TWI253922B - Electronic body-temperature thermometer - Google Patents

Electronic body-temperature thermometer Download PDF

Info

Publication number
TWI253922B
TWI253922B TW093124945A TW93124945A TWI253922B TW I253922 B TWI253922 B TW I253922B TW 093124945 A TW093124945 A TW 093124945A TW 93124945 A TW93124945 A TW 93124945A TW I253922 B TWI253922 B TW I253922B
Authority
TW
Taiwan
Prior art keywords
temperature
time
change information
electronic thermometer
measurement
Prior art date
Application number
TW093124945A
Other languages
Chinese (zh)
Other versions
TW200518715A (en
Inventor
Muneo Tokita
Shigeru Tomioka
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Publication of TW200518715A publication Critical patent/TW200518715A/en
Application granted granted Critical
Publication of TWI253922B publication Critical patent/TWI253922B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The present invention provides an electronic body-temperature thermometer with high accuracy of temperature measurement in a short operating time. The electronic body-temperature thermometer uses a parameter of temperature rise status from measurement start until about 20 seconds in the initial stage to predict the equilibrium temperature. Such a parameter is used to calculate the time required from maximum of the gradient of temperature rise curve start to a certain constant value (e.g., 0.2), and to calculate the temperature gradient at a period between certain time and 5 seconds before using an equation of Delta5T(t)=T(t)-T(t-5), and then to calculate the predicted equilibrium temperature using an equation of Tb(t)=AT(t)+BDelta5T(t)+Ctau+D along with statistic constant A, B, C, D.

