;申請於1999年12月的美國專利申請序列 編號第09/475,829號,此讓與金百利克拉克股份有限公司;以及申請於丨999 年12月的美國專利申請序列編號第〇9/475,830號,此讓與金百利克拉克 股份有限公司;每個合併於此作爲參考。 使用於本發明的商業超吸收體材料之其他範例包括聚丙烯酸酯材 E:\PATENT\PK-001 08\pk-001 -0863\pk-001-0863.doc2004/l/8 1255195 料’此獲自商標FAVOR®下的Stockhausen。範例包括FAVOR®SXM 77、 FAVOR®SXM 880以及FAVOR®SXM 9543。可使用於本發明中的其他聚 丙埽fe:酯超吸收體材料獲自美國的Dow化學公司,在商標DRYTECH® 下,比如 DRYTECH⑧ 2035。 本發明的超吸收體材料在未膨脹狀態中可爲顆粒形式,此具有一般範 園約爲50微米至1,〇〇〇微米内的最大橫截面直控,適當的範圍約爲1〇〇微 米至8〇〇微米之間,此乃根據美國協會試驗材料(ASTM)試驗方法d_1921 而過濾分析測定。了解到上面描述範圍内的超吸收體材料顆粒可包括固體 顆粒、多孔顆粒或可爲成塊顆粒包括凝聚成描述尺寸範園内的許多較小顆 粒0 吸收性合成物也可含有任何各種化學添加物或處理方式、過濾器或其 他添加物,如黏土、沸石與/或者其他氣味吸收材料,舉例來説,活性碳顆 粒或活性顆粒,如沸石及活性碳。吸收性合成物也可包括黏合劑,如可交 键黏合劑或接合劑,與/或者黏合劑纖維,如二成分纖維。吸收性合成物可 或不可由適當紙捲捲繞或園繞,此維持吸收性合成物的完整狀態與/或者大 /J、〇 吸收性合成物的結構及成分可設計成容納流體並吸收之。纖維基質的 多孔性允許流體滲入吸收性合成物,及接觸吸收流體的超吸收體材料。超 吸收體材料隨著超吸收體材料吸收流體而膨脹。超吸收體材料的膨脹可由 外力,如來自吸收性物件使用者周圍的基質材料及壓力(即每單位面積的力 或壓力),產生影響。周園基質纖維與/或者超吸收體材料及在超吸收體材 料上的壓力可阻止超吸收體材料膨脹,因此停止吸收,且藉以自達到整個 沒有膨脹容量而吸收合成物。並且,如上所述,作用於吸收性合成物的硬 力,如運用超吸收體材料的吸收性合成物,可減少吸收性合成物的多孔性 與/或者穿透性。 吸收性材料的摩擦角爲重要的機械特性,此可影響超吸收體材料移動 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1 /8 γη 1255195 或在吸收性合成基質内擴張。如上所探討的概要部分,摩擦角來自莫爾庫 侖破壞理論’且摩擦角的切線相當於靜電摩擦的傳統係數。較小的摩擦角 可表示在超吸收體材料及周圍基質之間的接觸摩擦較少,且較大的能力爲 超吸收體材料能在膨脹期間於基質内重新排列,因此超吸收體材料可保持 無膨脹吸收容量的較大部分。並且,在較低的壓力增進下,較小摩擦角可 促進破壞(舉例來説,即在超吸收體材料的膨脹顆粒之間移動;或在超吸收 體材料與周園纖維基質的膨脹顆粒等等之間移動),藉以減少吸收性合成 物中的多孔性與/或者穿透性之損失。 換言之,當超吸收體材料完全膨脹且在膠床或高多孔性吸收複合物, 大摩擦角度時指出超吸收體材料及環境基質複合物間有更大摩擦力,其抑 制超吸收體材料排列於複合物基質空間,因此維持膠床或吸收性複合物的 渗透性。 超吸收體材料及周園成分之間表面的破壞狀態允許超吸收體材料在 濕基質或部分膨脹膠床内重新排列。如指示的概要部分,莫爾環可使用於 描述材料的壓力狀態,比如濕膠床或吸錄合成物或多孔基質。第七圖顯 示-般膠床膨脹至-特殊程度的莫师(15G)及(152)。第七圖顯示在 2·〇克食鹽水/克超吸收體材料膨脹程度中的超吸收物FAV〇R⑧的莫爾環 (〇)及(152 )。較大的莫爾環(152)表示在較少主要壓力爲零時,膠 床的任何-處有一些較多的主要壓力狀態。雖然在第七圖中沒有顯示,莫 爾袤在每個運賴標準壓力下產生。由莫爾環組在破壞中描述超吸收體材 、斗勺破衷狀怨,此一起由莫爾破壞包絡線定義。莫爾破壞包絡線常常非常 近ι_、、泉如第七圖所示的線(154),並表示失敗平面上破壞的切變壓力 vs·作用雜同平面上的鮮壓力。以線絲的破軌絡線⑴4),常常稱 爲莫爾庫侖破壞標準,可由公式數理表示: ^ ff=c+crff(tan φ) E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 18 1255195 此處iff爲切變壓力,e爲有效結合常數,❿爲標準壓力,以及必爲 膠床或超吸收體材料的摩擦角。有效結合常數以數値(156)做圖解表示, 並適合吸收性物件對周圍基質的結合力。 本發明的超吸收體材料之膠床摩擦角可使用於比如土壤力學之各種 不同方法測定。測定娜摩擦角的有職器包括三軸剪刀測量儀器,如σ 1 ’此獲自德克薩斯州的休士頓知Ge〇Tac,或切變試驗器,如jenike-Shulze 環切變試驗器,獲自麻薩諸塞州Westford的Jenike & J〇hans〇n 〇 第八圖顯示Jenike-Shulze環切變試驗器的部分切離概要圖,此稱爲參 考數字170。環切變試驗器(17〇 )具有連接至一馬達(無圖示)的環切變 室(172)’此可在方向⑴中旋轉環切變室(172)。環切變室(172)及蓋 子(174)包含作爲試驗的吸收性材料膠床(176)。蓋子(174)沒有安裝 於環切變室(172 ),且橫梁(178 )橫跨蓋子(174 ),且二個導輥(18〇 ) 及二個栓桿(182 )連接至蓋子(174 )。對膨脹超吸收體材料膠床(176 ) 的測量膠床摩擦角而言,超吸收體材料在環切變室(172 )的外侧膨脹, 並置放於環切變室(172)中。在蓋子(174)上估計施用力量N,以重量 (备顯不)在超吸收體材料(176 )上。平衡系統(無顯示)可在較低標 準壓力中銜接試驗。隨著環切變室(Π2)以控制馬達(無顯示)的電腦 在方向ω中旋轉,將切變壓力施用在接觸環切變室(Π2)的超吸收體材 料膠床(176 )。連接至栓桿(182 )的儀器測量力F1以及F2,此使用於測 定超吸收體材料膠床(Π6)在破壞(對給予運用標準壓力而言)中的切 變壓力。 本發明一具體實施例,有低膠床摩擦角的超吸收體材料可用於吸收性 合成物中。在本發明的一實施例中,在超吸收體材料膨脹約5.0克之0.9 wt %氣化鈉水溶液/1克的超吸收體材料(克/克)中,超吸收體材料膠床摩擦 角依照膨脹至约30度或更少而減少,且在膨脹大於5.0克/克中剩下约30 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 .doc2004/l /8 19 1255195 度或更少。更適當的是,在超吸收體材料膨脹約5.0克之〇·9 wt%氣化鋼 水溶液/1克的超吸收體材料(克/克)中,超吸收體材料膠床摩擦角依照膨 脹至約33度或更少而減少’且在膨脹大於5.0克/克中剩下约33度或更少。 更特别的是,在超吸收體材料膨脹約5.0克之0.9 wt%氣化鈉水溶液八克 的超吸收體材料(克/克)中,超吸收體材料膠床摩擦角依照膨脹至約38 度或更少而減少,且在膨脹大於5.0克/克中剩下約38度或更少。 當吸收性複合物有南多孔性或在南膨服狀態下,超吸收體材料的高摩 擦角度會減慢及/或抑制在吸收複合物基質中排列。超吸收體材料減慢及/ 或抑制在吸收複合物基質中棑列可維持一開放複合物結構,若需要,因此 維持需要的吸收性複合物滲透性。在負載時,超吸收體材料的高摩擦角度 特别適合維持高度開放結構。當溼時,超吸收體材料的高摩擦角可包含通 過製造過程或以多種摩擦角度增強劑處理低摩擦角度超吸收體材料以增 加超吸收體材料的摩擦角。在本發明的一實施例中,摩擦角增加添加物爲 甲殼素,此可在陰離子超吸收性聚合物產生黏性狀況,此導致較高的摩擦 角。此摩擦角增加添加物的範例包括,無受限,矽酸鈉、鋁酸鈉以及鋁石夕 酸鹽。 膠床摩擦角增加添加物、表面活化劑或乳化劑的數量約爲1.〇加%的 膨脹或非膨脹超吸收體材料或更少。任意的是,膠床摩擦角增加添加物、 表面活化劑或乳化劑的數量可約爲10.0 wt%的膨脹或非膨腺超吸收體材 料或更少。此外,膠床摩擦角增加添加物、表面活化劑或乳化劑的數量可 約爲100.0 wt%的膨脹或非膨脹超吸收體材料或更少。膠床摩擦角增加添 加物、表面活化劑或乳化劑的數量可約爲0·001 wt%的膨脹或非膨脹超吸 收體材料或更多。任意的是,膠床摩擦角增加添加物、表面活化劑或乳化 劑的數量可约爲0· 1 wt%的膨脹或非膨脹超吸收體材料或更多。此外,膠 床摩擦角增加添加物、表面活化劑或乳化劑的數量可約爲1() wt%的膨脹 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. doc2004/1/8 之〇 1255195 或非膨脹超吸收體材料或更多。 本發明的吸收性合成物可包括本發明的各種不同控制膠床摩擦角超 吸收體材料,包括具有低膠床摩擦角的超吸收體材料。具有控制膠床摩擦 角的超吸收體材料可在吸收性合成物内同種類混合,或可戰略性位於不同 吸收性合成範圍内,此處的個别控制膠床摩擦角爲理想。 在本發明的一實施例中,在超吸收體材料結構與水可膨脹,水不可溶 聚合物結合位置内與摩擦角度增強劑膨脹期間超吸收體材料的膠床摩擦 角可增加。摩擦角度增強劑傾向於當超吸收體材料膨脹時,從聚合物結構 内移動至超吸收體材料表面。事實上,當乾燥或溼時,摩擦角度增強劑未 覆蓋,或覆蓋,超吸收體材料表面,在膨脹期間移動至表面,因此造成超 吸收體材料膠床摩擦角度增加。摩擦角增加添加物可爲有機與/或者無機、 天然與/或者合成材料。 乳化劑與/或者表面活化劑的小濃度除了摩擦角減少添加物外,摩擦角 減少添加性混合物可幫助減少超吸收體材料的膠床摩擦角。乳化劑及表面 活化劑可增加非極性摩擦角減少添加物及極性摩擦角減少添加物之間的 易混合性。乳化劑及表面活化劑也可在塗佈膨脹的超吸收體材料中擔任不 可缺少的角色。各種不同乳化劑與/或者表面活化劑可依照摩擦角減少使用 添加物而使用於本發明中。乳化劑的範例爲贍驗嶙脂及卵磷脂。液態表面 活化劑的範例包括山梨醇肝單月桂(sorbitan monolaurate ),購自J.T. Baker 之 TRITON㊣系列(X-100、X-405&SP-135 )的複合物,購自 J.T. Baker 之 BRIJ®系列(92及97)的複合物、聚氧化乙烯(80)山梨醇酐單硬脂酸酯 (polyoxyethylene (80) sorbitan Monostearate ),聚氧化乙烯山梨醇酐 4-油酸 酯(polyoxyethylene sorbitan tetraoleate)及三乙醇胺與其他醇胺及其複合 物。當使用極性及無極性的複合物時,比如摩擦角或結合數値改變添加 物、乳化劑及表面活化劑,無極性複合物的比例比極性複合物大。 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 2\ 1255195 ㈣+,秘爾娜謝胸内超吸收體 科祕基質纖:。摩心二角度增強劑與基質複合物結合,如覆蓋於 戰择厚擦角度增強劑傾向於纖維溼時與超吸收體材料表面处 θ以增加超吸收_悔床雜肢。適合的,超吸刪m轉角度增 強劑在雜制鱗下與顧複合㈣齡,鼠在舰所需_後持續增 加超吸收體材料膠床摩擦角度。摩擦角增加添加物可爲機、 天然與/或者合成材料。 』 〜加物’如摩擦騎加私物以及雜角減少添加物,此可改變超吸 =體材料的摩擦角,直間或間接傳送至超吸收物。直接傳送可經由超吸收 把材料本身”離’畴自纖維其他成分,在超吸收㈣料與/或者吸收性合 成物内或附近,間接傳送。再者,摩擦角改造添加物可超過—些時間逐漸 自吸f性合成物巾的任何絲分轉送,或絲—些化學反應設計出在大 邵分場合分轉擦纽縣加物。_來説,摩擦狀造添加物可附著至 超吸收體材料的絲,或埋在它㈣働,射裝載纽錄合成物中的 二二、他成刀,包括,但不受限,纖維材料。摩擦角改造添加物可立即利 用’導致雜角立即變更,或因爲化學反應或擴散或-些其他構造而在一 些理想時間於理想方式中逐漸改變摩擦角。 理想的是可處理超吸收體材料、纖維與/或者纖維質基質與/或者其他 成刀’此可使用於具有摩擦角改造添加物,如摩擦角還原添加物、摩擦角 增加〜力口物與/或|其複合物,以提供具有理想的初始摩擦角的材料。以摩 擦角改造添加物處理的材料,紐依照本發明提供可賴外雜角改造添 加物的理想初始摩擦角。當使用於此關於摩擦角,此項“實質上” (substantially)爲意謂在度。當使用於此關於摩擦角,此項“實質上” (substantially)爲意謂在+/ —1〇〇 度。 本發明的控制膠床摩擦角超吸收體材料可併入用於吸收性物件中的 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l t 22 1255195 吸收性合成物。本發明的各種不同膠床摩擦角可使用於已知技藝的各種不 同混合結構中,比如上面所述,包括纖維質合成物,比如熔吹式、氣流成 網及纺結合成物及泡沫狀合成物。本發明的超吸收體材料可在吸收性合成 物的各種不同結構中形成,包括顆粒、薄片狀、纖維及球形。 依照本發明的一實施例,超吸收體材料可包含一水可膨脹、水不能溶 解的超吸收體材料。超吸收體材料在超吸收體材料膨脹程度約爲5 〇克的 〇·9 wt%氣化鈉溶液/;i克超吸收體材料中,可具有第一膠床摩擦角。超吸 收體材料也可在超吸收體材料膨脹程度約大於5〇克之〇 9 氣化鋼溶 液/1克超吸收體材料中具有膠床摩擦角,實質上等於或小於第一膠床摩擦 角。第一膠床摩擦角可約爲30度或更少。 依照本發明的其他觀點,第一膠床摩擦角可約爲38度或更少。水可 膨脹、水不能溶解的超吸收體材料可選自由天然材料、改造天然材料、合 成材料及其複合物而成。 水可膨脹、水不能溶解的超吸收體材料可選自由天然材料、改造天然 材料、合成材料及其複合物而成。水可膨脹、水不能溶解的超吸收體材料 可選自由矽凝膠;洋菜;果膠;降血糖藥;聚丙烯酸、聚丙烯醯胺、聚乙烯醇、 乙埽-順丁埽二奸共聚物、聚二乙埽醚、輕丙基纖維素 (hydiOxypropylcellulose)、聚乙烯嗎林酮、乙烯磺酸、聚丙烯酸酯、聚丙烯 醯胺、乙烯基破啶(vinylpyridine)的聚合物及共聚物、丙烯分枝澱粉、丙烯 酸分枝澱粉、異丁烯順丁烯二酐共聚物、多元胺以及其複合物的鹼性金屬 鹽類形成。 本發明可進一步包含超吸收體材料結合的摩檫角增加添加物。摩擦角 增加添加物可選自曱殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 可濕纖維可選自由天然纖維、合成纖維及其複合物形成。超吸收體材料包 含的結構可選自顆粒、纖維、薄片狀及球形。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 ,doc2004/1/8 23 1255195 依照本發明的一實施例,超吸收體材料可包含一水可膨脹、水不能溶 解的超吸收體材料。超吸收體材料在超吸收體材料膨脹程度約爲5 〇克的 〇·9 wt%氯化納溶液A克超吸收體材料中,可具有第一膠床摩擦角。超吸 收體材料也可在超吸收體材料膨脹程度約大於5 〇克之〇 9〜%氣化鈉溶 液/1克超吸收體材料中具有膠床摩擦角,實質上等於或小於第一膠床摩擦 角。第一膠床摩擦角可約爲30度或更少。 依照本發明的其他觀點,第一膠床摩擦角可約爲38度或更少。水可 膨脹、水不能溶解的超吸收體材料可選自由天然材料、改造天然材料、合 成材料及其複合物而成。 水可膨脹及水不能溶解的超吸收體材料可選自由實質上天然材料、改 造天然材料、合成材料及其合成物形成。水可膨脹及水不能溶解的超吸收 體材料可選自由實質上矽凝膠;洋菜;果膠;降血糖藥;聚丙烯酸、聚丙烯醯 胺、聚乙烯醇、乙烯-順丁烯二酐共聚物、聚二乙烯醚、羥丙基纖維素 (hydroxypropylcdlubse)、聚乙烯嗎林酮、乙烯磺酸、聚丙埽酸酯、聚丙烯 酿胺、乙稀基破咬(vinylpyridine)的聚合物及共聚物、丙埽分枝殿粉、丙婦 酸分枝澱粉、異丁烯順丁烯二酐共聚物、多元胺以及其組合的鹼性金屬鹽 類形成。 本發明可進一步包含超吸收體材料結合的摩擦角增加添加物。摩擦角 增加添加物可選自甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 可濕纖維可選自由天然纖維、合成纖維及其複合物形成。超吸收體材料包 含的結構可選自顆粒、纖維、薄片狀及球形。 超吸收性合成物可進一步包含與可濕纖維結合的摩擦增加添加物。摩 擦角增加添加物可選甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 多數可濕纖維可選自由天然材料、合成材料及其複合物形成。 E:\PATENT\PK-001 08\pk-001-0863\pk-00i-0863.doc2004/l/8 24 1255195 摩擦角測定 %切走減驗设備’如 jenike_Schulze Ring Shear Tester apparatus,可使 用於測足超吸收體材料膠床摩擦角。對試驗而言,將充分數量(2〇〇〜1〇⑻ 克)的膨脹超吸收體材料(例如膨脹0〜30克/克或更多)置放於環切變室 内對下面描述的樣本而言’從事測定如Jenike-Shulze環切變試驗器之手 動 “RTS-01.pc,RTS-CONTROL “描述的“生產位置 “(yieid locus)標 準程序。下面爲材料準備及試驗程序的特定詳述: 超吸收體材料在Kitchen AidTM攪拌器(模型#K5SS,5夸脱)中膨脹 至0.9 wt%水溶性氣化鋼(如獲自德克薩斯州阿靈頓的Ricca化學公司) 的理想程度;在攪拌碗(碗的容量約爲5夸脱)中首次注入特定數量 (200〜100克)的溶液,且然後在攪拌棒在最低速度設定(設定範圍爲 1〜10,此處1爲最低,1〇爲最高)Ίτ緩慢攪拌流體時,加入預定數量(2〇〜6〇〇 克)的乾燥吸收性材料。此完成,以便一律將膨脹溶液分配至所有超吸收 體材料。當所有溶液被超吸收體材料(吸收時間:〇〜3()分鐘)吸收時,碗 自擾拌器除去’加蓋以便防止蒸發,並允許1小時平衡,因此流體每個顆 粒在各處平等分布。樣本每15分鐘以手動混合,以確保不會形成塊狀。 SAP容量 (克/克) SAP-流 體比例 所需乾重 (克) 所需生理食鹽 水重量(克) SAP流體總 重(克) 標準環室的 數量(克) 1 1:1 250 250 500 350-450 2 1:2 150 300 450 350-450 5 1:5 80 400 480 400-480 10 1 : 10 50 500 550 450-550 15 1 : 15 40 600 640 540-640 20 1 : 20 30 600 630 550-630 ΕιΝΡΑΤΕΝΤΛΡΚ-ΟΟ 1 08\pk-001 -0863\pk-001 -0863. d〇c2004/1/8 2 5 1255195 假使將塗層運用於超吸收體材料,舉例來説,適當的塗層添加物個别 描述於下。平衡(時間大約1小時)及膨脹超吸收體材料使用KitchenAid™ 擅;摔器藉由將膨腺超吸收體材料引入碗中而平等塗上,然後緩慢加入塗層 添加物(添加時間:1〜30分鐘),同時在最低速度設定(設定範圍爲丨〜⑺, 此處1爲取低’ 10爲最高)中以擾拌棒一直在碗中轉動超吸收體材料。塗 層超吸收體材料允許每5分鐘以手動混合停止〇〜3〇分鐘,以維持相等處 理分布。 膠床摩擦角及有效凝聚力測量乃使用Jenike-Schulze環切變試驗器裝 置測定。使用Jenike-Schulze環切變試驗器以在各種不同膨脹程度中獲得 超吸收體材料膠床的膠床摩擦角數値。操作環切變試驗器,並根據製造商 所提供的指示校準刻度。將樣本裝於環切變室(環室的標準體積爲942.48 艾方公分),同時確保膠床平等分布(視上表)。在假定以〇 9 wt%氣化鋼 溶液完成平衡1小時後,環切變室装滿待試驗的漲大超吸收體材料。即使 填充物可由抹刀(spatula)除去過多材料而獲得,不需壓緊超吸收體材料。 超吸收體材料膠床以環切變室的上方適當沖洗。在物質平衡上測定裝滿環 切支至(沒有蓋子),並記綠。以環切變試驗器控制程式(RSTCTRL)試 驗下面描述的樣本i至2小時。向RSTCTRL請求,裝滿的切變室確實置 放於主動輛(driving axle)上。將蓋子置放於環切變室上,且自切變位置 有少數反方向的度數;環切變試驗器預調此啓動位置。反方向的把手在橫梁 右侧上,且橫梁上的掛鉤面向把手。