TW200418534A - Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same - Google Patents

Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same Download PDF

Info

Publication number
TW200418534A
TW200418534A TW92119353A TW92119353A TW200418534A TW 200418534 A TW200418534 A TW 200418534A TW 92119353 A TW92119353 A TW 92119353A TW 92119353 A TW92119353 A TW 92119353A TW 200418534 A TW200418534 A TW 200418534A
Authority
TW
Taiwan
Prior art keywords
superabsorbent material
friction angle
superabsorbent
absorbent
item
Prior art date
Application number
TW92119353A
Other languages
Chinese (zh)
Other versions
TWI255195B (en
Inventor
Arvinder Pal Singh Kainth
Richard Norris Ii Dodge
Joseph Raymond Feldkamp
Stacy Averic Mundschau
Original Assignee
Kimberly Clark Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Co filed Critical Kimberly Clark Co
Publication of TW200418534A publication Critical patent/TW200418534A/en
Application granted granted Critical
Publication of TWI255195B publication Critical patent/TWI255195B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/699Including particulate material other than strand or fiber material

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

The present invention relates to water swellable water insoluble superabsorbent materials having controlled variable gel-bed friction angles. Controlling the gel-bed friction angle of the superabsorbent materials may allow control of the swelling of the material, the absorbency of the material, and/or the absorbency, resiliency, and porosity of the absorbent composite containing the superabsorbent material. The present invention relates to treatments for superabsorbent materials to manipulate friction angle and new superabsorbent materials having the desired friction angle characteristics. The present invention also relates to absorbent composites employing superabsorbent materials having the desired friction angle characteristics.