Description

1253922 九、發明說明: 【發明所屬之技術領域】 本發明係關於預測式電子體溫計。 【先前技術】 電子體溫計大致可分成爲兩種。其一爲所謂的「實測式 」者。其係將位於測溫部內的測溫元件之溫度直接顯示出 之電子體溫計。在此種實測式之體溫計,係將測溫部放在 如腋下或口中之被測定對象,並以溫度不會再升高時的溫 度(平衡溫)視爲體溫。如欲以實測式體溫計測定平衡溫 ,一般則在口中需要5分鐘,在腋下則需要10分鐘以上之 時間。在實測式中也有一種在溫度上升到達某値以下時, 使蜂鳴器作響,以作爲體溫測定結束之訊息者。此種情形 下,測定雖然可在3至5分鐘即結束,但是所測得之體溫 卻將成爲比實際平衡溫些微低之値。 其他則有稱爲「預測式」之電子體溫計。該預測式電子 體溫計係將溫度上升曲線之特徵與平衡溫度之關係以統計 方法或由熱傳導式抽出來計算補正量,然後將該補正量加 上於溫度値,藉以預測並顯示平衡體溫(請參閱日本國專 利文獻1〜4 )。在該等預測式電子體溫計,自開始測定起 以約1至2分鐘即顯示預測結果。 以往之預測式電子體溫計,係採取根據某一時間的溫度 與溫度梯度,或假定一個考慮及將微小物體加以加熱時的 熱傳導之式,然後以實施曲線近似法等來預測平衡溫度之 方法。此種情形下,亦即等於實質上並未考慮及溫度上升 1253922 曲線之初期値,而只考慮到經過某一程度的時間後之部份 ,即表示溫度自生體內部向表面的傳導方式之部份而巳。 換言之,由於溫度上升曲線之初始部份係易受到測溫部或 皮膚表面之初期狀態之影響,且該等狀態又容易變動,因 此將溫度上升曲線之初始部份由§十算予以除外。 〔專利文獻1〕日本國專利特開昭第5 2 - 75,3 85號公報 〔專利文獻2〕日本國專利特開昭第5 5 - 78,220號公報 〔專利文獻3〕日本國專利特開昭第5 9 - 1 87,23 3號公報 〔專利文獻4〕日本國專利特公平第7 - 1 1 1,3 8 3號公報 【發明內容】 發明所欲解決之課題 然而,茲就如上所述以往之預測式電子體溫計之方法而 言,因爲並未考慮及如上所述測定初期之影響,因此一般 而言,測定時間愈短則使預測精確度變得愈差。因此,如 欲在良好精確度下作預測,則必須等待至初期影響會消除 爲止,以致需要直至初期影響消除爲止之時間經過。例如 此種型式之體溫計,則需要60秒鐘至1 20秒鐘之預測時間 〇 本發明係爲解決此種以往技術之課題所完成者,其目的 係提供一種可以短時間且以高準確度作溫度測定之電子體 溫計。 解決課顆之丰跺 爲達成上述目的,本發明係一種電子體溫計,其係具備 溫度測定裝置,用以計測體溫,且由溫度開始測定後,直 1253922 至經過特定時間爲止所測得之第1溫度變化資訊與其後所 測得之第2溫度變化資訊來預測平衡體溫。 若構成爲如上所述,則由於可以自開始測定的初期溫度 變化資訊預測平衡溫度,因此可在短時間且以高準確度作 溫度測定。 該第1溫度變化資訊較佳爲自開始測定起直至約經過2 0 秒鐘爲止所測得之資訊。 該第1溫度變化資訊較佳爲溫度以外之物理量。 該第1溫度變化資訊較佳爲表示溫度上升之持續時間者 ,該第2溫度變化資訊爲溫度梯度。 該表示溫度上升之持續時間之第1溫度變化資訊爲溫度 梯度値自尖峰變成爲特定値爲止之時間。 較佳爲具備配置於熱特性不同的位置之2個溫度檢測裝 置,第1溫度變化資訊爲由2個溫度檢測裝置所檢測的溫 度之差所得之値,第2溫度變化資訊爲由任一溫度檢測裝 置所測得之溫度梯度。 較佳爲由該二溫度檢測裝置所測得之第1溫度變化資訊 ,係由任一方的溫度檢測裝置所檢測之溫度,與由二溫度 檢測裝置所檢測之溫度之差的線性關係所計算得之値。 發明之效果 根據本發明,即可提供一種可以短時間且以高準確度作 溫度測定之體溫計。 【實施方式】 霞_ 1實施形態 -7- 1253922 茲參照圖式說明本發明實施形態之預測式電子體溫計如 下。 第1圖係表示預測式電子體溫計基本結構之方塊圖。預 測式電子體溫計1係主要由測溫部2、用以預測運算平衡 體溫之預測運算部3、用以顯示預測結果之顯示部4、用以 對預測運算部3及顯示部4供應電力之電源5、以及用以 切換電源之接通•切斷之電源開關6所構成。測溫部2係 具有例如熱敏電阻等之溫度感知器。預測運算部3係用以 將來自測溫部2之信號加以監測,並根據溫度或經過時間 資訊來預測計算平衡體溫。經在預測運算部3所計算之結 果係送至顯示部4 ’以在顯示部4顯示預測體溫。 第2圖係表示預測式電子體溫計1 〇、1 1之結構示意圖。 預測式電子體溫計1 0、1 1係具備大致長方體之本體部7 ,與由本體部7之長度方向朝長度方向延伸之棒狀測頭8 。測溫部2係設置於測頭8之前端。溫度感知器2 1係配置 於形成爲中空之測溫部2的內面’熱係由測溫部2之外表 面向溫度感知器(溫度檢 '測裝置)2 1傳導(第2 ( a )圖) 。溫度感知器21係電氣連接於配置在本體部7內部之預測 運算部3,以將溫度感知器21之輸出輸入至預測運算部3 〇 另外,測溫部2之結構並不受限於如上所述之結構者, 也可構成爲具有第1溫度感知器211、第2溫度感知器212 之2個溫度感知器。在此第1溫度感知器2 1 1 (溫度檢測 裝置)與第2溫度感知器(溫度檢測裝置)2 1 2 ’係分別經 1253922 由具有不同的熱特性(熱傳導率、比熱、密度中任一者, 或⑧等中任—或三者之組合)之物質(隔熱材料221、222 )’配置於形成爲中空的測溫部2之內面(由於隔熱材料 之配置係以使對於第i溫度感知器2 n及第2溫度感知器 2 1 2的熱特性互爲不相同爲其目的,因此也可採取僅設置 一方的隔熱材料之方式)。因此,熱即可由測溫部2之外 . 表面經由隔熱材料2 2 1傳導至第1溫度感知器2 1 1,同樣 地熱即可經由隔熱材料222傳導至第2溫度感知器212。 第1溫度感知器2 1 1、第2溫度感知器2 12係電氣連接到 鲁 配置於本體部7之內部的預測運算部3,第1溫度感知器 2 1 1、第2溫度感知器2 1 2之輸出係分別輸入至預測運算部 3 〇 自在腋下或口中開始測定後的熱敏電祖溫度上升之時間 變化,一般可以如第3圖之曲線圖來表示。 對該上升曲線若適用加熱微小物體時之溫度上升式: 〔數1〕 T(t) = Ts - (Ts - TO) exp (- a t) ^ 式中,T(t):在時間t時之溫度、Ts :加熱體之溫度(生體 溫度)、TO :物體初期溫度、a :常數時,則得知溫度上 升曲線可以在約2 0秒鐘附近爲界而分成爲2部份(第3圖 中之虛線)。 在熱敏電阻之溫度上升曲線中自開始測定起直至約20秒 鐘的部份,係反映自生體表面溫度、測頭初期溫度、生體 向測頭的熱之傳導方法。 -9- 1253922 在熱敏電阻之溫度上升曲線中自開始測定起至約2 0秒鐘 以後的邰份’係表不因生體的反應,熱自生體內部向表面 傳導之狀態’且由於爲個別之測定對象,因此其溫度變化 係各自不相同。在以往之預測方式,一向係利用在溫度上 升曲線中自開始測定起約2 0秒鐘以後的部份之溫度資料。 生體之初期表面溫度係反映深部體溫與外部環境之關係 而變化。熱對於測頭的傳導方法,也會因被測定對象的人 、被測定對象及測頭之表面狀態、被測定對象與測頭之接 觸狀態而變化。換言之,即使測定同一人,由於按每一測 定該等之狀態係在變化,因此以往一向是以不致於受到如 此之易於變動部份之溫度資訊之方式,而採用經過足夠的 時間後在溫度上升曲線中變化比較趨於安定的部份之溫度 資訊。然而,若與此相反,而反過來利用該等出現於初期 溫度上升部份的深部體溫與外部環境、熱對於測頭的傳導 方法、表面狀態、接觸狀態之資訊時,藉此即可預期提高 在短時間下的測定精確度。如上所述之屬於自開始測定起 直至經過特定時間爲止的初期階段(例如自開始測定起約 2〇秒鐘之期間)之有關溫度變化之資訊,表示深部體溫與 外部環境、熱對於測頭的傳導方法、表面狀態、接觸狀態 ’且反映之資訊,就是相當於第1溫度變化資訊。與此相 對,係屬於自開始測定起直至經過特定時間爲止的初期階 段(例如自開始測定起經過約20秒鐘之後)之有關溫度變 化之資訊,表示以生體之反應熱由生體內部向表面傳導的 狀態,且反映之資訊,就是相當於第2溫度變化資訊。但 1253922 是該特定時間並非限定於約2 0秒鐘,係會因各種因素而變 化者。 表示初期溫度上升狀態的參數之一實例,在使用1個感 知器之型式是可使用由溫度上升曲線之梯度(△ T(t))之 最大値到達某一定値(例如0 · 2 )之時間(在第4圖中以r (秒鐘)表示)。其係表示初始部份的溫度上升繼續幅度 之參數。 在第5圖表示使用其之具體的平衡溫度預測方法實例。 首先與開始測定同時起動時鐘(步驟1 ),並由溫度感 知器21之輸出取得溫度T(t)(步驟2 )。 其次,判斷是否符合溫度T⑴爲31°C以上、或T(t)- T(t-0.5)爲0.2°C以上中之任一條件(步驟3)。若爲符合該等 條件中至少任一者之條件時,則將時鐘予以復位(步驟4 )。另一方面,在步驟3,均未符合該條件中任一者時, 則返回步驟2。 在步驟4則使時鐘復位後,再由溫度感知器2 1之輸出取 得溫度T(t)(步驟5 )。並且,由該時刻之溫度,與該時 刻的2秒鐘前之資料的差來計算得溫度梯度:△ T(t) = τ⑴ -T(t-2.0)(步驟6 )。並且,判斷該時刻之溫度梯度△ T(t) 是否爲小於0.1秒鐘前的溫度梯度△ T ( t - 〇 · i )(步驟7 ) 。在步驟7 ’若該時刻的溫度梯度爲與〇 .丨秒鐘前之溫度梯 度等於或大於時’則返回步驟5。在步驟7,若該時刻的溫 度梯度爲小於0 · 1秒鐘前之溫度梯度時,則在tm中代入該 時刻的時鐘値t (步驟8 )。 1253922 其次,判斷溫度梯度:△ T(t) = T(t) - T(t-2.0)是否爲小 於0.2°C (步驟9 )。在步驟9,若溫度T(t)爲與0.2t:等於 或大於時,則返回步驟8。在步驟9,若溫度梯度△ T(t)爲 小於0.2 °C時,則在tn中代入該時刻的時鐘値t (步驟10 )° 其次,由tm及tn計算τ = tn - tm (步驟1 1 )。經由如 此所計計算得之r,就是溫度梯度自尖峰値變成爲小於0.2 °C爲止所需之時間。 接著,由該時刻,與自該時刻起5秒鐘前的資料之差來 計算溫度梯度△ 5 T(t) = T(t) - T(t-5)(步驟12 )。 使用該等値以如下所示〔數2〕或〔數3〕 〔數2〕1253922 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a predictive electronic thermometer. [Prior Art] Electronic thermometers can be roughly classified into two types. The first one is the so-called "measured". It is an electronic thermometer that directly displays the temperature of the temperature measuring element located in the temperature measuring unit. In such a thermometer, the temperature measuring unit is placed on a subject to be measured, such as under the armpit or in the mouth, and is regarded as a body temperature at a temperature (balanced temperature) at which the temperature does not rise again. If you want to measure the equilibrium temperature with a measured thermometer, it usually takes 5 minutes in the mouth and 10 minutes in the armpit. In the actual measurement type, there is also a case where the buzzer sounds when the temperature rises below a certain level, as a message that the body temperature measurement ends. In this case, although the measurement can be completed in 3 to 5 minutes, the measured body temperature will become slightly lower than the actual balance. Others have an electronic thermometer called "predictive". The predictive electronic thermometer measures the relationship between the characteristic of the temperature rise curve and the equilibrium temperature by statistical methods or by heat conduction to calculate the correction amount, and then adds the correction amount to the temperature 値 to predict and display the equilibrium body temperature (see Japanese Patent Literature 1 to 4). In these predictive electronic thermometers, the predicted results are displayed in about 1 to 2 minutes from the start of the measurement. The conventional predictive electronic thermometer is a method of predicting the equilibrium temperature by performing a curve approximation or the like based on a temperature and a temperature gradient at a certain time, or assuming a heat conduction method in consideration of heating a small object. In this case, it is equal to the initial enthalpy of the curve of the temperature rise of 1,253,922, and only the part after a certain period of time is considered, that