向RSTCTRL請求,平衡鐘及吊環鉤 木的中央軸。栓桿附著至橫梁的每一侧,且調整環切變室,因此並無 壓縮;Μ干。RST-控制提供以箭號键:調整調整,並在適當位置使用·· 个丄停止。 在4驗程序中’預先切變的樣本壓力可從控制檔案看出。在下面所述 的$本趣中’預先切變典型壓力設定在3〇〇〇 Pascals,然後預先切變/預 先6併的膠床切變破壞’以獲得莫爾庫侖破壞包絡線,典型壓力的範圍爲 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 .doc2004/l /8 26 !255195 500 P讀1s〜2爾纖1s。預先切變發生於每個切變測量之前。因此,每個 超吸收體材料膠床在-試驗幅倾讀典麵力下切.次。有時裝備 需要科雛“称且數據點伟獲得。在顶路完成之後, 使用RSV 95弟LG版來分析結果;軟體包裝包括環切變試驗器。 例子 爲了證明本發明峨點,標轉清〇麵观9543的超吸收體材料 (購自st〇ckha_有限公司’北卡羅來納的Greensb〇r〇)用來處理以減 少膠床摩擦角。 控制 超吸收體册哪床雜肖,核理的FAV⑽^观9543,測 量作爲在各種不同膨脹程度中的控制。表丨爲結果概要。 表1 膨脹程度(克/克) 2 5 10 15 20 膠床摩擦角度(度) 23 15 12 11 12 例子 將3種FAVOR⑧SXM 9543的數量膨脹成每克超吸收體材料有2克,5 克及10克之0·9 wt%的氣化釣水溶液(克/克),並平衡!小時,如上所述。 在每3.0克膨脹超吸收體材料有1〇克的添加物比例中,石夕膠鈉溶液,購 自新澤西州Phillipsburg的J. T. Baker,運用於超吸收體材料中。膠床摩擦 角如上所述測量。每一個覆蓋的超吸收體材料膠床摩擦角度列於表二。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1 /8 27 1255195 【圖式簡單説明】 第一圖爲壓力(力/單位面積价 第二圖爲多繼4上之姆恤應的例子。 牌任必早體的平衡壓力狀態的例子。 第三圖爲任意單體以及遵昭立时 子 墁,“、通過任思早體平面標準力量及剪力的例 第四圖爲在切變壓力(y斜碑進厭士/ 土、 成 > 颗)野標羊壓力(χ軸)的地區圖上的莫爾 環例子。 第五圖爲在切變壓力(y㈤對標準壓力(χ轴)的地區圖上與可能 壓力方向一致的連續莫爾環例子。 第六圖爲關於在切變壓力(y軸)對標準壓力(χ軸)的地區圖上莫 爾庫侖破壞包絡線的莫爾環例子。 第七圖爲關於在切變壓力(y軸)對標準壓力(χ軸)的地區圖上莫 爾庫侖破壞包絡線的莫爾環之特定例子。 第八圖爲摩擦角測量裝置的例子,此情形爲Kenike-Schulze Ring-Shear Tester ’獲自美國麻薩諸塞州Westford的Jenike&Johanson有限公司。 Ε:\ΡΑΤΕΝΤΛΡΚ-〇〇1 08\pk-001 -0863\pk-001 -0863 .doc2004/1/81255195 玖, invention description: [Technical field to which the invention belongs] Human life depends on absorbent objects every day. [Prior Art] / and retractable items, including adult incontinence items, cotton and diapers, generally combined with a permeable layer that can penetrate the thin layer, w-up to the upper riding, and between the upper and lower layers Absorbent core. When the article is worn, the permeable upper layer abuts the wearer. The upper layer allows the body fluid to pass through the absorbent core. The turning-on rider helps prevent fluid from being reduced in the absorbent core. The absorbent core is designed to have desirable material properties such as high absorption capacity and high absorption rate so that body fluids can be transported from the wearer's skin to disposable absorbent articles. The present invention relates to superabsorbent materials which are water-swellable and water-insoluble. This is often used for absorption (also known as an absorbent composite) which assists in "fixing" the fluid into the core. In other words, the present invention is suitable for measuring superabsorbent materials having an adjusted friction angle in a bed of superabsorbent material. It can control the plastic bed of the super-absorption lining of Benga, accompanied by a pre-foot pattern. The invention also relates to the use of a rubber bed friction angle absorbing material in an absorbent composite and an absorbent article incorporating the absorbent composite. The control of the rubber bed friction angle of the absorbent material includes, but secretly: the superabsorbent material is expanded; the superabsorbent material and/or other raw materials (such as fibers) are subjected to pressure in the absorbent composite; The permeability of the absorbent composite of the superabsorbent material; and/or the absorbency, elasticity, and porosity of the absorbent composite. SUMMARY OF THE INVENTION The present invention is directed to the treatment of superabsorbent materials to manipulate the rubber bed friction angle, as well as new superabsorbent materials having desirable plastic bed angle characteristics. Absorbent compositions for use in absorbent articles typically consist of an absorbent material, such as an absorbent material, which is a synthetic matrix containing natural and/or synthetic fibers. As the fluid enters the absorbent composition, the superabsorbent material expands with the absorbent fluid. The superabsorbent material contacts the surrounding matrix components and possibly other superabsorbent materials as it expands. The pressure acting on the absorbent composite comprising the superabsorbent material reduces the volume of space, such as superabsorbent material, fibers, other materials or an E:\PATENT\PK-001 08\pk-001 -〇863\pk-0 〇1 -0863 . Doc2004/l /8 1255195 The space between these complexes (this does not need to be linked to a special analogy, and for illustrative purposes only, it is intended to apply force on some unit area of the sponge-like material with pores, with the force per unit area , ie pressure, as a reduction in the thickness of the sponge-like material, and the volume of the pores). As the superabsorbent material expands, it can be re-arranged into the space of the absorbent composite matrix and rapidly expands against the substrate to create additional space. Additionally, as the superabsorbent material expands, the pressure of the absorbent composite can increase as at least a portion of the superabsorbent material expands, thereby reducing fiber, superabsorbent material, other materials in the absorbent composite, or some combination The volume of the pores. The ability to align within the synthetic matrix, as well as the size and extent of the pressure within the synthetic matrix, is determined by several factors, including the rubber bed friction angle of the superabsorbent material. Additionally, as the superabsorbent material moves within the synthetic matrix, the superabsorbent material can contact components such as the fibers of the surrounding matrix and the joining material. Thus, the frictional properties of the superabsorbent material can affect the expansion of the material and the alignment or movement within the matrix, as well as the pressure within the synthetic matrix. Desirably, the superabsorbent material is capable of rotating within the voids of the absorbent composite to allow the superabsorbent material to expand into the matrix as much as the entire expanded capacity is closed. There is a need for superabsorbent materials that can be more easily re-listed in the space of the absorbent synthetic matrix. There is a need for a means to control the mechanical mechanical portion: allowing the superabsorbent material to rearrange within the absorbent synthetic matrix; reducing or minimizing pressure within the absorbent composite or its own material; and/or reducing the pressure that can be followed to enhance the pressure Stomatal volume. A new achievable superabsorbent material is described in KC Docketl 7991A, July 30, 2002, entitled "Superabsorbent Materials with Low Controlled Rubber Bed Friction Angles and Compositions Made", Two Common Undecided Applications The book is fully incorporated with this as a reference. Also, in this case, the absorbent composite has an initial high porosity or complete expansion, and preferably has a superabsorbent material rearranged in the substrate, and thus maintains porosity by maintaining a free space in the composite substrate and The permeability of the composite. SUMMARY OF THE INVENTION We have found one or more needs for superabsorbent materials having a controlled rubber bed friction angle. Accordingly, the present invention is directed to a superabsorbent material having a friction angle that controls the bed. E:\PATENTAPK-001 08\pk-001 of the present invention. 0863\pk-00l. 0863. Doc 2004/l/8 1255195 The superabsorbent material has a rubber bed friction angle, which in turn controls the rubber bed friction angle pattern, which is quite different from the conventional superabsorbent material bed friction angle pattern. The superabsorbent material of the present invention can be fabricated using non-traditional manufacturing to achieve a desired rubber bed friction angle, or to increase, decrease or otherwise control the friction angle of the superabsorbent bed during expansion. According to the destruction theory of Mohr Coulomb, the friction angle of the rubber bed is the property of the plastic bed or superabsorbent material. The superabsorbent material of the present invention may be a superabsorbent material that is water-swellable and water-insoluble. The superabsorbent material which is water-swellable and water-insoluble is about 5. 