Description

200418534 玫、發明説明: 【發明所屬之技術領域】 人類每天生活仰賴吸收性物件。 【先前技術】 吸收性物件,包括成人失禁物件、衛生棉及尿布,一般由結合可滲透 上薄層附著至上薄層的不滲透後薄層,以及位於上薄層及後薄層之間的 吸收芯。當钱物件時,可滲透的上薄層祕穿戴者身體。上薄層允許體 液通過吸收芯。不滲透的上薄層幫助防止流體在吸收芯中茂漏。吸收芯設 计成具有理想物質特性,例如高吸收容量及高吸收辭,耻體液可從穿 戴者肌膚運輸至可棄式吸收性物件。 本發明爲關於水膨脹、水不能溶解的超吸收體材料,此常常運用於吸 收心(也稱爲一吸收性複合物),此部份幫助“固定”(1〇ck叩)流體進 入芯。換句話説,本發明適合在超吸收體材料的膠床中測量具有調整摩檫 角的超吸收體材料。可控制本發明之超吸收體材料的膠床摩擦角,並伴隨 一預足圖案。本發明也關於在吸收性複合物及結合此吸收性複合物的吸收 性物件中使用控制膠床摩擦角吸收性材料。控制吸收性材料的膠床摩擦角 允许控制事項包括,但不限制:超吸收體材料的膨脹;在吸收性複合物中以 超吸收體材料與/或者其他原料(例如纖維)歷經壓力;含有超吸收體材料 的吸收性複合物之穿透性;與/或者吸收性複合物的吸收力、彈性、多孔性。 本發明爲關於超吸收體材料的處理方式,以操縱膠床摩擦角,以及具有理 想膠床角度特徵的新式超吸收體材料。 使用於吸收性物件的吸收性合成物一般由吸收性材料組成,比如吸收 性材料’此與含有天然與/或者合成纖維的合成基質。隨著流體進入吸收性 合成物’超吸收體材料隨吸收流體而膨脹。超吸收體材料隨著膨脹而接觸 四周基質成分以及可能其他超吸收體材料。包含超吸收體材料的吸收性複 合物上的壓力作用降低空間體積,如超吸收體材料、纖維、其他原料或一 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. doc2004/1/8 c 200418534 些複合物間的空間(此不需連結至一特殊類推,以及僅爲説明目的,打算 在有氣孔的似海綿材料的一些單位面積上施力,以每單位面積的力量,即 壓力,作爲降低似海绵材料的厚度,以及氣孔的體積)。 隨著超吸收體材料的膨脹,可重新排列成吸收性合成物基質的空間, 以及迅速擴張緊靠基質,以產生額外的空間。另外,隨著超吸收體材料膨 脹,吸收性合成物的壓力可增加,因爲至少部分超吸收體材料擴大,藉以 減少纖維、超吸收體材料、吸收性合成物中的其他原料或一些組合之間的 氣孔體積。能夠在合成基質内排列,以及合成基質内的壓力大小及範圍, 乃明確依照幾個因素而定,包括超吸收體材料的膠床摩擦角而定。另外, 0 隨著超吸收體材料在合成基質内移動,超吸收體材料可接觸成分,如四周 基質的纖維及連結材料。因此,超吸收體材料的摩擦特性可影響材料的膨 脹及基質内的排列或移動,以及合成基質内的壓力範圍。 理想的是,超吸收體材料能夠在吸收性合成物的空隙内旋轉,以允許 超吸收體材料同關閉整個膨脹容量般的可能膨脹於基質内。需要可更輕易 重新排列於吸收性合成基質空間内的超吸收體材料。需要一方式來控制物 質機械部分:允許超吸收體材料重新排列於吸收性合成基質内;減少或使吸 收性合成物或本身原料内的壓力減至最低;與/或者減少可跟隨增強該壓力 的氣孔容積。一種新的能實現的超吸收體材料描述於K-C Docketl7991A, φ 2002年7月30日,標題爲“具有低控制膠床摩擦角的超吸收體材料及其 製造的合成物“,二個共同未定申請書完全合併與此作爲參考。 亦,在此案子中吸收性複合物有最初高多孔性或完全膨脹,其最好有 重新排列於基底中的超吸收體材料,且因此由維持在複合物基底自由的空 間來維持多孔性及複合物的滲透性。 【發明内容】 我們已經發現具有控制的膠床摩擦角之超吸收體材料有一或更多需 求。因此,本發明爲針對具有控制膠床摩擦角的超吸收體材料。本發明的 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 200418534 超吸收體材料具有膠床摩擦角,此接著控制膠床雜賴案,此與傳統的 超吸收體材料之膠床摩擦角目案有很大的不同。本發明的超吸收體材料可 使用非傳統製造作用製造,以獲得理想的膠床摩擦角,或在膨脹期間增 加、減少或以别的方法控制超吸收性膠床的摩擦角。根據莫爾庫命的破壞 理論膠床摩擦角爲膠床或超吸收體材料的特性。 本發明的超吸收體材料可爲水膨脹、水不能溶朗超吸收體材料。水 膨脹、水不此/合解的超吸收體材料在約5 〇克的〇 9加%氣化納溶液/克超 吸收體材料及膠床摩擦角之超吸收體婦雜程度巾具有S—膠床摩擦 角,在超吸收體材料膨脹程度約大於5 〇克的〇·9 w%氣化納溶液/克的超 吸收體材料,等於或小於第—膠床雜角。第_膠床雜角約爲3()。或更 少。超吸收體材料進一步包含多數可濕纖維。 本發明的這纽無_、舰及優_下面描述、附加帽專利範 圍及附圖將變得更加了解。 【實施方式】 “負載吸收力”(AUL)引用在機械載荷下的液體保留能力測量。此 以測量0.9 wt%氯化鈉溶液的數量(克)試驗測定,在應用載荷或抑制約〇 3 镑/平方英吋(2,000 Pascals)下,丨小時可吸收丨克材料。在美國專利編 號第5,601,542號中提供測定AUL的程序,其完全合併於此作爲參考。 “吸收性物件包括,不受限制,尿布、兒童訓練用褲、游泳衣、吸 收性襯褲、寶寶用擦拭物、失禁製品、衛生棉及醫療用吸收性製品(舉例 來説,吸收性醫療用衣物、内襯、繃帶、懸布及醫療用擦拭物)。 “纖維”(Fiber)及“纖維狀基質”(Fibr〇usMatrix)包括,但不受 P艮,天然纖維、合成纖維及其複合物。天然纖維的範例包括纖維素纖維(例 如木漿纖維)、棉布纖維、羊毛纖維、蠶絲纖維等等以及其複合物。合成 纖維可包括人造絲纖維、玻璃纖維、聚烯纖維、聚酯纖維、聚銨纖維、聚 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 .doc2004/l /8 η 200418534 丙烯纖維。如此處所使用,了解到“纖維狀基質”包括多數纖維。 “自由膨脹容量”(Free Swell Capacity)引用試驗結果,此測量水溶 性0.9 wt%的氣化鈉溶液數量,在可忽略的應用載荷下,1小時可吸收1 克材料。 “膠床摩擦角 ”(Gel-bed friction angle )引用隨著以 jenike-Shulze 環 切試驗器測量或其他摩擦角測量技術’測量在膠床中的超吸收體材料之摩 擦角。 “梯度“(Gradient)引用物質數量大小中的量變化,如在各種不同 吸收襯墊位置中的超吸收體材料數量,或其他特徵如質量、密度等。 胃 “膠床”(Gel-bed )引用容器,如環切室,内的超吸收體材料數量。 “同種混合”(Homogeneously mixed )引用合成物内二或更多物質的 相同混合,比如每個物質在合成物各處殘留一致的物質數量大小。 “失禁製品”(Incontinence products )包括,無限制)孩童的吸收性 襯衣、因身體殘疾而有特殊需要,如自閉症孩童或膀胱/腸控制問題,的孩 童或年輕人的吸收性衣物,以及失禁老人的吸收性衣物。 熔吹式纖維”(Meltblown fiber)意謂當鑄造細絲或單纖維進入集 中高速熱氣(例如空氣)流,使融化熱塑性材料的單纖維變細,以縮小直徑, _ 變成微纖維直徑,時,由擠出融化熱塑性材料經過多數纖細且通常爲圓 形、印模毛細管而形成。之後,由高速氣流運送熔吹式纖維,並放置於一 聚集表面,以形成任意分散的熔吹式纖維。舉例來説,此過程由Butin等 人揭發於美國專利編號第3,849,24^號。熔吹式纖維爲連續或間斷的微纖 維’其一般約小於0.6丹尼爾(denier),且一般在放置於集中表面時則自 我連結。使用於本發明的熔吹式纖維有適當的連續長度。 莫爾環”(Mohr circle)引用加入一或更多力於材料内的壓力狀態 圖示。莫爾環更詳述於下。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1/8 莫爾破壞包絡線“(Mohrfailure envelope)引用在破壞平面中的破 壞切變壓力作爲破壞或剪力平面上的一般壓力作用。莫爾破壞包絡線更詳 述於下。 “聚合物”(Polymer )包括,但不受限,才目同聚合物、共聚物,如 舉例來説成塊、接枝、任意及交替共聚物、三聚物等,及混合物與其改造。 再者,除非不同明確限制,此項“聚合物”包括材料所有可能的幾何形 狀。這些形狀包括,但不娜,全同立構、間規立構、不賴的對稱。 “超吸收性”(Superabsorbent)或“超吸收體材料”( materia! 在最有利的情況下,水可親、水不能溶解有機或無機材料, 此吸收至少約林身《的1G倍,找在含有氣化_水溶液中 至少約爲本身重量的20倍。超吸收體材料可爲天然、合成及改造天然聚 合物及材料。糾’超錄㈣射驗倾料,如氧财膠,或有機複 合物,如交麟合物。本發明的超吸收㈣射具體表面爲各種結構形 狀,包括顆粒、纖維、薄片狀及球形。 “圖案 ”(Pattern)或“預定圖案 ”(predetermined pattem)爲當上 下文提及膠床摩擦角8#,在超吸收體材料的膨脹程度上引用特别的膠床摩 擦角。膠床摩擦角的贿可引用超吸收體材料之膠床摩擦角中的變化作爲 超吸收體材料的膨脹程度作用。 “纺結纖維”(Spunbonded fiber )引削、直徑的纖維,此自具有圓形 或其他形狀捕π的多數纖細毛細管擠出融化触性冊佩單纖維,然 麟有直徑的擠出單纖維迅速減少,舉例來説,Appd等人的美國專· 號第4,34〇,563號;Dorschner等人的美國專利編號第娜別8號加 3,802,817 ^;Kinney 3,338,992 號;Hartma皿的美國專利編號第3,取763號;Pete腦的美國專利編號第 3,502,538號;以及Dobo等人的美國專利編號第3,542,615號,其每個完全 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863,doc2004/1/8 200418534 合併於此作爲參考。可聽賴維冷卻,且—録放置轉 膠黏。纺結纖維-般爲連續性,且常常具有大於〇 3的平均舰,尤其約 介於0.6與10之間。 ^ 在剩下的説明書部分中,這些項目可由另外術語定義。 連續機械、莫爾環及莫爾庫侖破壤理論 我們發現使用來自賊的玉具及祕來描述,爲方便起見,提供連續 機械概要、莫爾環及莫爾料破壞理論。需了解此概要的目的爲僅供解 釋,且不視爲限制揭發於此的本發明。 吸收性物件及合成物爲多孔性質。形成合成物(例如超吸收體材料及φ 纖維)的各種不同原料之間的開口間隔一般稱爲空間或氣孔空間。氣孔空 間作爲儲存液體與/或者提供將液體遍及吸收性合成物或物件的導管或路 禮。每單位吸收性合成物之氣孔㈣的容積—般稱爲“多孔性”。—般吸 收性能以增加多錄來改善。舉雕説,吸收性合成物替雜,即合成 物促進液_送_力,乃隨著从性(其餘等_素,比如特定表面 面積及扭曲性)增加而增加。 總而吕壓力在多孔性介質,如物件的吸收性合成物,上的用途已 知會引起介質的容量_,以及在非等向性壓力情种的切㈣形。第— 圖描述多孔性介質的容量變形。第—圖的最左影像標示 “較高多孔性” (10),並顯示在沒有以重量運用於多孔性介質(⑴的最高平面表面(⑷ (具有-些侧面積的最高平面面積)之多孔性介質(12)。第一圖的最 右邊影像標π “最低乡孔性”(Lower pG1Osity ) ( 16 ),並顯示相同多孔性 介質(12’),此以重量運用於多孔性介質⑴,)的最高平面表面(14,)。 爲反應重量(I8 )的放置,此每單位面積產生壓力或標準力,σ ( 2〇 ), 厚度減少(如以AL (22)表示)(注意:對本發明的目的而言,壓縮壓力表 示有正値)。 E:\PATENT\PK-001 〇8\pk-〇〇l-〇863\pk-001-〇863.doc2004/l/8 jq 總而言之,對個别原料形成的多孔性介質(12),如超吸收性顆粒及 纖維,(如一吸收性合成物),多孔性介質(12)的厚度變化有可能不由減 少個别顆粒及纖維的個别尺寸(減少的這些個别厚度有可能小或微不足 道)。取而代之的是,總而言之,減少多孔性介質(u)的厚度歸因於多 孔性(或類似的空間容量)的減少。所以,在描述於第一圖的範例中,每 單位面積σ (2〇)所增加的壓力減少多孔性介質(12)的厚度 並減少多孔性介質(π)的多孔性。(注意:在第一圖中,假使氣孔中的 流體爲可壓縮的氣體,織在多錄介質(⑴表面上的鮮壓力爲:壓 縮氣孔内的氣體;或引起氣孔内的氣體部分離開多孔性介質或其 -些複合物組合。在此相_第_时,假魏孔_流麟_不能壓縮 的液體,然後多孔性介質(12)表面上的標準壓力引起液體部分離開多孔 性介質(12))。 第-圖的多孔性介質(12)可審查進—步分析多孔性介質(12)内任 意單體的壓力。第二賊明平衡巾,將外部壓力〜_ (Μ)加入多孔性 介吳(32 )$的任意單體,之任意單體(3〇)的壓力狀態,此處以立方體 面表示。爲了此目的,把多孔性介質(32 )内的任意單體(% )看成連續 f生在第一圖中’壓力狀態以二個標準壓力構件^ % )水平作用於立方 體的表面上表不’且以σν(38)垂直作用於立方體的另—面上以及切變壓 力2: (40)表示。壓力(36)的標準構件與任意構件(3〇)的面垂直,雖 然切變壓力(40 )與任意單體(30)平行。 需注意假使切變壓力(40)爲零(即r=〇),標準壓力(36)稱爲主 要壓力。再者,當r 4時,然讎大的二個標準壓力(36)稱爲多數主要 壓力時’同時其他稱爲少數主要壓力。對此討論而言,二個壓力假定爲主 要壓力,。 一般至少二個貢獻爲壓力產生,此結合引起主要壓力,比如第二圖所 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863.doc2004/l/8 j | (32) ο 形成多孔性介質(32) m 傳送遍及多孔性介質(32)。由於 舉例來説,成Μ ^ 收體材料)的構件雜,產生第二貢獻。 著其他編ί 舰立即_至第二騎邱任賴成部分,隨 “内部^力,靖佩精(30)而使 P所述,當侧餘意構成部分上的壓力,如第二騎述,爲主要 、’在任意構成部分(30)沒有使用切變壓力(40)。無論如何,在 其他想像科面細域壓錢稍義縣贼料⑼),平面位於 遠離水平線(。<«<9〇。)_些角度α⑼),如第三騎示。第三圖描述 作用於-多數主要平面(54)上的多數主要壓力❿(52),以及在少數主 要平面⑼上的少數主要壓力σν ( 56 )。標準壓力〜⑽及切變壓 力ra (62)作用於想像或任意平面⑽上,與水平線呈角度α (5〇)。 侧在任思平面(64) it過第三騎示的構成部分(66 )而所獲得切 變與鮮力量(62)及(6G)可使用類環,如第四瞬示,的圖解方法 P!化’如第四圖所*。第四圖顯示切變壓力(y轴)(7〇)的點陣作爲標準 壓力(X軸)的函數。爲了此探討目的,主要壓力假定爲已知的(例如以計 算或測量)。少數主要壓力σν ( 74 )及多數主要壓力ah ( 76)的x_y座標 橫置X軸(即此處的切變壓力r ( 70 )等於零)。畫成半圓(78 ),使得少 數及多數主要壓力(74)及(76)的個别座標等於半圓(78)周長的狐之 終點。半圓(78)的半徑等於多數主要壓力% (76)與少數主要壓力〜 (74 )之間的一半差異。藉由構成半徑線部分(80)與X軸呈角度2〇((82), 以及半徑線部分(80)等於半圓(78)的中央,且其他最後等於緊接多數 主要壓力的半圓弧上的點,標準壓力ση〇( ( 84 )及r « ( 86 )在半徑線(80 ) 與莫爾半圓(78)的交叉點(88)得到。 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 γχ 200418534 第五圖描述使用一或更多膨脹構件(例如微粒超吸收體材料)的多孔 性介質之壓力發展範例。γ軸再次等於切變壓力r (100),且χ軸再次等 於標準壓力σ (1〇2)。假使自多孔性介質作用於任意構成部分的少數主要 壓力σν( 104)剩下不會改變,然後壓力發展(舉例來説,隨同超吸收體 材料的膨脹)可看做莫爾環族(106),( 1〇8),( 11〇),及(112),所有具 有相同最少壓力σν(ι〇4)。莫爾環(106),(108),(11()),及(112)的 級數一般稱爲壓力通道(114 ),更準確的是,對每個莫爾環(1〇6 ),( 1〇8 ), (110 ),及(112 )而言,此線在同時在位於最大切變壓力及平均壓力的點 通過莫爾環((1〇6),(1〇8),(11〇),及(112)組。 每個莫爾環(106 ),( 108 ),( 110 ),及(112 )的中央,視爲與平均 壓力相等,測定特别任意構成部分内的氣孔空間之容量變形範園,並可由 超吸收體材料造成等於大概的壓力。 在多孔性介質中的壓力不可能不明確地增加,更確切的是,將會破 壞,此沿特别破壞平面(例如在超吸收體材料及纖維之間的切點,或在超 吸收體材料等等的個别顆粒之間的切點)伴隨滑動。莫爾庫侖破壞基準陳 述作用於破壞平面的切變力將與作用於相同平面的標準力爲線性比例,再 次破壞。因此,莫爾庫侖理論提供一破壞限制或包絡線,此超過穩定狀態 的壓力並不存在。假使等於此破壞限制的線重疊於切變壓力及標準壓力(描 述於莫爾環(106 ),( 108 ),( 110 ),及(112 ),此認爲等於所給予的狀態 或多孔性介質運用超吸收體材料膨脹的程度)的點陣上,然後在變得與包絡 線相切的範園内,莫爾環(106),(108),(110),及(112)僅可增加半徑 (如以多孔性介質與/或者運用多孔性介質的超吸收體材料)。 第六圖描述切變壓力Ζ: (122)對標準壓力σ U24)之點陣上的破壞 包絡線(120)。此點陣上描述二個莫爾環(126)及(128),且每個莫爾 J募具有不同最初壓力數値,即少數主要壓'力CXv ( )及(130’)的二個 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 ^ 200418534 不同數値。摩擦角0 ( 132)及凝聚力c ( 134)爲特别材料(如包含纖維 及超吸收體材料的吸收性合成物;膨脹之特别超吸收體材料的膠床等)的特 性。摩擦角必(132 )的切線,相當於基本物理學的靜電摩擦,測量增加 標準力,此允許更大極限的剪力。凝聚力c ( 134 )表示在破壞平面上缺乏 任何標準力量退衰退之前所將忍受材料的切變壓力數量。增加三個變數的 任何一個摩擦角必(132 )、凝聚力c ( 134 )或少數主要壓力σν ( 13〇 )及 (130’)將允許發展多孔材料中的較大壓力,即較大的莫爾環。摩擦角必 (132 )以及凝聚力c ( 134 )爲材料性質,並可測量出(如使用試驗以及 描述於此的方法)。第六圖也描述數學關係^ fc+汀禮(tan必)(136 ), 此關於摩擦角Φ ( 132)、凝聚力c ( 134)、破壞( 138)中的切變壓力 以及破壞CTnff ( 1〇4)中的標準壓力。(注意:對此揭發目的而言,汀尬相 當於CTff’此二説法表示在破壞中破壞平面上作用的標準壓力)0此關係更 詳述於下面詳細描述地區中。 如較早指定,一般優點爲使多孔性或空容積的減少減至最低或增加, 此游壓縮壓力對吸收性物件的應用。藉由挑選可限制壓力增加的材料(如 低控制膠床摩擦角超吸收體材料),可減少多孔性降低程度。舉例來説, 低控制膠床摩擦角超吸收體材料將在壓力上升至引起多孔性及滲透性相 當大損害之前促進破壞的徵兆。提供壓力的額外好處爲減輕低控制膠床摩 擦角材料,此使得超吸收體材料將保留無膨脹容量的較大部分,因爲已知 超吸收性容量隨著裝填增加而減少。一種新的能實現的超吸收體材料描述 於K-CDocketl7991A,2002年7月30曰,標題爲“具有低控制膠床摩擦 角的超吸收體材料及其製造的合成物“,二個共同未定申請書完全合併與 此作爲參考。 但一些前文中’有高膠床角度的超吸收體是有優點的。舉例,若吸收 性複合物在高膨脹狀態或高多孔性狀態,有高膠床角度的超吸收體可利用 於“鎖住“高多孔性結構。本發明描述此新的超吸收體材料。 本發明爲關於水可膨脹、水不能溶解的超吸收體材料,以及在吸收性 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. doc2004/1/8 200418534 物件的吸收性合成物中使用的超吸收物。 吸收性物件的吸收性合成物一般含有超吸收體材料,在較高數量情形 中’比如在超吸收性纖維與/或者超吸收性顆粒的各種不同形式中,與基質 複合材料,如纖維素絨毛紙漿,同種類混合。超吸收體材料與纖維素絨毛 紙漿在吸收性合成物或超吸收體材料各處可爲同種類,此戰略上位於吸收 性合成物内,比如在纖維基質複合内形成一斜面。舉例來説,更多超吸收 體材料可在吸收性合成物的末端而不是在吸收性合成物的另一末端。或 者,沿吸收性合成物的上方表面有更多超吸收體材料,而不是沿吸收性合 成物的下方表面,或更多吸收性合成物沿吸收性合成物的下方表面,而不 是沿吸收性合成物的上方表面。了解到各種不同實施例可利用吸收性合成 物。本發明的水可膨脹、水不能溶解的超吸收體材料可使用於吸收性合成 物的這些及其他各種不同實施例。 吸收性合成物一般包括一基質複合材料或泡沫狀材料,但精通的記憶 將了解合成基質的各種不同實施例。此纖維基質由纖維素絨毛紙漿製造。 纖維素絨毛紙漿可適當包括木質紙漿絨毛。纖維素紙漿絨毛可全部或部分 以合成聚合纖維(如熔吹纖維)替換。本發明的吸收性合成物中並不需要 合成纖維’但可包括在内。較佳類型的木質紙漿絨毛與貿易名稱CR1654 (購自美國阿拉巴馬州Childersburg的Bowater )視爲同一,且爲漂白的含 有主要柔軟木質纖維的高吸收性木質紙漿。纖維素的絨毛紙漿可與超吸收 體材料同種類混合。在吸收性物件内,同種類的混合絨毛及超吸收體材料 可選擇性放置於較高濃度的理想地區,以更佳容納及吸收身體滲出物。舉 例來説’同種類混合絨毛及吸收性材料的質量可控制配置,使得在襯墊的 前方部分比襯墊的後方部分有更多基重。 本發明的吸收性合成物可適當含有約5至95%重的超吸收體材料,此 乃才艮據纖維、超吸收體材料與/或者任何其他成分。任意的是,在吸收性合 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863.doc2004/l /8 200418534 成物中的超吸收體材料之質量合成物約爲2〇至go%。此外,在吸收性合 成物中的超吸收體材料之質量合成物可約爲至。 使用於本發明的適當超吸收體材料可選自天然、合成及改造的天然聚 合物及材料。超吸收體材料可爲無機材料,如矽膠,或有機複合物,包含 天然材料,如洋菜、果膠、關華豆膠等,及合成材料,如合成水凝膠聚合 物。舉例來説,此水凝膠聚合物包括聚丙烯酸的鹼金屬鹽;聚丙烯醯胺; 聚乙烯醇;乙烯-順丁烯二酐共聚物;聚二乙烯醚;羥丙基纖維素 (hydroxypropylcellulose),聚乙埽嗎林酮(p〇iyyinyi m〇rph〇lin〇ne );乙歸續 酸、聚丙烯酸g旨、聚丙烯醯胺、乙烯基紕淀聚合物及共聚物;多元胺;及鲁 其複合物。其他適當的聚合物包括水解的丙埽晴分枝澱粉、丙烯酸分枝的 澱粉及異丁烯-順丁烯二酐共聚物及其複合物。水凝膠聚合物可適當稍微交 键,以提供水不能溶解的材料。舉例來説,交鍵可由照射或共償、離子、 凡得瓦力或氫鍵結而完成。本發明的超吸收體材料可爲使用於吸收性結構 中的任何形式,包括顆粒、纖維、薄片狀、球形等。 一般超吸收性聚合物可在0.9 wt%氣化鈉水溶液中吸收至少約1〇倍 的本身重里’且尤其可在0.9 wt%氣化鋼水溶液中吸收至少約2〇倍的本身 重量。依照本發明’爲了適當處理或改造,超吸收性聚合物獲自各種不同 _ 商業販賣者,比如位於美國密西根州中部地區的D〇w化學公司及美國北卡 羅來納格陵斯堡的Stockhausen有限公司。依照本發明,爲了適當處理或 改造’其他超吸收性聚合物由Melius等人在1997年2月U曰頒布而描述 於美國專利編號第5,601,542號;申請於1999年12月的美國專利申請序列 編號第〇9/475,829號,此讓與金百利克拉克股份有限公司;以及申請於1999 年12月的美國專利申請序列編號第〇9/475,830號,此讓與金百利克拉克 股份有限公司;每個合併於此作爲參考。 使用於本發明的商業超吸收體材料之其他範例包括聚丙烯酸酯材 E. \ΡΑΤΕΝΤ\ΡΚ-001 08\pk-001 -0863\pk-〇〇1 -0863. doc2004/J /8 16 200418534 料,此獲自商標FAVOR®下的Stockhausen。範例包括FAV0R®SXM 了7、 FAVOR®SXM 880以及FAVOR®SXM 9543。可使用於本發明中的其他聚 丙婦酸酯超吸收體材料獲自美國的Dow化學公司,在商標DRYTECH® 下,比如 DRYTECH® 2035。 本發明的超吸收體材料在未膨脹狀態中可爲顆粒形式,此具有一般範 圍約爲50微米至1,000微米内的最大橫截面直徑,適當的範圍約爲ι〇〇微 米至800微米之間,此乃根據美國協會試驗材料(ASTM )試驗方法D_1921 而過濾分析測定。了解到上面描述範園内的超吸收體材料顆粒可包括固體 顆粒、多孔顆粒或可爲成塊顆粒包括凝聚成描述尺寸範圍内的許多較小顆 粒。 吸收性合成物也可含有任何各種化學添加物或處理方式、過濾、器或其 他添加物,如黏土、沸石與/或者其他氣味吸收材料,舉例來説,活性碳顆 粒或活性顆粒,如沸石及活性碳。吸收性合成物也可包括黏合劑,如可交 键黏合劑或接合劑,與/或者黏合劑纖維,如二成分纖維。吸收性合成物可 或不可由適當紙捲捲繞或圍繞,此維持吸收性合成物的完整狀態與/或者大 小。 吸收性合成物的結構及成分可設計成容納流體並吸收之。纖維基質的 多孔性允許流體滲入吸收性合成物,及接觸吸收流體的超吸收體材料。超 吸收體材料隨著超吸收體材料吸收流體而膨脹。超吸收體材料的膨脹可由 外力,如來自吸收性物件使用者周園的基質材料及壓力(即每單位面積的力 或壓力),產生影響。周園基質纖維與/或者超吸收體材料及在超吸收體材 料上的壓力可阻止超吸收體材料膨脹,因此停止吸收,且藉以自達到整個 沒有膨脹容量而吸收合成物。並且,如上所述,作用於吸收性合成物的硬 力,如運用超吸收體材料的吸收性合成物,可減少吸收性合成物的多孔性 與/或者穿透性。 吸收性材料的摩擦角爲重要的機械特性,此可影響超吸收體材料移動 E:\PATENT\PK-001 08\pk-001 -0863\pk-001-0863 .doc2004/1/8 γη 200418534 或在吸收性合成基質内擴張。如上所探討的概要部分,摩擦角來自莫爾庫 侖破壞理論,且摩擦角的切線相當於靜電摩擦的傳統係數。較小的摩擦角 可表示在超吸收體材料及周園基質之間的接觸摩擦較少,且較大的能力爲 超吸收體材料能在膨脹期間於基質内重新排列,因此超吸收體材料可保持 無膨脹吸收容量的較大部分。並且,在較低的壓力增進下,較小摩擦角可 促進破壞(舉例來説,即在超吸收體材料的膨脹顆粒之間移動;或在超吸收 體材料與周園纖維基質的膨脹顆粒等等之間移動),藉以減少吸收性合成 物中的多孔性與/或者穿透性之損失。 換言之,當超吸收體材料完全膨脹且在膠床或高多孔性吸收複合物, · 大摩擦角度時指出超吸收體材料及環境基質複合物間有更大摩擦力,其抑 制超吸收體材料排列於複合物基質空間,因此維持膠床或吸收性複合物的 滲透性。 超吸收體材料及周園成分之間表面的破壞狀態允許超吸收體材料在 濕基質或部分膨腺膠床内重新排列。如指示的概要部分,莫爾環可使用於 描述材料的壓力狀態,比如濕膠床或吸收性合成物或多孔基質。第七圖顯 示一般膠床膨脹至一特殊程度的莫爾環(150)及(152)。第七圖顯示在 2.0克食鹽水/克超吸收體材料膨脹程度中的超吸收物FAV〇R⑧的莫爾環 _ (150)及(152)。較大的莫爾環(152)表示在較少主要壓力爲零時,膠 床的任何一處有一些較多的主要壓力狀態。雖然在第七圖中沒有顯示,莫 爾玉衣在每個運用的標準壓力下產生。由莫爾環組在破壞中描述超吸收體材 料的破壞狀態,此一起由莫爾破壞包絡線定義。莫爾破壞包絡線常常非常 接近直線,如第七圖所示的線(154),並表示失敗平面上破壞的切變壓力 vs·作用於相同平面上的標準壓力。以線表示的破壞包絡線ο%),常常稱 爲莫爾庫侖破壞標準,可由公式數理表示: ΖΓ ff^c+Q-^tan φ) E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1 /8 18 200418534 此處r ff爲切變壓力,c爲有效結合常數,σίί爲標準壓力,以及必爲 膠床或超吸收體材料的摩擦角。有效結合常數以數値(156)做圖解表示, 並適合吸收性物件對周園基質的結合力。 本發明的超吸收體材料之膠床摩擦角可使用於比如土壤力學之各種 不同方法測定。測定膠床摩擦角的有用儀器包括三軸剪刀測量儀器,如σ 1,此獲自德克薩斯州的休士頓知GeoTac,或切變試驗器,如jenike-Shulze 環切變試驗器’獲自麻薩諸塞州Westford的Jenike & Johanson。 第八圖顯示Jenike-Shulze環切變試驗器的部分切離概要圖,此稱爲參 考數字170。環切變試驗器(170 )具有連接至一馬達(無圖示)的環切變 籲 室(172),此可在方向⑴中旋轉環切變室(172)。環切變室(172)及蓋 子(174)包含作爲試驗的吸收性材料膠床(176)。蓋子(174)沒有安裝 於環切變室(172),且橫梁(178)橫跨蓋子(174),且二個導輥(180) 及二個栓桿(182 )連接至蓋子(174 )。對膨脹超吸收體材料膠床(176 ) 的測量膠床摩擦角而言,超吸收體材料在環切變室(172)的外侧膨脹, 並置放於環切變室(172)中。在蓋子(174)上估計施用力量N,以重量 (無顯示)在超吸收體材料(176 )上。平衡系統(無顯示)可在較低標 準壓力中銜接試驗。隨著環切變室(172)以控制馬達(無顯示)的電腦 春 在方向ω中旋轉,將切變壓力施用在接觸環切變室(172)的超吸收體材 料膠床(176)。連接至栓桿(182)的儀器測量力F1以及F2,此使用於測 定超吸收體材料膠床(176)在破壞(對給予運用標準壓力而言)中的切 變壓力。 本發明一具體實施例,有低膠床摩擦角的超吸收體材料可用於吸收性 合成物中。在本發明的一實施例中,在超吸收體材料膨脹約5.0克之0.9 wt %氣化鈉水溶液/1克的超吸收體材料(克/克)中,超吸收體材料膠床摩擦 角依照膨脹至約30度或更少而減少,且在膨脹大於5.0克/克中剩下約30 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 .doc2004/l /8 19 200418534 度或更少。更適當的是,在超吸收體材料膨脹約5.0克之〇·9 wt%氣化納 水溶液/1克的超吸收體材料(克/克)中,超吸收體材料膠床摩擦角依照膨 脹至约33度或更少而減少,且在膨脹大於5.〇克/克中剩下约33度或更少。 更特别的是,在超吸收體材料膨脹約5.0克之〇·9 wt%氣化鈉水溶液/;[克 的超吸收體材料(克/克)中,超吸收體材料膠床摩擦角依照膨脹至約38 度或更少而減少,且在膨脹大於5.0克/克中剩下約38度或更少。 當吸收性複合物有高多孔性或在高膨脹狀態下,超吸收體材料的高摩 擦角度會減慢及/或抑制在吸收複合物基質中排列。超吸收體材料減慢及/ 或抑制在吸收複合物基質中排列可維持一開放複合物結構,若需要,因此 維持需要的吸收性複合物滲透性。在負載時,超吸收體材料的高摩擦角度 特别適合維持咼度開放結構。當溼時,超吸收體材料的高摩擦角可包含通 過製造過程或以多種摩擦角度增強劑處理低摩擦角度超吸收體材料以增 加超吸收體材料的摩擦角。在本發明的一實施例中,摩擦角增加添加物爲 甲殼素,此可在陰離子超吸收性聚合物產生黏性狀況,此導致較高的摩檫 角。此摩擦角增加添加物的範例包括,無受限,矽酸鈉、鋁酸鈉以及鋁矽 酸鹽。 膠床摩擦角增加添加物、表面活化劑或乳化劑❸數量約丨1〇加%的 雜或非雜超吸收體材料或更少。任意的是,跡雜肖增加添加物、 表面活化誠乳化_數量可約爲· wt%轉脹或_脹超吸收體材 料或更少。此外’膠床摩擦角增加添加物、表面活化劑或乳化劑的數量可 約爲100.0 wt%的膨脤或非膨脹超吸收體材料或更少。膠床摩擦角增加添 加物、表面活化劑或乳化劑的數量可約爲_丨加%的膨脹或非雜超吸 收體材料錢乡。任意岐,雜肖增加縣^、絲雜劑或乳化 劑的數量可約爲〇· 1 wt%的舰或轉脹超吸收體材料或更乡。此外,膠 床摩擦角增加添加物、絲活鋪或乳化_數量可祕i Q wt%的雜 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. doc2004/1/8 20 200418534 或非膨脹超吸收體材料或更多。 本發明的吸收性合成物可包括本發明的各種不同控制膠床摩擦角超 吸收體材料,包括具有低膠床摩擦角的超吸收體材料。具有控制膠床摩換 角的超吸收體材料可在吸收性合成物内同種類混合,或可戰略性位於不同 吸收性合成範園内,此處的個别控制膠床摩擦角爲理想。 在本發明的一實施例中,在超吸收體材料結構與水可膨脹,水不可溶 聚合物結合位置内與摩擦角度增強劑膨脹期間超吸收體材料的膠床摩擦 角可增加。摩擦角度增強劑傾向於當超吸收體材料膨脹時,從聚合物結構 内移動至超吸收體材料表面。事實上,當乾燥或溼時,摩擦角度增強劑未 鲁 覆蓋,或覆蓋,超吸收體材料表面,在膨脹期間移動至表面,因此造成超 吸收體材料膠床摩擦角度增加。摩擦角增加添加物可爲有機與/或者無機、 天然與/或者合成材料。 乳化劑與/或者表面活化劑的小濃度除了摩擦角減少添加物外,摩擦角 減少添加性混合物可幫助減少超吸收體材料的膠床摩擦角。乳化劑及表面 活化劑可增加非極性摩擦角減少添加物及極性摩擦角減少添加物之間的 易混合性。乳化劑及表面活化劑也可在塗佈膨脹的超吸收體材料中擔任不 可缺少的角色。各種不同乳化劑與/或者表面活化劑可依照摩擦角減少使用 0 添加物而使用於本發明中。乳化劑的範例爲贍驗嶙脂及卵磷脂。液態表面 活化劑的範例包括山梨醇奸單月桂(sorbitan monolaurate ),購自J.T. Baker 之 TRITON® 系列(Χ-100、X-405&SP-135 )的複合物,購自 J.T· Baker 之 BRIJ®系列(92及97)的複合物、聚氧化乙烯(80)山梨醇酐單硬脂酸酯 (polyoxyethylene (80) sorbitan Monostearate ),聚氧化乙烯山梨醇酐 油酸 酯(polyoxyethylene sorbitan tetraoleate)及三乙醇胺與其他醇胺及其複合 物。當使用極性及無極性的複合物時,比如摩擦角或結合數値改變添加 物、乳化劑及表面活化劑,無極性複合物的比例比極性複合物大。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 ,doc2004/1 /8 200418534 在本發明的另一實施例中,在超吸收體材料結構基質位置内超吸收體 材料的膠床摩擦角可增力σ。摩擦角度增強劑與基質複合物結合,如覆蓋於 科基貝纖維。摩擦角度增強劑傾向於纖維溼時與超吸收體材料表面結 合以增加超吸收體材料膠床摩擦角度。適合的,超吸收體材料摩擦角度增 強劑在雖制鱗下減f複合物去結合,敝在超麟後持續增 加超吸收體材料膠床摩擦角度。摩擦角增加添加物可爲有機與/或者無機、 天然與/或者合成材料。 加物,如摩擦角增加添加物以及摩擦角減少添加物,此可改變超吸 收體材料的摩擦角,直間或間接傳送至超吸收物。直接傳送可經由超吸收參 體材料本身分離,同時自纖維其他成分,在超吸收體材料與/或者吸收性合 成物内或附近,間接傳送。再者,摩擦角改造添加物可超過一些時間逐漸 自吸收性合成物中的任何成分分離傳送,或結果一些化學反應設計出在大 部分場合分離摩擦角改造添加物。舉例來説,摩擦角改造添加物可附著至 超吸收體材料的表面,歧在它的内侧内,或可裝載至吸收性合成物中的 一些其他成分,包括,但不受限,纖維材料。摩擦角改造添加物可立即利 用’導致摩擦角立即變更,或因爲化學反應或擴散或一些其他構造而在一 些理想時間於理想方式中逐漸改變摩擦角。 0 理想的是可處理超吸收體材料、纖維與/或者纖維質基質與/或者其他 成分,此可使用於具有摩擦角改造添加物,如摩擦角還原添加物、摩擦角 增加添加物與/或者其複合物,以提供具有理想的初始摩擦角的材料。以摩 擦角改造添加物處理的材料,然後依照本發明提供可用額外摩擦角改造添 加物的理想初始摩擦角。當使用於此關於摩擦角,此項“實質上” (substantially)爲意謂在+/-1度。當使用於此關於摩擦角,此項“實質上” (substantially)爲意謂在+/-10〇 度。 本發明的控制膠床摩擦角超吸收體材料可併入用於吸收性物件中的 E:\PATHNT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 22 200418534 吸收性合成物。本發明的各種不同膠床摩擦角可使用於已知技藝的各種不 同混合結構中,比如上面所述,包括纖維質合成物,比如熔吹式、氣流成 網及紡結合成物及泡沫狀合成物。本發明的超吸收體材料可在吸收性合成 物的各種不同結構中形成,包括顆粒、薄片狀、纖維及球形。 依照本發明的一實施例,超吸收體材料可包含一水可膨脹、水不能溶 解的超吸收體材料。超吸收體材料在超吸收體材料膨脹程度約爲5 〇克的 〇·9 Wt%氣化鈉溶液/;!克超吸收體材料中,可具有第一膠床摩擦角。超吸 收體材料也可在超吸收體材料膨脹程度約大於5 〇克之〇 9树%氣化鈉溶 液/1克超吸收體材料中具有膠床摩擦角,實質上等於或小於第一膠床摩擦 角。第一膠床摩擦角可约爲30度或更少。 依照本發明的其他觀點,第一膠床摩擦角可约爲38度或更少。水可 膨脹、水不能溶解的超吸收體材料可選自由天然材料、改造天然材料、合 成材料及其複合物而成。 水可膨脹、水不能溶解的超吸收體材料可選自由天然材料、改造天然 材料、合成材料及其複合物而成。水可膨脹、水不能溶解的超吸收體材料 可選自由矽凝膠;洋菜;果膠;降血糖藥;聚丙烯酸、聚丙埽醯胺、聚乙烯醇、 乙埽-順丁烯二酐共聚物、聚二乙烯醚、羥丙基纖維素 (hydroxypr〇pyiceiiui〇se)、聚乙烯嗎林酮、乙婦橫酸、聚丙烯酸醋、聚丙烯 驢胺、乙埽基紕咬(Vinylpyridine)的聚合物及共聚物、丙烯分枝澱粉、丙烯 酸分枝殿粉、異丁_,二肝共祕、料胺錢錢合物驗性金屬 鹽類形成。 本發明可進一步包含超吸收體材料結合的摩擦角增加添加物。摩擦角 增加添加物可選自甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 了^、纖維了選自由天然纖維、合成纖維及其複合物形成。超吸收體材料包 含的結構可選自顆粒、纖維、薄片狀及球形。 E:\PATENT\PK-001 08\pk-00l-0863\pk-001-0863.doc2004/l/8 23 依照本發明的一實施例,超吸收體材料可包含一水可膨脹、水不能溶 解的超吸收體材料。超吸收體材料在超吸收體材料膨脹程度約爲5·〇克的 〇·9 Wt%氣化鈉溶液/1克超吸收體材料中,可具有第一膠床摩擦角。超吸 收體材料也可在超吸收體材料膨脹程度約大於5·〇克之〇·9 wt%氣化鈉溶 液/1克超吸收體材料中具有膠床摩擦角,實質上等於或小於第一膠床摩擦 角。第一膠床摩擦角可約爲30度或更少。 依照本發明的其他觀點,第一膠床摩擦角可約爲38度或更少。水可 膨脹、水不能溶解的超吸收體材料可選自由天然材料、改造天然材料、合 成材料及其複合物而成。 水可膨脹及水不能溶解的超吸收體材料可選自由實質上天然材料、改 造天然材料、合成材料及其合成物形成。水可膨脹及水不能溶解的超吸收 體材料可選自由實質上矽凝膠;洋菜;果膠;降血糖_;聚丙烯酸、聚丙烯醯 胺、聚乙烯醇、乙歸-順丁婦二酐共聚物、聚二乙烯醚、羥丙基纖維素 (hydroxypropylcellulose)、聚乙烯嗎林酮、乙烯磺酸、聚丙烯酸酯、聚丙烯 醯胺、乙烯基就淀(vinylpyridine)的聚合物及共聚物、丙歸分枝澱粉、丙晞 酸分枝澱粉、異丁烯順丁烯二酐共聚物、多元胺以及其組合的驗性金屬鹽 類形成。 本發明可進一步包含超吸收體材料結合的摩擦角增加添加物。摩擦角 增加添加物可選自甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 可濕纖維可選自由天然纖維、合成纖維及其複合物形成。超吸收體材料包 含的結構可選自顆粒、纖維、薄片狀及球形。 超吸收性合成物可進一步包含與可濕纖維結合的摩擦增加添加物。摩 擦角增加添加物可選甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 多數可濕纖維可選自由天然材料、合成材料及其複合物形成。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 doc2004/1/8 24 200418534 摩擦角測定 環切變試驗設備,如 jenike-Schulze Ring Shear Tester apparatus,可使 用於測定超吸收體材料膠床摩擦角。對試驗而言,將充分數量(2〇〇〜1〇〇〇 克)的膨脹超吸收體材料(例如膨脹〇〜3〇克/克或更多)置放於環切變室 内。對下面描述的樣本而言,從事測定如Jenike_shulze環切變試驗器之手 動 RTS-Ol.pc ’ RTS-CONTROL “描述的“生產位置 “(yield locus)標 準程序。下面爲材料準備及試驗程序的特定詳述: 超吸收體材料在Kitchen AidTM攪拌器(模型#K5SS,5夸脱)中膨脹 至0.9 wt%水溶性氣化鈉(如獲自德克薩斯州阿靈頓的Ricca化學公司) 的理想程度;在攪拌碗(碗的容量約爲5夸脱)中首次注入特定數量 (200〜100克)的溶液,且然後在攪拌棒在最低速度設定(設定範園爲 1〜10,此處1爲最低,10爲最高)下緩慢攪拌流體時,加入預定數量(2〇〜6〇〇 克)的乾燥吸收性材料。此完成,以便一律將膨脹溶液分配至所有超吸收 體材料。當所有溶液被超吸收體材料(吸收時間:〇〜3〇分鐘)吸收時,碗 自攪拌器除去,加蓋以便防止蒸發,並允許丨小時平衡,囡此流體每個顆 粒在各處平等分布。樣本每15分鐘以手動混合,以確保不會形成塊狀。 SAP容量 (克/克) SAP-流 體比例 所需乾重 (克) 所需生理食鹽 水重量(克) SAP流體總 重(克) 標準環室的 數量(克) 1 1:1 250 250 500 350-450 2 1:2 150 300 450 350-450 5 1:5 80 400 480 400-480 10 1 : 10 50 500 550 450-550 15 1 : 15 40 600 640 540-640 20 1 : 20 30 600 630 550-630 E:\PATENT\PK-001 〇8\pk-〇〇 1 -〇863\pk-001 -0863 ,doc2004/1/8 25 200418534 假使將塗層運用於超吸收體材料,舉例來説,適當的塗層添加物個别 描述於下。平衡(時間大約1小時)及膨脹超吸收體材料使用KitchenAidTM 攪拌器藉由將膨脹超吸收體材料引入碗中而平等塗上,然後緩慢加入塗層 添加物(添加時間:1〜30分鐘)’同時在最低速度設定(設定範園爲1〜⑺, 此處1爲最低’ 10爲最咼)中以攪拌棒一直在碗中轉動超吸收體材料。塗 層超吸收體材料允許每5分鐘以手動混合停止〇〜30分鐘,以維持相等處 理分布。 膠床摩擦角及有效凝聚力測量乃使用Jenike-Schulze環切變試驗器裝 置測定。使用Jenike-Schulze環切變試驗器以在各種不同膨脹程度中獲得 超吸收體材料膠床的膠床摩擦角數値。操作環切變試驗器,並根據製造商 所提供的指示校準刻度。將樣本裝於環切變室(環室的標準體積爲942 48 立方公分),同時確保膠床平等分布(視上表)。在假定以〇 9氣化鈉 溶液完成平衡1小時後,環切變室裝滿待試驗的漲大超吸收體材料。即使 塡充物可由抹刀(spatula)除去過多材料而獲得,不需壓緊超吸收體材料。 超吸收體材料膠床以環切變室的上方適當沖洗。在物質平衡上測定裝滿環 切皮至(沒有蓋子),並記錄。以環切變試驗器控制程式(rstctrl )試 驗下面描述的樣本1至2小時。向RSTCTRL請求,裝滿的切變室確實置 放於主動軸(driving axle)上。將蓋子置放於環切變室上,且自切變位置 有少數反方㈣度數;環切變試驗器預調此啓動位冑。反方向的把手在橫梁 右侧上’且橫壯的掛觸向把手。肖RSTCTRL請求,平細及吊環釣 2檢‘的中央軸。栓桿附著至橫梁的每一側,且調整環切變室,因此並無 壓縮枝杯。RST-控制提供以箭號鍵··《◊調整調整,並在適當位置使用: 个山停止。 在4驗^’預知讀的樣本壓力可從控纖案看&。在下面所述 的樣本4驗中’預先切變典雜力設定在薦p臟ls,紐預先切變/預 先口併的膠床切邊破壞,以獲得莫爾庫侖破壞包絡線,典型壓力的細爲 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863.doc2004/l/8 200418534 500 Pascals〜2500 Pascals。預先切變發生於每個切變測量之前。因此,每個 超吸收體材料膠床在一試驗中的任何切變典型壓力下切變二次。有時裝備 需要於半自動模式中運轉,且數據點手動獲得。在下面的樣本完成之後, 使用RSV 95第1.0版來分析結果;軟體包裝包括環切變試驗器。 例子 爲了證明本發明的觀點,標示爲FAVOR(DSXM 9543的超吸收體材料 (購自Stockhausen有限公司,北卡羅來納的Greensboro)用來處理以減 少膠床摩擦角。 控制 超吸收體材料的膠床摩擦角,未處理的FAVOR®SXM 9543,測 量作爲在各種不同膨脹程度中的控制。表i爲結果概要。 表1 膨脹程度(克/克) 2 5 10 15 20 膠床摩擦角度(度) 23 15 12 11 12 例子 將3種FAVOR(g)SXM 9543的數量膨脹成每克超吸收體材料有2克,5 克及10克之0.9 wt%的氣化鈉水溶液(克/克),並平衡1小時,如上所述。 在每3.0克膨脹超吸收體材料有1〇克的添加物比例中,矽膠鈉溶液,購 自新澤西州Phillipsburg的J. T· Baker,運用於超吸收體材料中。膠床摩擦 角如上所述測量。每一個覆蓋的超吸收體材料膠床摩擦角度列於表二。 E:\PATENT\PK-001 08\pk-001-0863\pk-001-0863. doc2004/1/8 27 200418534200418534 Description of invention: [Technical field to which the invention belongs] Human daily life depends on absorbent articles. [Prior art] Absorptive articles, including adult incontinence articles, sanitary napkins and diapers, are generally composed of an impermeable back sheet attached to the upper sheet by a permeable upper sheet, and the absorption between the upper sheet and the rear sheet core. When it comes to money, the top layer of the permeable wearer's body is permeable. The upper layer allows body fluids to pass through the absorbent core. The impermeable upper layer helps prevent fluid leakage in the absorbent core. The absorbent core is designed to have ideal material properties, such as high absorption capacity and high absorption capacity, and pubic fluid can be transported from the wearer's skin to a disposable absorbent article. The present invention relates to a superabsorbent material that is water-swellable and water-insoluble. It is often used in absorbent cores (also known as an absorbent composite). This part helps the "fixed" (10ck 叩) fluid to enter the core. In other words, the present invention is suitable for measuring a superabsorbent material having an adjusted friction angle in a gel bed of the superabsorbent material. The friction angle of the rubber bed of the superabsorbent material of the present invention can be controlled, accompanied by a pre-foot pattern. The present invention also relates to the use of an absorbent material for controlling the friction angle of a rubber bed in an absorbent composite and an absorbent article incorporating the absorbent composite. Controlling the friction angle of the rubber bed of the absorbent material allows control items including, but not limited to: the expansion of the superabsorbent material; the superabsorbent material and / or other raw materials (such as fibers) under pressure in the absorbent composite; The permeability of the absorbent composite of the absorbent material; and / or the absorbency, elasticity, and porosity of the absorbent composite. The present invention relates to a superabsorbent material processing method, to manipulate the friction angle of a rubber bed, and a new type of superabsorbent material with ideal rubber bed angle characteristics. Absorbent composites used in absorbent articles generally consist of an absorbent material, such as an absorbent material ' and a synthetic matrix containing natural and / or synthetic fibers. As the fluid enters the absorbent composite, the superabsorbent material expands as it absorbs the fluid. The superabsorbent material contacts the surrounding matrix components and possibly other superabsorbent materials as it expands. Pressure on an absorbent composite containing a superabsorbent material reduces the volume of space, such as superabsorbent materials, fibers, other materials or an E: \ PATENT \ PK-001 08 \ pk-001-0863 \ pk-001- 0863. doc2004 / 1/8 c 200418534 (This does not need to be linked to a special analogy, and for illustration purposes only, it is intended to apply force on some unit areas of pore-like sponge materials, per unit Area force, or pressure, acts as a reduction in the thickness of the sponge-like material, as well as the volume of pores). As the superabsorbent material expands, the space that can be rearranged into the matrix of the absorbent composite can be quickly expanded against the matrix to create additional space. In addition, as the superabsorbent material expands, the pressure of the absorbent composite can increase because at least a portion of the superabsorbent material expands, thereby reducing the fiber, superabsorbent material, other raw materials or some combination in the absorbent composition. Stomatal volume. The ability to arrange within the synthetic matrix, as well as the magnitude and range of pressure within the synthetic matrix, are clearly determined by several factors, including the friction angle of the rubber bed of the superabsorbent material. In addition, as the superabsorbent material moves within the synthetic matrix, the superabsorbent material can come into contact with components such as the fibers and bonding materials of the surrounding matrix. Therefore, the friction characteristics of the superabsorbent material can affect the expansion of the material and the alignment or movement within the matrix, as well as the pressure range within the synthetic matrix. Ideally, the superabsorbent material is capable of rotating within the interstices of the absorbent composition to allow the superabsorbent material to expand into the matrix as close as possible to the entire expansion capacity. There is a need for superabsorbent materials that can be easily rearranged in the space of an absorbent synthetic matrix. A way is needed to control the mechanical part of the substance: allow the superabsorbent material to be rearranged in the absorbent synthetic matrix; reduce or minimize the pressure in the absorbent composite or its raw materials; and / or reduce the Stomatal volume. A new material that can be realized is described in KC Docketl7991A, φ July 30, 2002. The title is "Superabsorber Material with Low Controlled Friction Angle of Rubber Bed and Its Composites", two jointly undecided The application is fully incorporated with this reference. Also, in this case the absorptive composite has initially high porosity or complete expansion, which preferably has superabsorbent material rearranged in the substrate, and therefore the porosity is maintained by maintaining the free space in the composite substrate and Complex permeability. SUMMARY OF THE INVENTION We have discovered that superabsorbent materials with controlled bed friction angles have one or more requirements. Therefore, the present invention is directed to a superabsorbent material having a controlled friction angle of a rubber bed. The E: \ PATENT \ PK-001 08 \ pk-001-0863 \ pk-001-0863.doc2004 / l / 8 200418534 of the present invention has a friction angle of the rubber bed. This is very different from the traditional bed friction angle of superabsorbent materials. The superabsorbent material of the present invention can be manufactured using non-traditional manufacturing effects to obtain the ideal friction angle of the rubber bed, or to increase, decrease or otherwise control the friction angle of the superabsorbent rubber bed during expansion. According to Morkut's failure theory, the friction angle of the rubber bed is the property of the rubber bed or superabsorbent material. The superabsorbent material of the present invention can be a water-swellable, water-insoluble superabsorbent material. The water-swelling, water-absorptive / disintegrated superabsorbent material has a super absorbent degree of miscellaneous degree of towels at about 50 grams of a 0.99% vaporized sodium solution per gram of superabsorbent material and the friction angle of the rubber bed. The friction angle of the rubber bed is equal to or less than the first rubber bed miscellaneous angle when the degree of expansion of the superabsorbent material is about 0.9 w% of the vaporized sodium solution per gram of the superabsorbent material per gram of the superabsorbent material. The miscellaneous angle of the first plastic bed is about 3 (). Or less. The superabsorbent material further contains most wettable fibers. The following description of the present invention, the ship and the superior, the scope of the additional cap patents, and the drawings will become more understood. [Embodiment] "Load absorption force" (AUL) refers to the measurement of liquid retention capacity under mechanical load. This is determined by measuring the amount (grams) of a 0.9 wt% sodium chloride solution, and it can absorb gram materials in an hour under an applied load or inhibition of about 0.3 pounds per square inch (2,000 Pascals). Procedures for determining AUL are provided in U.S. Patent No. 5,601,542, which is fully incorporated herein by reference. "Absorbent articles include, without limitation, diapers, children's training pants, swimwear, absorbent panties, baby wipes, incontinence products, sanitary napkins and medical absorbent products (for example, absorbent medical clothing , Lining, bandages, drapes, and medical wipes) "Fiber" and "Fibrous Matrix" include, but are not limited to, natural fibers, synthetic fibers, and composites thereof. Examples of natural fibers include cellulose fibers (such as wood pulp fibers), cotton fibers, wool fibers, silk fibers, etc., and composites thereof. Synthetic fibers may include rayon fibers, glass fibers, polyolefin fibers, polyester fibers, polymer fibers Ammonium fiber, poly E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863 .doc2004 / l / 8 η 200418534 Acrylic fiber. As used herein, it is understood that the "fibrous matrix" includes most fibers "Free Swell Capacity" refers to the test results, which measures the amount of water-soluble 0.9 wt% sodium vaporized solution and can absorb 1 gram of material in 1 hour under a negligible applied load. "Gel-bed friction angle" refers to the measurement of the friction angle of a superabsorbent material in a rubber bed with the Jenike-Shulze ring tester measurement or other friction angle measurement techniques. "Gradient" ) Changes in the amount of reference material, such as the amount of superabsorbent material in various absorbent pad positions, or other characteristics such as mass, density, etc. Stomach "gel-bed" references containers, such as rings The number of superabsorbent materials in the cutting chamber. "Homogeneously mixed" refers to the same mixture of two or more substances in the composition, such as the consistent amount of each substance remaining in the composition. "Incontinence "Incontinence products" include, without limitation, absorbent shirts for children, special needs due to physical disabilities such as autism or bladder / intestinal control problems, absorbent clothing for children or young people, and incontinent elderly "Melblown fiber" means that when cast filaments or single fibers enter a stream of concentrated high-speed hot air (such as air), Melting the thermoplastic material becomes thin single fibers, to reduce the diameter, the diameter of the microfibers become _, when the melted thermoplastic material extruded through the most delicate and usually circular, capillaries formed in the stamp. Thereafter, the melt-blown fibers are transported by a high-speed air stream and placed on a gathering surface to form randomly dispersed melt-blown fibers. This process is disclosed, for example, by Butin et al. In U.S. Patent No. 3,849,24 ^. Meltblown fibers are continuous or discontinuous microfibers' which are generally less than about 0.6 denier, and are generally self-ligating when placed on a concentrated surface. The melt-blown fibers used in the present invention have a suitable continuous length. "Mohr circle" (Mohr circle) quotes one or more pressure state diagrams in the material. The Mohr circle is described in more detail below. E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk -001 -0863. Doc2004 / 1/8 The Mohrfailure envelope refers to the failure shear pressure in the failure plane as a general pressure action on the failure or shear plane. The Mohr failure envelope is described in more detail below. "Polymer" includes, but is not limited to, polymers and copolymers, such as block, graft, arbitrary and alternating copolymers, terpolymers, etc., and mixtures and modifications thereof. Furthermore, unless explicitly stated otherwise, this "polymer" includes all possible geometries of the material. These shapes include, but are not, isotactic, syndiotactic, and symmetry. "Superabsorbent" or "superabsorbent material" (materia! In the most favorable case, water is friendly and water cannot dissolve organic or inorganic materials. This absorption is at least about 1G times that of Linshen. Contains at least about 20 times its own weight in the gasification aqueous solution. The superabsorbent material can be natural, synthetic and modified natural polymers and materials. Correction of super-recorded radioactive materials, such as oxygen glue, or organic compound The specific surface of the superabsorbent projection of the present invention is various structural shapes, including particles, fibers, flakes, and spheres. "Pattern" or "predetermined pattem" is the context When referring to the friction angle of the rubber bed 8 #, the special friction angle of the rubber bed is cited in terms of the degree of expansion of the superabsorbent material. The change in the friction angle of the rubber bed can be cited as the change in the friction angle of the superabsorbent material as the superabsorber. The degree of expansion of the material. "Spunbonded fiber" (Spunbonded fiber) drawn, diameter fiber, this is from the most slender capillary with a circular or other shape to squeeze the melt tactile sheet Fiber, but the diameter of extruded single fibers with diameter decreases rapidly, for example, U.S. Patent No. 4,34,0,563 by Appd et al .; U.S. Pat. No. 8 by Dorschner et al. Plus 3,802,817 ^ ; Kinney 3,338,992; Hartma's US Patent No. 3, taken 763; Pete Brain's US Patent No. 3,502,538; and Dobo et al. US Patent No. 3,542,615, each of which is completely E: \ PATENT \ PK -001 08 \ pk-001 -0863 \ pk-001 -0863, doc2004 / 1/8 200418534 are incorporated herein for reference. Audible Lai Wei is cooled, and the record is placed to be glued. The spun fiber is generally continuous , And often have an average ship greater than 0, especially between about 0.6 and 10. ^ In the rest of the description, these items can be defined by additional terms. Continuous Machinery, Mohr's Ring and Mohr's Coulomb Theory We have found descriptions using jade articles and secrets from thieves. For your convenience, we provide a continuous mechanical summary, Moore rings, and Moore failure theory. It is important to understand that the purpose of this summary is for explanation only and is not to be construed as limiting. The invention disclosed herein. Absorbent article and synthesis It is porous. The opening gap between various raw materials that form composites (such as superabsorbent materials and φ fibers) is generally referred to as space or stomata space. Stomatal space serves as a storage liquid and / or provides liquid throughout the absorbent composition Or the duct or object of the object. The volume of the stomata per unit of absorbent composite-generally called "porosity."-The general absorption performance is improved by adding more records. For example, the absorbent composite replaces impurities, That is to say, the composition-promoting fluid_feeding force increases as the conformity (the rest of the prime, such as a specific surface area and distortion) increases. In general, the use of Lu pressure in porous media, such as absorbent composites of objects, is known to cause the capacity of the media, as well as the cutting shape in the case of anisotropic pressure. Figure-depicts the volumetric deformation of porous media. The leftmost image in the first figure indicates "higher porosity" (10) and shows the porosity of the porous media (⑴'s highest planar surface (⑷ (the highest planar area with some side areas)) that is not used by weight (12). The rightmost image of the first picture is labeled π "Lower pG1Osity" (16) and shows the same porous medium (12 '). This is applied to the porous medium by weight. ) Is the highest planar surface (14,). For the placement of the reaction weight (I8), this generates a pressure or standard force per unit area, σ (20), and the thickness is reduced (as indicated by AL (22)) (note: for this For the purpose of the invention, the compression pressure indicates positive pressure.) E: \ PATENT \ PK-001 〇8 \ pk-〇〇l-〇863 \ pk-001-〇863.doc2004 / l / 8 jq Porous media (12) formed by individual raw materials, such as superabsorbent particles and fibers (such as an absorbent composite). The thickness change of the porous media (12) may not help reduce the individual size of individual particles and fibers (These reduced individual thicknesses may be small or insignificant.) Instead In summary, the reduction in thickness of the porous medium (u) is attributed to the reduction in porosity (or similar space capacity). Therefore, in the example described in the first figure, σ (2〇) per unit area The increased pressure reduces the thickness of the porous medium (12) and decreases the porosity of the porous medium (π). (Note: In the first figure, if the fluid in the pores is a compressible gas, weaved in a multi-recording medium ( The fresh pressure on the surface of the radon is: compressing the gas in the stomata; or causing the gas in the stomata to leave the porous medium or its combination of compounds. Liquid, and then the standard pressure on the surface of the porous medium (12) causes the liquid part to leave the porous medium (12)). The porous medium (12) in the figure-can be reviewed into the step by step analysis of the porous medium (12) The pressure of any monomer. The second thief balance wipe, add external pressure ~ (M) to any porous monomer (32) $, the pressure state of any monomer (30), here cube Surface. For this purpose, the porosity Any monomer (%) in the mass (32) can be regarded as continuous f. In the first figure, 'the pressure state acts on the surface of the cube with two standard pressure members ^%), and it is expressed as σν (38) Vertically acting on the other surface of the cube and the shear pressure 2: (40). The standard component of pressure (36) is perpendicular to the plane of any component (30), although the shear pressure (40) is 30) Parallel. It should be noted that if the shear pressure (40) is zero (ie r = 0), the standard pressure (36) is called the main pressure. Furthermore, when r 4, the larger two standard pressures (36 ) Is called the majority stress when others are called the minority stress. For this discussion, two pressures are assumed to be the main pressures. Generally, at least two contributions are generated by pressure, and this combination causes major pressure, such as E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863.doc2004 / l / 8 j | ( 32) ο Formation of porous medium (32) m Transmission throughout porous medium (32). Due to the miscellaneous components that make up the M ^ receiver material, for example, a second contribution is made. With the other editors, the ship immediately _ to the second riding Qiu Renlaicheng part, with the "internal force, Jing Peijing (30) to make P said, when the side spares the pressure on the part, as described in the second riding For the main, 'the shear pressure (40) is not used in any component (30). In any case, in other imaginary sections, the pressure is slightly higher in the Yiyi County, and the plane is located far from the horizontal line (. < « < 9〇. ) _ Some angles α⑼), as shown in the third riding. The third figure depicts the majority principal pressure ❿ (52) acting on the majority principal plane (54), and the minority principal pressure σν (56) on the minority principal plane ⑼. The standard pressure ~ ⑽ and the shear pressure ra (62) act on the imaginary or arbitrary plane ⑽, and form an angle α (50) with the horizontal line. On the Rensi plane (64) it passes through the component (66) of the third riding show and the shear and fresh power (62) and (6G) can use ring-like methods, such as the fourth instant, the graphical method P!化 'as shown in the fourth figure *. The fourth figure shows a lattice of shear pressure (y-axis) (70) as a function of standard pressure (x-axis). For the purpose of this discussion, the main pressures are assumed to be known (for example, by calculation or measurement). The x_y coordinates of the few major pressures σν (74) and the most major pressures ah (76) are transverse to the X axis (ie, the shear pressure r (70) here is equal to zero). Draw a semicircle (78) so that the individual coordinates of the few and most major pressures (74) and (76) are equal to the end point of the perimeter of the semicircle (78). The radius of the semicircle (78) is equal to half the difference between the majority of the major pressure% (76) and the few major pressures ~ (74). By forming the radius line portion (80) at an angle of 20 (82) with the X axis, and the radius line portion (80) is equal to the center of the semicircle (78), and the other is finally equal to the semicircle arc immediately following most of the main pressure , The standard pressures ση〇 ((84) and r «(86) are obtained at the intersection (88) of the radius line (80) and the Moire semicircle (78). E: \ PATENT \ PK-001 08 \ pk- 001-0863 \ pk-001-0863. doc2004 / l / 8 γχ 200418534 The fifth figure depicts an example of pressure development in a porous medium using one or more expansion members, such as a particulate superabsorbent material. The γ-axis is again equal to the shear pressure r (100), and the χ-axis is again equal to the standard pressure σ (102). Assuming that the few major pressures σν (104) remaining in the self-porous medium acting on any constituents remain unchanged, then the pressure development (for example, with the expansion of the superabsorbent material) can be regarded as the Mohr family (106) , (108), (110), and (112), all have the same minimum pressure σν (ι〇4). The series of Mohr rings (106), (108), (11 ()), and (112) are generally called pressure channels (114). More precisely, for each Mohr ring (106), In terms of (108), (110), and (112), this line passes through the Moire ring at the point at which both the maximum shear pressure and the average pressure are simultaneously ((106), (108), ( 11〇), and group (112). The center of each Mohr ring (106), (108), (110), and (112) is regarded as equal to the average pressure, and the stomata space in a particularly arbitrary component is measured. The capacity is deformed and can be caused by the superabsorbent material to equal the approximate pressure. The pressure in the porous medium cannot be increased indefinitely, more precisely, it will be destroyed, and this along the special damage plane (such as in the super The tangent point between the absorbent material and the fibers, or the tangent point between individual particles of the superabsorbent material, etc.) is accompanied by sliding. The Mohr Coulomb failure benchmark states that the shear force acting on the failure plane will be the same as that acting on the same plane The standard force is linearly proportional to failure again. Therefore, Mohr Coulomb's theory provides a failure limit or Envelopes, this pressure that does not exceed the steady state does not exist. If a line equal to this failure limit overlaps the shear pressure and the standard pressure (described in Mohr's ring (106), (108), (110), and (112) This is considered to be equal to the given state or the degree of expansion of the porous medium using the superabsorbent material), and then in the range of the circle that becomes tangent to the envelope, the Moore ring (106), (108) (110), and (112) can only increase the radius (such as porous media and / or superabsorbent materials using porous media). The sixth figure describes the shear pressure Z: (122) vs. the standard pressure σ U24 The destruction envelope (120) on the lattice of). Two lattice Moore rings (126) and (128) are described on this lattice, and each Moire J has a different initial pressure number 即, that is, a few E with a few major pressures CXv () and (130 '). : \ PATENT \ PK-001 08 \ pk-001-0863 \ pk-001-0863. doc2004 / l / 8 ^ 200418534 Different numbers. Friction angle 0 (132) and cohesion c (134) are characteristics of special materials (such as absorbent composites containing fibers and superabsorbent materials; swollen rubber beds of special superabsorbent materials, etc.). The tangent of the friction angle must be (132), which is equivalent to the electrostatic friction of basic physics. The measurement increases the standard force, which allows a greater limit of shear force. Cohesion c (134) represents the amount of shear pressure that the material will endure before the standard plane of failure lacks any standard force to recede. Increasing the friction angle of any one of the three variables (132), cohesion c (134), or a few major pressures σν (130) and (130 ') will allow the development of larger pressures in porous materials, that is, larger Moores ring. The friction angle (132) and the cohesion c (134) are material properties and can be measured (such as using tests and the methods described here). The sixth figure also describes the mathematical relationship ^ fc + Ting Li (tan must) (136), which is about the friction angle Φ (132), cohesion c (134), the shear pressure in failure (138), and the damage CTnff (104) ). (Note: For the purpose of this disclosure, Ting embarrassment is equivalent to CTff ’, which means that the standard pressure acting on the failure plane during failure.) 0 This relationship is described in more detail in the detailed description area below. If specified earlier, the general advantage is to minimize or increase the reduction in porosity or void volume, the application of this compression pressure to absorbent articles. By selecting materials that limit the increase in pressure, such as low-control bed friction angle superabsorbent materials, the degree of porosity reduction can be reduced. For example, a superabsorbent material with a low friction bed angle of control will promote signs of damage before pressure rises to cause considerable damage to porosity and permeability. The additional benefit of providing pressure is to alleviate low-control bed friction material, which allows the superabsorbent material to retain a larger portion of the non-swelling capacity, as it is known that the superabsorbent capacity decreases as the packing increases. A new achievable superabsorbent material is described in K-CDocketl7991A, July 30, 2002, titled "Superabsorbent Material with Low Controlled Friction Angle of Rubber Bed and Its Composites", two jointly undecided The application is fully incorporated with this reference. But some superabsorbents with high gel bed angles in the foregoing are advantageous. For example, if the absorbent compound is in a high expansion state or a high porosity state, a superabsorber with a high gel bed angle can be used to "lock" the highly porous structure. This invention describes this new superabsorbent material. The present invention relates to a super absorbent material which is water-swellable and water-insoluble, and its absorbency E: \ PATENT \ PK-001 08 \ pk-001-0863 \ pk-001-0863.  doc2004 / 1/8 200418534 Superabsorbent used in absorbent composition of articles. Absorptive composites of absorbent articles generally contain superabsorbent materials, in higher quantities, such as in various forms of superabsorbent fibers and / or superabsorbent particles, and matrix composites such as cellulose fluff Pulp, mixed with the same kind. The superabsorbent material and cellulose fluff pulp can be of the same type throughout the absorbent composite or superabsorbent material. This is strategically located within the absorbent composite, such as forming a bevel in a fiber matrix composite. For example, more superabsorbent material may be at the end of the absorbent composition rather than at the other end of the absorbent composition. Alternatively, there are more superabsorbent materials along the upper surface of the absorbent composite, rather than the lower surface of the absorbent composite, or more absorbent composites along the lower surface of the absorbent composite, rather than the absorbent The upper surface of the composition. It is understood that various embodiments may utilize absorbent compositions. The water-swellable, water-insoluble superabsorbent material of the present invention can be used in these and various other embodiments of absorbent composites. Absorbent composites generally include a matrix composite or foam-like material, but mastery of memory will understand various embodiments of synthetic matrices. This fibrous matrix is made from cellulose fluff pulp. The cellulose fluff pulp may suitably include wood pulp fluff. Cellulose pulp fluff can be replaced in whole or in part with synthetic polymeric fibers such as meltblown fibers. Synthetic fibers' are not required in the absorbent composition of the present invention, but may be included. The preferred type of wood pulp fluff is considered the same as the trade name CR1654 (Bowater, Childersburg, Alabama, USA), and is a bleached superabsorbent wood pulp containing primarily soft wood fibers. Cellulose fluff pulp can be mixed with the same type of superabsorbent material. In the absorbent article, the same kind of mixed fluff and super absorbent material can be selectively placed in the ideal area with a higher concentration to better contain and absorb body exudates. For example, the quality of the same kind of mixed fluff and absorbent material can be configured so that the front part of the pad has more basis weight than the rear part of the pad. The absorbent composition of the present invention may suitably contain about 5 to 95% by weight of a superabsorbent material based on fibers, superabsorbent materials, and / or any other ingredients. Arbitrarily, the absorptivity is E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863. doc2004 / l / 8 200418534 The mass composition of the superabsorbent material in the adult is about 20 to go%. In addition, the mass composition of the superabsorbent material in the absorptive composition may be about 100 Å. Suitable superabsorbent materials for use in the present invention may be selected from natural, synthetic and modified natural polymers and materials. Superabsorbent materials can be inorganic materials, such as silicone, or organic composites, including natural materials such as agar, pectin, guanhua bean gum, and the like, and synthetic materials such as synthetic hydrogel polymers. For example, the hydrogel polymer includes an alkali metal salt of polyacrylic acid; polypropylene amide; polyvinyl alcohol; ethylene-maleic anhydride copolymer; polydivinyl ether; hydroxypropylcellulose , Polyacetamlin (p〇iyyinyi m〇rph〇lin〇ne); ethyl acetic acid, polyacrylic acid, polypropylene ammonium, vinyl ammonium polymers and copolymers; polyamines; and Lu Its complex. Other suitable polymers include hydrolyzed propionate starch, acrylic acid branched starch, and isobutylene-maleic anhydride copolymers and complexes thereof. The hydrogel polymer may be appropriately slightly cross-linked to provide a water-insoluble material. For example, cross-linking can be accomplished by irradiation or co-compensation, ions, van der Waals or hydrogen bonding. The superabsorbent material of the present invention may be in any form used in an absorbent structure, including particles, fibers, flakes, spheres, and the like. Generally superabsorbent polymers are available at 0. 9 wt% sodium gaseous aqueous solution absorbs at least about 10 times its own weight ' The 9 wt% gasified steel solution absorbs at least about 20 times its own weight. In accordance with the invention 'for appropriate processing or modification, superabsorbent polymers are obtained from a variety of different commercial vendors, such as Dow Chemical Company, located in central Michigan, USA, and Stockhausen, Inc., of Greensburg, North Carolina, USA . In accordance with the present invention, for the proper treatment or modification of 'other superabsorbent polymers,' described in U.S. Patent No. 5,601,542 issued by Melius et al. On February 1997; U.S. Patent Application filed in December 1999 Serial No. 009 / 475,829, which is assigned to Kimberly-Clark Co., Ltd .; and US Patent Application Serial No. 009 / 475,830, which is filed in December 1999, is assigned to Kimberly-Clark Co., Ltd. Each is incorporated herein by reference. Other examples of commercial superabsorbent materials used in the present invention include polyacrylate E.  \ ΡΑΤΕΝΤ \ ΡΚ-001 08 \ pk-001 -0863 \ pk-〇〇1 -0863.  doc2004 / J / 8 16 200418534, available from Stockhausen under the trademark FAVOR®. Examples include FAV0R®SXM 7, FAVOR®SXM 880, and FAVOR®SXM 9543. Other polypropionate superabsorbent materials that can be used in the present invention are available from Dow Chemical Company of the United States under the trademark DRYTECH®, such as DRYTECH® 2035. The superabsorbent material of the present invention may be in the form of particles in an unexpanded state, which has a maximum cross-sectional diameter generally in the range of about 50 microns to 1,000 microns, and a suitable range of about 1000 microns to 800 microns. In the meantime, it is determined by filtration analysis in accordance with American Association Test Material (ASTM) test method D_1921. It is understood that the particles of the superabsorbent material in the above-mentioned range may include solid particles, porous particles, or may be agglomerated particles including a plurality of smaller particles that are agglomerated into a size range described. The absorbent composition may also contain any of a variety of chemical additives or treatments, filters, filters, or other additives, such as clay, zeolite, and / or other odor-absorbing materials, such as activated carbon particles or activated particles such as zeolite and Activated carbon. The absorbent composition may also include a binder, such as a cross-linkable binder or binder, and / or a binder fiber, such as a bicomponent fiber. The absorbent composition may or may not be wound or wrapped by a suitable paper roll, which maintains the integrity and / or size of the absorbent composition. The structure and composition of the absorbent composition can be designed to contain and absorb fluids. The porosity of the fibrous matrix allows fluids to penetrate the absorbent composite and contact the fluid-absorbent superabsorbent material. The superabsorbent material expands as the superabsorbent material absorbs fluid. The expansion of the superabsorbent material can be affected by external forces, such as matrix material and pressure (ie, force or pressure per unit area) from the user's garden of the absorbent article. The peripheral matrix fibers and / or superabsorbent material and the pressure on the superabsorbent material can prevent the superabsorbent material from expanding and therefore stop absorbing, thereby absorbing the composition by reaching the entire non-expanding capacity. Further, as described above, the hard force acting on the absorbent composition, such as an absorbent composition using a superabsorbent material, can reduce the porosity and / or permeability of the absorbent composition. The friction angle of the absorbent material is an important mechanical property, which can affect the movement of the superabsorbent material E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001-0863. doc2004 / 1/8 γη 200418534 or expand within the absorbent synthetic matrix. As discussed in the summary section above, the friction angle is derived from Mohr Coulomb's failure theory, and the tangent of the friction angle corresponds to the traditional coefficient of electrostatic friction. A smaller friction angle can indicate that there is less contact friction between the superabsorbent material and the peripheral matrix, and the greater ability is that the superabsorbent material can rearrange within the matrix during expansion, so the superabsorbent material can be Maintain a larger portion of the non-swelling absorption capacity. And, with a lower pressure increase, a smaller friction angle can promote destruction (for example, moving between the expanded particles of the superabsorbent material; or expanded particles of the superabsorbent material and the peripheral fiber matrix, etc.) Etc.) to reduce the loss of porosity and / or permeability in the absorbent composition. In other words, when the superabsorbent material is completely inflated and in a gel bed or a highly porous absorbent composite, a large friction angle indicates that there is greater friction between the superabsorbent material and the environmental matrix composite, which inhibits the superabsorbent material alignment In the matrix space of the composite, thus maintaining the permeability of the gel bed or absorbent composite. The state of destruction of the surface between the superabsorbent material and the perimeter component allows the superabsorbent material to be rearranged within the wet matrix or part of the gland bed. As indicated in the summary section, Moire rings can be used to describe the pressure state of materials, such as wet gel beds or absorbent composites or porous matrices. The seventh figure shows the Mohr rings (150) and (152) that the general rubber bed swells to a special degree. The seventh picture is shown in 2. Moore rings (150) and (152) of superabsorbent FAVOR〇 in the degree of swelling of 0 g of saline / g superabsorbent material. A larger Moire ring (152) indicates that when the less major pressure is zero, there are some more major pressure conditions anywhere on the rubber bed. Although not shown in the seventh figure, Mole Yuyi is produced at each applied standard pressure. The failure state of the superabsorbent material is described by the Mohr ring group in the failure, which is defined by the Mohr failure envelope. The Moire failure envelope is often very close to a straight line, as shown by line (154) in Figure 7, and represents the shear pressure of failure on the failure plane vs. the standard pressure acting on the same plane. The damage envelope represented by the line ο%), often called the Mohr-Coulomb failure criterion, can be expressed mathematically by the formula: ΓΓffffc + Q- ^ tan φ) E: \ PATENT \ PK-001 08 \ pk-001- 0863 \ pk-001 -0863.  doc2004 / 1/8 18 200418534 where r ff is the shear pressure, c is the effective bonding constant, σίί is the standard pressure, and must be the friction angle of the rubber bed or superabsorbent material. The effective binding constant is graphically represented by the number 値 (156), and is suitable for the binding force of the absorbent article to the peripheral matrix. The friction angle of the rubber bed of the superabsorbent material of the present invention can be measured by various methods such as soil mechanics. Useful instruments for determining the friction angle of a rubber bed include a triaxial scissors measuring instrument, such as σ 1, obtained from Houston GeoTac, Texas, or a shear tester such as the jenike-Shulze ring shear tester. From Jenike & Johanson, Westford, Mass. Figure 8 shows a partial cutaway of the Jenike-Shulze ring shear tester. This is called reference number 170. The ring shear tester (170) has a ring shear chamber (172) connected to a motor (not shown), which can rotate the ring shear chamber (172) in the direction ⑴. The annular shear chamber (172) and the lid (174) contain a gel bed (176) of absorbent material as a test. The cover (174) is not installed in the ring shear chamber (172), the beam (178) crosses the cover (174), and two guide rollers (180) and two bolts (182) are connected to the cover (174). For measuring the friction angle of the rubber bed of the expanded superabsorbent material rubber bed (176), the superabsorbent material expands outside the annular shear chamber (172) and is placed in the annular shear chamber (172). The application force N is estimated on the lid (174), and is weight (not shown) on the superabsorbent material (176). Equilibrium systems (not shown) can be used to test at lower standard pressures. As the computer in the annular shear chamber (172) controls the motor (not shown) spring rotates in the direction ω, the shear pressure is applied to the superabsorbent material rubber bed (176) that contacts the annular shear chamber (172). An instrument connected to the bolt (182) measures forces F1 and F2, which is used to determine the shear pressure of the superabsorbent material rubber bed (176) during failure (for the application of standard pressure). In a specific embodiment of the present invention, a superabsorbent material having a low rubber bed friction angle can be used in an absorbent composition. In one embodiment of the present invention, the superabsorbent material swells about 5. 0 to 0. In a 9 wt% aqueous solution of sodium vaporized / 1 gram of superabsorbent material (g / g), the friction angle of the superabsorbent material gel bed decreases in accordance with the expansion to about 30 degrees or less, and the expansion is greater than 5. There is about 30 E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863 in 0 g / g. doc2004 / l / 8 19 200418534 degrees or less. More suitably, the superabsorbent material swells about 5. In 0 g / 9 wt% gasified sodium aqueous solution / 1 g of superabsorbent material (g / g), the friction angle of the superabsorbent material gel bed decreases according to expansion to about 33 degrees or less, and the expansion is greater than 5. There are about 33 degrees or less in 0 g / g. More specifically, the superabsorbent material swells about 5. 0 g / 9 wt% sodium gasified aqueous solution /; [gram of superabsorbent material (g / g), the friction angle of the superabsorbent material gel bed decreases according to expansion to about 38 degrees or less, and the expansion Greater than 5. About 0 degrees / g is left at about 38 degrees or less. When the absorbent composite is highly porous or in a high expansion state, the high friction angle of the superabsorbent material will slow down and / or inhibit alignment in the matrix of the absorbent composite. Slowing and / or inhibiting the arrangement of the superabsorbent material in the matrix of the absorbent composite can maintain an open composite structure, and if necessary, therefore maintain the required permeability of the absorbent composite. The high friction angle of the superabsorbent material is particularly suitable for maintaining the open-angled structure under load. When wet, the high friction angle of the superabsorbent material may include increasing the friction angle of the superabsorbent material through a manufacturing process or by treating the low friction angle superabsorbent material with various friction angle enhancers. In one embodiment of the present invention, the friction angle increasing additive is chitin, which can cause a viscosity condition in the anionic superabsorbent polymer, which results in a higher friction angle. Examples of such friction angle increasing additives include, without limitation, sodium silicate, sodium aluminate, and aluminosilicate. The friction angle of the rubber bed increases the amount of the additive, the surfactant or the emulsifier, and the amount of the hetero or non-hyperabsorbent material is about 10% or less, or less. Optionally, the amount of trace miscellaneous increase additives, surface active emulsification may be about · wt% swelling or swelling superabsorbent material or less. In addition, the number of 'rubber bed friction angle increase additives, surfactants or emulsifiers may be about 100. 0 wt% expanded or non-expanded superabsorbent material or less. The number of additives, surfactants or emulsifiers that can increase the friction angle of the rubber bed can be about _ 丨 plus% expansion or non-hyperabsorbent material Qianxiang. At any rate, the amount of miscellaneous additives, silk miscellaneous agents, or emulsifiers can be about 0.1 wt% or more or less superabsorbent material or more. In addition, the friction angle of the rubber bed is increased by additives, silk lay-ups, or emulsified.  doc2004 / 1/8 20 200418534 or non-expandable superabsorbent material or more. The absorbent composition of the present invention may include various superabsorbent materials for controlling the friction angle of the rubber bed of the present invention, including superabsorbent materials having a low friction angle of the rubber bed. The superabsorbent material with the controlled friction angle of the rubber bed can be mixed with the same kind in the absorbent composition, or can be strategically located in different absorbent synthetic fields. Here, the individual control of the friction angle of the rubber bed is ideal. In an embodiment of the present invention, the friction angle of the rubber bed of the superabsorbent material can be increased during the expansion of the superabsorbent material structure with water and the water-insoluble polymer binding site during the expansion with the friction angle enhancer. The friction angle enhancer tends to move from within the polymer structure to the surface of the superabsorbent material as the superabsorbent material expands. In fact, when dry or wet, the friction angle enhancer does not cover, or covers, the surface of the superabsorbent material moves to the surface during expansion, thus causing the friction angle of the superabsorbent material rubber bed to increase. Friction angle increasing additives may be organic and / or inorganic, natural and / or synthetic materials. A small concentration of emulsifier and / or surfactant, in addition to the friction angle reduction additive, the friction angle reduction additive mixture can help reduce the rubber bed friction angle of the superabsorbent material. Emulsifiers and surfactants can increase the non-polar friction angle and reduce the miscibility between additives and polar friction angle. Emulsifiers and surfactants can also play an indispensable role in coating expanded superabsorbent materials. Various emulsifiers and / or surfactants can be used in the present invention according to the friction angle reduction. 0 Additives are used. Examples of emulsifiers are test fat and lecithin. Examples of liquid surfactants include sorbitan monolaurate, available from J. T.  Baker's TRITON® series (X-100, X-405 & SP-135), purchased from J. T. Baker's BRIJ® series (92 and 97) compounds, polyoxyethylene (80) sorbitan monostearate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tetraoleate) and triethanolamine with other alcoholamines and their complexes. When using polar and non-polar compounds, such as friction angle or binding number to change additives, emulsifiers and surfactants, the proportion of non-polar compounds is greater than that of polar compounds. E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863, doc2004 / 1/8 200418534 In another embodiment of the present invention, the superabsorber is in the position of the structure matrix of the superabsorbent material. The friction angle of the rubber bed of the material can increase the force σ. Friction angle enhancers are combined with matrix composites, such as covering Coquibe fibers. The friction angle enhancer tends to combine with the superabsorbent material surface when the fiber is wet to increase the friction angle of the superabsorbent material rubber bed. It is suitable that although the superabsorbent material friction angle enhancer debonds the f-complex under the scale, the superabsorbent material continues to increase the friction angle of the superabsorbent material rubber bed. Friction angle increasing additives may be organic and / or inorganic, natural and / or synthetic materials. Additives, such as friction angle increase additives and friction angle decrease additives, can change the friction angle of the superabsorbent material, either directly or indirectly to the superabsorbent. Direct transmission can be separated via the superabsorbent parameter material itself, and from other components of the fiber, indirectly within or near the superabsorbent material and / or absorbent composite. Furthermore, the friction angle modification additive may gradually separate and transmit any component in the absorbent composition over some time, or as a result, some chemical reactions are designed to separate the friction angle modification additive in most cases. For example, a friction angle modification additive may be attached to the surface of a superabsorbent material, within its interior, or may be loaded into some other component in an absorbent composition, including, but not limited to, a fibrous material. The friction angle modification additive can be used immediately to cause the friction angle to change immediately, or to gradually change the friction angle in an ideal manner due to a chemical reaction or diffusion or some other structure in some ideal time. 0 Ideally capable of processing superabsorbent materials, fibers and / or fibrous substrates and / or other ingredients, which can be used for friction angle modification additives such as friction angle reduction additives, friction angle increase additives and / or Its composite to provide a material with a desired initial friction angle. The additive-treated material is modified at a friction angle, and then an ideal initial friction angle at which the additive can be modified with an additional friction angle is provided in accordance with the present invention. When used herein with regard to the angle of friction, the term "substantially" means +/- 1 degree. When used herein in relation to the angle of friction, the term "substantially" means at +/- 100 degrees. The material for controlling the friction angle of the rubber bed of the present invention can be incorporated into E: \ PATHNT \ PK-001 08 \ pk-001-0863 \ pk-001-0863 for use in absorbent articles. doc2004 / l / 8 22 200418534 Absorptive composition. The various rubber bed friction angles of the present invention can be used in various mixed structures of known technology, such as those described above, including fibrous composites, such as meltblown, airlaid and spunbond composites, and foam-like composites. Thing. The superabsorbent material of the present invention can be formed in various structures of the absorbent composition, including particles, flakes, fibers, and spheres. According to an embodiment of the present invention, the superabsorbent material may include a water-swellable, water-insoluble superabsorbent material. The super absorbent material may have a first rubber bed friction angle in a 0.9 g of the 0.5% sodium vaporized solution of the superabsorbent material at a degree of swelling of about 50 grams per kilogram of the superabsorbent material. The superabsorbent material can also have a rubber bed friction angle in a superabsorbent material with a degree of swelling greater than about 509 grams of 0.9% tree gasified sodium solution / 1 gram of superabsorbent material, which is substantially equal to or less than the first rubber bed friction angle. The first rubber bed friction angle may be about 30 degrees or less. According to other aspects of the invention, the first rubber bed friction angle may be about 38 degrees or less. Water-swellable and water-insoluble superabsorbent materials can be selected from natural materials, modified natural materials, synthetic materials, and their composites. Water-swellable and water-insoluble superabsorbent materials can be selected from natural materials, modified natural materials, synthetic materials, and their composites. Water-swellable, water-insoluble superabsorbent materials can be selected from free silica gel; agar; pectin; hypoglycemic drugs; polyacrylic acid, polypropylamine, polyvinyl alcohol, acetic acid-maleic anhydride Polymer, Polydivinyl Ether, Hydroxypropyl Cellulose (Hydroxypropyl cellulose), Poly (vinyl morphone), Acetanoic acid, Polyacrylic acid vinegar, Polyacrylamide, Vinylpyridine Substances and copolymers, propylene branched starch, acrylic branched branch powder, isobutyrate, two liver secrets, metal amine compounds, and metal salt formation. The present invention may further include a friction angle increasing additive combined with a superabsorbent material. The friction angle increasing additive may be selected from the group consisting of chitin, sodium silicate, sodium aluminate, aluminosilicate, and complexes thereof. The fiber is selected from the group consisting of natural fibers, synthetic fibers, and composites thereof. The structure contained in the superabsorbent material may be selected from the group consisting of particles, fibers, flakes, and spheres. E: \ PATENT \ PK-001 08 \ pk-00l-0863 \ pk-001-0863. doc2004 / l / 8 23 According to an embodiment of the present invention, the superabsorbent material may include a water-swellable, water-insoluble superabsorbent material. The superabsorbent material may have a first rubber bed friction angle in a 0.9 Wt% sodium vaporized solution / 1 gram superabsorbent material whose degree of expansion of the superabsorbent material is about 5.0 grams. The superabsorbent material can also have a rubber bed friction angle in the degree of expansion of the superabsorbent material greater than about 5.0 grams of 0.9 wt% sodium gas solution / 1 gram of superabsorbent material, which is substantially equal to or less than the first rubber Bed friction angle. The first rubber bed friction angle may be about 30 degrees or less. According to other aspects of the invention, the first rubber bed friction angle may be about 38 degrees or less. Water-swellable and water-insoluble superabsorbent materials can be selected from natural materials, modified natural materials, synthetic materials, and their composites. Water-swellable and water-insoluble superabsorbent materials can be formed from essentially natural materials, modified natural materials, synthetic materials, and composites thereof. Water-swellable and water-insoluble superabsorbent materials can be selected from essentially silicone gels; agar; pectin; hypoglycemic_; polyacrylic acid, polyacrylamide, polyvinyl alcohol, ethoxylated-cisbutane Polymers and copolymers of anhydride copolymers, polydivinyl ether, hydroxypropylcellulose, polyvinylmorphone, ethylenesulfonic acid, polyacrylate, polyacrylamide, vinylpyridine , Branched starch, branched starch, propionic acid branched starch, isobutylene, maleic anhydride copolymer, polyamines and combinations of metal salts. The present invention may further include a friction angle increasing additive combined with a superabsorbent material. The friction angle increasing additive may be selected from the group consisting of chitin, sodium silicate, sodium aluminate, aluminosilicate, and complexes thereof. Wettable fibers can be formed from natural fibers, synthetic fibers, and composites thereof. The structure contained in the superabsorbent material may be selected from the group consisting of particles, fibers, flakes, and spheres. The superabsorbent composition may further include a friction increasing additive combined with a wettable fiber. Friction angle increase additives can be formed by chitin, sodium silicate, sodium aluminate, aluminosilicate and their complexes. Most wettable fibers can be formed from natural materials, synthetic materials, and composites thereof. E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863 doc2004 / 1/8 24 200418534 Friction angle measurement ring shear test equipment, such as jenike-Schulze Ring Shear Tester apparatus, can be used for determination Friction angle of superabsorbent material rubber bed. For testing, a sufficient amount (200 to 10,000 grams) of expanded superabsorbent material (for example, an expansion of 0 to 30 grams / gram or more) is placed in the ring shear chamber. For the samples described below, a manual RTS-Ol, such as a Jenike_shulze ring shear tester, is engaged. pc 'RTS-CONTROL "Describes the" yield locus "standard procedure. The following are specific details of the material preparation and test procedures: Superabsorbent material in a Kitchen AidTM mixer (model # K5SS, 5 quarts) Swell to 0. 9 wt% water-soluble sodium gaseous ideal (as obtained from Ricca Chemical Co., Arlington, Texas); a specific amount (200 ~ 100 grams) solution, and then add a predetermined amount (20 ~ 600) while stirring the fluid slowly with the stir bar at the lowest speed setting (set Fanyuan to 1 ~ 10, where 1 is the lowest, 10 is the highest). G) of dry absorbent material. This is done so that the expanding solution is uniformly distributed to all superabsorbent materials. When all the solution is absorbed by the superabsorbent material (absorption time: 0 ~ 30 minutes), the bowl is removed from the stirrer, capped to prevent evaporation, and allowed to equilibrate for hours, and each particle of this fluid is distributed equally throughout . The samples were manually mixed every 15 minutes to ensure that no lumps formed. SAP capacity (g / g) SAP-fluid ratio required dry weight (g) required physiological saline weight (g) total SAP fluid weight (g) number of standard ring chambers (g) 1 1: 1 250 250 500 350 -450 2 1: 2 150 300 450 350-450 5 1: 5 80 400 480 400-480 10 1: 10 50 500 550 450-550 15 1: 15 40 600 640 540-640 20 1: 20 30 600 630 550 -630 E: \ PATENT \ PK-001 〇8 \ pk-〇〇1 -〇863 \ pk-001 -0863, doc2004 / 1/8 25 200418534 If the coating is applied to a superabsorbent material, for example, Suitable coating additives are individually described below. Equilibrium (approximately 1 hour) and expanded superabsorbent material are evenly applied using a KitchenAidTM blender by introducing the expanded superabsorbent material into a bowl, and then slowly add coating additives (addition time: 1 ~ 30 minutes) ' At the same time, in the minimum speed setting (set Fanyuan to 1 ~ ⑺, where 1 is the lowest and 10 is the highest), the superabsorbent material is continuously rotated in the bowl with the stirring rod. The coated superabsorbent material allows manual mixing to be stopped every 5 minutes for 0 to 30 minutes to maintain equal processing distribution. Rubber bed friction angle and effective cohesion were measured using a Jenike-Schulze ring shear tester. A Jenike-Schulze ring shear tester was used to obtain the bed friction angle of the superabsorbent material bed at various degrees of expansion. Operate the ring shear tester and calibrate the scale according to the instructions provided by the manufacturer. Place the sample in the ring shear chamber (the standard volume of the ring chamber is 942 48 cubic centimeters), while ensuring that the rubber bed is evenly distributed (see table above). One hour after the completion of the equilibration with a 09 sodium gas solution is assumed, the ring shear chamber is filled with the enlarged superabsorbent material to be tested. Even if the filling is obtained by removing excess material with a spatula, there is no need to compact the superabsorbent material. The superabsorbent material gel bed is properly rinsed above the annular shear chamber. On the mass balance, measure the full circle cut (without the cover) and record. The samples described below were tested with the ring shear tester control program (rstctrl) for 1 to 2 hours. Ask RSTCTRL that the full shear chamber is indeed placed on the driving axle. Place the cover on the ring-shearing chamber, and there will be a small number of reverse angles in the self-shearing position; the ring-shear tester presets this starting position. The handle in the opposite direction is on the right side of the beam and the strong hook touches the handle. Xiao RSTCTRL requested, leveling and ring fishing 2 check the ‘central axis. The pegs are attached to each side of the beam and the adjustment ring shear chamber is adjusted so there is no compression cup. The RST-control provides adjustments with the arrow keys ... ◊ ◊, and use in place: Geshan stop. The pressure of the sample read in the 4 test ^ ’can be seen from the fiber control case &. In the sample 4 test described below, the “pre-shear code” is set at the recommended pressure, and the pre-shear / pre-stretched rubber bed trimming failure is used to obtain the Mohr-Coulomb failure envelope. It is E: \ PATENT \ PK-001 08 \ pk-001-0863 \ pk-001-0863. doc2004 / l / 8 200418534 500 Pascals ~ 2500 Pascals. Pre-shear occurs before each shear measurement. Therefore, each superabsorbent material bed is sheared twice under any of the typical shear pressures in a test. Sometimes equipment needs to operate in semi-automatic mode and data points are obtained manually. After completing the sample below, use RSV 95 Section 1. Version 0 to analyze the results; the software package includes a ring shear tester. Example To demonstrate the idea of the present invention, a superabsorbent material labeled FAVOR (DSXM 9543 (purchased from Stockhausen Co., Ltd., Greensboro, North Carolina) is used to reduce the friction angle of the rubber bed. Angle, untreated FAVOR®SXM 9543, measured as control in various degrees of expansion. Table i is a summary of the results. Table 1 Degree of expansion (g / g) 2 5 10 15 20 Friction angle of the rubber bed (degrees) 23 15 12 11 12 Examples expand the number of 3 FAVOR (g) SXM 9543 to 2 grams, 5 grams and 10 grams per gram of superabsorbent material. 9 wt% aqueous sodium vaporized solution (g / g) and equilibrated for 1 hour, as described above. At every 3. 0 g of the expanded superabsorbent material has a 10 g additive ratio, sodium silicone solution, purchased from J. Phillipsburg, New Jersey.  T. Baker, used in superabsorbent materials. The bed friction angle was measured as described above. The friction angle of each covered superabsorbent material rubber bed is shown in Table 2. E: \ PATENT \ PK-001 08 \ pk-001-0863 \ pk-001-0863.  doc2004 / 1/8 27 200418534

5 克/克 ' -—- --------- 10 克 /克 ----— -—--------丨 本發明這些及其健 專利細中。糾’私彡貞知道多樣騎實摘峨財全部或部份改 變。進-步’這紐織·由上糊子錢,但视制本發_此進一 步描述於申請專利範園。 圖示元件簡要説明 10 higher porosity 較高多孔性 12 porous medium 多孔性介質 12, porous medium 多孔性介質 14 uppermost planar surface 取南平面表面 14, uppermost planar surface 最高平面表面 18 weight 重量 20 normal force per unit area 每單位面積的標準力量 22 thickness 厚度 30 arbitrary element 任意單體 32 porous medium 多孔性介質 34 external stress 外部壓力 40 shear stress 切變壓力 50 angle 角度 52 major principal stress 多數主要壓力 54 major principal plane 多數主要平面 E:\PATENT\PK-001 08\pk-001 -0863\pk-001-0863 ,doc2004/l /8 28 200418534 60 normal force 標準力量 62 shear force 切變力量 64 arbitrary plane 任意平面 66 element 構成部分 70 shear stress 切變墨力 72 normal stress 標準壓力 74 minor principal stress 少數主要壓力 76 major principal stress 多數主要壓力 78 semi-circle 半圓 106 Mohr Circle 莫爾環 108 Mohr Circle 莫爾環 110 Mohr Circle 莫爾環 112 Mohr Circle 莫爾環 114 stress path 壓力通道 120 envelope 包絡線 122 shear stress 切變壓力 124 normal stress 標準壓力 126 Mohr circle 莫爾環 128 Mohr circle 莫爾環 130 minor principal stress 少數主要壓力 130' minor principal stress 少數主要壓力 132 friction angle 摩擦角 134 cohesion 凝聚力 136 mathematical relationship 數學關係 138 shear stress 切變歷力 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863.doc2004/I/8 29 200418534 140 normal stress 標準壓力 150 Mohr circle 莫爾環 152 Mohr circle 莫爾環 154 line 線 156 value 數値 170 ring shear tester 環切變試驗器 172 ring shear cell 環切變室 174 lid 蓋子 176 superabsorbent material 超吸收體材料 178 crossbeam 橫梁 182 tie rod 栓桿 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863. doc2004/1 /8 200418534 【圖式簡單説明】 ,弟:壓力(力/單位面積_於介質上之多孔性介質反應的例子。 f一 Θ爲夕孔性介質中任意單體的平衡壓力狀態的例子。 第-圖爲任意單體以及遵照通過任意單體平面標準力量及剪力的例 子。 成〃圖爲在切“壓力(y軸)對標準壓力(X軸)的地區圖上的莫爾 環例子。 ' 第五圖爲在切變壓力(y軸)對鮮壓力(X軸)的地區圖上與可能 壓力方向-致的連續難環例子。 第”圖爲關於在切變壓力(y軸)對標準壓力(χ軸)的地區圖上莫 爾庫侖破壞包絡線的莫爾環例子。 第七圖爲關於在切變壓力(y軸)對標準壓力(X軸)的地區圖上莫 爾庫侖破壞包絡線的類環之特定例子。 第八圖爲摩擦角測量裝置的例子,此情形爲Kenike-Schulze Ring-Shear ηη ° 饮獲自美國麻薩諸塞州Westford的Jenike&Johanson有限公司。 E:\PATENT\PK-001 〇8\pk-001-0863\pk-001-〇863.doc2004/l/8 315 g / g '------ --------- 10 g / g -------- --------- 丨 This invention and its patents are in detail. Kou ’s private prince knows all or part of Echo Choi ’s changes. Progress-this button weaving money from the past, but depending on the system _ this further described in the patent application park. Brief description of the diagram elements 10 higher porosity 12 porous medium 12, porous medium 14 uppermost planar surface Take south plane surface 14, uppermost planar surface 18 weight 20 normal force per unit area Standard force per unit area 22 thickness 30 arbitrary element 32 porous medium 34 external stress 40 shear stress shear angle 50 angle 52 major principal stress 54 major principal plane : \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001-0863, doc2004 / l / 8 28 200418534 60 normal force standard force 62 shear force shear force 64 arbitrary plane 66 element component 70 shear stress shear force 72 normal stress standard pressure 74 minor principal stress 76 major principal stress 78 major-circle 106 Mohr Circle Mohr Ring 108 Mohr Circle Mohr Ring 110 Mohr C ircle Mohr ring 112 Mohr Circle Mohr ring 114 stress path 120 envelope envelope 122 shear stress Shear pressure 124 normal stress standard pressure 126 Mohr circle Mohr ring 128 Mohr circle Mohr ring 130 minor principal stress 130 'minor principal stress 132 friction angle friction angle 134 cohesion 136 mathematical relationship 138 shear stress shear stress E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863.doc2004 / I / 8 29 200418534 140 normal stress 150 Mohr circle Moore ring 152 Mohr circle Moore ring 154 line Line 156 value 値 170 ring shear tester 172 ring shear cell ring shear cell 174 lid 176 superabsorbent material 178 crossbeam beam 182 tie rod E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863. Doc2004 / 1/8 200418534 [Simplified description of the diagram], Brother: Pressure (force / unit area_ example of reaction of porous media on media). f-Θ is an example of an equilibrium pressure state of an arbitrary monomer in a porous medium. Figure-is an example of arbitrary cells and compliance with the standard force and shear force through the plane of arbitrary cells. The map is an example of a Moire ring on the area map of the "pressure (y-axis) versus standard pressure (x-axis)." The fifth figure shows the relationship between shear pressure (y-axis) and fresh pressure (x-axis). An example of a continuous difficulty ring in the area map consistent with the possible pressure direction. The "picture" is an example of the Mohr ring on the area map of shear pressure (y-axis) versus standard pressure (χ-axis). . The seventh diagram is a specific example of the ring-like loop of the Mohr-Coulomb failure envelope on the area map of shear pressure (y-axis) versus standard pressure (x-axis). The eighth figure is an example of a friction angle measuring device, in this case, Kenike-Schulze Ring-Shear ηη ° obtained from Jenike & Johanson Co., Ltd. of Westford, Massachusetts, USA. E: \ PATENT \ PK-001 〇8 \ pk-001-0863 \ pk-001-〇863.doc2004 / l / 8 31

Claims (1)

拾、申請專利範固: 種具有同控制之膠床摩擦角的超吸收體材料,其中超吸收體材料包 含: 水可膨脹、水不能溶解的超吸收體材料;及 在每克超吸收體概有5.G克之〇·9 wt%齡齡㈣超吸鎌材料膨 服私度中,超吸收體材料具有第一膠床摩擦角,且絲克超%收體材料 有大於5.0克之0.9 wt%氣化鈉溶液的超⑨收體材料膨脹程度中具有膠 床角度,此等於或小於第一膠床摩擦角, 其中第一膠床摩擦角爲30度或更大。 2·如申印專利範圍第1項的超吸收體材料,其中第一膠床摩擦角爲38度 或更大。 3·如申請專利範園第1項的超吸收體材料,其巾水可膨脹、水不能溶解的 超吸收體材舰自歧絲料、改造天倾料、合成婦及其複合物形 成。 4·如申請專利範圍第3項的超吸收體材料,其中水可膨脹、水不能溶解的 超吸收體材料選自由矽凝膠;洋菜;果膠;降血糖藥;聚丙烯酸、聚丙烯醯 胺、聚乙埽醇、乙埽-順丁婦二肝共聚物、聚二乙婦趟、經丙基纖維素、 聚乙烯嗎林酮、乙烯磺酸、聚丙烯酸酯、聚丙烯醯胺、乙烯基紕淀的聚 合物及共聚物、丙歸分枝澱粉、丙烯酸分枝澱粉、異丁烯順丁烯二酐共 聚物及其複合物的鹼性金屬鹽類形成。 5.如申請專利範園第3項的超吸收體材料,其中水可膨脹、水不能溶解的 超吸收體材料選自由矽凝膠;洋菜;果膠;降血糖藥;聚丙烯酸、聚丙烯酿 胺、聚乙烯醇、乙烯-順丁烯二酐共聚物、聚二乙烯醚、羥丙基纖維素、 聚乙烯嗎林酮、乙埽績酸、聚丙烯酸酯、聚丙埽酿胺、乙烯基跳淀的聚 合物及共聚物、丙烯分枝澱粉、丙烯酸分枝澱粉、異丁烯順丁烯二奸共 E:\PATE>mPK-〇〇i〇8\pk.〇〇1.〇863\pk.〇〇1.〇863d〇c2〇〇4/1/8 ^ 聚物、多元胺及其複合物的鹼性金屬鹽類形成。 6·如申凊專利範圍第1項的吸收性合成物,進一步包含與超吸收體材料結 合的摩擦增如添加物。 7. 如申請專利範圍第6項的吸收性合成物,其中摩擦角增加添加物選自由 甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 8. 如申凊專利範園第1項的超吸收體材料,進一步包含選自由顆粒、纖 維、薄片狀、球形及其複合物形成。 9· 一種具有高控制之膠床摩擦角的超吸收體材料,其中吸收性複合物包 含: 多數可溼性纖維;及 在每克超吸收體材料有5.0克之0.9 wt%氣化鈉溶液的超吸收體材料膨 脹程度中’超吸收體材料具有第一膠床摩擦角,且在每克超吸收體材料 有大於5.0克之〇.9 wt%氣化鈉溶液的超吸收體材料膨脹程度中具有膠 床角度,此等於或小於第一膠床摩擦角, 其中第一膠床摩擦角爲30度或更少。 10·如申請專利範圍第9項的吸收性複合物,其中第一膠床摩擦角爲38度 或更大。 11·如申請專利範圍第9項的吸收性複合物,其中水可膨脹、水不能溶解的 超吸收體材料選自由天然材料、改造天然材料、合成材料及其複合物形 成。 12·如申請專利範圍第η項的吸收性複合物,其中水可膨脹、水不能溶解 的超吸收體材料選自由矽凝膠;洋菜;果膠;降血糖禁;聚丙烯酸、聚丙烯 醯胺、聚乙烯醇、乙烯-順丁烯二酐共聚物、聚二乙烯醚、輕丙基纖維 素、聚乙烯嗎林酮、乙烯磺酸、聚丙烯酸酯、聚丙烯醯胺、乙埽基紕淀 的聚合物及共聚物、丙烯分枝澱粉、丙烯酸分枝澱粉、異丁埽順丁缔二 Ε:·ΕΝΤ\ΡΚ-001 08\Pk-001-〇863\Pk-〇〇1_0863 d〇c2〇_/8 % 肝共聚物及其複合物的鹼性金屬鹽類形成。 13·如申請專利範園第η項的吸收性複合物,其中水可膨脹、水不能溶解 的超吸收體材料選自由矽凝膠;洋菜;杲膠;降血糖藥;聚丙烯酸、聚丙烯 醯胺、聚乙烯醇、乙烯-順丁烯二酐共聚物、聚二乙烯醚、羥丙基纖維 素、聚乙烯嗎林酮、乙烯磺酸、聚丙烯酸酯、聚丙烯醯胺、乙烯基破淀 的聚合物及共聚物、丙烯分枝澱粉、丙烯酸分枝澱粉、異丁烯順丁烯二 奸共聚物、多元胺及其複合物的鹼性金屬鹽類形成。 Η·如申請專利範圍第9項的吸收性複合物,進一步包含與超吸收體材料結 合的摩擦增加添加物。 15.如申請專利範圍第14項的吸收性複合物,其中摩擦角增加添加物選自 由甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 16·如申請專利範圍第9項的吸收性複合物,進一步包含選自由顆粒、纖 維、薄片狀、球形及其複合物形成。 17·如申請專利範圍第9項的吸收性複合物,進一步包含與可溼性纖維結合 的摩擦增加添加物。 18·如申請專利範圍第17項的吸收性複合物,其中摩檫角增加添加物選自 由甲殼素、矽酸鈉、鋁酸鈉、鋁矽酸鹽及其複合物形成。 E:\PATENT\PK-001 08\pk-001 -0863\pk-001 -0863 ,doc2004/1/8Fangu, a patent application: a kind of superabsorbent material with the same controlled friction angle of the rubber bed, where the superabsorbent material includes: water-swellable, water-insoluble superabsorbent material; and There is 5.9 grams of 0.9% wt-year-old super absorbent sickle material, and the superabsorbent material has the first rubber bed friction angle, and the silk super% absorbent material has a weight ratio of greater than 5.0 grams to 0.9 wt%. The degree of swelling of the superabsorbent material of the vaporized sodium solution has a rubber bed angle, which is equal to or smaller than the first rubber bed friction angle, where the first rubber bed friction angle is 30 degrees or more. 2. The superabsorbent material according to item 1 of the scope of the printed patent, in which the friction angle of the first rubber bed is 38 degrees or more. 3. If the superabsorbent material of Item 1 of the patent application park, the towel is swellable and the water cannot dissolve. The superabsorbent material is made of self-distribution material, remodeling material, synthetic woman and its composite. 4. The superabsorbent material according to item 3 of the patent application, wherein the superabsorbent material that is water-swellable and water-insoluble is selected from the group consisting of silicone gel; agar; pectin; hypoglycemic agents; polyacrylic acid and polypropylene Amine, Polyethylenol, Ethylene-Butyl-Women-Liver Copolymer, Polyethylenol, Transpropyl Cellulose, Polymorphone, Ethylene Sulfonic Acid, Polyacrylate, Polyacrylamide, Ethylene Basic metal salts of polymers and copolymers based on hydration, acrylic acid branched starch, acrylic acid branched starch, isobutylene maleic anhydride copolymer and their composites are formed. 5. The superabsorbent material according to item 3 of the patent application park, wherein the superabsorbent material that is water-swellable and water-insoluble is selected from the group consisting of silicone gel; agar; pectin; hypoglycemic agents; polyacrylic acid and polypropylene Ammonium amine, polyvinyl alcohol, ethylene-maleic anhydride copolymer, polydivinyl ether, hydroxypropyl cellulose, polyvinylmorphone, acetic acid, polyacrylate, polypropylene amine, vinyl Jumping polymers and copolymers, propylene-branched starch, acrylic-branched starch, isobutylene and butylene diamine, E: \ PATE > mPK-〇〇i〇8 \ pk.〇〇1.〇863 \ pk. 〇〇1.〇863d〇c2〇4 / 1/8 ^ polymer, polyamines and complexes of basic metal salts are formed. 6. The absorptive composition according to item 1 of the patent application, further comprising a friction-increasing additive in combination with the superabsorbent material. 7. The absorptive composition according to item 6 of the patent application, wherein the friction angle increasing additive is selected from the group consisting of chitin, sodium silicate, sodium aluminate, aluminosilicate and a complex thereof. 8. The superabsorbent material according to item 1 of Shenyang Patent Park, further comprising a material selected from the group consisting of particles, fibers, flakes, spheres, and composites thereof. 9. A superabsorbent material with a high controlled friction angle of the gel bed, wherein the absorbent composite comprises: most of the wettable fibers; and a superabsorbent with a weight of 5.0 g of 0.9 wt% sodium gas solution per gram of superabsorbent material In the degree of expansion of the absorbent material, the superabsorbent material has a first rubber bed friction angle, and has a glue in the degree of expansion of the superabsorbent material having more than 5.0 g of 0.9 wt% sodium gas solution per gram of superabsorbent material. The bed angle is equal to or less than the first rubber bed friction angle, where the first rubber bed friction angle is 30 degrees or less. 10. The absorbent composite according to item 9 of the patent application, wherein the first rubber bed has a friction angle of 38 degrees or more. 11. The absorptive compound according to item 9 of the scope of application for a patent, wherein the superabsorbent material which is water-swellable and water-insoluble is selected from the group consisting of natural materials, modified natural materials, synthetic materials and composites thereof. 12. The absorptive compound according to item η of the patent application range, wherein the water-swellable and water-insoluble superabsorbent material is selected from the group consisting of silicone gel; agar; pectin; hypoglycemic; polyacrylic acid and polypropylene Amine, polyvinyl alcohol, ethylene-maleic anhydride copolymer, polydivinyl ether, light propyl cellulose, polyvinyl morphinone, ethylene sulfonic acid, polyacrylate, polyacrylamide, ethylamidine Polymer and copolymer, propylene-branched starch, acrylic-branched starch, isobutyl cis-butanylene di-E: · ΕΝΤ \ ΡΚ-001 08 \ Pk-001-〇863 \ Pk-〇〇1_0863 d〇c2〇_ / 8% formation of basic metal salts of liver copolymers and their complexes. 13. The absorptive compound according to item η of the patent application park, wherein the superabsorbent material which is water-swellable and water-insoluble is selected from the group consisting of silicone gel; agar; pecan; blood glucose lowering drugs; polyacrylic acid and polypropylene Phenamine, polyvinyl alcohol, ethylene-maleic anhydride copolymer, polydivinyl ether, hydroxypropyl cellulose, polyvinylmorphone, ethylene sulfonic acid, polyacrylate, polypropylene amide, vinyl The polymers and copolymers of the lake, propylene branched starch, acrylic branched starch, isobutylene, butadiene copolymer, polyamines and their basic metal salts are formed. Η The absorbent compound according to item 9 of the patent application scope, further comprising a friction increasing additive combined with a superabsorbent material. 15. The absorptive compound according to item 14 of the application, wherein the friction angle increasing additive is selected from the group consisting of chitin, sodium silicate, sodium aluminate, aluminosilicate, and a composite thereof. 16. The absorbent composite according to item 9 of the scope of patent application, further comprising a member selected from the group consisting of particles, fibers, flakes, spheres, and composites thereof. 17. The absorptive composite according to item 9 of the scope of patent application, further comprising a friction increasing additive combined with wettable fibers. 18. The absorptive compound according to item 17 of the application, wherein the capricorn angle increasing additive is selected from the group consisting of chitin, sodium silicate, sodium aluminate, aluminosilicate and a complex thereof. E: \ PATENT \ PK-001 08 \ pk-001 -0863 \ pk-001 -0863, doc2004 / 1/8
TW92119353A 2002-07-30 2003-07-16 Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same TWI255195B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39979402P 2002-07-30 2002-07-30
US10/460,874 US20040023589A1 (en) 2002-07-30 2003-06-13 Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same

Publications (2)

Publication Number Publication Date
TW200418534A true TW200418534A (en) 2004-10-01
TWI255195B TWI255195B (en) 2006-05-21

Family

ID=31191306

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92119353A TWI255195B (en) 2002-07-30 2003-07-16 Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same

Country Status (8)

Country Link
US (1) US20040023589A1 (en)
EP (1) EP1525009A2 (en)
JP (1) JP2005534748A (en)
KR (1) KR20050025969A (en)
AR (1) AR040744A1 (en)
AU (1) AU2003253984A1 (en)
TW (1) TWI255195B (en)
WO (1) WO2004011045A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297395B2 (en) * 2002-07-30 2007-11-20 Kimberly-Clark Worldwide, Inc. Superabsorbent materials having low, controlled gel-bed friction angles and composites made from the same
US20040023579A1 (en) * 2002-07-30 2004-02-05 Kainth Arvinder Pal Singh Fiber having controlled fiber-bed friction angles and/or cohesion values, and composites made from same
US20040044320A1 (en) * 2002-08-27 2004-03-04 Kainth Arvinder Pal Singh Composites having controlled friction angles and cohesion values
MXPA04009978A (en) * 2003-02-10 2004-12-13 Nippon Catalytic Chem Ind Particulate water absorbent containing water absorbent resin as a main component.
US20040253890A1 (en) * 2003-06-13 2004-12-16 Ostgard Estelle Anne Fibers with lower edgewise compression strength and sap containing composites made from the same
US20040253440A1 (en) * 2003-06-13 2004-12-16 Kainth Arvinder Pal Singh Fiber having controlled fiber-bed friction angles and/or cohesion values, and composites made from same
US20050031841A1 (en) * 2003-08-05 2005-02-10 Weyerhaeuser Company Attachment of superabsorbent materials to fibers using oil

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3308826A (en) * 1961-03-09 1967-03-14 Celanese Corp Sanitary napkins
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
US3502538A (en) * 1964-08-17 1970-03-24 Du Pont Bonded nonwoven sheets with a defined distribution of bond strengths
US3341394A (en) * 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) * 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
DE2048006B2 (en) * 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Method and device for producing a wide nonwoven web
DE1950669C3 (en) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4341215A (en) * 1980-09-04 1982-07-27 Tampax Incorporated Absorbent device
US4432759A (en) * 1982-04-26 1984-02-21 Abbott Laboratories Connecting device for medical liquid containers
US4548847A (en) * 1984-01-09 1985-10-22 Kimberly-Clark Corporation Delayed-swelling absorbent systems
GB2156370B (en) * 1984-03-27 1987-12-02 Personal Products Co Dispersed absorbent products and method of use
US4880858A (en) * 1985-03-05 1989-11-14 Allied Colloids Limited Water absorbing polymers
US4980231A (en) * 1988-02-19 1990-12-25 Snyder Laboratories, Inc. Process for coating polymer surfaces and coated products produced using such process
US5147343B1 (en) * 1988-04-21 1998-03-17 Kimberly Clark Co Absorbent products containing hydrogels with ability to swell against pressure
US5244735A (en) * 1988-06-28 1993-09-14 Nippon Shokubai Kagaku Kabushiki Kaisha Water-absorbent resin and production process
US5082723A (en) * 1989-09-27 1992-01-21 Kimberly-Clark Corporation Osmotically enhanced absorbent structures
US5188624A (en) * 1990-01-16 1993-02-23 Weyerhaeuser Company Absorbent article with superabsorbent particle containing insert pad and liquid dispersion pad
US5175046A (en) * 1991-03-04 1992-12-29 Chicopee Superabsorbent laminate structure
JP3497166B2 (en) * 1992-08-17 2004-02-16 ウェヤーハウザー・カンパニー Particle binding to fiber
US5352480A (en) * 1992-08-17 1994-10-04 Weyerhaeuser Company Method for binding particles to fibers using reactivatable binders
CA2114815C (en) * 1993-02-24 2005-06-14 Mark Kevin Melius Absorbent composite
US5338766A (en) * 1993-03-26 1994-08-16 The Procter & Gamble Company Superabsorbent polymer foam
DE4318094B4 (en) * 1993-06-01 2004-03-04 Stockhausen Gmbh & Co. Kg Superabsorbents, processes for their preparation and their use
SE501699C2 (en) * 1993-06-21 1995-04-24 Moelnlycke Ab Superabsorbent material with delayed activation time and absorbent articles containing the same
CA2181696C (en) * 1994-02-17 2002-01-01 Lin Wang Porous absorbent materials having modified surface characteristics and methods for making the same
US6068924A (en) * 1994-11-10 2000-05-30 The Procter & Gamble Company Absorbent material
US6022818A (en) * 1995-06-07 2000-02-08 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
US5609587A (en) * 1995-08-03 1997-03-11 The Procter & Gamble Company Diaper having a lotioned topsheet comprising a liquid polyol polyester emollient and an immobilizing agent
JP3383497B2 (en) * 1995-11-30 2003-03-04 ユニ・チャーム株式会社 Disposable body fluid-absorbing wearing article
KR19990077152A (en) * 1996-01-11 1999-10-25 데이비드 엠 모이어 Absorbent structure having zones surrounded by a continuous region of hydrogel-forming absorbent polymer
CN1252829A (en) * 1997-02-19 2000-05-10 普罗克特和甘保尔公司 Mixed-bed ion-exchange hydrogel-forming polymer compositions and absorbent members comprising relatively high concentrations of these compositions
DE19716657A1 (en) * 1997-04-21 1998-10-22 Stockhausen Chem Fab Gmbh Super absorber with controlled absorption speed
US5981826A (en) * 1997-05-05 1999-11-09 Georgia Tech Research Corporation Poly(vinyl alcohol) cryogel
DE19805104A1 (en) * 1998-02-09 1999-08-12 Bayer Ag Coating agent for fibers
CO5111017A1 (en) * 1998-12-31 2001-12-26 Kimberly Clark Co ABSORBENT COMPOUNDS WITH INCREASED ABSORPTION PROPERTIES
US20020045869A1 (en) * 1998-12-31 2002-04-18 Dodge Richard Norris Absorbent composites comprising superabsorbent materials
US6387495B1 (en) * 1999-04-16 2002-05-14 Kimberly-Clark Worldwide, Inc. Superabsorbent-containing composites
US6176849B1 (en) * 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat
US6455114B1 (en) * 1999-10-13 2002-09-24 Isaac Goldhirsch Composite absorbent structure and method
US6433058B1 (en) * 1999-12-07 2002-08-13 Dow Global Technologies Inc. Superabsorbent polymers having a slow rate of absorption
US7687681B2 (en) * 2000-05-26 2010-03-30 Kimberly-Clark Worldwide, Inc. Menses specific absorbent systems
US20040023579A1 (en) * 2002-07-30 2004-02-05 Kainth Arvinder Pal Singh Fiber having controlled fiber-bed friction angles and/or cohesion values, and composites made from same
US7297395B2 (en) * 2002-07-30 2007-11-20 Kimberly-Clark Worldwide, Inc. Superabsorbent materials having low, controlled gel-bed friction angles and composites made from the same

Also Published As

Publication number Publication date
TWI255195B (en) 2006-05-21
US20040023589A1 (en) 2004-02-05
KR20050025969A (en) 2005-03-14
WO2004011045A2 (en) 2004-02-05
AU2003253984A1 (en) 2004-02-16
WO2004011045A3 (en) 2004-03-25
JP2005534748A (en) 2005-11-17
EP1525009A2 (en) 2005-04-27
AR040744A1 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
RU2248219C2 (en) Absorbing structure in absorbing article
US4624868A (en) Borated polysaccharide absorbents and absorbent products
US4333461A (en) Borated polysaccharide absorbents and absorbent products
JP4939931B2 (en) Absorbent structure with superabsorbent material
US7847144B2 (en) Absorbent articles comprising fluid acquisition zones with superabsorbent polymers
JP3373208B2 (en) Superabsorbent polymer foam
JPS6322824B2 (en)
JPH07132126A (en) Absorbent articles
JPH08511459A (en) Absorbent article including superabsorbent material having delayed activation time
KR101047196B1 (en) Superabsorbent materials with low gel-bed friction angles and composites made therefrom
JPWO2002085959A1 (en) Water-absorbing resin suitable for absorbing high-molecular-weight-containing viscous liquid, and absorber and absorbent article using the same
MXPA02001641A (en) Absorbent foam material and an absorbent structure containing said foam material.
EP1518566A1 (en) Absorbent articles comprising superabsorbent polymer particles having a non-covalently bonded surface coating
JP2017509757A (en) Superabsorbent resin composition
WO2003051412A1 (en) Absorbent materials having improved absorbent properties
TW200418534A (en) Superabsorbent materials having high, controlled gel-bed friction angles and composites made from the same
WO2006020213A2 (en) Superabsorbent pad
TW200406233A (en) Fiber having controlled fiber-bed friction angels and/or cohesion values, and composites made from the same
US20040044321A1 (en) Superabsorbent materials having controlled gel-bed friction angles and cohesion values and composites made from same
TW200423974A (en) Composites having controlled friction angles and cohesion values
JP2013133399A (en) Water-absorbing polymer particle
Bartkowiakb et al. Superabsorbents and their medical applications
JPH04119156A (en) Absorbing material and absorbing article
TW442303B (en) Sanitary napkin
JPH06256536A (en) Water-absorbing material and water-absorbing product

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees