1254973 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種顯示器,且特別有關於一種晝素電極 之開關元件及其製造方法。 【先前技術】 底閘極型(bottom-gate type)薄膜電晶體元件目前已經被廣 泛地應用於薄膜電晶體液晶顯示器(TFT-LCD)中。請參閱第1 圖,其顯示傳統的底閘極型薄膜電晶體結構1〇〇。此薄膜電晶體 結構100包含有一基板110、一閘極120、一閘極絕緣層130、 一通道層(channel layer)l40、一歐姆接觸層150以及一源/没極 層 160/170 。 在傳統的液晶平面顯示器之薄膜電晶體結構中,使用氮化 矽(SiNx)做為覆蓋鈍化介電層。然而,因為氮化矽(SiNx)之 介電係數約為7,可能導致較高的電阻-電容時間延遲(RC delay)。尤其是應用在大尺寸TFT LCD電路之中時,會出現更 嚴重的時間延遲。 【發明内容】 有鑑於此,本發明的主要目的之一就是降低電阻•電容時間 延遲。 為達上述目的,本發明之方法主要係包括下列步驟。 0632-A50435-TWf 5 1254973 首先’使用化學氣相沉積法、電 电化予电鍍(dectrochemical plating ; ECP) 或物理氣相沉積法形成一金屬胁 、基板上方。接者,進行一微影蝕刻製 %,而形成一閘極於部分的一 、!後’順應性地形成-低介電常數材料層於此間極上方, 以覆盍此卩雜之上表面及侧壁’作為閘極絕緣層(购㈣啊 yer ’ GIL )。然後’形成_半導體層於此閘極絕緣層上。其中, 此間極絕緣層的形成方法包括化學氣相沉積法、電漿增強型化 學氣相沉積法。 而此半導體層勤包含有經由鱗氣相沉積法所沉積之非晶石夕層 (am〇^〇us smcon layer)^M##0^^(impunty„d〇ped ^ 〇 ^ 後,藉由傳統的製《魏上辭導歸而形成—通道層以及一歐姆 接觸層。 、接者,使用化學氣相沉積法、電化學電鑛咖㈣网 或物理氣相沉積法形成-金顧於此歐姆接觸層上。之後,選擇性地钱刻 此金屬層與此歐姆接至曝露出此通道層的部分表面,以形成—由金屬 組成之源級極減轉體層上方。之後,職一晝素電極,電性連接於該 源極或汲極,而可得到一薄膜電晶體結構。 本毛月之方法更包括·使用化學氣相沉積法或電漿力口強型化學氣相沉 積法,形成一低介電常數層於上述源/汲極上,作為覆蓋保護層。 另外,上述閘極絕緣層(gateinulatinglayer ; G][L)亦可以是包含氮氧 化石夕(SiOxNy)或氮化石夕(SiNx)的堆疊結構,例如雙層、結構:閘極絕緣層 /氮化秒(GIL/ SiNx,);或是三層結構:閘極絕緣層復氧切/氮化石夕 (GIL/SiOxNy/SiNx,)或氮氧化矽/閘極絕緣層/氮化矽(si〇xNy/GIL/s^^。 〇632-A50435-TWf 6 1254973 另夕卜’上述覆蓋保護層(cap-passiVation layer ; CPL)亦可 以是包含氮氧化矽(SiOxNy)或氮化矽(SiNx)的堆疊結構, 例如雙層結構:覆蓋保護層/氮氧化矽(CPL /Si〇xNy)或覆蓋 保護層/氮化矽(CPL/SiNx)或氮化矽/覆蓋保護層(SiNx/cpL) 或氮氧化矽/覆蓋保護層(Si〇xNy/ CPL);或者是三層結構: 覆蓋保護層/氮氧化矽/氮化矽(CPL/SiOxNy/SiNx)或覆蓋保護 層/氮化矽/氮氧化矽(CPL/SiNx/Si〇xNy)或氮氧化矽/覆蓋保護 鲁 層/氮化矽(Si〇xNy/CPL/SiNx)或氮氧化矽/氮化矽/覆蓋保護層 (SiOxNy/SiNx/CPL )或氮化;ε夕/覆蓋保護層/氮氧化石夕 (SiNx/CPL/SiOxNy )或氮化矽/氮氧化矽/覆蓋保護層 (SiNx/SiOxNy/ CPL)。 本發明之方法以低介電常數材料取代傳統的氮化矽,形成一低介電常 - 數層於薄膜電晶體之源/汲極上,作為覆蓋保護層,或作為金屬閘極介電層, 另外,亦可以低介電常數材料取代傳統的氮化矽,作為儲存電容之介電質 層。 # 而且,根據本發明之方法,無須多一道光罩且製程簡單,並能有效降 低電阻-電容時間延遲。 本發明之方法除了可以應用在底閘極型(bottom-gate type) 之外’亦可以應用在頂閘極型(t〇p_gate type )薄膜電晶體元件 上。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易 懂’下文特舉出較佳實施例,並配合所附圖式,作詳細說明如 下: 0632-A50435-TWf 7 1254973 【實施方式】 第一實施例 依恥本發明一較佳實施例,此方法包括下列主要步驟。 如第2A圖所示,使用化學氣相沉積法、電化學電樹士伽咖 plating ; ECP)或物理氣相沉積法形成_金屬層(未顯示)於一基板2i〇上 方接著進行一微景》蝕刻製程,而形成一閘極22〇於部分的一基板2⑴ 丄方此基板210包括玻璃基板。此閘極22Q包括銅、紹、銀、或上述金 屬之合金,且厚度約介於100與500奈米之間。 如2B圖所不,先順應性地形成一低介電常數材料層於此 閘極22G上方,以覆蓋此間極之上表面及側壁,作為閘極絕緣 層 230。 形成一半導體層(未顯示)於此閘極絕 然後,如2C圖所示 緣層230上。 其中,此閘極絕緣層230的形成方法包括化學氣相沉積 法、電漿增強型化學氣相沉積法。此問極絕緣層23〇包括含碳1254973 IX. Description of the Invention: [Technical Field] The present invention relates to a display, and more particularly to a switching element of a halogen electrode and a method of manufacturing the same. [Prior Art] A bottom-gate type thin film transistor element has been widely used in a thin film transistor liquid crystal display (TFT-LCD). Please refer to Figure 1 for a conventional bottom gate type thin film transistor structure. The thin film transistor structure 100 