is, the part of the temperature conduction from the inside to the surface of the living body. It’s awkward. In other words, since the initial portion of the temperature rise curve is susceptible to the initial state of the temperature measuring portion or the skin surface, and the states are subject to change, the initial portion of the temperature rise curve is excluded by § 10. [Patent Document 1] Japanese Patent Laid-Open No. 5-2 - 75, No. 3, 85 [Patent Document 2] Japanese Patent Laid-Open No. Hei-5-5-78,220 (Patent Document 3) Japanese Patent Application Japanese Patent Publication No. 5-9 -1 87, No. 3 (Patent Document 4) Japanese Patent Application Laid-Open No. Hei No. 7 - 1 1 1, 3 8 3 SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION However, as above In the method of the conventional predictive electronic thermometer, since the influence of the initial stage is not considered as described above, generally, the shorter the measurement time, the worse the prediction accuracy becomes. Therefore, if you want to make predictions with good accuracy, you must wait until the initial impact is eliminated, so that the time until the initial impact is eliminated is required. For example, a thermometer of this type requires a prediction time of 60 seconds to 120 seconds. The present invention has been accomplished to solve the problems of the prior art, and the object thereof is to provide a short time and high accuracy. Electronic thermometer for temperature measurement. In order to achieve the above object, the present invention relates to an electronic thermometer which is provided with a temperature measuring device for measuring body temperature, and measured from a temperature of 1,253,922 until a certain time has elapsed. The temperature change information and the second temperature change information measured thereafter are used to predict the equilibrium body temperature. According to the above configuration, since the equilibrium temperature can be predicted from the initial temperature change information of the start of measurement, the temperature can be measured in a short time and with high accuracy. The first temperature change information is preferably information measured from the start of measurement until about 20 seconds have elapsed. The first temperature change information is preferably a physical quantity other than the temperature. Preferably, the first temperature change information is a duration indicating a temperature rise, and the second temperature change information is a temperature gradient. The first temperature change information indicating the duration of the temperature rise is the time from the peak to the specific enthalpy. Preferably, the two temperature detecting devices are disposed at positions different in thermal characteristics, and the first temperature change information is obtained by the difference between the temperatures detected by the two temperature detecting devices, and the second temperature change information is determined by any temperature. Detecting the temperature gradient measured by the device. Preferably, the first temperature change information measured by the two temperature detecting means is calculated by a linear relationship between a temperature detected by one of the temperature detecting means and a temperature detected by the two temperature detecting means. After that. EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a thermometer which can measure temperature in a short time and with high accuracy. [Embodiment] Xia_1 embodiment -7- 1253922 A predictive electronic thermometer according to an embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a block diagram showing the basic structure of a predictive electronic thermometer. The predictive electronic thermometer 1 is mainly composed of a temperature measuring unit 2, a predictive computing unit 3 for predicting the calculated balanced body temperature, a display unit 4 for displaying the predicted result, and a power supply for supplying power to the predictive computing unit 3 and the display unit 4. 5. A power switch 6 for switching the power on and off. The temperature measuring unit 2 has a temperature sensor such as a thermistor. The prediction computing unit 3 is configured to monitor the signal from the temperature measuring unit 2 and predict the calculated equilibrium body temperature based on the temperature or the elapsed time information. The result calculated by the prediction calculation unit 3 is sent to the display unit 4' to display the predicted body temperature on the display unit 4. Fig. 2 is a schematic view showing the structure of a predictive electronic thermometer 1 〇, 1 1 . The predictive electronic thermometers 10 and 11 are a rod-shaped probe 8 having a substantially rectangular parallelepiped main body portion 7 and extending in the longitudinal direction from the longitudinal direction of the main body portion 7. The temperature measuring unit 2 is disposed at the front end of the probe 8. The temperature sensor 2 1 is disposed on the inner surface of the temperature measuring unit 2 that is formed to be hollow. The heat is transmitted from the outer surface of the temperature measuring unit 2 to the temperature sensor (temperature detecting device) 2 1 (Fig. 2 ( a ) ). The temperature sensor 21 is electrically connected to the prediction calculation unit 3 disposed inside the main body unit 7 to input the output of the temperature sensor 21 to the prediction calculation unit 3, and the configuration of the temperature measurement unit 2 is not limited to the above. The structure described above may be configured as two temperature sensors having the first temperature sensor 211 and the second temperature sensor 212. Here, the first temperature sensor 2 1 1 (temperature detecting device) and the second temperature sensor (temperature detecting device) 2 1 2 ' respectively have different thermal characteristics (thermal conductivity, specific heat, and density) through 1253922. The material (heat insulating material 221, 222 ) of any one of the eight or the like (the combination of the three) is disposed on the inner surface of the temperature measuring portion 2 formed as a hollow (the arrangement of the heat insulating material is such that Since the thermal characteristics of the i-temperature sensor 2 n and the second temperature sensor 2 1 2 are different from each other, it is also possible to adopt a method in which only one insulating material is provided. Therefore, the