TWI253235B - Background-calibrating pipelined analog-to-digital converter - Google Patents

Background-calibrating pipelined analog-to-digital converter Download PDF

Info

Publication number
TWI253235B
TWI253235B TW93107452A TW93107452A TWI253235B TW I253235 B TWI253235 B TW I253235B TW 93107452 A TW93107452 A TW 93107452A TW 93107452 A TW93107452 A TW 93107452A TW I253235 B TWI253235 B TW I253235B
Authority
TW
Taiwan
Prior art keywords
digital
analog
signal
stage
mdac
Prior art date
Application number
TW93107452A
Other languages
Chinese (zh)
Other versions
TW200533081A (en
Inventor
Hung-Chih Liu
Jieh-Tsorng Wu
Zwei-Mei Lee
Original Assignee
Silicon Integrated Sys Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Integrated Sys Corp filed Critical Silicon Integrated Sys Corp
Priority to TW93107452A priority Critical patent/TWI253235B/en
Publication of TW200533081A publication Critical patent/TW200533081A/en
Application granted granted Critical
Publication of TWI253235B publication Critical patent/TWI253235B/en

Links

Abstract

A multiplying digital-to-analog converter (MDAC) stage includes a plurality of second capacitances in parallel selectively connected between an input node and an amplifier input and between a corresponding plurality of digital reference signals, which can include a pseudo-random first calibration signal, and the amplifier input. A pipelined ADC incorporating a series of such MDAC stages includes a multiplier connected to the last MDAC stage of the series, a low-pass filter for filtering output of the multiplier and outputting a DC component, and an encoder for receiving output of the MDAC stages and generating a digital output signal and for compensating the digital output signal with the DC component. Background calibration of the ADC includes applying the first calibration signal to a second capacitance of the MDAC stage during a hold phase, and filtering the first calibration signal from the digital output of the pipelined analog-to-digital converter.

Description

1253235 案號:093107452 94年7月5日修正 玖、發明說明: 【發明所屬之技術領域】 本發明提供一種數位電子裝置,尤指一種可進行背景校正的管線 式類比至數位轉換器。 【先前技術】 管線式類比至數位轉換器(pipelined analog-to-digital converter,以下簡稱管線式ADC)是一種常使用於視訊影像系統、數 位用戶迴路(digital subscriber loop)、十億位元乙太網路收發機 (Gigabit Ethernet transceiver)、或者是無線通訊系統中的一種 重要元件。管線式的類比至數位轉換(A/Dconversion,以下簡稱A/D 轉換)可以在功率、速度、積體電路晶片面積上取得不錯的平衡點, 故可以用來實現取樣頻率在百萬赫兹專級的南解析度ADC運算之中。 圖一為習知技術一管線式ADC的示意圖。圖一中的ADC10包含有 一編碼器18,以及複數個串聯的相乘數位至類比轉換器級 (multiplying digital-to-analog converter stage,以下簡稱MDAC 級)12、14、16 (這三級可以是相同的,亦可以是不同的)。第一 MDAC 級12可以依據一預設的精瑞度(precision),接收一類比訊號Vi, 並輸出代表類比訊號Vi的一數位碼Di。後續的MDAC級14、16可以分 別依據被第一級12或第二級14所放大的剩餘訊號(residual signal) %、V3輸出數位碼D2、D3。換句話說,就是每一個後續的級會將前一級 的剩餘值(residue)數位化(digitize),因此,第一級12的數位 輸出Di會包含有最有效位元(most significant bits,MSBs),至於 最後一級16的數位輸出Dp則會包含有最無效位元(least significant bits,LSBs)。編碼器18係用來安排上述一連串不同級12、14、16 的輸出D!、D2、D3以產生對應於類比訊號R的一數位訊號D〇。 I253235 案號:093107452 94年7月5日修正 圖二係為習知技術一 MDAC的示意圖。圖二所示的MDAC20可用來 作為圖一中的MDAC級12、14、16。MDAC20包含有一内部的ADC22,〜 數位至類比轉換器(digital-to-analog converter,以下簡稱DAC) 24,一加法器26,以及一放大器28。在操作上,一類比輸入Vj係自前 一級接收得來(或是Vj本身即為最初的輸入訊號),經由ADC22進行 量化以產生Vj的估計值,即一數位碼Dj。接下來,DAC24產生一相對的 類比訊號Vjda (Dj),而加法器則將Vi減去V产(Di)。加法器26所輪 出的剩餘值會透過放大器28、依據一增益因數&進行放大。MDAC20的 輸出Vi+i可以使用以下方程式表示: (1) 因此’圖一中之管線式ADC10的輸入可以表示成:1253235 Case No.: 093107452 Revised July 5, 1994 玖, Invention Description: TECHNICAL FIELD OF THE INVENTION The present invention provides a digital electronic device, and more particularly to a pipeline analog to digital converter capable of background correction. [Prior Art] A pipeline analog-to-digital converter (hereinafter referred to as a pipelined ADC) is commonly used in video image systems, digital subscriber loops, and billions of bits. Gigabit Ethernet transceiver, or an important component in wireless communication systems. Pipeline analog to digital conversion (A/Dconversion, hereinafter referred to as A/D conversion) can achieve a good balance between power, speed, and integrated circuit chip area, so it can be used to achieve sampling frequency in the megahertz class. South resolution ADC operation. FIG. 1 is a schematic diagram of a conventional pipelined ADC. The ADC 10 in FIG. 1 includes an encoder 18 and a plurality of serially multiplying digital-to-analog converter stages (hereinafter referred to as MDAC stages) 12, 14, and 16 (the three levels may be The same, can also be different). The first MDAC stage 12 can receive a type of analog signal Vi according to a predetermined precision and output a digital code Di representing the analog signal Vi. Subsequent MDAC stages 14, 16 may output digital code D2, D3 depending on the residual signal %, V3 amplified by the first stage 12 or the second stage 14, respectively. In other words, each subsequent level digitizes the remaining value of the previous level. Therefore, the digital output Di of the first stage 12 contains the most significant bits (MSBs). As for the last level 16 digital output Dp will contain the least significant bits (LSBs). The encoder 18 is arranged to arrange the outputs D!, D2, D3 of the above-mentioned series of different stages 12, 14, 16 to generate a digital signal D 对应 corresponding to the analog signal R. I253235 Case No.: 093107452 Revised July 5, 1994 Figure 2 is a schematic diagram of a conventional technique, MDAC. The MDAC 20 shown in Figure 2 can be used as the MDAC stage 12, 14, 16 in Figure 1. The MDAC 20 includes an internal ADC 22, a digital-to-analog converter (DAC) 24, an adder 26, and an amplifier 28. Operationally, a type of analog input Vj is received from the previous stage (or Vj itself is the initial input signal), quantized via ADC 22 to produce an estimate of Vj, i.e., a digital code Dj. Next, DAC 24 produces a relative analog signal Vjda (Dj), and the adder subtracts Vi from Di (Di). The remaining value rotated by adder 26 is amplified by amplifier 28 in accordance with a gain factor & The output Vi+i of the MDAC 20 can be expressed using the following equation: (1) Thus the input of the pipelined ADC 10 in Figure 1 can be expressed as:

Gi GxG2 …Gp] (2) 其中,Q = Vph/ (GiG2…Gp)係為整個a/D轉換過程中的量化錯誤 (quantizing error)。圖一中的編碼器18可以將Vl減去q以得出數 位輸出D。。此處需注意的是’訊號^产和增益仏·皆為設計參數,另外, 笞線級 20 中的 ADC22 的轉換特性(conversion characteristics)並 不會對數位輸出D〇造成影響。 在CMOS技術的應用當中,大多數的A/d管線級皆是使用切換式電 容(switched-capacitor,SC) MDAC來實施,其包含有比較器、運算 放大器(opamp)、開關、以及電容等元件。圖三係為一習知技術的二 基數(radix-2) 1.5位元切換式電容MDAC30的示意圖,其轉換特性則 如圖四所示。MDAC30包含有比較器32 ' 34,編碼器36,開關組38, 第一及第二電容40、42 (電容值分別為Cf&Cs),以及一運算放大器 44。若處於一取樣階段(sampie phase)時,當一第一時脈處於高電 7 1253235 案號:093107452 94年7月5曰修正 位時,開關組38中僅有標示了 ‘1,開關是關閉的,訊號%會被取樣‘ 於第一及第二電容40、42。比較器32、34分別用來比較V」與+〇. 25Vr 及-0· 25Vr,並依據比較的結果輸出可以是—丨、〇、或+1的數位碼。反 之,若處於一保持階段(hold phase)時,當一第二時脈處於高電位 時,開關組38中僅有標示了 ‘2,開關是關閉的,故於保持階段時, 輸出訊號Vj+Ι可以表示為:Gi GxG2 ... Gp] (2) where Q = Vph / (GiG2...Gp) is the quantization error during the entire a/D conversion process. Encoder 18 in Figure 1 can subtract q from V1 to derive digital output D. . It should be noted here that the 'signal generation and gain 仏· are all design parameters. In addition, the conversion characteristics of the ADC22 in the 级 line level 20 do not affect the digital output D〇. In CMOS technology applications, most A/d pipeline stages are implemented using switched-capacitor (SC) MDACs, which include components such as comparators, op amps, switches, and capacitors. . Figure 3 is a schematic diagram of a conventional radix-2 1.5-bit switched capacitor MDAC30 with conversion characteristics as shown in Figure 4. The MDAC 30 includes a comparator 32' 34, an encoder 36, a switch block 38, first and second capacitors 40, 42 (capacitance values Cf & Cs, respectively), and an operational amplifier 44. If it is in a sampie phase, when the first clock is in the high power 7 1253235 case number: 093107452, the July 5 曰 correction bit, the switch group 38 only indicates '1, the switch is off. The signal % will be sampled 'in the first and second capacitors 40, 42. Comparators 32 and 34 are used to compare V" and +〇. 25Vr and -0.225Vr, respectively, and output a digital code which can be -丨, 〇, or +1 depending on the result of the comparison. On the other hand, if it is in a hold phase, when a second clock is at a high level, only the switch is set to '2, and the switch is turned off. Therefore, during the hold phase, the output signal Vj+ Ι can be expressed as:

K-Dl (3) 其中’係假設圖三中具有線性的電容4〇、42,以及理想的運算放大器 44 (具有無限大的直流增益以及零輸入偏壓)。 至於在實作上,較理想的情形是電容4〇、42具有相同的電容值Cf、 Cs。然而’由於會有電容值不匹配的情形(即Cf不等於Cs),且運算放 大器44具有輸入偏壓存在,故必須對管線式ADC1〇進行校調,才能得 出更正確的運算結果。 在校調時’ADC的運算速度與精確度會有不同的折衷方案 (trade-off )存在,且會根據裝置(例如M〇SFET、電容等元件)間的 匹配特性而產生變動。一 MDAC的精確度(accuracy)係以比較器和運 算放大器的輸入偏壓、以及電容比的精確值表示。為了要克服上述在 運算速度與精確度間的折衷,有幾種自動校正(self_calibrati〇n) 技術陸績被和:出。雖然可以在類比領域(anal〇g d〇main)上進行校正 的工作但由於在/朱次微米技術(deep sub-micron technologies) 中降低成本及增加數位電路的考量,較佳的方法還是以數位的方式進 行校正的工作。另外,在數位的自動校正方案中,原先對^{1^(:必須的 修飾變得微不足道,因此,在類比訊號的傳送路徑上僅會受到些許的 效能降低(performance degradation)的影響。 1253235 案號:093107452 94年7月5曰修正 傳統的自動校正方案皆須對MDAC進行重新配置 (reconfiguration),然而這勢必會影響到正常的A/D轉換。因此, 在可以忍、受些許閒置時間(idle time)的細巾,只有在—初始電源 ,啟狀態時才會進行ADC的校正工作。但是由於電驗溫度會產生改 變,在電Μ啟時進行的校正玉作概就都會失核果。為了解決此 一問題,亦發產出了許多不同的背景校正(backgr〇und calibrati 方案,其可以使得一 ADC持續對内部的MDAC進行校正,以跟上環境的 改變,且同時可以執行正常的轉換工作,而不會受到解析度降低的影 在背景校正技術中,有很多種演算法是廣為人知的。舉例來說, 「略過-填充」(skip-and-fill)演算法可以隨機地略過a/D週期以 對MDAC進行权正’並使用非線性内差(η〇ηηnear interp〇iati〇n) 的方式填充入遺失的值,關於此一演算法請參閱rU K. M〇〇nandB s. Song, Background digital calibration techniques for pipelined ADC s" , IEEE Trans. Circuits Syst. IL vol.44, pp. 102-109,K-Dl (3) where 's assuming a linear capacitance 4 〇, 42 in Figure 3, and an ideal operational amplifier 44 (with infinite DC gain and zero input bias). As for the implementation, it is desirable that the capacitors 4A, 42 have the same capacitance values Cf, Cs. However, since there is a case where the capacitance value does not match (i.e., Cf is not equal to Cs), and the operational amplifier 44 has an input bias, the pipelined ADC1 must be calibrated to obtain a more accurate operation result. In the calibration, the ADC's operation speed and accuracy have different trade-offs, and it varies according to the matching characteristics between devices (such as M〇SFETs, capacitors, etc.). The accuracy of an MDAC is expressed as the input bias of the comparator and op amp, and the exact value of the capacitance ratio. In order to overcome the above trade-off between accuracy and accuracy, there are several automatic corrections (self_calibrati〇n) techniques that are summed up: out. Although corrections can be performed on the analogy domain (anal〇gd〇main), the preferred method is digital because of the cost reduction and digital circuit considerations in deep sub-micron technologies. The way to correct the work. In addition, in the digital automatic correction scheme, the original ^^1^(: necessary modification is negligible, and therefore, only a slight performance degradation effect is affected on the transmission path of the analog signal. 1253235 No.: 093107452 July 5, 1994 Revised the traditional automatic correction scheme must reconfigure the MDAC, however this will inevitably affect the normal A/D conversion. Therefore, it can withstand a little idle time ( Idle time), the calibration of the ADC will only be performed when the initial power supply is turned on. However, since the temperature of the test will change, the calibration jade that is performed when the power is turned on will lose the result. Solving this problem also produced a number of different background corrections (backgr〇und calibrati schemes that allow an ADC to continuously calibrate the internal MDAC to keep up with changes in the environment while performing normal conversions Without being affected by the reduced resolution in the background correction technique, there are many algorithms that are widely known. For example, The skip-and-fill algorithm can randomly skip the a/D period to right-weight the MDAC' and fill it in with a nonlinear internal difference (η〇ηηnear interp〇iati〇n) For the value of this algorithm, please refer to rU K. M〇〇nandB s. Song, Background digital calibration techniques for pipelined ADC s" , IEEE Trans. Circuits Syst. IL vol.44, pp. 102-109,

February 1997」以及「S.U· Kwak, B.S· Song, and K· Bacrania, “A 15-b, 5-Msample/s low-spurious CMOS ADCM , IEEE J. Solid-State vol· 32,pp· 1866-1875,December 1997」。然而,為了要 使内差器可以得到較佳的結果,輸入訊號的頻寬必須收到限制。另外, 若在管線級内使用了一多位元的MDAC,可以使用MDAC的不匹配型態 (mismatch pattern)來估計在正常a/D運算中MDAC的轉換錯誤 (conversion errors)。但是,若不知道MDAC的增益錯誤訊息,則 上述的作法只適用於具有高增益的管線級之中。 還有一種可以實施背景校正的方法,就是使用一額外的MDAC取代 正在校正中的 MDAC ’ 如「J. M· Ingino and B· A· Wooley, “A continuously calibrated 12-b, 10-MS/s, 3.3V A/D converter” , IEEE J. Solid-State Circuits^ vol. 33, pp. 1920-1931, December 1253235 案號:093107452 94年7月5日修正 1998」所述。然而,所需的類比切換方案的複雜度卻會降低在類比訊‘ 號傳送路徑上的運算速度。 另一種解決方案則如「J. Ming and S. H. Lewis, “An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration,IEEE J. Solid-State Circuits, vol. 36, pp· 1489-1497,October 2001」所述,在此提出以供參考,僅能在增 加大量的類比及數位硬體的情形下,對增益錯誤進行校正。 最後,在美國第5, 929, 796號的專利案件中亦揭露了一種自動校 正的可逆管線 ADC/DAC (self-calibrating reversible pipeline ADC/DAC) ’在此提出以供參考。 綜上所述,對於習知技術的背景校正方案,由mdac之增益錯誤、 輸入偏壓、以及在A/D轉換中的輸出錯誤所造成的非線性效應,必須 提出可行的改良方案。 【發明内容】 因此本發明的一個目的在於提供一種MDAC級,一種可進行背景校 正的管線式ADC,以及一種相關的方法,以解決上述習知技術所面臨的 問題。 簡單地說,本發明所揭露的一 MDAC級包含有:一子ADC,用來將 接收自一輸入節點的一類比訊號轉換成一數位碼;一放大器;以及一 第一電容,選擇性地連接於該輸入節點與該放大器輸入端之間,以及 該放大器輸入端與該放大器輸出端之間。另外,該MMC級另包含有複 數個並聯的第二電容,選擇性地連接於該輸入節點與該放大器輸入端 之間,以及複數個相對應的數位參考訊號與該放大器輸入端之間。該 1253235 案號:093107452 94年7月5曰修正 等數位參考訊號包含有對應於該數位碼的數位訊號以及一第一校正訊* 號。於一取樣階段時,該第一電容係連接於該輸入節點與該放大器輸 入端之間;該等第二電容則並聯於該輸入節點與該放大器輸入端之 , 間。於一保持階段時,該第一電容係連接於該放大器輸入端與該放大 器輸出端之間;該等第二電容則並聯於該等數位參考訊號與該放大器 輸入端之間。 根據本發明一申請專利範圍,係揭露一種管線式ADC,包含有:複 數個串聯的MDAC級;一乘法器,連接於最後一級的MDAC級的輸出端。 該乘法器可決定出最後一級的MDAC級的輸出乘上一第二校正訊號的一 乘積,其中该第二校正訊號係對應於一第一校正訊號。還有一低通濾 · 波器連接於該乘法器,用來對該乘法器的輸出進行濾波,以輸出一直 成为,以及一編碼器,用來接收該等MDAC級的輸出,產生一數位輸 出訊號,並以該直流成分對該數位輸出訊號進行補償。 根據本發明另一申請專利範圍,係揭露一種方法,包含有:於一 取樣階段,將一輸入類比訊號取樣於一 MDAC級中的一第一電容以及複 數個第二電容上;於-保持階段,將一第一校正訊號使用於該麗級 中的-第二電容上;以及將該第一校正訊號自該管線式就的數位輸 出中濾除。 本發明的一個優點在於,藉由使用該等第二電容以及該第一校正 訊號,可以在不影響正常的A/D轉換的情形下,進行校正的工作。 本發明的另-個優點在於,該等第二電容並不會造成太多額外的 電容負載(capacitive load),故運算速度並不會因而降低。 本發明還有-個優點,就是不會因為增益錯誤、輸人偏壓而造成 非線性的效應,且轉換中的輸出錯誤可以比習知技術更為降低。 11 1253235 案號:093107452 94年7月5日修正 【實施方式】 請參閱圖五,圖五為本發明之MDAC的一實施例示意圖。圖五中的 MDAC 50係為二基數(radix-2) 1· 5位元切換式電容MDAC,然而,這 僅用做舉例說明,本發明亦可以使用在其他種類的管線級 stage)之中(例如不具有切換式電容的多位元運算之中)。 本實施例的MDAC50包含有一子ADC52,用來將一輸入類比訊號Vj 轉換成一數位碼队。子ADC52包含有比較器54、56以及一編碼器58, 可用來使用一參考電壓Vr以產生1· 5位元的輸出(例如‘⑽,、 01 、或’ 1〇’)。至於子ADC52詳細的設計及運算原理則是習知 籲 技術者所熟知的,在此不多做贅述。MDAC5〇另包含有一開關組6〇 (内 含複數個開關)’絲選擇性地連接n容62,第三電容64、66、 68於子ADC52、輸入類比訊號Vj、以及放大器7〇之間。第二電容料、 66、68係相互並聯,且可以共用相同的輸入與輸出。開關組6〇可以以 傳統的開關元件(如電晶體)來實施,至於其開啟與關閉則是依據 MDAC50的操作階段決定。亦即,於一取樣階段時,圖五中僅有標示 了 1的開關會是關閉的;於一保持階段時,圖五中則僅有標示 了 〇的開關會是關閉的。第一電容62的電容值為G,第二電容64、 66、68的電容值則分別為Ch、Csqα N。請注意,雖然在本實施例 中’、提到了二個第二電容64、⑽⑽,然而本發明實際上可以使用兩 φ 個以上,至任何可行數目的電容。在腿C5〇巾,所有的第二電容料、 66、68的總電容值必須實質上等於第一電容62的電容值,使得·· ci +c,,2 + ·⑷ 至於在操作上,於取樣階段,開關組6〇係使得所有的電容犯、料、 66 ' 68皆連接於輸人截%並對其進行取樣。相反的,於保持階段, 開關組60則使得第二電容64、68連接至參考電壓%乘上決定出的數 位碼D],至於一個選定的第二電容66則連接至一第一校正訊號,其中 12 Ϊ253235 案號:093107452 94年7月5曰修正 該第一校正訊號係為參考電壓Vr乘上一偽隨機數位二元序列Q (pseudo-random digital binary-valued sequence)。至於是哪〆 個第一電容會接收到該第一校正訊號則視系統在對哪一個電容進行校 正所決定。選擇那個第二電容來接收第一校正訊號可以以設計的原則 所決定,抑或可以以較為方便的方式決定,因為所有的第二電容最終 都必須獨自接收該第一校正訊號。序列q會在+1與〇之間變動、或是 在-1與0之間變動,這是依據輸出數位碼Dj的值是丨或―丨所決定。就 其本身而論,MDAC50所輸出的Vj+1可以表示為: x \Vj " Vja (Dj) ^V^D^^-V^q] (5)February 1997" and "SU·Kwak, BS· Song, and K. Bacrania, "A 15-b, 5-Msample/s low-spurious CMOS ADCM, IEEE J. Solid-State vol· 32, pp·1866-1875 , December 1997". However, in order for the interferometer to achieve better results, the bandwidth of the input signal must be limited. In addition, if a multi-bit MDAC is used in the pipeline stage, the MDAC mismatch pattern can be used to estimate the conversion errors of the MDAC in normal a/D operations. However, if you do not know the gain error message of MDAC, the above method is only applicable to the pipeline stage with high gain. Another way to implement background correction is to replace the MDAC being corrected with an additional MDAC' such as "J. M. Ingino and B. A. Wooley, "A continuously calibrated 12-b, 10-MS/s , 3.3 VA/D converter", IEEE J. Solid-State Circuits ^ vol. 33, pp. 1920-1931, December 1253235 Case No.: 093107452 July 5, 1994 Revision 1998. However, the complexity of the required analog switching scheme reduces the speed of the operation on the analog signal transmission path. Another solution is "J. Ming and SH Lewis," An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration, IEEE J. Solid-State Circuits, vol. 36, pp·1489 -1497, October 2001", which is hereby incorporated by reference, can be used to correct gain errors only when a large number of analog and digital hardware are added. Finally, a self-calibrating reversible pipeline ADC/DAC is also disclosed in the U.S. Patent No. 5,929,796. In summary, for the background correction scheme of the prior art, a feasible improvement scheme must be proposed by the nonlinear effects caused by mdac gain error, input bias, and output error in A/D conversion. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an MDAC stage, a pipelined ADC that can be background corrected, and a related method to solve the problems faced by the above-described prior art. Briefly, an MDAC stage disclosed in the present invention includes: a sub-ADC for converting a analog signal received from an input node into a digital code; an amplifier; and a first capacitor selectively coupled to The input node is coupled between the input of the amplifier and the input of the amplifier and the output of the amplifier. In addition, the MMC stage further includes a plurality of second capacitors connected in parallel, selectively connected between the input node and the input of the amplifier, and between the plurality of corresponding digital reference signals and the input of the amplifier. The 1253235 case number: 093107452 July 5, 1994 Correction The digital reference signal includes a digital signal corresponding to the digital code and a first correction signal. During a sampling phase, the first capacitor is coupled between the input node and the input of the amplifier; and the second capacitor is coupled between the input node and the input of the amplifier. The first capacitor is coupled between the input of the amplifier and the output of the amplifier during a hold phase; the second capacitor is coupled between the digital reference signal and the input of the amplifier. According to a patent application of the present invention, a pipelined ADC is disclosed comprising: a plurality of MDAC stages connected in series; and a multiplier coupled to the output of the MDAC stage of the last stage. The multiplier determines a product of the MDAC stage of the last stage multiplied by a product of a second correction signal, wherein the second correction signal corresponds to a first correction signal. There is also a low pass filter connected to the multiplier for filtering the output of the multiplier to output as it is, and an encoder for receiving the outputs of the MDAC stages to generate a digital output signal And compensating the digital output signal with the DC component. According to another patent application of the present invention, a method is disclosed, including: sampling an input analog signal in a first capacitor and a plurality of second capacitors in an MDAC stage during a sampling phase; And applying a first correction signal to the second capacitor in the gradation level; and filtering the first correction signal from the pipelined digital output. An advantage of the present invention is that by using the second capacitors and the first correction signal, the correcting operation can be performed without affecting the normal A/D conversion. Another advantage of the present invention is that the second capacitance does not cause too much additional capacitive load, so the operating speed is not reduced. The invention also has the advantage that non-linear effects are not caused by gain errors, input bias, and output errors in the conversion can be reduced more than conventional techniques. 11 1253235 Case No.: 093107452 Revised on July 5, 1994 [Embodiment] Please refer to FIG. 5 , which is a schematic diagram of an embodiment of the MDAC of the present invention. The MDAC 50 in Figure 5 is a two-base (radix-2) 1.5-bit switched capacitor MDAC. However, this is for illustrative purposes only, and the invention can be used in other types of pipeline stages ( For example, in a multi-bit operation that does not have a switched capacitor). The MDAC 50 of this embodiment includes a sub-ADC 52 for converting an input analog signal Vj into a digital code team. Sub-ADC 52 includes comparators 54, 56 and an encoder 58 for using a reference voltage Vr to produce an output of 1.5 bits (e.g., '(10), 01, or '1〇'). As for the detailed design and operation principle of the sub-ADC 52, it is well known to the skilled person, and will not be repeated here. The MDAC 5 further includes a switch group 6 〇 (containing a plurality of switches). The wire is selectively connected to the n capacitor 62. The third capacitor 64, 66, 68 is between the sub ADC 52, the input analog signal Vj, and the amplifier 7A. The second capacitors, 66, 68 are connected in parallel with each other and can share the same input and output. The switch group 6〇 can be implemented with a conventional switching element (such as a transistor), and its opening and closing is determined according to the operation stage of the MDAC 50. That is, in the sampling phase, only the switch labeled 1 in Figure 5 will be closed; in the hold phase, only the switch labeled 〇 in Figure 5 will be closed. The capacitance value of the first capacitor 62 is G, and the capacitance values of the second capacitors 64, 66, 68 are Ch, Csqα N, respectively. Note that although two second capacitors 64, (10) (10) are mentioned in the present embodiment, the present invention can actually use more than two φ, to any feasible number of capacitors. In the leg C5 wipes, the total capacitance of all of the second capacitors, 66, 68 must be substantially equal to the capacitance of the first capacitor 62, such that ·· ci +c,, 2 + · (4) As for the operation, During the sampling phase, the switch group 6 is configured such that all capacitors, materials, and 66' 68 are connected to the input intercept and sampled. Conversely, in the hold phase, the switch group 60 causes the second capacitor 64, 68 to be connected to the reference voltage % multiplied by the determined digit code D], and a selected second capacitor 66 is connected to a first correction signal. Among them, 12 Ϊ 253235 Case No.: 093107452 July 5, 1994 Correction of the first correction signal is the reference voltage Vr multiplied by a pseudo-random digital binary-valued sequence Q (pseudo-random digital binary-valued sequence). As to which of the first capacitors will receive the first correction signal, it depends on which capacitor is corrected by the system. The selection of the second capacitor to receive the first correction signal can be determined by design principles, or can be determined in a more convenient manner, since all of the second capacitors must ultimately receive the first correction signal by themselves. The sequence q will vary between +1 and 〇, or between -1 and 0, depending on whether the value of the output digit code Dj is 丨 or 丨. For its part, the Vj+1 output by MDAC50 can be expressed as: x \Vj " Vja (Dj) ^V^D^^-V^q] (5)

其中放大器70真正的增益係為ό广i + Cs/Cf,Ct ,依據數位碼Dj 所產生的類比訊號則為: (6) 至於隨機訊號q可以如何應用在第二電容64、66、68上以進行背 景校正則明參閱圖六。圖六為一 ADC80的簡單示意圖,包含有一 jjDAC 級50。當複數個MDAC級50串連成為一 ADC時(例如圖一中的ADC1 〇), 當考慮一特定級的運作時,後續的LSB級可以簡化為一個單一的整體。 因此,ADC80包含有一 MDAC50; — z-ADC82C代表了簡化為一的LSB級); 一乘法器89,用來合所輸出的Dz與一第二校正訊號q,(第 二校正訊號q’係對應於第一校正訊號q); —低通濾波器86,用來得 出乘法器89所輸出q,.Dz的直流成分;以及一編碼器88。 一般來說,在操作時,隨機校正訊號q係被送入MDAC50的第二電 容64、66、68中,然後被編碼器88從MDAC50所輸出的Dj以及z—ADC82 所輸出的Dz中移除。這主要是藉由選擇出與隨機校正序列q具有相同 13 !253235 案號:093107452 94年7月5日修正 的波形型態(waveform pattern)的隨機序列q’ ,然而,q’主要變 動於+1與-1之間(亦即不具有直流成分)。 y MDAC50與ADC80可執行以下所述的數學運算,看過以下的的描述 後應可對本發明有更深的瞭解。方程式(5)中的0j(csi/ct)vr係藉由 Z^ADC ,82以量化Vj+i的方式估計得出,然後低通濾波器86於數位領域 ^對q’ .Dz進行低通濾波。若訊號q,具有接近於〇的平均值,且與 ^不具有相關性存在,則q’ ·Ι)Ζ的直流成分就會以的方g 對應於z-ADC 82的增益錯誤,其中: z (7) (8) Δ/ ^-qqxG ^Lyr ^ΐ-F J ct r 2 7 C广 綜合上述的方程式(6)和(7)可以得出: τΛ^) DAD) ~G~ (9) 對於ADC80正常的A/D運算而 下所示: 言,編碼器88的數位輸出D。係為Djz ,如 數位輸出=/)7Z=T;(Z)y).The true gain of the amplifier 70 is ό广 i + Cs/Cf, Ct , and the analog signal generated according to the digital code Dj is: (6) How the random signal q can be applied to the second capacitor 64, 66, 68 For background correction, see Figure 6. Figure 6 is a simplified schematic of an ADC80 with a jjDAC stage 50. When a plurality of MDAC stages 50 are serially connected to an ADC (e.g., ADC1 in Figure 1), the subsequent LSB stages can be reduced to a single whole when considering the operation of a particular stage. Therefore, the ADC 80 includes an MDAC 50; - the z-ADC 82C represents an LSB level that is reduced to one); a multiplier 89 is used to combine the output Dz with a second correction signal q, (the second correction signal q' corresponds to The first correction signal q); a low pass filter 86 for obtaining a DC component of the q, .Dz output by the multiplier 89; and an encoder 88. Generally, in operation, the random correction signal q is fed into the second capacitor 64, 66, 68 of the MDAC 50, and then removed by the encoder 88 from the Dj output from the MDAC 50 and the Dz output from the z-ADC 82. . This is mainly by selecting the random sequence q' of the waveform pattern corrected by the same as the random correction sequence q 13 : 253235 Case number: 093107452 July 5, 1994. However, q' mainly changes to + Between 1 and -1 (ie, without DC component). y MDAC50 and ADC80 can perform the mathematical operations described below, and the following description should be made to gain a deeper understanding of the present invention. 0j(csi/ct)vr in equation (5) is estimated by z^ADC, 82 in the form of quantizing Vj+i, and then low-pass filter 86 is low-passed in the digital domain^ on q'.Dz Filtering. If the signal q has an average value close to 〇 and does not have a correlation with ^, then the DC component of q'·Ι)Ζ will correspond to the gain error of z-ADC 82, where: z (7) (8) Δ/ ^-qqxG ^Lyr ^ΐ-FJ ct r 2 7 C Widely integrate the above equations (6) and (7) to obtain: τΛ^) DAD) ~G~ (9) The normal A/D operation of ADC80 is shown below: In other words, the digital output of encoder 88 is D. Is Djz, such as digital output = /) 7Z = T; (Z) y).

G (10) 靖注思z-ADC 82的初始數位輸出仏包 項次,^必賴掉這兩個項:切則礎行=)巾的最後两 Δ/項次開始收斂,上述顿噪音 ”、/、要輕式⑺中 、就可以以不錯的精確度計算 1253235 案號:093107452 , 七2 94年7月5臼修正 伟省轉社_數學描述中’為了簡潔的考量’ =:工:些I介的方程式,然而,這些省略的部分應該是熟習數位 技正理_者所清楚瞭解的,故在此不多做資述。 故依據本發明,最終輸出之vj+1 的電壓分佈範圍可以表示成:G (10) Jing Zhusi z-ADC 82's initial digit output packet item, ^ will depend on these two items: cut the base line =) the last two Δ / item of the towel begins to converge, the above noise" / /, to light (7), you can calculate the 1253235 case number with good accuracy: 093107452, July 2, July 5, 1994, revised the province of the province _ mathematical description 'for the sake of simplicity' =: work: These I-informed equations, however, these omitted parts should be well understood by the familiarity of the digital technology, so there is no more information here. Therefore, according to the present invention, the final output of the voltage distribution range of vj+1 can be Expressed as:

(11) 假設圖五中的比較器54、56是理想的且輸人的Vj係介於味之間。者 本發明的背景校正裝置將隨機訊號q加人^時,方程式(ιι)二 壓分佈麵必須加人餐的項次Cs,i/Gf。因此,較佳的方案是選擇由 第二電容64、66、68組合成較小的電容值Cs,或是使用較多數量的第 二電容。 請參閱圖七。圖七為本發明ADC的另一實施例示意圖。侧〇包含 有複數個串聯的MDAC級92、94、96,而這些MDAC級皆相同於前述的 MDAC級50。相似於ADC80,本實施例中的ADC9〇亦包含有一乘法器97, 一低通濾波器98,以及一編碼器1〇〇。除此之外,AI)C9〇另包含有一偽 隨機訊號產生器(pseudo-random signal generator) 102,用來產^ 訊號q、Q ,以及包含有一記憶體1〇4,用來儲存乘法器97所輸出' 的直流成分。雖然在圖中顯示了三個MDAC級92、94、96,但膏旅卜争 多或更少的MDAC及皆是可行的作法。 、 於ADC90的A/D轉換過程中,一外部的類比訊號%係被輸入至第 一 MDAC級92。第一 MDAC級92可產生一相對應的數位碼Di,並輸出一 剩餘類比机號V2至苐一 MDAC級94。這樣的過程會依據每一個jjDAC級 92、94、96的取樣及保持階段重複地執行,對應於類比訊號%的數位 碼仏、h、Dp則被輸出至編碼器1〇〇。至於為了進行校正的工作,偽隨 機訊號產生器1〇2會產生所需的隨機校正序列^並遞增地 15 1253235 案號:09謂7452 94年7月5_正 (progressively)輸入至 MDAC 級 92、94、96 内的第二電容 64、66、 68 (參考圖五),從最無效位元的MDAC先校正起,然後依序校正至最 有效位元的MDAC為止。至於第二電容64、66、68接收訊號q的順序 則是不重要的,然而,對MDAC級92、94、96從最無效位元至最有效 位元的校正順序則是必須遵循的。至於對隨機第一校正訊號q的補償 方面,偽隨機訊號產生器102亦可以將相對應的第二校正訊號q,應用 在ADC90的最後一級96的輸出上。再由低通濾波器98產生後續的直 流成分ί)Δ,並將直流成分A輸出至編碼器1〇〇以及記憶體1〇4。最後, 編碼器100可藉由儲存於記憶體104中的資料,將輸入隨機校正序列^ 的軌跡給移除掉,以輸出校正過的數位訊號D〇。 圖八顯示了在適當的設計下,圖六與圖七中的低通濾波器86、98 用來自白噪音(whitenoise)W中擷取(extract) Δ,之效應的示意圖。 低通濾波器86、98可以使用一般的方式設計,亦可以是十進制濾波器 (decimation filter),只要可以與上述對本發明的描述相容即可。 以下將簡述對本發明背景校正的模擬結果,可以更清楚的顯示出 本發明優於習知技術之處。請再次參考圖六,一模擬管線式ADC係設 置於MDAC級50之中,後續則連接至一理想的17位元z-ADC82。MDAC 級50具有不理想的電容比:Cs/Cf二0.98 (亦即2%的不匹配)以及偏 壓VGS = 0.01Vr°MDAC級50包含有四個相等的第二電容(即和4)。 輸入訊號Vj係為一弦波訊號(sinusoidal signal),具有0.5Vr的振 幅,頻率則約等於取樣頻率的2/5倍。在MDAC50尚未被校正前,訊雜 失真比(signal-to-noise-and-distortion ratio,SNDR)係為 43· 4 dB,無假信號動態響應(spurious-free dynamic range,SFDR)係為 47. 2 dB,故有效位元數(effective number of bits,ENOB)係為 6· 9 位元。而在使用了本發明所揭露的背景校正後(配合一適當設計的低 通濾波器86,μ = 2^),訊雜失真比會變成92. 7dB,無假信號動態響 應則變為99· 6 dB,故EN0B會是15.1位元。至於低通濾波器86不同 1253235 94年7月5臼修正 案號:093107452 的μ值所對應到不同的暫態行為如圖九所示,越小的_ (可得到較佳 的解析度要越長的㈣咖。至於#使用—適當設計的十進制^ 波器(M = 2 )來作為上述的濾波器時,得到的訊雜失真比會是咫川仙, 無假信號動態響應會是90· 2dB,EN0B就會是14. 3位元。(11) Assume that the comparators 54, 56 in Figure 5 are ideal and that the input Vj is between the flavors. When the background correction device of the present invention adds the random signal q, the equation (ιι) pressure distribution surface must add the item Cs, i/Gf of the meal. Therefore, a preferred solution is to combine the second capacitors 64, 66, 68 into a smaller capacitance value Cs or to use a larger number of second capacitors. Please refer to Figure 7. Figure 7 is a schematic diagram of another embodiment of the ADC of the present invention. The side turns include a plurality of series connected MDAC stages 92, 94, 96, and these MDAC stages are identical to the aforementioned MDAC stage 50. Similar to the ADC 80, the ADC 9A in this embodiment also includes a multiplier 97, a low pass filter 98, and an encoder 1A. In addition, AI)C9〇 further includes a pseudo-random signal generator 102 for generating signals q and Q, and including a memory 1〇4 for storing the multiplier 97. The DC component of the output '. Although three MDAC stages 92, 94, and 96 are shown in the figure, it is feasible to use more or less MDACs. During the A/D conversion of the ADC 90, an external analog signal % is input to the first MDAC stage 92. The first MDAC stage 92 can generate a corresponding digital code Di and output a residual analog number V2 to a first MDAC stage 94. Such a process is repeatedly performed in accordance with the sampling and holding phases of each of the jjDAC stages 92, 94, 96, and the digits 仏, h, and Dp corresponding to the analog signal % are output to the encoder 1〇〇. As for the work for correction, the pseudo-random signal generator 1〇2 will generate the required random correction sequence^ and increment 15 1553235. Case number: 09 is 7452 July 5, 5_ positive (progressively) input to MDAC level 92 The second capacitors 64, 66, 68 (refer to FIG. 5) in 94, 96 are corrected from the MDAC of the least significant bit, and then sequentially corrected to the MDAC of the most significant bit. As for the order in which the second capacitors 64, 66, 68 receive the signal q, it is not important, however, the order of correction of the MDAC stages 92, 94, 96 from the least significant bit to the most significant bit must be followed. As for the compensation of the random first correction signal q, the pseudo random signal generator 102 can also apply the corresponding second correction signal q to the output of the last stage 96 of the ADC 90. The subsequent DC component Δ) is then generated by the low pass filter 98, and the DC component A is output to the encoder 1 and the memory 1〇4. Finally, the encoder 100 can remove the trajectory of the input random correction sequence ^ by using the data stored in the memory 104 to output the corrected digital signal D〇. Figure 8 shows a schematic diagram of the effect of extracting Δ from the white noise W in the low pass filters 86, 98 of Figures 6 and 7 under appropriate design. The low pass filters 86, 98 may be designed in a conventional manner or may be a decimal filter as long as they are compatible with the above description of the present invention. The simulation results of the background correction of the present invention will be briefly described below, and the present invention can be more clearly shown to be superior to the prior art. Referring again to Figure 6, an analog pipeline ADC is placed in the MDAC stage 50 and subsequently connected to an ideal 17-bit z-ADC82. The MDAC stage 50 has an undesirable capacitance ratio: Cs/Cf two 0.98 (i.e., 2% mismatch) and a bias voltage VGS = 0.01 Vr. The MDAC stage 50 contains four equal second capacitances (i.e., and 4). The input signal Vj is a sinusoidal signal with an amplitude of 0.5Vr and a frequency equal to about 2/5 times the sampling frequency. Before the MDAC50 has not been corrected, the signal-to-noise-and-distortion ratio (SNDR) is 43·4 dB, and the spurious-free dynamic range (SFDR) is 47. 2 dB, so the effective number of bits (ENOB) is 6.9 bits. However, after using the background correction disclosed in the present invention (with a properly designed low-pass filter 86, μ = 2^), the signal-to-noise ratio becomes 92. 7 dB, and the false signal-free dynamic response becomes 99. 6 dB, so EN0B will be 15.1 bits. As for the low-pass filter 86 different 1253235 July 5, 1994, Amendment No.: 093107452, the μ value corresponds to different transient behavior as shown in Figure 9, the smaller the _ (the better the resolution can be obtained Long (four) coffee. As for the use of - the appropriate design of the decimal wave (M = 2) as the above filter, the obtained signal-to-noise ratio will be 咫川仙, no false signal dynamic response will be 90· 2dB, EN0B will be 14.3 bits.

圖十為上述模擬ADC輸出的訊雜失真比在不同輸入頻率下的變化 情形。至於ADC則分別藉由上述的低通濾波器以及十進制濾 校正,對應到的曲線分別為11 〇和112。 " U 相較於習知技術,本發明的MDAC包含有複數個第二電容,並對該 專第一電容提供一隨機校正訊號。本發明的MDAC、ADC以及相關的方 _ 法可以同步進行校正的工作以及A/D轉換的工作。在實施上,本發明 僅需對類比訊號的路徑做些許的修改,且不會降低運算速度,並可降 低由電容不匹配、直流偏壓、及不精準的參考電壓所造成的非線性效 應0 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所 做之均等變化與修飾,皆應屬本發明專利之涵蓋範圍。Figure 10 shows the variation of the signal-to-noise ratio of the analog ADC output at different input frequencies. As for the ADC, the low-pass filter and the decimal filter are respectively corrected, and the corresponding curves are 11 〇 and 112, respectively. " U Compared to the prior art, the MDAC of the present invention includes a plurality of second capacitors and provides a random correction signal to the dedicated first capacitor. The MDAC, ADC, and related methods of the present invention can perform the work of calibration and the work of A/D conversion simultaneously. In practice, the present invention only needs to make some modifications to the path of the analog signal, and does not reduce the operation speed, and can reduce the nonlinear effect caused by the capacitor mismatch, the DC bias, and the inaccurate reference voltage. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be covered by the present invention.

【圖式簡單說明】 圖式之簡單說明 圖一為習知技術一管線式ADC的示意圖。. 圖二為習知技術用於圖一之ADC中的MDAC的示意圖。 圖二為習知技術一一基數1· 5位元切換式電容MDAC的示意圖。 圖四為習知技術一二基數1. 5位元切換式電容MDAC轉換特性的示意圖。 圖五為本發明二基數1.5位元切換式電容MDAC的一實施例示意圖。 圖六為圖五中管線式MDAC的一實施例示意圖。 17 1253235 案號:093107452 94年7月5曰修正 圖七為本發明管線式ADC的一實施例示意圖。 圖八為圖六與圖七中低通滤波器之效應的不意圖。 圖九為本發明對低通濾波器設計時的暫態行為的示意圖。 圖十為於不同輸入頻率下本發明ADC輸出之訊雜失真比的示意圖。 圖式之符號說明 10 管線式的類比至數位轉換器 12、14、16、20、30、50、92、 94、96 乘法數位至類比轉換器 18、36、58、88、100 編碼is 22、80、90 類比至數位轉換器 24 數位至類比轉換器 26 加法器 28、70 放大器 32、34、54、56 比較器 38、60 開關組 40、62 第一電容 42、64、66、68 第二電容 44 運算放大器 52 子類比至數位轉換器 82 z-類比至數位轉換器 86、98 低通渡波器 89、97 乘法器 102 偽隨機訊號產生器 104 記憶體BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional pipeline-type ADC. Figure 2 is a schematic diagram of a conventional technique for the MDAC in the ADC of Figure 1. FIG. 2 is a schematic diagram of a conventional one-to-one quinary switched capacitor MDAC. Figure 4 is a schematic diagram showing the conversion characteristics of a conventional one-two base 1.5-bit switched capacitor MDAC. FIG. 5 is a schematic diagram of an embodiment of a two-base 1.5-bit switched capacitor MDAC according to the present invention. FIG. 6 is a schematic diagram of an embodiment of the pipelined MDAC of FIG. 17 1253235 Case No.: 093107452 July 5, 1994 Revision Figure 7 is a schematic diagram of an embodiment of a pipelined ADC of the present invention. Figure 8 is a schematic illustration of the effects of the low pass filter in Figures 6 and 7. Figure 9 is a schematic diagram of the transient behavior of the low pass filter design of the present invention. Figure 10 is a schematic diagram of the signal-to-noise ratio of the ADC output of the present invention at different input frequencies. Symbols of the diagram illustrate 10 pipelined analog to digital converters 12, 14, 16, 20, 30, 50, 92, 94, 96 multiplicative digits to analog converters 18, 36, 58, 88, 100 encoding is 22, 80, 90 analog to digital converter 24 digital to analog converter 26 adder 28, 70 amplifier 32, 34, 54, 56 comparator 38, 60 switch group 40, 62 first capacitor 42, 64, 66, 68 second Capacitor 44 Operational Amplifier 52 Sub-Analog to Digital Converter 82 z-Analog to Digital Converter 86, 98 Low-Passing Waver 89, 97 Multiplier 102 Pseudo-random Signal Generator 104 Memory

1818

Claims (1)

1253235 拾、申請專利範圍: 】· 種用於一管線式類比至數位轉換器(pipelinedADC)中的相乘數位 至類比轉換器級(MDAC stage),該相乘數位至類比轉換器級包含有: 一輸入節點,用來接收一類比訊號; 一子類比至數位轉換器,用來將該類比訊號轉換成一數位碼; 一放大器; 一第一電容,選擇性地連接於該該輸入節點與該放大器的輸入端之 間,以及該放大器的輸入端與該放大器的輸出端之間;以及 複數個並聯的第二電容,選擇性地接於該輸人節點與該放大騎冑 入端之間’以及複數個姆應的數位參考訊號與該放大㈣冑 9 入端之間;其中該等數位參考訊號包含有對應於該數位碼的數 位訊號以及一第一校正訊號; 其中於-取樣階段時,該第一電容係連接於該輸入節點與該放大器 的輸入端之間,該等二電容係並聯於該輸入節點與該放大器的輸入 端,間,於-保持階段時,該第一電容係連接於該放大器的輸入端 與該放大is的輸出端之間,該等第二電容係並聯於該等數位參考訊 號與該放大器的輸入端之間。 2·如申請專利範圍第1項所述之相乘數位至類比轉換器級,其中該等帛 φ 二電容的總和實質上係等於該第一電容。 3. -種管、線式類比至數位轉換器,其包含有如申請專利範圍第i項所述 之相乘數位至類比轉換器級。 4·如申凊專=犯圍第3項所述之管線式類比至數位轉換器,其另包含有: 乘法器連接於4官線式類比至數位轉換器巾最後—級的相絲 位至類比轉換器級的輪出端,該乘法器係用來決定出最後一級 的相乘數位至類比轉換器級的輸出乘上一第二校正訊號的乘 19 1253235 積,其中該第二校正訊號係對應於該第一校正訊號; 一低通濾波器,連接於該乘法器,用來對該乘法器的輸^進行濾波, 並輸出一直流成分;以及 一編碼器’用來接收該等相乘數位至類比轉換器級的輪出,並產生 一數位輸出訊號,以及使用該直流成分對該數位輸出訊號進行 補償。 5·如申請專利範圍第4項所述之管線式類比至數位轉換器,其中該第一 與该弟一权正訊號係為具有相同波形的隨機數位二元序列。 6·如申请專利範圍第4項所述之管線式類比至數位轉換器,其另包含有 一偽隨機號產生’用來產生該第一與該第二校正訊號。 7·如申請專利範圍第4項所述之管線式類比至數位轉換器,其另包含有 一5己憶體,用來儲存該直流成分,其中該編碼器可對該記憶體進行存 取動作。 8· 一種用來對一管線式類比至數位轉換器進行背景校正(backgr〇und calibration)的方法,該管線式類比至數位轉換器包含有複數個串聯 的相乘數位至類比轉換器級,該方法包含有: 於一取樣階段,將一輸入類比訊號取樣於一相乘數位至類比轉換器 級中的一第一電容以及複數個第二電容上; 於一保持階段,將一第一校正訊號使用於該相乘數位至類比轉換器 級中的一第二電容上; 將管線式類比至數位轉換器中最後一級的相乘數位至類比轉換器級 的輪出訊號與一第二校正訊號合併,其中該第二校正訊號係對 應於該第一校正訊號;以及 將該第二校正訊號自該管線式類比至數位轉換器的數位輸出中濾 除0 20 1253235 9. 如申請專利範圍第8項所述之方法,其另包含有: 於相對應的保持階段時,依序將該第一校正訊號使用於相對應的相 乘數位至類比轉換器級t的第二電容上,其中依序係指依辟該 等相乘數位至類比轉換器級的有效位元值遞增的顺序曰 10. 如申請專利範圍第8 係等於該第一電容。 項所述之方法,其中該等第二電容的 總和實質上 11· t申凊專利範圍第8項所述之方法,其中該第—與 為具有相同波形的隨機數位二元序列。 4正訊號係1253235 Pickup, patent application scope: 】· Kind of multiplier to analog converter level (MDAC stage) in a pipeline analog to digital converter (pipelinedADC), the multiplier to analog converter level contains: An input node for receiving a analog signal; a sub-analog to a digital converter for converting the analog signal into a digital code; an amplifier; a first capacitor selectively coupled to the input node and the amplifier Between the input terminals, and between the input of the amplifier and the output of the amplifier; and a plurality of parallel second capacitors selectively coupled between the input node and the amplification rider' a plurality of digital reference signals and a predetermined (four) 胄9 input terminal; wherein the digital reference signals include a digital signal corresponding to the digital code and a first correction signal; wherein during the sampling phase, the a first capacitor is connected between the input node and an input end of the amplifier, and the two capacitors are connected in parallel to the input node and the input end of the amplifier. The first capacitor is connected between the input end of the amplifier and the output end of the amplifier is, and the second capacitor is connected in parallel between the digit reference signal and the input end of the amplifier. . 2. The multiplicative digital to analog converter stage of claim 1, wherein the sum of the φ φ two capacitors is substantially equal to the first capacitance. 3. A tube, line analog to digital converter comprising a multiplicative digital to analog converter stage as described in claim i. 4. If the application is as follows: the pipeline analog to digital converter described in item 3, which further includes: The multiplier is connected to the 4th line analog to the digital converter towel. The rounding end of the analog converter stage, the multiplier is used to determine the product of the last stage multiplied digit to the analog converter stage multiplied by a second correction signal multiplied by 19 1253235, wherein the second corrected signal system Corresponding to the first correction signal; a low pass filter connected to the multiplier for filtering the multiplier output and outputting a DC component; and an encoder 'for receiving the multiplication The digital to analog converter stage rotates and produces a digital output signal, and the digital component is used to compensate for the digital output signal. 5. The pipeline analog to digital converter of claim 4, wherein the first and the first positive signal are random number binary sequences having the same waveform. 6. The pipeline analog to digital converter of claim 4, further comprising a pseudo random number generating 'for generating the first and second correction signals. 7. The pipeline analog to digital converter of claim 4, further comprising a 5 memory for storing the DC component, wherein the encoder can perform the memory operation. 8. A method for background correction (backgr〇und calibration) of a pipeline analog to digital converter, the pipeline analog to digital converter comprising a plurality of serially multiplied digits to an analog converter stage, The method includes: sampling, at a sampling stage, an input analog signal in a multiplicative bit to a first capacitor and a plurality of second capacitors in the analog converter stage; and in a hold phase, a first correction signal is used Using the multiplier to a second capacitor in the analog converter stage; combining the pipeline analog to the last digit of the digitizer to the analog converter stage and combining a second correction signal The second correction signal corresponds to the first correction signal; and the second correction signal is filtered out from the pipeline analog to the digital output of the digital converter. 0 20 1253235 9. As claimed in the eighth item The method further includes: sequentially using the first correction signal to a corresponding multiplicative digit to an analog converter during a corresponding hold phase The second capacitor of the stage t, wherein the order is in the order of increasing the number of significant bits of the multiplicative bit to the analog converter stage 曰 10. The eighth aspect of the patent application is equal to the first capacitor. The method of claim 2, wherein the sum of the second capacitors is substantially the same as the method of claim 8, wherein the first and second digits are binary digit sequences having the same waveform. 4 positive signal system 21twenty one
TW93107452A 2004-03-19 2004-03-19 Background-calibrating pipelined analog-to-digital converter TWI253235B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93107452A TWI253235B (en) 2004-03-19 2004-03-19 Background-calibrating pipelined analog-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93107452A TWI253235B (en) 2004-03-19 2004-03-19 Background-calibrating pipelined analog-to-digital converter

Publications (2)

Publication Number Publication Date
TW200533081A TW200533081A (en) 2005-10-01
TWI253235B true TWI253235B (en) 2006-04-11

Family

ID=37565043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93107452A TWI253235B (en) 2004-03-19 2004-03-19 Background-calibrating pipelined analog-to-digital converter

Country Status (1)

Country Link
TW (1) TWI253235B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716959A (en) * 2013-12-12 2015-06-17 联发科技股份有限公司 Analog-to-digital converting device and analog-to-digital converting method
TWI665875B (en) * 2018-02-13 2019-07-11 新唐科技股份有限公司 Digital background calibration circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716959A (en) * 2013-12-12 2015-06-17 联发科技股份有限公司 Analog-to-digital converting device and analog-to-digital converting method
CN104716959B (en) * 2013-12-12 2018-04-13 联发科技股份有限公司 Analog-digital commutator and D conversion method
TWI665875B (en) * 2018-02-13 2019-07-11 新唐科技股份有限公司 Digital background calibration circuit
US10511318B2 (en) 2018-02-13 2019-12-17 Nuvoton Technology Corporation Digital background calibration circuit

Also Published As

Publication number Publication date
TW200533081A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
US6822601B1 (en) Background-calibrating pipelined analog-to-digital converter
US6784814B1 (en) Correction for pipelined analog to digital (A/D) converter
US7786910B2 (en) Correlation-based background calibration of pipelined converters with reduced power penalty
Miki et al. A 4.2 mw 50 ms/s 13 bit CMOS SAR ADC with SNR and SFDR enhancement techniques
CN106877866B (en) Microprocessor assisted calibration for analog to digital converter
Shu et al. A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering
CN106888018B (en) Digital measurement of DAC timing mismatch error
Erdogan et al. A 12-b digital-background-calibrated algorithmic ADC with-90-dB THD
EP1281240B1 (en) A/d converter calibration
US6184809B1 (en) User transparent self-calibration technique for pipelined ADC architecture
Ryu et al. A 14-b linear capacitor self-trimming pipelined ADC
EP3252953A1 (en) Analog-to-digital converter with embedded noise-shaped truncation, embedded noise-shaped segmentation and/or embedded excess loop delay compensation
KR101933575B1 (en) Modified dynamic element matching for reduced latency in a pipeline analog to digital converter
JP4543209B2 (en) Multistage converter using digital dither
TW201014194A (en) Data conversion circuitry and method therefor
USRE45798E1 (en) Systems and methods for randomizing component mismatch in an ADC
Liu et al. A 15 b 20 MS/s CMOS pipelined ADC with digital background calibration
EP1085658A2 (en) Nested pipelined analog-to-digital converter
US20100073206A1 (en) Analog-to-digital conversion circuits and method for calibrating thereof
TWI253235B (en) Background-calibrating pipelined analog-to-digital converter
CN1677869A (en) Pipeline type analog-to-digital converter capable of conducting back ground correction
US10763886B1 (en) Dithering and calibration technique in multi-stage ADC
Zhang et al. A 14-bit 500-MS/s SHA-less Pipelined ADC in 65nm CMOS Technology for Wireless Receiver
Liu et al. A digital background calibration technique for pipelined analog-to-digital converters
JP2011205191A (en) Analog-to-digital converter