〇克〇·9 wt% gasification nano solution/g superabsorbent material and rubber bed friction angle superabsorbent material expansion degree has the first rubber bed friction angle, the degree of superabsorbent material surface is greater than 5·〇 The gram of 0·9 W% gasification aging liquid / gram of super and body material, equal to or less than the friction angle of the brother-bed. The first rubber bed has a friction angle of approximately the same. Or less. The superabsorbent material further comprises a plurality of wettable fibers. These and other features, aspects, and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] Load Absorption (AUL) refers to the measurement of liquid retention capacity under mechanical load. In order to measure the quantity (g) of a9 wt% gasification lining liquid, it can be absorbed in 1 hour under the applied load or inhibition of about 2,000 kPa/2,000 Pascals! Gram material. The procedure for determining AUL is provided in U.S. Patent No. 5,6,1,542, which is incorporated herein by reference in its entirety. "Absorbent articles" include, without limitation, diapers, children's training pants, swimwear, absorbent underpants, baby wipes, incontinence products, sanitary napkins, and medical absorbent articles (for example, for absorbent medical use) Clothing, linings, bandages, drapes and medical wipes). Fiber and Fibrous Matrix include, but are not limited to, natural fibers, synthetic fibers and composites thereof. Examples of natural fibers include cellulose fibers (such as wood pulp fibers), cotton fibers, and wool fibers. , silk fiber, etc. and composites thereof. Synthetic fibers may include rayon fiber, glass fiber, polyolefin fiber, polyester fiber, polyammonium fiber, poly E:\PATENT\PK-001 08\pk-001-0863\ Pk-001-0863. Doc2004/l/8 1255195 propylene fiber. As used herein, it is understood that a "fibrous matrix" includes a plurality of fibers. "Free Swell Capacity" cites the test results, which measure water solubility. The amount of 9 wt% sodium vapor solution can absorb the gram material in 1 hour under negligible applied load. The "Gel_bed fricti〇n angle" is quoted as a friction angle of the superabsorbent material in the bed as measured by a jenike-Shulze ring tester or other friction angle measurement technique. "Gradient" refers to a change in the amount of a substance, such as the amount of superabsorbent material in various different absorbent pad positions, or other characteristics such as mass, density, and the like. "Gel-bed" refers to the amount of superabsorbent material in a container, such as a circumcision chamber. "Homogeneously mixed" refers to the same mixture of two or more substances in a composition, such as the amount of material remaining in each substance throughout the composition. "Incontinence products" include, without limitation, absorbent shirts for children, absorbent clothing for children or young people with special needs due to physical disability, such as autistic children or bladder/intestinal control problems, and Absorbent clothing for incontinent elderly people. "Meltblown fiber" means that when a cast filament or a single fiber enters a concentrated high-speed hot gas (for example, air) stream, the single fiber of the melted thermoplastic material is thinned to reduce the diameter and become the diameter of the microfiber. The extruded melted thermoplastic material is formed through a plurality of fine, generally circular, impression capillaries. Thereafter, the meltblown fibers are transported by a high velocity air stream and placed on a collecting surface to form any dispersed meltblown fibers. For example, this process is disclosed in U.S. Patent No. 3,849,241 to Butin et al. The meltblown fibers are continuous or discontinuous microfibers, which are less than about 0.66 denier, and are generally joined to A when placed on a concentrated surface. The meltblown fibers used in the present invention have a suitable continuous length. Mohr circle refers to the pressure state diagram of adding one or more forces in the material. The Mohr ring is described in more detail below. E:\PATENTVPK-001 08\pk-001 -0863\pk-001 -0863. Doc2004/1 /8 g 1255195 "Mohr failure envelope" refers to the damage of the shear stress in the failure plane, or the force of the force. The class of envelopes is described in more detail below. "Polymer" includes 'but is not limited' the same polymers, copolymers, such as, for example, lumps, grafts, random and alternating co-records, terpolymers, and the like, and mixtures thereof. Furthermore, unless otherwise limited, the term "polymer" includes all possible geometric shapes of the material. These shapes include, but are not limited to, isotactic, syndiotactic, and irregular symmetry. "Superabsorbent" (Sup- or "superabsorbent material" refers to the most advantageous case where water is swellable and water is insoluble in organic or inorganic materials. This absorption is at least about 1G of its own weight, 纟It is at least about 20 times its own weight in the aqueous solution containing Q 9 slightly. The superabsorbent material can be natural, synthetic and modified natural polymers and materials. In addition, the superabsorbent material can be non-gradual, such as oxygen. Dance glue, or organic compound, such as a cross-linking polymer. The hair _ superabsorbent body shoots a specific surface in various structural shapes, including particles, fibers, flakes, and spheres. "Pattern" or "predetermined pattern" (predetermined pattem) is the rubber bed friction angle when the plastic bed is mentioned in the context of the degree of expansion of the superabsorbent material. The pattern of the rubber bed friction angle can be referred to the rubber bed friction angle of the superabsorbent material. The change as a degree of expansion of the superabsorbent material. "SpimbGuded fiber*", the diameter of the fiber, which is squeezed from most of the fine capillary with a round or other shape The melted thermoplastic material is used as a single fiber, and then the extruded single fiber having a diameter is rapidly reduced. For example, U.S. Patent No. 4,340,563 to Appel et al., and U.S. Patent No. 3,692,618 to Dorschner et al. 3,8 (>2,817;Kinney, U.S. Patent No. 8,992; Hartma, U.S. Patent No. 3,5,2,763; petersen, U.S. Patent No. 3,5,2,538; and Dobo et al. US Patent No. 3,542,615, each of which is completely E:VPATENT\PK-001 08^〇〇l-〇863Vpk. 〇〇1. 〇863d〇c2〇^ 1255195 is incorporated herein by reference. It is audible and interesting, and - recording _ adhesive. Spun fiber - woven light, and often has a flatness of α3 between 0. Between 6 and 1〇.匕 >, ,, ', in the remainder of the specification section, these items can be defined by material terms. Successive Machinery, Mohr's Ring and Morcolon's Theory of Broken Soil We have found that silk is made from mechanical soft-spinning, and for the sake of money, it provides a continuous mechanical summary, Mohr's ring and Morku's destruction theory. The summary is intended to be illustrative only and is not to be considered as limiting. Absorbent articles and compositions are porous in nature. The opening spacing between the various materials that form the composite (e.g., superabsorbent material and fibers) is generally referred to as space or vent space. The vent space serves as a storage fluid and/or provides a conduit or path for the liquid to pass through the absorbent composite or article. The volume of the pore space per unit of absorbent composition is generally referred to as "porosity." General absorption performance is improved to increase porous counties. For example, the penetrability of an absorbent composite, i.e., the ability of a composition to promote liquid ore, increases with increasing porosity (other factors such as specificity: surface area and twist). In summary, the use of pressure in porous media, such as absorbent composites of articles, has been known to cause the capacity of the media _, money in the shape of the steering stress. The first figure depicts the volumetric deformation of a porous medium. The __ leftmost image indicates "higher porosity" (10) and is shown to be applied to the highest planar surface of the porous medium (12) without weight ((4) (with the highest planar area of some individual areas) Porous medium (12). The rightmost image of the first figure is labeled π "Lgwct Porosity" (I6), paving the same porous medium (12,), which is applied to porous media by weight (1) , the highest planar surface (14,). For the placement of the reaction weight (18), this produces a pressure or standard force per unit area, π (2〇), thickness reduction (as indicated by AL (22)) (Note: for the purposes of the present invention, compression pressure is indicated by正値). E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 . Doc2004/l/8 10 1255195 Total and s 'transparent medium (i2) formed by individual origins, such as superabsorbent particles and miscellaneous ' (such as antimony-absorbing composites), thickness variation of porous medium (9) It is possible that it is not possible to reduce the thickness of the V by a small amount (the reduction of these thicknesses may be small or slightly insufficient, in short, the reduction of the thickness of the nano medium (η) is attributed to the mass (or similar spatial capacity) Therefore, in the example described in the first figure, the pressure increase per morning area σ (2〇) reduces the thickness of the porous medium (1)) from (8), and reduces the porosity of the porous medium (12). Sex. (Note: In the figure _, if the fluid in the pore is a compressible gas, then the standard pressure on the surface of the porous interface f (12) is: the slit in the compressed pore; or the reference hole (four) touch part _ Porous medium ((1); or a combination of some of them. In the first part of this, if the fluid in the pore is an incompressible liquid' then the fresh pressure on the surface of the porous medium (12) causes the liquid portion to leave Porous medium (12)). The new medium (12) of the first-graph can be reviewed for further analysis of the porous medium ((1) the pressure inside the early body. The second figure shows the external pressure ~(4) Adding any monomer in the porous medium (3)) to the pressure state of any monomer (5), here, for the purpose of the cube surface table X, any monomer (5) in the porous medium (32) is regarded as continuous. In the second figure f, the pressure state is represented by the surface of the two standard pressure members ah (36) on the surface of the cubic cube, and is applied perpendicularly to the other surface of the cube and the shear pressure r ( 40 ) table by (3)) 7F. The standard member of the pressure (36) is perpendicular to the face of any member (3〇), although the shear pressure (40) is parallel to any of the monomers (30). The mouth/mind, if the shear pressure (4〇) is zero (ie r=〇), the standard pressure (36) is called the main grace. Furthermore, when r = 0, then the larger two standard pressures (36) are referred to as the majority of the main pressures, while others are referred to as a few major pressures. For this discussion, the two forces assume the main pressure, σ^σν. Generally, at least two contributions are pressure generation, and this combination causes the main pressure, such as the second figure E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. Doc 2004/1 /8 1255195 Figure 5 depicts an example of the pressure development of a porous medium using one or more expansion members, such as particulate superabsorbent materials. The Y axis is again equal to the shear pressure r (1〇〇), and the axis is again equal to the standard pressure σ (102). If a few major pressures σν (1〇4) from the porous medium acting on any constituent part remain unchanged, then the pressure development (for example, along with the expansion of the superabsorbent material) can be regarded as a Mohr ring family ( 106), (108), (110), and (112), all having the same minimum pressure (1〇4). The number of stages of the Mohr ring (1〇6), (1〇8), (11〇), and (112) is generally called the pressure channel (114), and more precisely, for each Mohr ring (1〇) 6), (1〇8), (110), and (112), the line passes through the Mohr ring at the same point at the maximum shear pressure and average pressure ((106), (108), (110 ), and group (112). The center of each Mohr ring (106), (108), (110), and (112) is considered to be equal to the average pressure, and the capacity of the pore space in a particularly arbitrary component is measured. Deformation, and can be caused by the superabsorbent material equal to the approximate pressure. The pressure in the porous medium cannot be unclearly increased, more precisely, it will be destroyed, this along the special destruction plane (for example, in the superabsorbent body) The tangent point between the material and the fiber, or the tangent point between the individual particles of the superabsorbent material, etc.) is accompanied by sliding. The Mohr Coulomb failure criterion states that the shear force acting on the failure plane will be the same as the standard acting on the same plane. The force is linear and re-destroyed. Therefore, the Mohr-Coulomb theory provides a damage limit. The envelope, this pressure exceeding the steady state does not exist. If the line equal to this damage limit overlaps the shear pressure and the standard pressure (described in the Mohr rings (106), (108), (110), and (112) This is considered to be equal to the degree of the given state or the extent to which the porous medium is expanded by the use of the superabsorbent material, and then in the range that becomes tangent to the envelope, the Mohr's Ring (106), (108) (110), and (112) can only increase the radius (such as porous media and / or superabsorbent materials using porous media). Figure 6 depicts shear pressure r (122) versus standard pressure (7 ( 124) The damage envelope (120) on the lattice. This lattice describes two Mohr rings (126) and (128), and each Mohr ring has a different initial pressure number 値, ie a few major pressures ( 130) and (130,) two E:\PATENT\PK-001 08\pk-001 -0863\pk-0〇1 -0863. Doc2004/1/8 13 1255195 Different numbers. The friction angle 0 (132) and the cohesive force c (134) are characteristics of a special material (e.g., an absorbent composition containing a fiber and a superabsorbent material; a plastic bed of a special superabsorbent material expanded). The tangent of the friction angle 0 (132) is equivalent to the fundamental physics of electrostatic friction, and the measurement increases the standard force, which allows for a greater ultimate shear force. Cohesion c (134) indicates the amount of shear pressure that would endure the material before any standard force retreats on the failure plane. Increasing any of the three variables of the friction angle φ ( 132 ), cohesion c ( 134 ) or a few of the main pressures σν ( 13 〇 ) and (130,) will allow the development of a large pressure in the porous material, ie a larger Mohr ring. The friction angle must be (132) and the cohesion force c (134) is a material property and can be measured (as used in the test and described herein). The Τ7Τ diagram also describes the mathematical relationship r ( tan φ ) ( 136 ), which is related to the shear pressure in the friction angle (132), the cohesion c (134), the damage 2^(138), and the damage σηίτ(104). Standard pressure. (Note: for the purpose of this disclosure, it is equivalent to σίτ, which means the standard pressure acting on the plane in the destruction). This relationship is more detailed in the detailed description below. As specified earlier, a general advantage is to minimize or increase the reduction in porosity or void volume, the application of this compression pressure to absorbent articles. The degree of porosity reduction can be reduced by selecting materials that limit pressure increase (e.g., low control bed friction angle superabsorbent materials). For example, a low control bed friction angle superabsorbent material will promote signs of damage before the pressure rises to cause considerable damage to porosity and permeability. An additional benefit of providing pressure is to mitigate the low control bed rubber corner material, which allows the superabsorbent material to retain a larger portion of the non-expanding capacity because the superabsorbent capacity is known to decrease as loading increases. A new achievable superabsorbent material is described in K-CDocketl 7991A, July 3, 20, 2, entitled "Superabsorbent Materials with Low Controlled Rubber Bed Friction Angles and Compositions Made", II A common unresolved application is hereby incorporated by reference in its entirety. However, in some of the foregoing, superabsorbents having a high bed angle are advantageous. For example, if the absorbent composite is in a state of high expansion or high porosity, a superabsorbent having a high bed angle can be utilized to "lock" the "highly porous structure." This invention describes this new superabsorbent material. The present invention relates to a water-swellable, water-insoluble superabsorbent material, and in the absorption E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863, doc2004/l /8 丄4 1255195 Superabsorbent used in the absorbent composite of articles. Absorbent articles of absorbent articles generally contain superabsorbent materials, in a number of cases, such as in various forms of superabsorbent fibers and/or superabsorbent particles, with matrix composites such as cellulose fluff. Pulp, mixed with the same kind. The superabsorbent material and the cellulosic fluff pulp may be of the same type throughout the absorbent composite or superabsorbent material, strategically located within the absorbent composite, such as forming a bevel within the fibrous matrix composite. For example, more superabsorbent material can be at the end of the absorbent composite rather than at the other end of the absorbent composite. Alternatively, there may be more superabsorbent material along the upper surface of the absorbent composition than along the underlying surface of the absorbent composite, or more absorbent composition along the underlying surface of the absorbent composite, without absorption along the edge The upper surface of the composition. It is understood that various embodiments may utilize absorbent compositions. The water swellable, water insoluble superabsorbent materials of the present invention can be used in these and other various embodiments of absorbent compositions. Absorbent compositions typically comprise a matrix composite or foamed material, but well-versed memory will teach various embodiments of the synthetic matrix. This fibrous substrate is made from cellulose fluff pulp. Cellulosic fluff pulp may suitably include wood pulp fluff. The cellulose pulp fluff may be replaced in whole or in part by synthetic polymeric fibers such as meltblown fibers. Synthetic fibers are not required in the absorbent composition of the present invention, but may be included. A preferred type of wood pulp fluff is considered identical to the trade name cri654 (available from Bowater, Childersburg, Alabama, USA) and is a bleached, highly absorbent wood pulp containing primarily soft wood fibers. Cellulose fluff pulp can be mixed with the same type of superabsorbent material. In the absorbent article, the same type of mixed fluff and superabsorbent material can be selectively placed in a desired area at a higher concentration to better accommodate and absorb body exudates. For example, the quality of the same type of mixed fluff and absorbent material can be controlled so that the front portion of the liner has more basis weight than the rear portion of the liner. The absorbent composition of the present invention may suitably contain from about 5 to 95% by weight of superabsorbent material, depending on the fiber, superabsorbent material and/or any other ingredients. Optionally, the mass composition of the superabsorbent material in the absorbent E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 doc2004/1/8 15 1255195 is approximately 2〇 to 80%. Further, the mass composition of the superabsorbent material in the absorbent composite may be from about 40 to 60%. Suitable superabsorbent materials for use in the present invention may be selected from natural, synthetic and engineered natural polymers and materials. The superabsorbent material may be an inorganic material such as tannin or an organic composite, including natural materials such as agar, pectin, Guanhua bean gum, and the like, and synthetic materials such as synthetic hydrogel polymers. For example, the hydrogel polymer includes an alkali metal salt of polyacrylic acid; polypropylene decylamine; polyethylene glycol; ethylene-maleic anhydride copolymer; polydivinyl ether; Hydroxypropylcellulose; polyyinyi morpholinone; ethyl phthalate, polyacrylate, polyacrylamide, vinyl ruthenium polymer and copolymer; polyamine; Other suitable polymers include hydrolyzed propylene clear starch, acrylic branched starch, and isobutylene-maleic anhydride copolymers and composites thereof. The hydrogel polymer can be suitably cross-linked to provide a material that is insoluble in water. For example, the crosslinks can be accomplished by irradiation or covalent, ionic, van der Waals or hydrogen bonding. The superabsorbent material of the present invention may be in any form for use in an absorbent structure, including particles, fibers, flakes, spheres, and the like. Generally, the superabsorbent polymer can absorb at least about 10 times its own weight in the aqueous solution of 〇·9 wt% of sodium hydride and is especially at 0. The 9 wt% sodium vaporized aqueous solution absorbs at least about 2 times its own weight. In accordance with the present invention, superabsorbent polymers are obtained from a variety of commercial vendors, such as Dow Chemical Company in Central Michigan, USA, and Stockhausen Co., Ltd., Greensburg, North Carolina, USA, for proper processing or modification. In accordance with the present invention, other superabsorbent polymers are described in U.S. Patent No. 5,601,542, issued to U.S. Patent No. 5,601,542, issued toU.S. SEQ ID NO: 09/475, 829, which is assigned to Phillips Clark Co., Ltd.; and US Patent Application Serial No. 〇9/475,830, filed December 1989, which is assigned to the company. Each is incorporated herein by reference. Other examples of commercial superabsorbent materials useful in the present invention include polyacrylates E:\PATENT\PK-001 08\pk-001 -0863\pk-001-0863. Doc2004/l/8 1255195 Material 'This was obtained from Stockhausen under the trademark FAVOR®. Examples include FAVOR® SXM 77, FAVOR® SXM 880, and FAVOR® SXM 9543. Other polypropylene FE:ester superabsorbent materials useful in the present invention are available from Dow Chemical Company of the United States under the trademark DRYTECH®, such as DRYTECH 8 2035. The superabsorbent material of the present invention may be in the form of particles in an unexpanded state, which has a general range of about 50 micrometers to 1 and a maximum cross-section direct control within 〇〇〇 micrometers, suitably in the range of about 1 micron. Between 8 and 10 microns, this was determined by filtration analysis according to American Association Test Materials (ASTM) Test Method d_1921. It is understood that the superabsorbent material particles within the scope of the above description may comprise solid particles, porous particles or may be agglomerated particles comprising agglomerated into a plurality of smaller particles within the described size. 0 Absorbent composition may also contain any of various chemical additives. Or treatment, filter or other additives such as clay, zeolite and/or other odor absorbing materials, for example, activated carbon particles or active particles such as zeolites and activated carbon. The absorbent composition may also include a binder such as a crosslinkable adhesive or bonding agent, and/or a binder fiber such as a two component fiber. The absorbent composition may or may not be wound or rounded from a suitable paper roll, which maintains the intact state of the absorbent composition and/or the structure and composition of the large/J, 〇 absorbing composition may be designed to contain fluid and absorb it. . The porosity of the fibrous matrix allows fluid to penetrate the absorbent composite and contact the fluid-absorbent superabsorbent material. The superabsorbent material expands as the superabsorbent material absorbs the fluid. The expansion of the superabsorbent material can be affected by external forces, such as matrix material and pressure (i.e., force or pressure per unit area) from the user around the absorbent article. The circumferential matrix fibers and/or superabsorbent material and the pressure on the superabsorbent material prevent the superabsorbent material from expanding, thereby stopping absorption and thereby absorbing the composition from reaching the entire unexpanded capacity. Further, as described above, the hard force acting on the absorbent composition, such as the absorbent composition using the superabsorbent material, can reduce the porosity and/or the penetrability of the absorbent composition. The friction angle of the absorbent material is an important mechanical property, which can affect the movement of the superabsorbent material E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. Doc2004/1 /8 γη 1255195 or expands in an absorbent synthetic matrix. As outlined above, the friction angle is derived from the Morcolon failure theory' and the tangent to the friction angle corresponds to the conventional coefficient of electrostatic friction. A smaller friction angle may indicate less contact friction between the superabsorbent material and the surrounding matrix, and a greater ability for the superabsorbent material to rearrange within the matrix during expansion, thus maintaining the superabsorbent material No larger part of the expansion capacity. Moreover, at lower pressure increases, a smaller friction angle may promote damage (for example, moving between expanded particles of the superabsorbent material; or expanding particles of the superabsorbent material and the peripheral fiber matrix) Moving between, etc., thereby reducing the loss of porosity and/or penetration in the absorbent composition. In other words, when the superabsorbent material is fully expanded and in the bed or high porosity absorbing composite, a large friction angle indicates a greater friction between the superabsorbent material and the environmental matrix composite, which inhibits the superabsorbent material from being arranged in The composite matrix space thus maintains the permeability of the glue bed or absorbent composite. The disrupted state of the surface between the superabsorbent material and the surrounding components allows the superabsorbent material to be rearranged within the wet matrix or partially expanded bed. As indicated in the summary section, the Mohr's ring can be used to describe the pressure state of the material, such as a wet bed or a smear composition or a porous substrate. The seventh figure shows that the plastic bed expands to a special degree of Moshi (15G) and (152). Figure 7 shows the Mohr's rings (〇) and (152) of the superabsorbent FAV〇R8 in the degree of swelling of the 2 g of saline/gram of superabsorbent material. The larger Mohr ring (152) indicates that there is some more major pressure state at any point of the bed when less primary pressure is zero. Although not shown in Figure 7, Moore is produced under each of the standard pressures. The Mohr ring group describes the superabsorbent material in the destruction, and the bucket spoon is broken, which is defined by the Mohr damage envelope. The Mohr damage envelope is often very close to the line (154) shown in Figure 7, and shows the shear pressure on the failure plane vs. the fresh pressure on the plane. The broken wire of the wire (1)4), often referred to as the Mohr Coulomb failure criterion, can be expressed by the formula: ^ ff=c+crff(tan φ) E:\PATENT\PK-001 08\pk-001-0863 \pk-001-0863. Doc 2004/l/8 18 1255195 where iff is the shear pressure, e is the effective binding constant, ❿ is the standard pressure, and must be the friction angle of the bed or superabsorbent material. The effective binding constant is graphically represented by the number 値 (156) and is suitable for the binding of the absorbent article to the surrounding matrix. The bed friction angle of the superabsorbent material of the present invention can be measured by various methods such as soil mechanics. The active device for measuring the angle of friction includes a three-axis scissors measuring instrument such as σ 1 'this is a Ge〇Tac from Houston, Texas, or a shear tester such as the jenike-Shulze ring shear tester. Jenike & J〇hans〇n, obtained from Westford, Massachusetts, Figure 8 shows a partial cutaway schematic of the Jenike-Shulze ring shear tester, referred to as reference numeral 170. The ring shear tester (17〇) has a ring shear chamber (172) connected to a motor (not shown) which rotates the ring shear chamber (172) in direction (1). The ring shear chamber (172) and the lid (174) contain the absorbent material bed (176) as a test. The cover (174) is not mounted to the ring shear chamber (172), and the beam (178) spans the cover (174), and the two guide rollers (18〇) and the two bolts (182) are connected to the cover (174). . For measuring the rubber bed friction angle of the expanded superabsorbent material bed (176), the superabsorbent material expands outside the ring shear chamber (172) and is placed in the ring shear chamber (172). The applied force N is estimated on the cover (174) to be weighted (not shown) on the superabsorbent material (176). The balance system (no display) allows the test to be connected at a lower standard pressure. As the ring shear chamber (Π2) is rotated in the direction ω with a computer that controls the motor (not shown), the shear pressure is applied to the superabsorbent material bed (176) of the contact ring shear chamber (Π2). The instrument connected to the bolt (182) measures the forces F1 and F2, which are used to determine the shear pressure in the superabsorbent material bed (Π6) in terms of damage (for the application of standard pressure). In one embodiment of the invention, a superabsorbent material having a low rubber bed friction angle can be used in the absorbent composite. In an embodiment of the invention, the superabsorbent material expands by about 5. 0 grams of 0. In a 9 wt % aqueous solution of sodium carbonate / 1 gram of superabsorbent material (g/g), the friction angle of the superabsorbent material bed is reduced by expansion to about 30 degrees or less, and is greater than 5. About 30 grams per gram/gram E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 . Doc2004/l /8 19 1255195 degrees or less. More suitably, the superabsorbent material expands by about 5. In the case of 0 g of 〇·9 wt% of an aqueous solution of vaporized steel/1 g of superabsorbent material (g/g), the friction angle of the superabsorbent material bed is reduced by expansion to about 33 degrees or less, and the expansion is greater than 5. The remaining 0 g/g is about 33 degrees or less. More specifically, the superabsorbent material expands by about 5. 0 grams of 0. In the superabsorbent material (g/g) of 8 wt% sodium carbonate aqueous solution, the friction angle of the superabsorbent material bed is reduced according to expansion to about 38 degrees or less, and the expansion is greater than 5. The remaining 0 g/g is about 38 degrees or less. When the absorbent composite has a south porosity or a south expansion state, the high friction angle of the superabsorbent material slows and/or inhibits alignment in the absorbent composite matrix. Suspension and/or inhibition of the superabsorbent material in the matrix of the absorbent composite maintains an open composite structure and, if desired, maintains the desired permeability of the absorbent composite. The high friction angle of the superabsorbent material is particularly suitable for maintaining a highly open structure when loaded. When wet, the high friction angle of the superabsorbent material can include treating the low friction angle superabsorbent material by a manufacturing process or with a plurality of friction angle enhancers to increase the friction angle of the superabsorbent material. In one embodiment of the invention, the increased friction angle additive is chitin, which creates a viscous condition in the anionic superabsorbent polymer which results in a higher friction angle. Examples of such friction angle increasing additives include, without limitation, sodium citrate, sodium aluminate, and aluminite. The friction angle of the rubber bed increases the amount of additives, surfactants or emulsifiers by about 1. Add up to % of expanded or non-expanded superabsorbent material or less. Optionally, the amount of friction, the amount of additive, surfactant or emulsifier added to the rubber bed may be about 10. 0 wt% of expanded or non-expanded superabsorbent material or less. In addition, the friction angle of the bed can increase the amount of additives, surfactants or emulsifiers to about 100. 0 wt% of expanded or non-expanded superabsorbent material or less. The rubber bed friction angle may be increased by an additive, surfactant or emulsifier in an amount of about 0.001% by weight of the expanded or non-expanded superabsorbent material or more. Optionally, the rubber bed friction angle may be increased by an amount of additive, surfactant or emulsifier of about 0.1% by weight of the expanded or non-expanded superabsorbent material or more. In addition, the friction angle of the bed may be increased by an additive, surfactant or emulsifier of about 1 (% wt%) E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. Doc 2004/1/8 〇 1255195 or non-expanded superabsorbent material or more. The absorbent compositions of the present invention may comprise a variety of different controlled bed friction angle superabsorbent materials of the present invention, including superabsorbent materials having a low bed friction angle. The superabsorbent material having the friction angle of the control bed can be mixed in the same type in the absorbent composition, or can be strategically located in different absorption synthesis ranges, and the individual control bed friction angles herein are ideal. In an embodiment of the invention, the bed friction angle of the superabsorbent material may increase during expansion of the superabsorbent material structure with the water swellable, water insoluble polymer and the expansion of the friction angle enhancer. The friction angle enhancer tends to move from within the polymer structure to the surface of the superabsorbent material as the superabsorbent material expands. In fact, when dry or wet, the friction angle enhancer does not cover, or cover, the surface of the superabsorbent material, which moves to the surface during expansion, thereby causing an increase in the friction angle of the superabsorbent material bed. The friction angle increasing additive can be an organic and/or inorganic, natural and/or synthetic material. The small concentration