includes a substrate 110, a gate 120, a gate insulating layer 130, a channel layer 104, an ohmic contact layer 150, and a source/drain layer 160/170. In a thin film transistor structure of a conventional liquid crystal flat panel display, tantalum nitride (SiNx) is used as a cover passivation dielectric layer. However, since tantalum nitride (SiNx) has a dielectric constant of about 7, it may result in a higher resistance-capacitance time delay (RC delay). Especially when applied to large-size TFT LCD circuits, more severe time delays occur. SUMMARY OF THE INVENTION In view of the above, one of the main objects of the present invention is to reduce the resistance and capacitance time delay. In order to achieve the above object, the method of the present invention mainly comprises the following steps. 0632-A50435-TWf 5 1254973 First, a metal threat is formed on the substrate by chemical vapor deposition, dectrochemical plating (ECP) or physical vapor deposition. Receiver, perform a lithography process to form a gate, and form a gate to the part of one! The latter is compliantly formed with a low dielectric constant material layer over the interpole to cover the upper surface and sidewalls of the doping as a gate insulating layer (purchasing y y ' GIL ). Then, a semiconductor layer is formed on this gate insulating layer. The method for forming the interpolar insulating layer includes a chemical vapor deposition method and a plasma enhanced chemical vapor deposition method. The semiconductor layer includes an amorphous smcon layer (m〇^〇us smcon layer) ^M##0^^ (impunty„d〇ped ^ 〇^) deposited by the scale vapor deposition method. The traditional system "Wei Shang Ci Hui formed to form - channel layer and one ohmic contact layer., the receiver, using chemical vapor deposition, electrochemical electric coffee (4) network or physical vapor deposition method - Jin Gu An ohmic contact layer. Thereafter, the metal layer is selectively engraved with the ohmic portion to expose a portion of the surface of the channel layer to form a source-level extremely reduced body layer composed of a metal. The electrode is electrically connected to the source or the drain to obtain a thin film transistor structure. The method of the moon month further comprises: forming a chemical vapor deposition method or a plasma pressure type chemical vapor deposition method. a low dielectric constant layer is formed on the source/drain as the overlying protective layer. In addition, the gate insulating layer (G][L) may also include oxynitride (SiOxNy) or nitrite (SiNx). Stacking structure, such as double layer, structure: gate insulating layer / nitriding (GIL/SiNx,); or three-layer structure: gate insulation reoxygenation/nitridite (GIL/SiOxNy/SiNx,) or yttria/gate insulation/zinc nitride (si〇xNy/ GIL/s^^. 〇632-A50435-TWf 6 1254973 In addition, the above cap-passiVation layer (CPL) may also be a stacked structure containing bismuth oxynitride (SiOxNy) or tantalum nitride (SiNx). , for example, a two-layer structure: a cover protective layer / bismuth oxynitride (CPL /Si〇xNy) or a cover protective layer / tantalum nitride (CPL / SiNx) or tantalum nitride / cover protective layer (SiNx / cpL) or bismuth oxynitride / cover protective layer (Si〇xNy / CPL); or three-layer structure: cover protective layer / bismuth oxynitride / tantalum nitride (CPL / SiOxNy / SiNx) or cover protective layer / tantalum nitride / bismuth oxynitride (CPL) /SiNx/Si〇xNy) or yttrium oxynitride/covering protective layer/zinc nitride (Si〇xNy/CPL/SiNx) or yttrium niobium oxide/tantalum nitride/covering protective layer (SiOxNy/SiNx/CPL) or nitrogen ε / / cover protective layer / nitrous oxide Xi (SiNx / CPL / SiOxNy) or tantalum nitride / yttrium oxynitride / cover protective layer (SiNx / SiOxNy / CPL). The method of the present invention is a low dielectric constant material Replace the traditional A low dielectric constant layer is formed on the source/drain of the thin film transistor as a cover protective layer or as a metal gate dielectric layer. Alternatively, a low dielectric constant material can be substituted for the conventional nitride. Oh, as a dielectric layer of storage capacitors. # Moreover, according to the method of the present invention, it is not necessary to have a mask and the process is simple, and the resistance-capacitance time delay can be effectively reduced. The method of the present invention can be applied to a top gate type (t〇p_gate type) thin film transistor element, in addition to being applicable to a bottom-gate type. The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Modes] The first embodiment is a preferred embodiment of the invention, which comprises the following main steps. As shown in FIG. 2A, a metal layer (not shown) is formed over a substrate 2i〇 using a chemical vapor deposition method, an electrochemical electric glazing plating; ECP) or a physical vapor deposition method, followed by a microscopic view. The etching process forms a substrate 22 (1) with a gate 22 and a portion of the substrate 210. The substrate 210 includes a glass substrate. The gate 22Q comprises copper, slag, silver, or an alloy of the above metals, and has a thickness of between about 100 and 500 nm. As shown in Fig. 2B, a layer of low dielectric constant material is first conformally formed over the gate 22G to cover the upper surface and sidewalls of the interpole as the gate insulating layer 230. A semiconductor layer (not shown) is formed at this gate and then, as shown in Fig. 2C, on the edge layer 230. The method for forming the gate insulating layer 230 includes a chemical vapor deposition method and a plasma enhanced chemical vapor deposition method. The pole insulating layer 23 includes carbon
A之非晶石夕化物(a-Sic:H)或含碳氫氮之非晶石夕化物 (a-SlCN:H),且厚度約介於50與500奈米之間。 而此半導體相如包含有經由化學氣她咖狀非晶石夕層 (amoiphous silicon layer)#^##^^^(impurity.d〇ped ^ 〇 ^ 後,藉由傳統的微影製程_化上料導體層而形成—通道層以及一 歐姆接觸層250。其中,此歐姆接觸層㈣例如是摻雜n型_列如p或 AS)_層或是_ p魏·如B财層,且厚度約細太米 之間。而此蝴糊是未摻雜之非㈣層,且厚度約介於鮮辦 0632-A50435-TWf 8 ‘1254973 如第2D圖所示,使用化學氣相沉積法、電化學電樹此伽冰灿㈣ PMng;E〇>M物理氣相沉積法形成-金顧(未顯示)於此歐姆接觸層 25〇上。接著,選擇性地#刻此金屬層與此_接觸層,鱗露出此通道 層24〇的部分表面,以形成-由金杨成之源Λ及極刻㈣於此半導體層 上方。之後’形成-畫素電極’電性連接於該源極或祕26Q/27G,而可得 到-薄膜電晶體結構2GG。此祕極260/270包括m或上述金屬 之合金。此源/汲極260/270之厚度約介於1〇〇與5〇〇奈米之間。 在其它實施例中,上述間極絕緣層23〇 (gate inulating _ ;肌)可 以是包含氮氧切⑽xNy)或氮切(SiNx)的堆疊結構,例如雙層結構: 間極絕緣層/氮化^GIL/ SiNx,)、或是三層結構:閘極絕緣層/氮氧化石夕/ II化石夕(GIL/SiOxNy/SiNx,)或氮氧化石夕/閘極絕緣層/氮化矽 (SiOxNy/GIL/SiNx)〇 第二實施例 本貝施例之方法相似於第一實施例,但再加入以低介電常 數材料取代傳統的氮切作為覆蓋保護層。本實施例包括下列A non-crystalline austenite (a-Sic: H) or a carbon-hydrogen-nitrogen-containing amorphous alumite (a-SlCN: H) having a thickness of between about 50 and 500 nm. And the semiconductor phase includes a conventional lithography process via a chemical gas, amethiphous silicon layer #^##^^^(impurity.d〇ped ^ 〇^ Forming a conductor layer to form a channel layer and an ohmic contact layer 250. The ohmic contact layer (4) is, for example, doped n-type_column such as p or AS) layer or _pwei·such as B wealth layer, and The thickness is between about 300 meters. The paste is an undoped non-four layer, and the thickness is about 6332-A50435-TWf 8 '1254973 as shown in Figure 2D. The chemical vapor deposition method and the electrochemical tree are used. (4) PMng; E〇> M physical vapor deposition method formation - Jin Gu (not shown) on the ohmic contact layer 25A. Then, the metal layer and the contact layer are selectively engraved, and a portion of the surface of the channel layer 24 is exposed to form - from the source of the gold poplar and the top (4) above the semiconductor layer. Thereafter, the 'forming-pixel electrode' is electrically connected to the source or the secret 26Q/27G, and a thin film transistor structure 2GG is obtained. This secret 260/270 includes m or an alloy of the above metals. The thickness of this source/drain 260/270 is between about 1 and 5 nanometers. In other embodiments, the above-mentioned interlayer insulating layer 23 (gate inulating _; muscle) may be a stacked structure including oxynitride (10) x Ny) or nitrogen cut (SiNx), for example, a two-layer structure: inter-electrode insulating layer / nitriding ^GIL/SiNx,), or three-layer structure: gate insulating layer / oxynitride eve / II fossil eve (GIL / SiOxNy / SiNx,) or nitrous oxide oxide / gate insulating layer / tantalum nitride (SiOxNy /GIL/SiNx) 〇Second Embodiment The method of the present embodiment is similar to the first embodiment, but a conventional low-dielectric constant material is substituted for the conventional nitrogen cut as a cover protective layer. This embodiment includes the following
主要步驟。 士第3圖所π,使用化學氣相沉積法、電化學電鏡卜㈣ plating ;ECP)或物理氣相沉積法形成一金屬層(未顯示)於一基板仙上 方接著進订U以虫刻製程,而形成一閘極32〇於部分的一基板則 上方。此基板310包括玻璃基板或塑膠基板。此閘極32〇包括銅音銀、 或上述金屬之合金,且厚度約介於·與5⑻奈米之間。 士 3圖所v &順應性地形成—低介電常數材料層於此閘 極320上方,作為閘極絕緣層33〇。然後,形成一半導體層(未 0632-A50435-TWf 9 1254973 顯示)於此閑極絕緣層330上。其中,此間極絕緣層33〇的形成 方去包括化學氣相沉積法、電浆增強型化學氣相沉積法。此閑 極絕緣層330包括含碳氫之非晶石夕化物(哪h)或含碳氯氮 之非晶石夕化物(a-SlCN:H)’且厚度約介於5〇與5〇〇奈米之間。 而此半導體層例如包含有經由化學氣相沉積法所沉積之非晶石夕層 (amorph〇us siHcon layer)#(impunty.d^ ^ ^ 〇 ^ 後’藉由傳統的微影製程圖案化上述半導體層_成—通道層34〇以及一 歐姆接觸層350。其中此歐姆接觸層35Q例如是摻雜n型離糊如p或构 的石夕層或是摻雜p 如B)_層,且厚度齡於ω與⑽夺米之 間。而此通道層340則是未摻雜之非晶石夕層,且厚度約介於%與奈米 之間。 ^ 如第3圖所示,使用化學氣相沉積法、電化學電錄咏伽chemicai P鮮)或物理氣相沉積法形成—金屬層(未顯示)於此歐姆接觸層 350上,接著選擇性地侧此金屬層與此歐姆接觸層35〇至曝露出此通道層 340的部分表面,以形成-由金屬組成之源/汲極36〇/37〇於此半導體層上 • 方。之後,形成一晝素電極’電性連接於該源極或沒極360/370,而可得到 -薄膜電晶體結構300。此源級極360/370包括銅、銘、銀、或上述金屬之 合金。此源/汲極360/370之厚度約介於1〇〇與5〇〇奈米之間。 如第3圖所不,然後使用化學氣相沉積法、魏增強型化學氣相沉積 法。形成-低介電常數層於上述源/没極360/370 ±,作為覆蓋保護層38〇。 此覆盍保護層380包括含碳氫之非晶矽化物(a-Sic:H)或含碳氫氮之非晶 矽化物(a-SiCN:H)。此覆蓋保護層380之厚度約介於1〇〇與4〇〇奈米之間。 在其它實施例中,上述閘極絕緣層330 (gate mulating layer ;亂)可 0632-A50435-TWf 10 1254973 結構,例如雙層結構: 閉侵絕緣層/氮氧化矽/ 極絕緣層/氮化矽 以是包含氮氧化矽(Si〇xNy)或氮化矽(SiNx)的堆疊 閘極絕緣層/氮化矽(GIL/ SiNX5)、或是三層結構: 氮化矽(GIL/SiOxNy/SiNX5 )或氮氧化矽/閘 (Si〇xNy/GIL/SiNx)。The main steps. In Fig. 3, π, using chemical vapor deposition, electrochemical microscopy, electroplating, ECP or physical vapor deposition to form a metal layer (not shown) above a substrate and then inserting U to perform the engraving process. And a gate 32 is formed over a portion of the substrate. This substrate 310 includes a glass substrate or a plastic substrate. The gate 32 〇 includes copper tone silver, or an alloy of the above metals, and has a thickness between about and 5 (8) nm. V & compliantly formed - a layer of low dielectric constant material over the gate 320 as a gate insulating layer 33 〇. Then, a semiconductor layer (not shown in 0632-A50435-TWf 9 1254973) is formed on the dummy insulating layer 330. Wherein, the formation of the pole insulating layer 33〇 includes a chemical vapor deposition method and a plasma enhanced chemical vapor deposition method. The idler insulating layer 330 includes a carbon-hydrogen-containing amorphous alumite (which h) or a carbon-nitrogen-containing amorphous alumite (a-SlCN:H)' and has a thickness of about 5 〇 and 5 〇〇. Between the rice. The semiconductor layer includes, for example, an amorph〇us siHcon layer# deposited after chemical vapor deposition (impunty.d^^^^^^' by conventional lithography process patterning a semiconductor layer _ a channel layer 34 〇 and an ohmic contact layer 350. The ohmic contact layer 35Q is, for example, a doped n-type paste such as p or a layer of doped layer or a doped p such as B) layer, and The thickness is between ω and (10). The channel layer 340 is an undoped amorphous layer and has a thickness between about % and nanometer. ^ As shown in Fig. 3, a metal layer (not shown) is formed on the ohmic contact layer 350 by chemical vapor deposition, electrochemical recording, or physical vapor deposition, followed by selectivity. The metal layer and the ohmic contact layer 35 are grounded to a portion of the surface of the channel layer 340 to form a source/drain 36/37 of metal. Thereafter, a halogen electrode ' is electrically connected to the source or the electrodeless 360/370, and a thin film transistor structure 300 is obtained. This source grade 360/370 includes copper, ingot, silver, or an alloy of the above metals. The thickness of this source/bungee 360/370 is between about 1 and 5 nanometers. As shown in Fig. 3, chemical vapor deposition and Wei-enhanced chemical vapor deposition are then used. A low dielectric constant layer is formed on the source/dot pole 360/370± as the overlying protective layer 38〇. The overlying protective layer 380 comprises a hydrocarbon-containing amorphous germanide (a-Sic:H) or a hydrocarbon-containing amorphous germanide (a-SiCN:H). The thickness of the cover protective layer 380 is between about 1 and 4 nanometers. In other embodiments, the gate insulating layer 330 (gate mulating layer) can be 0632-A50435-TWf 10 1254973 structure, for example, a two-layer structure: a closed insulating layer / argon oxynitride / a very insulating layer / tantalum nitride It is a stacked gate insulating layer/tantalum nitride (GIL/SiNX5) containing yttrium oxynitride (Si〇xNy) or tantalum nitride (SiNx), or a three-layer structure: lanthanum nitride (GIL/SiOxNy/SiNX5) Or bismuth oxynitride / gate (Si〇xNy/GIL/SiNx).
而上述覆蓋保護層(cap-passivation layer ; CPT W可以是包含The above capping layer (cap-passivation layer; CPT W can be included)
氮氧化矽(S:iOxNy)或氮化矽(SlNx)的堆疊結構,例如雙層 結構:覆蓋保護層/氮氧化矽(CPL /SiOxNy)或覆蓋保護層/氮 化矽(CPL/SiNx)或氮化矽/覆蓋保護層(SiNx/cPL)或氮氧 化矽/覆蓋保護層(SiOxNy/ CPL);或者是三層結構··覆蓋保 護層/氮氧化矽/氮化矽(CPL/SiOxNy/SiNx)或覆蓋保護層/氮化 矽/氮氧化矽(CPL/SiNx/Si〇xNy)或氮氧化矽/覆蓋保護層/氮化 石夕(SiOxNy/CPL/SiNx )或氮氧化石夕/氮化石夕/覆蓋保護層 (SiOxNy/SiNx/CPL )或氮化矽/覆蓋保護層/氮氧化矽 (SiNx/CPL/SiOxNy )或氮化矽/氮氧化矽/覆蓋保護層 (SiNx/SiOxNy/ CPL)。 在其它實施例中’亦可以低介電常數材料取代傳統的氮化 矽,作為儲存電容之介電|。 而且’根據本發明之實施例,無須多一道光罩且製程簡單,並能有效 降低電阻-電容時間延遲。 本發明之實施例除了可以應用在底閘極型(b〇ttom-gate type)之外’亦可以應用在頂閘極型(t〇p_gate type )薄膜電晶 體元件上。 雖然本發明已以數個較佳實施例揭露如上,然其並非用 0632-A50435-TWf 11 -1254973 以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作任意之更動與潤飾,因此本發明之保護範圍當 視後附之申請專利範圍所界定者為準。a stack structure of bismuth oxynitride (S:iOxNy) or lanthanum nitride (SlNx), such as a two-layer structure: a cover protective layer / bismuth oxynitride (CPL / SiOxNy) or a cover protective layer / tantalum nitride (CPL / SiNx) or Tantalum nitride/covering protective layer (SiNx/cPL) or niobium oxynitride/covering protective layer (SiOxNy/CPL); or three-layer structure·covering protective layer/niobium oxynitride/tantalum nitride (CPL/SiOxNy/SiNx ) or cover protective layer / tantalum nitride / bismuth oxynitride (CPL / SiNx / Si〇xNy) or bismuth oxynitride / cover protective layer / nitride eve (SiOxNy / CPL / SiNx) or nitrous oxide eve / nitrite / cover protective layer (SiOxNy / SiNx / CPL) or tantalum nitride / cover protective layer / bismuth oxynitride (SiNx / CPL / SiOxNy) or tantalum nitride / bismuth oxynitride / cover protective layer (SiNx / SiOxNy / CPL). In other embodiments, it is also possible to replace the conventional tantalum nitride with a low dielectric constant material as the dielectric of the storage capacitor. Moreover, according to the embodiment of the present invention, it is not necessary to have a mask and the process is simple, and the resistance-capacitance time delay can be effectively reduced. Embodiments of the present invention can be applied to a top gate type (t〇p_gate type) thin film transistor device, except that it can be applied outside the b〇ttom-gate type. Although the present invention has been disclosed above in several preferred embodiments, it is not intended to limit the invention by the use of the singularity of the present invention, and it is within the spirit and scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims.
0632-A50435-TWf 12 ^ 1254973 【圖式簡單說明】 第1圖是習知薄膜電晶體結構的剖面示意圖。 第2A-2D圖是根據本發明第一實施例之薄膜電晶體結構的製程剖面示 意圖。 第3圖是根據本發明第二實施例之薄膜電晶體結構的剖面示意圖。 【主要元件符號說明】 100 、200、 300〜薄膜電 晶 體結構 110 、210、 310〜 〃基板, 120 、220、 320〜 〃閘極; 130 、230、 330〜 <閘極絕 緣 層; 140 、240、 340〜 /通道層 , 150 、250、 350〜 >歐姆接 觸 層; 160 、260 ' 360〜 -源極; 170 ^ 270 > 370〜 >汲極; 38(l· ^覆蓋保 :護層 0 0632-A50435-TWf 130632-A50435-TWf 12 ^ 1254973 [Simple description of the drawings] Fig. 1 is a schematic cross-sectional view showing the structure of a conventional thin film transistor. 2A-2D is a schematic cross-sectional view showing a structure of a thin film transistor according to a first embodiment of the present invention. Figure 3 is a schematic cross-sectional view showing the structure of a thin film transistor according to a second embodiment of the present invention. [Description of main component symbols] 100, 200, 300~ thin film transistor structure 110, 210, 310~ 〃 substrate, 120, 220, 320~ 〃 gate; 130, 230, 330~ < gate insulating layer; 140 240, 340~ / channel layer, 150, 250, 350~ > ohmic contact layer; 160, 260 '360~-source; 170^270 > 370~ >bungee; 38 (l·^ cover protection: Cover 0 0632-A50435-TWf 13