heat can be transmitted from the outside of the temperature measuring unit 2 to the first temperature sensor 2 1 1 via the heat insulating material 2 2 1 , and the same heat can be conducted to the second temperature sensor 212 via the heat insulating material 222. The first temperature sensor 2 1 1 and the second temperature sensor 2 12 are electrically connected to the prediction computing unit 3 disposed inside the main body unit 7, and the first temperature sensor 2 1 1 and the second temperature sensor 2 1 The output of 2 is input to the prediction calculation unit 3, and the time change of the temperature rise of the thermosensitive electron progenitor after the measurement is started from the squat or the mouth is generally shown as a graph in Fig. 3 . For the ascending curve, if the temperature rise is applied when heating a small object: [1] T(t) = Ts - (Ts - TO) exp (- at) ^ where T(t): at time t Temperature, Ts: temperature of the heating body (green body temperature), TO: initial temperature of the object, a: constant, it is known that the temperature rise curve can be divided into two parts around the time of about 20 seconds (third The dotted line in the figure). The portion of the thermistor temperature rise curve from the start of measurement to about 20 seconds reflects the surface temperature of the autologous body, the initial temperature of the probe, and the heat transfer method of the living body to the probe. -9- 1253922 In the temperature rise curve of the thermistor, from the start of the measurement to about 20 seconds after the measurement, the condition of the heat-producing body is transmitted to the surface due to the reaction of the living body, and Individual measurement objects, and therefore their temperature changes are different. In the past prediction method, the temperature data of a portion of the temperature rise curve from about 20 seconds after the start of the measurement is used. The initial surface temperature of the living body reflects the relationship between the deep body temperature and the external environment. The method of conduction of heat to the probe changes depending on the state of the object to be measured, the surface of the object to be measured and the surface of the probe, and the state of contact between the object to be measured and the probe. In other words, even if the same person is measured, since the state of the measurement is changed for each measurement, it has been conventionally used in such a manner that the temperature information of the portion which is not easily changed is used, and the temperature rises after sufficient time has elapsed. The change in the curve compares the temperature information of the stable part. However, if the opposite is true, and the information about the deep body temperature and the external environment, the conduction method of the heat to the probe, the surface state, and the contact state of the initial temperature rise portion are reversed, it is expected to be improved. Accuracy of measurement in a short time. As described above, information on temperature changes in the initial stage from the start of measurement until a certain period of time elapses (for example, a period of about 2 seconds from the start of measurement) indicates deep body temperature and external environment, and heat to the probe. The conduction method, the surface state, the contact state, and the information reflected are equivalent to the first temperature change information. On the other hand, it is information on the temperature change in the initial stage from the start of measurement until a certain period of time elapses (for example, after about 20 seconds from the start of measurement), indicating that the heat of reaction of the living body is from the inside of the living body. The state of surface conduction, and the information reflected, is equivalent to the second temperature change information. However, 1253922 is that the specific time is not limited to about 20 seconds, which varies depending on various factors. An example of a parameter indicating an initial temperature rise state is a time when a mode of using a sensor is used to reach a certain 値 (for example, 0 · 2 ) by the maximum 値 of the gradient of the temperature rise curve (Δ T(t)). (Expressed in r (seconds) in Figure 4). It is a parameter indicating the continuation of the temperature rise of the initial part. An example of a specific equilibrium temperature prediction method using the same is shown in Fig. 5. First, the clock is started simultaneously with the start of the measurement (step 1), and the temperature T(t) is obtained from the output of the temperature sensor 21 (step 2). Next, it is judged whether or not the temperature T(1) is 31 ° C or higher, or T (t) - T (t - 0.5) is 0.2 ° C or higher (step 3). If the condition of at least one of the conditions is met, the clock is reset (step 4). On the other hand, if none of the conditions is met in step 3, the process returns to step 2. After the clock is reset in step 4, the temperature T(t) is obtained from the output of the temperature sensor 2 1 (step 5). Further, the temperature gradient is calculated from the difference between the temperature at that time and the data of the time before 2 seconds: Δ T(t) = τ(1) - T(t - 2.0) (step 6). Then, it is judged whether or not the temperature gradient Δ T(t) at the time is less than the temperature gradient Δ T ( t − 〇 · i ) before 0.1 second (step 7). In step 7', if the temperature gradient at that time is equal to or greater than the temperature gradient before 〇.丨, then return to step 5. In step 7, if the temperature gradient at this time is less than the temperature gradient before 0 · 1 second, the clock 该t at that time is substituted in tm (step 8). 1253922 Next, determine the temperature gradient: Δ T(t) = T(t) - T(t-2.0) is less than 0.2 °C (step 9). In step 9, if the temperature T(t) is equal to or greater than 0.2t: then return to step 8. In step 9, if the temperature gradient Δ T(t) is less than 0.2 ° C, the clock 该t at that time is substituted in tn (step 10). Next, τ = tn - tm is calculated from tm and tn (step 1 1 ). The r calculated by this is the time required for the temperature gradient to change from a peak 小于 to less than 0.2 °C. Next, from this point of time, the temperature gradient Δ 5 T(t) = T(t) - T(t-5) is calculated from the difference between the data 5 seconds before the time (step 12). Use these 値 as shown below [number 2] or [number 3] [number 2]