of emulsifier and/or surfactant, in addition to the friction angle reduction additive, the friction angle reduction of the additive mixture can help reduce the rubber bed friction angle of the superabsorbent material. Emulsifiers and surfactants increase the miscibility between the non-polar friction angle reduction additive and the polar friction angle reduction additive. Emulsifiers and surfactants can also play an indispensable role in coating expanded superabsorbent materials. A variety of different emulsifiers and/or surfactants can be used in the present invention in accordance with the reduction in friction angle using additives. An example of an emulsifier is a test for rouge and lecithin. Examples of liquid surface activators include sorbitan monolaurate, available from J. T. A composite of Baker's TRITON series (X-100, X-405 & SP-135), available from J. T. Baker's BRIJ® series (92 and 97) complex, polyoxyethylene (80) sorbitan monostearate, polyoxyethylene sorbitan 4-oleate (polyoxyethylene) Sorbitan tetraoleate) and triethanolamine with other alkanolamines and their complexes. When a polar and non-polar composite is used, such as a rubbing angle or a combination number, the additive, emulsifier and surfactant are changed, and the proportion of the non-polar composite is larger than that of the polar composite. E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. Doc2004/l/8 2\ 1255195 (4)+, 尔尔娜谢胸超超体 Body secret matrix fiber:. The core two-angle enhancer is combined with the matrix composite, such as covering the warfare thick rubbing angle enhancer, tending to be wet when the fiber is wet with the surface of the superabsorbent material θ to increase the superabsorbent _ rebel bed. Suitably, the super-absorbed m-angle angle enhancer is compounded with the compound (four) age under the miscellaneous scale, and the rat continues to increase the friction angle of the superabsorbent material bed after the ship needs _. The friction angle increase additive can be an organic, natural, and/or synthetic material. 』 ~ Additives such as friction riding plus private and horns reduce additives, which can change the friction angle of superabsorbent = body material, directly or indirectly to the superabsorbent. Direct transfer can indirectly transfer the material itself from the other components of the fiber via superabsorption, indirectly in or near the superabsorbent (four) material and/or the absorbent composition. Furthermore, the friction angle can be modified over a period of time. Any wire transfer from the self-priming f-synthesis towel, or silk - some chemical reaction design is designed to transfer the New County additive in the case of Da Shao. _For example, the friction-like additive can be attached to the superabsorbent The wire of the material, or buried in it (4) 働, shot into the New Zealand composition of the 22nd, he formed a knife, including, but not limited to, fiber material. The friction angle transformation additive can be immediately used to cause the immediate change of the angle Or gradually change the friction angle in a desired manner at some ideal time due to chemical reactions or diffusion or some other configuration. Ideally, it can handle superabsorbent materials, fibers and/or fibrous substrates and/or other forming tools' This can be used for materials with friction angle retrofits, such as friction angle reduction additives, increased friction angles ~ force and / or | composites to provide a material with a desired initial friction angle. The corner-modified additive-treated material, in accordance with the present invention, provides an ideal initial friction angle for the addition of the externally modified additive. When used herein with respect to the friction angle, this "substantially" means meant to be in degrees. When used herein with respect to the rubbing angle, this "substantially" means +/- 1 degree. The controlled bed friction angle superabsorbent material of the present invention can be incorporated into an absorbent article. E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. Doc2004/l t 22 1255195 Absorbent composition. The various different bed friction angles of the present invention can be used in a variety of different hybrid structures known in the art, such as those described above, including cellulosic compositions such as meltblown, airlaid and spunbonds, and foamed synthetics. Things. The superabsorbent materials of the present invention can be formed in a variety of different configurations of absorbent composites, including granules, flakes, fibers, and spheres. In accordance with an embodiment of the invention, the superabsorbent material can comprise a water swellable, water insoluble superabsorbent material. The superabsorbent material may have a first bed friction angle in a 〇·9 wt% sodium hydride solution/i gram of superabsorbent material having a degree of expansion of the superabsorbent material of about 5 gram. The superabsorbent material may also have a bed friction angle in the vaporized steel solution/1 gram superabsorbent material of the superabsorbent material having a degree of expansion of greater than about 5 gram, substantially equal to or less than the first rubber bed friction angle. The first bed friction angle can be about 30 degrees or less. According to other aspects of the invention, the first bed friction angle can be about 38 degrees or less. Superabsorbent materials that are water-swellable and water-insoluble can be selected from natural materials, modified natural materials, synthetic materials, and composites thereof. The water-swellable, water-insoluble superabsorbent material can be selected from natural materials, modified natural materials, synthetic materials and composites thereof. Water-swellable, water-insoluble superabsorbent material can be selected from free gel; agar; pectin; hypoglycemic agent; polyacrylic acid, polypropylene decylamine, polyvinyl alcohol, acetamidine-cis-butane , polydiethyl ether, light propyl cellulose (hydiOxypropylcellulose), polyethylene linalone, vinyl sulfonic acid, polyacrylate, polypropylene decylamine, vinylpyridine polymer and copolymer, A propylene branched starch, an acrylic branched starch, an isobutylene maleic anhydride copolymer, a polyamine, and an alkali metal salt of the composite thereof are formed. The present invention may further comprise a friction angle increase additive in which the superabsorbent material is combined. The friction angle increase additive may be selected from the group consisting of quercetin, sodium citrate, sodium aluminate, aluminosilicates, and combinations thereof. Wet fibers can be selected from natural fibers, synthetic fibers and composites thereof. The superabsorbent material may comprise a structure selected from the group consisting of particles, fibers, flakes, and spheres. E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863, doc2004/1/8 23 1255195 According to an embodiment of the invention, the superabsorbent material may comprise a water swellable, water not Dissolved superabsorbent material. The superabsorbent material may have a first bed friction angle in a 〇·9 wt% sodium chloride solution A gram superabsorbent material having a superabsorbent material expansion of about 5 gram. The superabsorbent material may also have a rubber bed friction angle in the superabsorbent material expansion degree of more than about 5 gram of 〇9 to % gasified sodium solution / 1 gram of superabsorbent material, substantially equal to or less than the first rubber bed friction angle. The first bed friction angle can be about 30 degrees or less. According to other aspects of the invention, the first bed friction angle can be about 38 degrees or less. Superabsorbent materials that are water-swellable and water-insoluble can be selected from natural materials, modified natural materials, synthetic materials, and composites thereof. The water swellable and water insoluble superabsorbent material can be selected from substantially natural materials, modified natural materials, synthetic materials, and composites thereof. The water-swellable and water-insoluble superabsorbent material can be selected from substantially gelatin; agar; pectin; hypoglycemic agent; polyacrylic acid, polyacrylamide, polyvinyl alcohol, ethylene-maleic anhydride Copolymer, polydivinyl ether, hydroxypropylcdlubse, polyethylene linalone, vinyl sulfonic acid, polyacrylic acid ester, polypropylene hexamine, vinylpyridine polymer and copolymerization Formed by a substance, a bismuth quinone branch powder, a propylene glycol branched starch, an isobutylene maleic anhydride copolymer, a polyamine, and a combination thereof. The present invention may further comprise a friction angle increasing additive in combination with the superabsorbent material. The friction angle increase additive may be selected from the group consisting of chitin, sodium citrate, sodium aluminate, aluminosilicate, and combinations thereof. Wet fibers can be selected from natural fibers, synthetic fibers and composites thereof. The superabsorbent material may comprise a structure selected from the group consisting of particles, fibers, flakes, and spheres. The superabsorbent composition may further comprise a friction increasing additive in combination with the wettable fibers. The friction angle increases the addition of optional chitin, sodium citrate, sodium aluminate, aluminosilicate and their complexes. Most wettable fibers can be formed from natural materials, synthetic materials and their composites. E:\PATENT\PK-001 08\pk-001-0863\pk-00i-0863. Doc2004/l/8 24 1255195 Friction angle measurement The % cut-and-reduction device, such as the jenike_Schulze Ring Shear Tester apparatus, can be used to measure the friction angle of a superabsorbent material bed. For the test, a sufficient amount (2 〇〇 to 1 〇 (8) grams) of the expanded superabsorbent material (eg, 0 to 30 g/g or more of expansion) is placed in the ring shear chamber for the sample described below.言 'Working in the manual such as the Jenike-Shulze ring shear tester "RTS-01. Pc, RTS-CONTROL "Description of the "yield locus" standard procedure. Below is a specific description of the material preparation and test procedures: Superabsorbent material in the Kitchen AidTM mixer (model #K5SS, 5 quarts) Expand to 0. 9 wt% water-soluble gasification steel (as obtained from Ricca Chemical Company, Arlington, Texas); first inject a specific amount in a mixing bowl (the bowl has a capacity of about 5 quarts) (200~ 100 g) of the solution, and then when the stir bar is slowly stirred at the lowest speed setting (setting range 1 to 10, where 1 is the lowest, 1 〇 is the highest) Ί τ, the predetermined amount is added (2 〇 to 6 〇〇)克) dry absorbent material. This is done so that the expansion solution is uniformly dispensed to all superabsorbent materials. When all the solution is absorbed by the superabsorbent material (absorption time: 〇~3 () minutes), the bowl is removed from the scrambler's cap to prevent evaporation and allows 1 hour to equilibrate, so each particle of the fluid is equal everywhere. distributed. The samples were hand mixed every 15 minutes to ensure no blockiness. SAP capacity (g/g) SAP-fluid ratio required dry weight (g) Required physiological saline weight (g) Total SAP fluid weight (g) Number of standard annular chambers (g) 1 1:1 250 250 500 350 -450 2 1:2 150 300 450 350-450 5 1:5 80 400 480 400-480 10 1 : 10 50 500 550 450-550 15 1 : 15 40 600 640 540-640 20 1 : 20 30 600 630 550 -630 ΕιΝΡΑΤΕΝΤΛΡΚ-ΟΟ 1 08\pk-001 -0863\pk-001 -0863. D〇c2004/1/8 2 5 1255195 In case the coating is applied to the superabsorbent material, for example, suitable coating additives are individually described below. Balance (about 1 hour) and expanded superabsorbent material using KitchenAidTM. The thrower is applied equally by introducing the expanded gland superabsorbent material into the bowl, then slowly adding the coating additive (addition time: 1~) 30 minutes), while at the lowest speed setting (setting range is 丨~(7), where 1 is lower '10 is the highest), the superabsorbent material is always rotated in the bowl with the stir bar. The coated superabsorbent material allows for manual mixing to stop for ~3 minutes every 5 minutes to maintain an equal distribution of treatment. The rubber bed friction angle and effective cohesion measurements were measured using a Jenike-Schulze ring shear tester. The Jenike-Schulze ring shear tester was used to obtain the number of rubbing angles of the bed of the superabsorbent material bed in various degrees of expansion. Operate the ring shear tester and calibrate the scale according to the manufacturer's instructions. The sample was placed in a circular shear chamber (the standard volume of the ring chamber was 942. 48 Alfonso), while ensuring the equal distribution of the plastic bed (see above). After assuming that the equilibrium was completed with 〇 9 wt% of the vaporized steel solution for 1 hour, the ring shear chamber was filled with the expanded superabsorbent material to be tested. Even if the filler can be obtained by removing excess material from the spatula, it is not necessary to compress the superabsorbent material. The superabsorbent material bed is suitably rinsed above the ring shear chamber. In the material balance, measure the filling of the ring to the (without the lid) and record the green. The samples described below were tested for i to 2 hours using the loop shear tester control program (RSTCTRL). Requesting RSTCTRL, the filled shear chamber is indeed placed on the driving axle. The cover is placed on the ring shear chamber and there are a few degrees in the opposite direction from the shear position; the ring shear tester pre-adjusts this starting position. The handle in the opposite direction is on the right side of the beam and the hook on the beam faces the handle. Request RSTCTRL to balance the center axis of the bell and the hook hook. The bolts are attached to each side of the beam and the ring shear chamber is adjusted so there is no compression; The RST-control provides the arrow key: adjust the adjustment and use the ·· stop in the appropriate position. The pre-shear sample pressure in the 4 test procedure can be seen from the control file. In the following interest, the 'pre-shearing typical pressure is set at 3〇〇〇Pascals, then pre-shear/pre-cut 6-bed plastic shear damage' to obtain the Mohr Coulomb damage envelope, typical pressure The range is E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 . Doc2004/l /8 26 !255195 500 P read 1s~2 er fiber 1s. Pre-shearing occurs before each shear measurement. Therefore, each of the superabsorbent material bed is cut under the test surface. Times. Sometimes the equipment needs to be learned and the data is obtained. After the completion of the road, the RSV 95 brother LG version is used to analyze the results; the software package includes the ring shear tester. In order to prove the defects of the invention, the target is cleared. The superabsorbent material of the 9543 (purchased from St〇ckha_Co., Ltd.'s Greensb〇r〇, North Carolina) was used to reduce the friction angle of the plastic bed. Controlling the superabsorbent volume of the bed, the nuclear FAV (10) ^ view 9543, measured as a control in various degrees of expansion. The table is a summary of the results. Table 1 degree of expansion (g / gram) 2 5 10 15 20 rubber bed friction angle (degrees) 23 15 12 11 12 examples will The amount of the three FAVOR8SXM 9543 is expanded to 2 grams per gram of superabsorbent material, 5 grams and 10 grams of 0. 9 wt% of a gasified aqueous solution (g/g), and equilibrated! hours as described above. 3. 0 g of the expanded superabsorbent material has a ratio of 1 g of the additive, the solution of the sodium sulphate solution, purchased from J. Phillipsburg, New Jersey. T. Baker, used in superabsorbent materials. The rubber bed friction angle was measured as described above. The rubbing angle of each covered superabsorbent material bed is shown in Table 2. E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. Doc2004/1 /8 27 1255195 [Simple description of the diagram] The first picture shows the pressure (force/unit area price. The second picture shows the example of the multi-step 4 shirt. The example of the equilibrium pressure state of the card. The third picture shows any monomer and Zun Zhao Li Shi, "The fourth figure of the standard strength and shear force through the Ren Si early body plane is the shear pressure (y slant into the sin / soil, into the gt Example of the Mohr ring on the area map of the wild-labeled sheep pressure (χ axis). The fifth picture shows the continuous pressure on the area map of the shear pressure (y (five) versus standard pressure (χ axis)) Example of the ring. The sixth figure is an example of the Mohr ring on the regional map of the shear pressure (y-axis) versus the standard pressure (χ axis). The seventh figure is about the shear pressure ( The y-axis is a specific example of the Mohr's ring of the Mohr Coulomb failure envelope on the area map of the standard pressure (χ axis). The eighth figure is an example of the friction angle measuring device, which is Kenike-Schulze Ring-Shear Tester ' Jenike & Johanson Ltd., Westford, MA, USA Ε: \ ΡΑΤΕΝΤΛΡΚ-〇〇1 08 \ pk-001 -0863 \ pk-001 -0863. Doc2004/1/8