Tb(t)= A T(t) + ΒΔ 5 T(t) + C τ + D ( l ) 〔數3〕Tb(t)= A T(t) + ΒΔ 5 T(t) + C τ + D ( l ) [number 3]

Tb(t)= T(t) + ΕΔ 5 T(t) + F r + G (2) 計算得預測平衡溫Tb(t)(步驟1 3 )。Tb(t)= T(t) + ΕΔ 5 T(t) + F r + G (2) The predicted equilibrium temperature Tb(t) is calculated (step 13).

Tb(t)係以如下所述方式使用。例如,連續地計算Tb(t) 値,並判定變動是否爲小於預先設定値(〇 . i t:),或是否 已經過t = 30秒鐘等之一定時間(步驟14),若爲均未符 合該等條件中任一者時,則返回步驟〗2。並且,若符合該 等條件中任一者時,則將該時刻的Tb(t)値作爲預測値而顯 示於顯示部4(步驟15)。在此之A、B、C、D(E、F、G )係預先抽取許多資料,並以統計方法所決定之常數。 兹以如下所示〔數4〕之式作爲以往預測方法之一實例 1253922 並與根據本發明之一實例的式(1 )之預測精確度相比較 〔數4〕Tb(t) is used in the manner described below. For example, continuously calculate Tb(t) 値 and determine whether the change is less than the preset 値(〇. it:), or whether it has passed t = 30 seconds, etc. (step 14), if none of them meets In any of these conditions, return to step 〖2. When any of these conditions is satisfied, Tb(t) 将该 at that time is displayed as a prediction 値 on the display unit 4 (step 15). Here, A, B, C, and D (E, F, G) are pre-extracted with many data, and the constants determined by statistical methods. The equation [number 4] shown below is taken as an example of the conventional prediction method 1253922 and compared with the prediction accuracy of the equation (1) according to an example of the present invention [number 4]

Tb(t)= A T(t) + Β Δ 5 T(t) + C ( 3 ) 將時間區分成每1 0秒鐘,並按各時間分別計算得最適當 的a B C D (爲式(1 )之情形)、A B C (爲式(3 )之情形 )’然後使用該等値來預測77人之體溫的結果就是第6圖 〇 其在3 0秒鐘時之各係數則爲: 在式(1)爲 A = 0.725、B = 5.536、C = - 0.0732、D = 10.857 ; 在式(3)爲 A = 0.705、B = 4.815、C = 11.123。 如第6圖所示,使用本發明之式(1 )時,則在自開始測 定起3 0秒鐘之時刻,即能獲得與其以後再經過時間的時刻 相等之精確度。與此相對,在使用式(3 )的以往之方法時 ,則直至獲得相等精確度卻自開始測定起已經過5 0秒鐘以 上。如此,若根據本發明,則與以往之預測式電子體溫計 相比較,可在短時間實現高準確度之體溫測定。 在具有如第2(b)圖所示2個溫度感知器的電子體溫計 之情形下,表示初期溫度上升狀態之參數,也可使用在同 一時刻的第1溫度感知器2 1 1與第2溫度感知器2 1 2之溫 度差:△ 12 T(t) = Tl(t)- T2(t)爲由最大値變爲某一定値( 例如0 · 5 )之時間(在第7圖中,以r (秒鐘)表示。)。 此情形下之平衡溫度預測方法,爲將第5圖所示△ T(t)以 1253922 △ T(t)取代者。如第7圖所示,△ T(t)係因自開始測定 起經過約3 0秒鐘而將趨於非常安定,因此,將該値作爲參 數來使用,也可在短時間獲得高度精確的預測。 除上述以外,表示初期溫度的上升之參數,也可採用微 分之最大値或微分會變得最大値所需之時間等。 第2實施例形熊 如第2圖所示,在使用2個溫度感知器的電子體溫計1 1 之情形下,則可使用其他參數來預測平衡體溫。關於電子 體溫計11,則已於第1實施例形態中加以說明,因此就預 測方法說明如下。 在具有2個溫度感知器之電子體溫計1 1,則利用第1溫 度感知器211與第2溫度感知器212之溫度差與其時之溫 度係具有線性關係來獲得初期特性値。換言之,第丨溫度 感知器21 1之溫度値Tl(t)與第2溫度感知器212之溫度値 T2(t)之差△ 12T(t)與其時刻的溫度Tl(t),係經過某一時間 時’則將成1付合· 〔數5〕Tb(t)= AT(t) + Β Δ 5 T(t) + C ( 3 ) The time is divided into every 10 seconds, and the most appropriate a BCD is calculated for each time (for equation (1) The case), ABC (for the case of equation (3))' then use the enthalpy to predict the body temperature of 77 people is the result of Figure 6 and its coefficients at 30 seconds are: ) is A = 0.725, B = 5.536, C = - 0.0732, D = 10.857; in equation (3), A = 0.705, B = 4.815, C = 11.123. As shown in Fig. 6, when the formula (1) of the present invention is used, the accuracy equal to the time after the elapse of time can be obtained at the time of 30 seconds from the start of the measurement. On the other hand, when the conventional method of the formula (3) is used, it is more than 50 seconds since the start of the measurement until the equal accuracy is obtained. As described above, according to the present invention, it is possible to achieve high-accuracy body temperature measurement in a short period of time as compared with the conventional predictive electronic thermometer. In the case of an electronic thermometer having two temperature sensors as shown in Fig. 2(b), the first temperature sensor 2 1 1 and the second temperature at the same time may be used as parameters indicating the initial temperature rise state. Temperature difference of the sensor 2 1 2: Δ 12 T(t) = Tl(t) - T2(t) is the time from the maximum 値 to a certain 値 (for example, 0 · 5) (in the seventh figure, r (seconds) means .). The equilibrium temperature prediction method in this case is to replace Δ T(t) shown in Fig. 5 with 1253922 Δ T(t). As shown in Fig. 7, ΔT(t) tends to be very stable after about 30 seconds from the start of measurement. Therefore, using 値 as a parameter can also be highly accurate in a short time. prediction. In addition to the above, the parameter indicating the rise of the initial temperature may be the time required for the maximum 値 or differential of the differential to become maximum. Second Embodiment Shape Bear As shown in Fig. 2, in the case of an electronic thermometer 1 1 using two temperature sensors, other parameters can be used to predict the equilibrium body temperature. The electronic thermometer 11 has been described in the first embodiment, and therefore the prediction method will be described below. In the electronic thermometer 1 having two temperature sensors, the temperature difference between the first temperature sensor 211 and the second temperature sensor 212 is linearly related to the temperature at that time to obtain the initial characteristic 値. In other words, the difference Δ 12T(t) between the temperature 値Tl(t) of the second temperature sensor 21 1 and the temperature 値T2(t) of the second temperature sensor 212 and the temperature Tl(t) at the time thereof are passed through a certain At the time of time, it will be 1 in one. [5]

Tl(t)= ΗΔ 12 T(t) + m 之直線關係(第8圖)。將此時之Η或m用作爲特性値。 在第9圖係表示具有2個溫度感知器的電子體溫計1 1之 具體的平衡溫度預測方法。在此則就利用m之情形加以說 明。 首先與開始測定同時起動時鐘(步驟2 1 ),並取得第1 溫度感知器2 1 1及第2溫度感知器2 1 2之時系列溫度資料 1253922 ’由任一者之輸出取得溫度T(t)(步驟22 )。 其次,判定溫度T(t)是否符合爲31 °C以上,或是否符合 T(t) - T(t-0.5)爲0.2t以上中之任一條件(步驟23)。若 爲符合該等條件中至少任一者之條件時,則將時鐘予以復 位(步驟24 )。另一方面,在步驟23,均未符合該條件中 任一者時,則返回步驟22。 在步驟23則使時鐘復位後,由第1溫度感知器之輸出取 得溫度Tl(t)、由第2溫度感知器的溫度之輸出取得溫度 T2(t)(步驟25 )。然後計算得該時刻的由第1溫度感知器 2 1 1所檢測之溫度T 1 (t)與由第2溫度感知器2 1 2所檢測之 溫度T2⑴之溫度差:△ 12T(t) = Tl(t)- T2(t)(步驟26)。 由數個Tl(t)、Δ12Τ⑴計算能符合:m = Tl(t)- ΗΔ12 T(t)之條件的m、Η (步驟27)。具體而言,例如以1秒鐘 間隔取得資料,經過t秒鐘時,則以: 〔數6〕 m = Tl(t)- ΗΔ 12 T(t) m = Tl(t-l)- ΗΔ 12 T(t-l) 之聯立方程式計算得m、H,並將此時之m與H作爲m(t) 之參數。按順序繼續進行如此之計算。 經由如上述所計算得之m(t)係如第10圖所示般約以1〇 秒鐘將成爲一定値。將該成爲一定時之値用作爲m。具體 而言,判斷其時刻之m(t),與自其時刻起1秒鐘前的m(t-1)之差的絕對値是否比0.1小(步驟28 )。在步驟28 ’ m(t)與m(t-l)之差的絕對値爲0.1以上時,則回到步驟28 1253922 。另一方面在步驟2 8,m⑴與m (t - 1 )之差的絕對値若小於 〇.1時,則將其時刻之ni(t)作爲m (步驟29)。 其次,由該時刻,與自該時刻起5秒鐘前的資料之差來 決定溫度梯度:△ 12 T(t) = T(t) - T(t-5)。 使用該等以如下所示〔數7〕或〔數8〕計算得Tb。 〔數7〕Tl(t) = linear relationship of ΗΔ 12 T(t) + m (Fig. 8). Use Η or m at this time as the characteristic 値. Fig. 9 shows a specific equilibrium temperature prediction method of the electronic thermometer 1 1 having two temperature sensors. Here, the case of using m is explained. First, the clock is started at the same time as the start of the measurement (step 2 1 ), and the temperature information of the first temperature sensor 2 1 1 and the second temperature sensor 2 1 2 is obtained, and the temperature is obtained from the output of either one. ) (step 22). Next, it is judged whether or not the temperature T(t) satisfies 31 ° C or more, or whether T(t) - T(t - 0.5) is equal to any of 0.2 t or more (step 23). If the condition of at least one of the conditions is met, the clock is reset (step 24). On the other hand, if none of the conditions is met in step 23, the process returns to step 22. After the clock is reset in step 23, the temperature T1(t) is obtained from the output of the first temperature sensor, and the temperature T2(t) is obtained from the temperature of the second temperature sensor (step 25). Then, the temperature difference between the temperature T 1 (t) detected by the first temperature sensor 2 1 1 and the temperature T2 (1) detected by the second temperature sensor 2 1 2 is calculated: Δ 12T(t) = Tl (t) - T2(t) (step 26). m, Η (step 27) which can satisfy the condition of m = Tl(t) - Η Δ12 T(t) is calculated from a plurality of Tl(t), Δ12 Τ(1). Specifically, for example, data is acquired at intervals of one second, and after t seconds, it is: [number 6] m = Tl(t) - Η Δ 12 T(t) m = Tl(tl) - ΗΔ 12 T( The joint equation of tl) calculates m and H, and m and H at this time are taken as parameters of m(t). This calculation is continued in order. The m(t) calculated as described above is approximately constant for about 1 second as shown in Fig. 10. Use this as a m for a certain period of time. Specifically, it is judged whether or not the absolute 値 of the difference between the time m(t) and the m(t-1) one second before the time is smaller than 0.1 (step 28). When the absolute 値 of the difference between step 28' m(t) and m(t-1) is 0.1 or more, the process returns to step 28 1253922. On the other hand, if the absolute 差 of the difference between m(1) and m (t - 1 ) in step 2, 8 is less than 〇.1, ni(t) at the time is taken as m (step 29). Next, the temperature gradient is determined by the difference between the time and the data 5 seconds before the time: Δ 12 T(t) = T(t) - T(t-5). The Tb was calculated by using [the number 7] or [the number 8] as shown below. [Number 7]

Tb(t)= I T(t) + JA 12 T(t) + K m + L ( 4 ) 〔數8〕Tb(t)= I T(t) + JA 12 T(t) + K m + L ( 4 ) [Number 8]

Tb(t)= T(t) + ΝΔ 12 T(t) + O m + P ( 5)Tb(t)= T(t) + ΝΔ 12 T(t) + O m + P ( 5)

Tb(t)係例如連續地計算Tb(t)之値,並判定該時刻的値 Tb(t)與自其時刻起1秒鐘前之値Tb(t-l)的絕對値是否爲小 於預先設定値(0.TC )、或是否已經過t = 30秒鐘等之一 定時間(步驟3 1 )。在步驟3 1,若爲均未符合該等條件中 任一者時,則返回步驟3 0。另一方面,在步驟3 1,若爲符 合該等條件中任一者之條件時,則將該時刻的Tb(t)之値作 爲預測値而顯示於顯示部4 (步驟3 2 )。在此,I、J、K、 L(N、〇、P)係預先設定之常數。 如上所述,將溫度上升曲線之初期資訊與其後之資訊倂 在一起即可以3 0秒鐘左右之短時間實現正確的預測。 【圖式簡單說明】 第1圖係表示本發明實施形態之預測式電子體溫計之基 本結構方塊圖。 第2圖之(a)及(b)係分別表示1個感知器、2個感知 器之預測式電子體溫計結構示意圖。 -16 - 1253922 第3圖係表示自開始測定起的溫度感知器之溫度上升的 時間變化曲線圖。 第4圖係表不溫度感知器之溫度上升的時間變化與溫度 上升曲線梯度之時間變化曲線圖。 第5圖係表示將溫度感知器之溫度上升曲線梯度作爲參 數而使用的平衡溫度預測方法之流程圖。 第6圖係表不本發明之平衡溫度預測方法與以往之方法 的比較結果曲線圖。 第7圖係表示第1感知器之溫度値Tl(t)與第2感知器之 溫度値T2(t),與Tl(t)與T2(t)之差ΔΤ(ί)之時間變化曲線 圖。 第8圖係表示第1感知器之溫度値Tl(t)與第2感知器之 溫度値T2(t)之差AT(t)與其時刻的溫度Tl(t)之關係曲線圖 〇 第9圖係表示在2個感知器的電子體溫計之平衡溫度預 測方法流程圖。 第10圖係表示第1感知器之溫度値Tl(t)與第2感知器 之溫度値T2(t)與m(t)之時間變化曲線圖。 【主要元件符號說明】 1 、 10 、 11 電子體溫計 2 測溫部 3 預測運算部 4 顯示部 5 電源 1253922 6 2 1 2 11 2 12 22 1、 電源開關 溫度感知器 第1溫度感知器 第2溫度感知器 222 隔熱材料Tb(t) is, for example, continuously calculating the enthalpy of Tb(t), and determining whether 値Tb(t) at the time and the absolute 値Tb(tl) before 1 second from the time is less than the preset 値(0.TC), or whether it has passed t = 30 seconds, etc. for a certain period of time (step 3 1 ). In step 3, if none of the conditions are met, the process returns to step 30. On the other hand, in step 3, if the condition of any of the conditions is met, the Tb(t) at that time is displayed as a prediction 値 and displayed on the display unit 4 (step 3 2 ). Here, I, J, K, and L (N, 〇, P) are predetermined constants. As described above, by combining the initial information of the temperature rise curve with the information after it, the correct prediction can be achieved in a short time of about 30 seconds. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the basic structure of a predictive electronic thermometer according to an embodiment of the present invention. Fig. 2(a) and (b) are schematic diagrams showing the structure of a predictive electronic thermometer of one sensor and two sensors, respectively. -16 - 1253922 Fig. 3 is a graph showing the time variation of the temperature rise of the temperature sensor from the start of measurement. Figure 4 is a graph showing the time variation of the temperature rise of the temperature sensor and the time gradient of the temperature rise curve. Fig. 5 is a flow chart showing an equilibrium temperature prediction method used as a parameter of a temperature rise curve gradient of a temperature sensor. Fig. 6 is a graph showing a comparison result between the equilibrium temperature prediction method of the present invention and the conventional method. Figure 7 is a graph showing the time variation of the temperature 値Tl(t) of the first sensor and the temperature 値T2(t) of the second sensor, and the difference ΔΤ(ί) between Tl(t) and T2(t) . Fig. 8 is a graph showing the relationship between the temperature 値Tl(t) of the first sensor and the temperature 値T2(t) of the second sensor, AT(t), and the temperature T1(t) at the time. Fig. 9 It is a flow chart showing the method for predicting the equilibrium temperature of the electronic thermometers of the two sensors. Fig. 10 is a graph showing the time variation of the temperature 値Tl(t) of the first sensor and the temperature 値T2(t) and m(t) of the second sensor. [Description of main component symbols] 1 , 10 , 11 Electronic thermometer 2 Temperature measuring unit 3 Predictive calculation unit 4 Display unit 5 Power supply 1252922 6 2 1 2 11 2 12 22 1. Power switch temperature sensor 1st temperature sensor 2nd temperature Sensor 222 insulation material

-18--18-

Claims (1)

1253922 十、申請專利範圍: 1 . 一種電子體溫計,其係具備溫度測定裝置,用以計測 體溫’且由開始測定溫度後,直至經過特定時間爲止 所測得之第1溫度變化資訊與其後所測得之第2溫度 變化資訊來預測平衡體溫。 2. 如申請專利範圍第1項之電子體溫計,其中該第1溫 度變化資訊爲自開始測定起直至約經過20秒鐘爲止所 測得之資訊。 3. 如申請專利範圍第2項之電子體溫計,其中該第1溫 度變化資訊爲溫度以外之物理量。 4· 如申請專利範圍第3項之電子體溫計,其中該第1溫 度變化資訊爲表示溫度上升之持續時間者,該第2溫 度變化資訊爲溫度梯度。 5 · 如申請專利範圍第4項之電子體溫計,其中該表示溫 度上升之持續時間之第1溫度變化資訊,爲溫度梯度 値自尖峰變成爲特定値爲止之時間。 6· 如申請專利範圍第2項之電子體溫計,其中具備配置 於熱特性不同的位置之2個溫度檢測裝置,第1溫度 變化資訊爲由2個溫度檢測裝置所檢測的溫度之差所 得之値,第2溫度變化資訊爲由任一溫度檢測裝置所 測得之溫度梯度。 7 ·如申請專利範圍第6項之電子體溫計,其中由該2個溫 度檢測裝置所測得之第1溫度變化資訊,係由任一方的 溫度檢測裝置所檢測之溫度,與由2個溫度檢測裝置所 檢測之溫度之差的線性關係所計算得之値。 -19-1253922 X. Patent application scope: 1. An electronic thermometer with temperature measuring device for measuring body temperature and measuring the first temperature change after the temperature is measured until a certain time has elapsed. The second temperature change information is obtained to predict the equilibrium body temperature. 2. The electronic thermometer according to claim 1, wherein the first temperature change information is information measured from the start of the measurement until about 20 seconds have elapsed. 3. The electronic thermometer according to item 2 of the patent application, wherein the first temperature change information is a physical quantity other than temperature. 4. The electronic thermometer according to item 3 of the patent application, wherein the first temperature change information is a duration indicating a temperature rise, and the second temperature change information is a temperature gradient. 5 · The electronic thermometer according to item 4 of the patent application, wherein the first temperature change information indicating the duration of the temperature rise is the time from the peak to the specific temperature. 6. The electronic thermometer according to the second aspect of the patent application, wherein the two temperature detecting devices are disposed at positions different in thermal characteristics, and the first temperature change information is obtained by the difference between the temperatures detected by the two temperature detecting devices. The second temperature change information is a temperature gradient measured by any of the temperature detecting devices. 7. The electronic thermometer according to claim 6, wherein the first temperature change information measured by the two temperature detecting devices is detected by one of the temperature detecting devices, and is detected by two temperatures. The linear relationship of the difference in temperature detected by the device is calculated. -19-
TW093124945A 2003-08-21 2004-08-19 Electronic body-temperature thermometer TWI253922B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003297892 2003-08-21
JP2004172862A JP2005098982A (en) 2003-08-21 2004-06-10 Electronic clinical thermometer

Publications (2)

Publication Number Publication Date
TW200518715A TW200518715A (en) 2005-06-16
TWI253922B true TWI253922B (en) 2006-05-01

Family

ID=34467046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093124945A TWI253922B (en) 2003-08-21 2004-08-19 Electronic body-temperature thermometer

Country Status (4)

Country Link
JP (1) JP2005098982A (en)
KR (1) KR20050021245A (en)
CN (1) CN1584523A (en)
TW (1) TWI253922B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424276B (en) * 2005-03-17 2008-09-17 Furuno Electric Co Ultrasonic bone evaluation apparatus
JP4949649B2 (en) * 2005-07-12 2012-06-13 テルモ株式会社 Electronic thermometer and its control method
CN101199414B (en) * 2006-12-11 2010-12-22 深圳迈瑞生物医疗电子股份有限公司 Body temperature fast measuring equipment and method therefor
CN101435727B (en) * 2007-11-12 2011-01-26 深圳迈瑞生物医疗电子股份有限公司 Temperature predicting method and apparatus
CN104523243B (en) * 2014-12-23 2017-06-23 金陵科技学院 Body temperature harvester
JP5952438B1 (en) * 2015-01-22 2016-07-13 ファナック株式会社 Motor temperature estimation device
CN105371968B (en) * 2015-11-20 2018-03-23 广州视源电子科技股份有限公司 Electronic thermometer control method and its device
CN105286812B (en) * 2015-12-02 2018-04-20 广东宝莱特医用科技股份有限公司 A kind of body temperature measurement method and device
CN105342579B (en) * 2015-12-02 2018-04-20 广东宝莱特医用科技股份有限公司 A kind of body temperature measurement method and device
CN108871615B (en) * 2018-07-24 2020-06-05 杭州质子科技有限公司 Human body axillary body temperature anti-interference processing method based on long-time monitoring
JP6988765B2 (en) * 2018-10-31 2022-01-05 オムロン株式会社 Temperature anomaly detection system, temperature anomaly detection method and program
CN111623895B (en) * 2020-06-30 2021-11-23 上海申矽凌微电子科技有限公司 Body temperature measuring device
CN113970382B (en) * 2020-07-06 2023-01-10 浙江宇视科技有限公司 Temperature detection method, device, medium and electronic equipment
CN115684628B (en) * 2022-10-11 2023-09-08 日升餐厨科技(广东)有限公司 Indirect temperature measurement method based on thermal shock

Also Published As

Publication number Publication date
KR20050021245A (en) 2005-03-07
TW200518715A (en) 2005-06-16
CN1584523A (en) 2005-02-23
JP2005098982A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
TWI253922B (en) Electronic body-temperature thermometer
US6890096B2 (en) Electronic clinical thermometer
KR102630649B1 (en) Apparatus, systems and methods for non-invasive thermal irradiation
US6886978B2 (en) Electronic clinical thermometer
US7270476B2 (en) Electronic clinical thermometer with quick temperature estimating device
JP2004526147A5 (en)
JP2000111414A (en) Clinical thermometer
JP2008530560A (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
US10175120B2 (en) Internal temperature measurement method and internal temperature measurement device
JP2002372464A (en) Electronic clinical thermometer
JP2009236624A (en) Deep temperature measurement apparatus of living body
US20100118913A1 (en) Method and apparatus for rapid temperature measurement
US9267848B2 (en) Thermometer using differential temperature measurements
WO2013045897A1 (en) Estimating ambient temperature from internal temperature sensor, in particular for blood glucose measurement
JP2016170027A (en) Internal temperature measurement device and temperature difference measuring module
US20080049812A1 (en) Thermometer with Dual Thermal Sensor
JP4207470B2 (en) Electronic thermometer
US20240053209A1 (en) Thermometer with a diagnostic function
JP6428398B2 (en) Internal temperature measuring device and thermal resistance measuring device
JPH047456B2 (en)
WO2021240717A1 (en) Method for determining installation state, and system for determining installation state
JP2015078891A (en) Temperature prediction method and pyrometer
JPH05107093A (en) Thermal flowmeter
JPH0143903B2 (en)
JP2003503694A (en) Fast response thermometer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees