TWI253017B - Low power consumption, broad navigability optical mouse - Google Patents

Low power consumption, broad navigability optical mouse Download PDF

Info

Publication number
TWI253017B
TWI253017B TW93111868A TW93111868A TWI253017B TW I253017 B TWI253017 B TW I253017B TW 93111868 A TW93111868 A TW 93111868A TW 93111868 A TW93111868 A TW 93111868A TW I253017 B TWI253017 B TW I253017B
Authority
TW
Taiwan
Prior art keywords
optical
navigation
light source
light
source
Prior art date
Application number
TW93111868A
Other languages
Chinese (zh)
Other versions
TW200511129A (en
Inventor
Douglas M Baney
Tong Xie
Marshall T Depue
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/439,674 external-priority patent/US20040227954A1/en
Priority claimed from US10/630,169 external-priority patent/US7321359B2/en
Priority claimed from US10/697,421 external-priority patent/US7116427B2/en
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of TW200511129A publication Critical patent/TW200511129A/en
Application granted granted Critical
Publication of TWI253017B publication Critical patent/TWI253017B/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An optical navigation system for determining movement relative to a navigation terrain includes a first source and a second source of optical radiation for illuminating the navigation terrain, the first source differing from the second source in at least one operating parameter. The system further includes means to select the first source and the second source independently based on decision criteria. The system further includes a detector for capturing patterns in the optical radiation subsequent to illuminating of the navigation terrain.

Description

1253017 玖、發明說明: 【發明所屬之技術旬域】 參照相關之發明 本考X月係有關2003年5月16曰申請之第讀39,674號美 5國發明專利“以干涉計為基礎之導銳襄置,,、期年7月则 申請之「律師標籤第刪刪]衆」美國發明專利“光學導 航用方法及裝置,,以及細年_6日中請之「律師標鐵第 翻删领」美國後續部分發明專利“光學導航用方法及 I置,$發明之内容以參照方式包含在本發明中。 1〇 發明領域 更具體地係有關低 本發明係有關移動感測光學裝置 功率消耗寬適航性光學滑鼠。 C先前技3 發明背景 15 兄,从相對移動偵測之光學 當裝置通過表,是#表面二 =二 該表面之圖像^裝置與表齡⑷目卿=田述 距離與方向係藉由將—圖像職盘下—夕。裝置移動之 得。此技術通常_表面陰影之強度圖像訊框比較而 可用性取決於_取表面輯之強’而其感測度與 移動感測器作為電腦指標器(例如滑=制例如 =:;Γ螢幕上之指標位址。更廣泛而言,光 韻貝5fi可以用以對掃晦裝置沿著/- 失真以及㈣移動作補償。 $狀人工曲線 20 1253017 第 5,786,804號、5,578,813號、5,644,139號、6,442,725 號、6,281,882號與第6,433,780號美國專利揭露光滑滑鼠、 其他手持式導航裝置以及手持式掃描器範例。此些專利將 以參考方式結合至本發明中。 5 現有典型之光學導航裝置使用發光二極體(LED)以斜 角照射欲航行(“航行區域”)之表面經由偵測將表面成像。在 5〜500微米(μηι)間之表面高度變化由幾何射線光學描述其 投影。投影圖像之尺寸與對比部分取決於表面高度變化量 之種類。典型地,偵測器配置以接收表面正常方向之反射, 10 所選擇之表面與入射光夾角通常用以將投影圖像之對比最 佳化,就如同從暗領域成像。入射角度一般大約為5度至20 度。 平滑表面如白板、高光澤紙、塑膠、木紋或金屬塗料 對目前典型之光學導航裝置之功能是一項挑戰。一般而 15 言,平滑表面為那些含有較少中間空間頻率而含有較多高 空間頻率結構之表面。為了提高信號強度,需要有較高之 光學功率讓LED發光,因而造成其電流量超過30mA。 【發明内容】 發明概要 20 依據本發明,提供一光學導航系統以決定與航行區域 相對之移動。此系統包括照射航行區域之第一與第二光 源,第一光源與第二光源至少有一運作參數不同。此系統 更包括個別依據決策條件選擇第一光源與第二光源之方 法。此系統更包括在照射航行區域後擷取光學照射圖像之 1253017 债測器。 依據本發明,提供一方法用已決定光學導航裝置與航 行區域間之相對移動量。此方法包括提供光學導航系統。 此光學導航系統包括照射部分航行區域之第一光源與第二 5 光源,第一光源與第二光源至少有一運作參數不同。此光 學導航系統更包括在照射後擷取光學照射圖像之偵測器。 此方法更包括起始時各別對第一與第二光源選擇至少一個 不同之運作參數。此方法更包括照射航行區域、於照射後 擷取光學照射圖像、計算所擷取之圖像以及依據決策條件 10 調整所選擇一個以上不同之運作參數。 圖式簡單說明 為了能夠更徹底暸解本發明,以下之說明將會參考相 關之圖不^這些圖不為· 第1圖為依據本發明光學導航系統之高階方塊圖。 15 第2圖為依據本發明可選擇之連貫性光學滑鼠,其包括 由雙光源表示之多光源。 第3與第4圖為依據本發明與照射光源連接之偵測器圖 示。 第5圖為依據本發明光學導航裝置元件簡化圖。 20 第6圖為依據本發明之系統,其光學滑鼠移動經過固定 之航行區域表面;以及 第7A與第7B圖為依據本發明具有多光源光學導航系 統之運作方式流程圖。 【實施方式3 ^53017 較佳實施例之詳細說明 “本質結構相_性,,在此定義為與航行區域上產生与 像相關資料及/或系統登記資料無關之航行區域特性。光= 航行資訊可以由產生與偵測本質結構相關特性對應之位: :顧’例如斑點資訊之位置信號或 質結構特徵之位置信號。“本⑽構特徵 與航行區域上產生影像相關資料及/或 糸,、.充^貝枓热關之航行區域特徵。舉例而言, 區域媒體為紙張時,右魏搞^ 士所 舰订 10 15 20 有興趣之本質結構特徵為紙張纖維。 另i子’掃㈣置通過光滑航行區域或經過透明薄膜之 光學航行可以藉由•影響反射場之表®紋理變化取得。 典型地,表面紋理本f結構特徵是細微的,例如 於10至40微米(μΓη)之間。 /、、、, =_訊之詳細方式有很大變化。例如領航 仏虎可此如航行區域上偵測影像相關資料對應之位置信 號形式(例如文字字元邊緣简。在其他方法巾^ 對應至偵敎本質結構相_性,·蚊職圖像= 性。某她後_實現方料由長_監視各 籌 特徵(例如紙張纖維)位置追蹤掃m置之航行。… 取代成像航行系統,可以用編碼器從執 位移貢訊。在其他方法中,可以使:-、准1253017 玖, invention description: [Technology to which the invention belongs] Refer to the relevant invention. This is the first reading of the May 5th, 2003 issue of May 16, 2003.襄 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, "Subsequent invention patents in the United States" "Methods for optical navigation and I, the contents of the invention are included in the present invention by reference." The field of the invention is more specifically related to the low power consumption of the mobile sensing optical device. Airworthiness optical mouse. C Prior Art 3 Background of the Invention 15 Brother, from the relative motion detection optics when the device passes through the table, is #surface 2 = two images of the surface ^ device and age (4) 目卿 = Tian Shu The distance and direction are moved by the image-under-the-spot device. This technique is usually based on the intensity of the surface shadow image frame and the usability depends on the _ take the surface of the series and its sensitivity and Mobile sensor as Computer indicator (such as slip = system = for example; Γ indicator address on the screen. More broadly, Guang Yun Bei 5fi can be used to compensate the broom device along /- distortion and (4) movement. U.S. Patent Nos. 5, 786, 804, 5, 5,78, 813, 5, 644, 139, 6, 442, 725, 6, 281, 882 and 6, 433, 780 disclose examples of smooth squirrels, other hand-held navigation devices, and hand-held scanners. Reference is incorporated into the present invention. 5 A typical optical navigation device uses a light-emitting diode (LED) to illuminate a surface to be navigated ("sailing area") at an oblique angle to image the surface via detection. At 5 to 500 microns ( The surface height variation between μηι) is described by geometric ray optics. The size and contrast of the projected image depends on the type of surface height variation. Typically, the detector is configured to receive reflections in the normal direction of the surface, 10 selected The angle between the surface and the incident light is typically used to optimize the contrast of the projected image as if it were imaged from a dark field. The angle of incidence is typically about 5 to 20 degrees. Faces such as whiteboard, high-gloss paper, plastic, wood grain or metal coatings are a challenge for the functionality of today's typical optical navigation devices. In general, smooth surfaces are those that contain less intermediate space and more space. The surface of the frequency structure. In order to increase the signal strength, it is necessary to have a higher optical power for the LED to emit light, thereby causing the current amount to exceed 30 mA. SUMMARY OF THE INVENTION According to the present invention, an optical navigation system is provided to determine the navigation area. Relatively moving. The system includes first and second light sources that illuminate the navigation area, the first light source and the second light source having at least one operational parameter. The system further includes a method of individually selecting the first light source and the second light source according to a decision condition. The system also includes a 1253017 debt detector that captures an optically illuminated image after illumination of the navigational area. In accordance with the present invention, a method is provided for determining the amount of relative movement between the optical navigation device and the flight area. This method includes providing an optical navigation system. The optical navigation system includes a first light source and a second light source that illuminate a portion of the navigation area, the first light source and the second light source having at least one operational parameter. The optical navigation system further includes a detector that captures an optically illuminated image after illumination. The method further includes selecting at least one different operational parameter for each of the first and second light sources at the beginning. The method further includes illuminating the navigation area, capturing an optical illumination image after illumination, calculating the captured image, and adjusting one or more different operational parameters selected according to decision condition 10. BRIEF DESCRIPTION OF THE DRAWINGS In order to provide a more complete understanding of the present invention, the following description will refer to the accompanying drawings. FIG. 1 is a high-order block diagram of an optical navigation system in accordance with the present invention. 15 Figure 2 is an alternative optical optical mouse in accordance with the present invention comprising a plurality of light sources represented by dual light sources. Figures 3 and 4 show detectors connected to an illumination source in accordance with the present invention. Figure 5 is a simplified diagram of the components of an optical navigation device in accordance with the present invention. 20 is a system in accordance with the present invention in which the optical mouse moves past the surface of the stationary navigation area; and Figures 7A and 7B are flow diagrams showing the operation of the multi-source optical navigation system in accordance with the present invention. [Embodiment 3 ^ 53017 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT "Intrinsic structure phase, which is defined herein as a navigation area characteristic that is independent of image-related data and/or system registration data on the navigation area. Light = Navigation Information The position corresponding to the characteristic related to the detection of the essential structure may be generated: a position signal such as a position signal or a texture feature of the spot information. "This (10) structure feature and image-related information and/or flaws are generated on the navigation area, .Charging the characteristics of the navigation area of the Beibei Thermal Pass. For example, when the regional media is paper, the right Wei engages in the ship's ship. 10 15 20 The intrinsic structural feature of interest is paper fiber. The other i sub-sweep (four) placed through the smooth sailing area or optical navigation through the transparent film can be obtained by • affecting the reflection field table texture changes. Typically, the surface texture features are subtle, such as between 10 and 40 microns (μΓη). The detailed methods of /,,,, =_ have changed a lot. For example, the pilot 仏 可 can detect the position signal corresponding to the image related data on the navigation area (for example, the character character edge is simple. In other methods, the towel corresponds to the detective essence structure phase _ sex, mosquito net image = sex After a certain _ realization of the material by the long _ monitoring of the characteristics of each of the features (such as paper fiber) tracking sweeping m.. Instead of the imaging navigation system, you can use the encoder to shift the tribute. In other methods, you can Make: -, quasi

Hi 器取代成像航行系_—助 (主動或被動)格線或其他建構 子之其他參考相對之位晋盘* 找航仃區域板 對之位置與方向。另—取得"與方向資 8 1253017 任4像方法為提供加速度計。可以使用車裝慣性航 行平台。其他替代方法可以使用各式機械連結,例如類似 於縮圖器,以追蹤與被掃瞄媒體相對固定參考座標相對之 位置與方向。 第1圖為光學航行系統100之高階方塊圖。光學航行系 統100測定光學裝置1(n,例如光學”,以及航行區域1〇2 門相對位置’其相對於光學裝置1G1之移動(如圖中箭頭 、108所示)可以是任意方向。 一;在運作中,航行區域1〇2被光學裝置1〇1光源模組丨〇3之 10光學放射束11〇照射。光學放射束110與航行區域1〇2相互作 用因此光學放射束1照射之圖像會被由航行區域102傳 遞(例如牙透或反射)之出射光學放射束112修正。在本發明 之某些實施例中,出射光學放射束112圖像是經由光學放射 束U0與航行區域102表面相互作用做修正,例如藉由反射 15或散射。換言之,舉例而言,圖像可能由光學放射束110通 過航行區域102期間產生之相互作用而修正。 偵測器,例如偵測器陣列104,操取出射光學放射束丨j 2 圖像並且產生信號114。出射光束圖像是由照射光束11〇與 航行區域102相互作用而成,其可能包括陰影、斑點、散射、 20相位以及鏡射圖像。可以使用偵測器陣列進行擷取,例如 CCD、CMOS、GaAs、非結晶石夕或其他合適之偵測器陣列。 典型地,由光源模組103發射之光學放射束波長頻譜與偵測 器陣列104之反應波長相符以將擷取之影像對比最佳化。接 著傳輸信號114至處理器105做進一步處理並且產生與信號 1253017 114對應之輸出信號116。例如在處理器115中可以使用傳統 之相關演算法比較連續擷取之訊框對以測定相對移動量。 在本發明某些實施例中,提供時序信號以決定相對速度。 例如可以將輸出信號組配以驅動電腦螢幕上指標器位置。 5 光源模組103與偵測器陣列104為了光學整合典型地一 同包裝於光學裝置101内。處理器105亦可以包裝於光學裝 置101内,亦可以配置於光學航行系統100的某處。在本發 明某些實施例中,對電腦系統而言光學裝置101為一光學滑 鼠,並且可以由使用者手持任意移動。 10 在本發明一實施例中,在每一光學航行裝置中之光源 模組典型地包括一或多個組配以提供與航行區域102本質 結構相關特性相對之照射源。與表面中線有大入射角之“入 射”光線會與以紙張為主之航行區域表面之紙張纖維作 用,在纖維中產生增強對比陰影。另一方面,假若航行區 15 域為光滑表面時,例如相片、膠膜紙或透明薄膜,一般而 言入射光會在反射場產生航行時所需具有對比特徵之影 像。光學裝置101中選擇性的光學元件,例如過濾器及一或 多個影像元件可以進一步增進本質結構相關特性之偵測。 為了增進影像偵測器104運作之照射,可以使用琥珀色 20 波長範圍之高密度發光二極體線性陣列。放射之光線可以 為可見光,但並非絕對。照射源與任何光學元件之選定取 決於航行區域102媒體。所選擇之照射光波長要能將掃瞄航 行區域102期間取得之對照資料最大化,同時隔絕無用之信 號與雜訊。照射光學可能包括LED圓形鏡片或包括光導, 10 1253017 其含有以最小光源損耗將照射光導引至航行區域1〇2之精 確模型光學元件。此類組配方式可以在航行區域1〇2目標區 域之大範圍角度提供均勻照射,並且可以阻絕入射線以避 免鏡面反射。光學航行用技術在1996年11月26日發行之美 國專利第5,578,813號以及在1997年7月丨日發行之美國專利 第5,644,139#b中有更進一步詳細的說明,其中揭露之技術 以參考方式整合於本發明中。 10 15 此處所揭露之系統與方法提供二種或更多不同之光學 放射源經由電子選擇方歧接以對航行區域及處理光學提 供不同形式之照射。不同之光學放射源彼此之間至少有一 運作參數不同,例如配置位置、光束分離/聚合、入射角、 照射量、録、光譜線寬、極性、連貫性、電流消耗、時 間調變以及各種運作參數之組合。 第2圖為依據本發明實施例可選擇之連貫性光學滑鼠 2〇0,其中如第1圖所示之光源模組103包括由雙光源203、 204表示之多光源。選擇方、、扣 伴万/去’例如電子切換205,是由控 制早元指令控制’例如智由、食山 、、由遂知控制信號輸入206,經由電 子連接207、208選擇可取搵十 ^ 取传之一或多個光源203、204。光The Hi device replaces the imaging navigation system _—the auxiliary (active or passive) grid or other reference relative to the position of the promotion* to find the position and direction of the navigation zone. Another - get " and direction 8 1253017 any 4 image method to provide accelerometers. A vehicle-mounted inertial navigation platform can be used. Other alternatives may use a variety of mechanical linkages, such as similar to a thumbnail, to track the position and orientation relative to the scanned media relative to the fixed reference coordinates. Figure 1 is a high level block diagram of an optical navigation system 100. The optical navigation system 100 determines that the optical device 1 (n, such as optical), and the navigation region 1 〇 2 door relative position 'the movement relative to the optical device 1G1 (shown by arrows, 108 in the figure) may be any direction. In operation, the navigation area 1〇2 is illuminated by the optical radiation beam 11〇 of the optical device 1〇1 light source module 丨〇3. The optical radiation beam 110 interacts with the navigation area 1〇2 so that the optical radiation beam 1 is illuminated. The image is corrected by an outgoing optical radiation beam 112 that is transmitted (e.g., toothed or reflected) by the navigational region 102. In some embodiments of the invention, the image of the outgoing optical radiation beam 112 is via the optical radiation beam U0 and the navigational region 102. The surface interaction is corrected, for example by reflection 15 or scattering. In other words, for example, the image may be corrected by the interaction generated by the optical radiation beam 110 during the navigational region 102. A detector, such as the detector array 104 And extracting the optical radiation beam 2j 2 image and generating a signal 114. The outgoing beam image is formed by the interaction of the illumination beam 11 〇 with the navigation region 102, which may include shadows, Point, scatter, 20 phase, and mirror image. A detector array can be used for capture, such as CCD, CMOS, GaAs, amorphous, or other suitable detector array. Typically, by light source module 103 The emitted optical radiation beam wavelength spectrum is matched to the response wavelength of the detector array 104 to optimize the captured image contrast. The signal 114 is then transmitted to the processor 105 for further processing and produces an output signal 116 corresponding to the signal 1253017 114. The successively captured frame pairs can be compared, for example, in processor 115 using conventional correlation algorithms to determine the relative amount of movement. In some embodiments of the invention, timing signals are provided to determine the relative speed. For example, the output signal can be The processor module 105 and the detector array 104 are typically packaged together in the optical device 101 for optical integration. The processor 105 can also be packaged in the optical device 101, or can be configured. Somewhere in the optical navigation system 100. In some embodiments of the invention, the optical device 101 is an optical mouse for a computer system, And can be arbitrarily moved by the user. In an embodiment of the invention, the light source module in each optical navigation device typically includes one or more components to provide for the characteristics associated with the essential structure of the navigation region 102. The source of illumination. The "incident" light with a large angle of incidence with the midline of the surface acts on the paper fibers on the surface of the paper-based navigation area, creating contrast-enhancing shadows in the fiber. On the other hand, if the area of the navigation area 15 is smooth In the case of a surface, such as a photographic film, a film of paper, or a transparent film, generally incident light will produce images of contrast characteristics required for navigation in the field of reflection. Selective optical components in optical device 101, such as filters and one or more The image elements can further enhance the detection of properties related to the intrinsic structure. To enhance the operation of the image detector 104, a linear array of high density light emitting diodes in the amber 20 wavelength range can be used. The emitted light can be visible, but not absolute. The choice of illumination source and any optical components depends on the navigation area 102 media. The wavelength of the selected illumination light is such as to maximize the comparison data obtained during the scan of the navigation area 102 while isolating unwanted signals and noise. Irradiation optics may include LED round lenses or include light guides, 10 1253017 which contain precise model optics that direct illumination light to the navigation zone 1〇2 with minimal source loss. This type of assembly provides uniform illumination over a wide range of angles in the target area of the navigation area, and can block incoming rays to avoid specular reflection. The technique of the optical navigation is described in further detail in U.S. Patent No. 5,578,813, issued on Nov. 26, 1996, and in the U.S. Patent No. 5,644,139. The manner is integrated in the present invention. 10 15 The systems and methods disclosed herein provide two or more different optical sources that are electronically selected to provide different forms of illumination to the navigational area and processing optics. Different optical sources have at least one operational parameter different from each other, such as configuration position, beam separation/polymerization, angle of incidence, exposure, recording, spectral linewidth, polarity, continuity, current consumption, time modulation, and various operating parameters. The combination. 2 is a view of a coherent optical mouse 203 according to an embodiment of the present invention, wherein the light source module 103 as shown in FIG. 1 includes a plurality of light sources represented by dual light sources 203, 204. Selecting a party, deducting a partner/going to, for example, electronically switching 205, is controlled by controlling early element commands, such as wisdom, food, and by the control signal input 206, and selecting via the electronic connections 207, 208. One or more light sources 203, 204 are taken. Light

源選擇是依據例如與航杆F 域表面220適行性及光學滑鼠 200之功率消耗需求相關之決策條件。光狀選擇包括任一 單-光源或同時多個光源之㈣。供應至電子切獅5之電 力是由電源210,例如雷、、斗 也’透過電源連接209供應。電子 與光學元件典型地配置於氺風 、元予,月臥200内,例如使用結構支 撐構件201與202。 20 1253017 雙光源203、204分別供應光射線213&-21313及2143-2145 入射至視準元件112產生平行射線213c-213d及214c-214d。 射線2l3c-213d及214c-214d並非一定要平行,因此視準元件 112為光學滑鼠2〇〇之選擇性元件。假若使用視準元件2U 、 5時’此元件可以是將光射線213a-213b及214a-214b修正為平 行光線之任何合適的光學元件,例如繞射或折射鏡。在本 發明某些實施例中,光源203、204放射可見波長範圍之光 線,然而此系統可以組配成以其他波長範圍之光線運作,The source selection is based, for example, on the decision conditions associated with the suitability of the surface of the voyage F domain 220 and the power consumption requirements of the optical mouse 200. The light selection includes any single-light source or multiple (40) simultaneous light sources. The power supplied to the electronic cut lion 5 is supplied by the power source 210, such as mine, and bucket, via the power connection 209. The electronic and optical components are typically disposed within the hurricane, the moon, and the moon, 200, for example, using structural support members 201 and 202. 20 1253017 The dual light sources 203, 204 supply light rays 213 & -21313 and 2143-2145, respectively, incident on the collimation element 112 to produce parallel rays 213c-213d and 214c-214d. The rays 2l3c-213d and 214c-214d are not necessarily parallel, so the collimating element 112 is an optional element of the optical mouse. If the collimation elements 2U, 5 are used, this element can be any suitable optical element that modifies the light rays 213a-213b and 214a-214b to parallel rays, such as a diffractive or refractive mirror. In some embodiments of the invention, the light sources 203, 204 emit light in the visible wavelength range, however the system can be configured to operate with light in other wavelength ranges,

例如矽偵測器響應峰值之紅外線範圍。 H 10 平行射線213c-213d及214c-214d典型地以非垂直入射 角照射航行區域表面220,因此會從表面220部分區域223及 224反射成反射射線213e-213f及214e-214f。此些反射線典 型地經過處理以產生已處理射線214g-214j,接著由偵測器 217擷取此些射線。偵測器217接著對擷取之影響提供對應 15 之信號至處理器218。 經由比較連續儲存之訊框,處理器218可以測定其相對 移動,因此可以使用連續訊框之相關計算以決定相對移動 鲁 之距離及方向。處理器218取得電力,例如經由電源線219 取得電源210 ◦擷取之訊框的一部份會與後續掏取之訊框重 20疊。因此航行軟體演算法可以“查看,,一或多個訊框上特定 — 的辨識點’接著計箅其相對移動之距離與方向。藉由儲存 連續之訊框對,可以在處理器218中使用傳統相關演算法決 定重疊特性,進而找出方向與移動量。此一程序在美國專 利第5,786,804號中有詳細說明,並且此專利廣泛地被用在 12 1253017 使用比較連續表面訊框之光學指標裝置,其中該表面訊框 是依據傳統技術產生,例如由表面反射之光射線產生之陰 影所產生。 具有不同特性之各式照射源可以適用於特定之航行條 5 件。例如照射源可能有不同的空間位置,因此與光學元件、 航行區域及感測器會有不同之作用。同樣地,照射源可能 具有不同的波長、照射量、光譜線寬、極性或此些參數之 組合。不同的空間位置參數可以允容忍較寬鬆的製造誤 差。例如可以在製造程序期間或運作期間選擇具有最佳航 10 行效能空間位置之照射源。如此可以允許較寬鬆之設計誤 差,例如照射源空間差異可以為照射源位置誤差與多照射 源間之平衡點。在製造滑鼠期間照射源之選擇可以經由將 電流導入所選擇之照射源做永久性的設定。換言之,可以 在滑鼠運作期間透過電子控制進行選擇。在所有條件下, 15 電流是以不同的程度導入一或多個光源。 如第2圖範例所示,在光學滑鼠200中雙光學放射源 203、204為不同的形式。例如光源203可能為放射寬頻譜光 線之LED,而光源204可能為放射窄波長頻譜之雷射,並且 提供光學滑鼠成像系統較長的光學放射凝聚長度以增進對 20 某些表面之航行效能。較長的凝聚長度可以用以將航行表 面之斑點成向或者提供鏡射航行用照射源,航行表面上肉 眼可見的表面變化會在偵測器產生強度圖像。此處所指之 凝聚性包括時域凝聚,亦即窄頻寬或者光源在任意時刻之 光射線震幅及/或相位與先前或後面時刻之射線間為緊密 13 1253017 相關性,以及空間凝聚性,亦即光源射線束任意兩點間之 波前即時相位角與即時震幅有緊密關係性(請參考1986年 大學科學叢書第54〜55頁由A. E. Siegman著作之“雷射,,)。 低凝聚性光源包括像LED、各種不同模式之雷射二極體或 5者白光之二極體發光器(請參考1974年一月發行之應用光 學期刊弟13卷弟1期弟200〜202頁,由J. C. Wyant著作之“白 光延伸光源切細干涉計”)。 因為表面的瑕疵(通常會有瑕疵,除非該表面非常光滑) 或者區域223上其他像是外部顆粒的不一致性、不同的射 10 線,例如213e-213f與214e-214f在不同反射點處不同表面 南度具有不同的傳遞時間。不同射線之不同傳遞時間會於 213e-213f及214e-214f上產生相位圖像之不同射線間產 生相位差。此些相位圖像可以使用干涉技術加以成像。可 以使用在本發明之替代干涉計包括 15 Michelson(Twyman-Green)、Mach-Zehnder、Fizeau以及具 有單一或多種不同元件之干涉計,如同申請之美國應用專 利第10/439,674號,其揭露之發明將以參考方式納入本發 明。為了更詳細說明此些干涉計,參考Wiley-Interscience 於1992年1月出版由D. Malacara著作之“Optical Shop 20 Testing”(書號ISBN 0471522325)第1〜7章,此後將以參考方 式納入本發明。 光學滑鼠200選擇性地包括在偵測器陣列217擷取前處 理射線213e-213f及214e-214f相位圖像之傳輸衍射栅攔 215。柵欄215產生分別由214§-21如及21411-214』表示之兩個 14 1253017 重疊位移相位圖像。射線214h與214i(以及兩射線間所有射 線)干涉區域定義為重疊區域225,亦即其干涉為相加或相 減取決於兩射線間之相位。同樣地,由光源203產生之射線 2136與21奵會被栅攔215衍射為兩個衍射層級以產生兩個 5 相位圖像位移重疊光束(第2圖中並未顯示),此二光束定義 出另一重豐區域。因此衍射4冊搁215有效地執行切細板功 能。 舉例而言,衍射柵欄215可以為平行板、稜鏡、兩或多 個栅欄或是其他可以執行切細板功能之光學元件,亦即能 10 夠產生切細干涉之元件。平行板結構可以是為典型的切細 干涉器範例,其光學干涉是由一相位圖像光場以及此相位 圖像光場移位後之光場間空間重疊所產生。儘管切細干涉 器典型地提供比其他行事之干涉器較佳之效能,然而本發 明之光學航行技術並不侷限於切細干涉器,可以依據特定 15 應用之需求使用不同形式之干涉器。 衍射柵欄215與偵測器陣列217間之光學元件216經由 衍射柵欄215將航行區域2 2 0之區域影像22 3投影至偵測器 陣列217。此一程序會在偵測器陣列217產生干涉量,偵測 器陣列217偵測此干涉量並提供對應之信號至處理器218。 20 光學元件216與衍射栅欄215可以整合為單一元件或整合式 結構。 然而假若航行區域220以方向箭頭221與222對光學滑 鼠200移動時,將會產生不同而固定之干涉量,此干涉量通 常取決於相位圖像反射之新表面區域。例如,假如表面220 15 1253017 以第A圖箭頭221與222之方向對光學滑鼠徑向移動時,航行 區域220之新區域224將被成像,因而產生與前一干涉量相 對移動之干涉量。藉由運用干涉技術,即使在非常平滑的 表面移動,例如玻璃(但通常並非是非常光華之表面),亦可 5 以測疋其相對移動。 第3與第4圖為描述與照射光相關之偵測器217圖示,例 如光源模組103。第4圖說明以照射角度4〇5照射之情形。第 3圖展示光源模組103中散射光源35之照射會被引導成與航 行區域220表面垂直。假若航行區域22〇包含可以被偵測器 10陣列217偵測之紙張纖維時,通常必須以入射角4〇5照射。 在光源模組103中可以使用一或多個發光二極體(led)45。 例如每一照射源35及/或45可能包括多個獨立之照射元 件。照射角為入射角之餘角,其範圍典型地為5度至2〇度, 然而此範圍會因航行區域220之特性而變動。在第*圖之曰尸 15射實施例4〇〇中,光源45與照射光學46 —起展示,其可能包 括單一光學元件或鏡片、濾鏡及/或全像攝影元件之組合將 光線平行化並且平均的照射402至表面區域,例如表面區域 403。從表面區域403反射或散射之光線通常以與表面區域 403垂直取樣,並以出射光束404表示。所選擇之光源4〇5光 20 波長通常用以增加航行之空間頻率資訊。可以將照射場之 固定圖像雜訊最小化。需要調整由光源45照射之光線4〇1以 適應寬動態範圍航行區域220之反射,例如當航行裝置在$ 有吸收或反射光線之油墨或其他標記之印刷材質日夺。 在第3圖之照射實施例300中,照射光學元件3^^led 16 1253017 光源35產生之光線301平行化,平行光束302接著被光束振 幅分離器37重新導向。為了明確的顯示,引導至光束分離 為37與穿透過光束分尚隹為37之LED 35光能部分在第3圖中 並未顯示。由光束分37反射之光能以與表面垂直的方 5 向照射。 第3圖同時也顯示從航行區域220反射或散射穿透光束 分離器37在元件38處收斂及過濾成已過濾光束3〇5之光能 304部分。已過濾光束305接著被航行光學39導向成已偵測 光束306以在偵測器陣列217上產生圖像。為了清楚的展 10示,穿透航行區域220至光束分離器37並且由光束分離器反 射之光能部分並未於圖中展示。航行光學39之放大通常平 均的覆蓋偵測器陣列217視野。在許多應用中,航行光學39 之调變轉換函數’亦即光頻率響應之振幅量測,設付成低 於Nyquist空間頻率,此空間頻率取決於偵測器陣列21?之感 15測器元件強度與航行光學39之放大倍數。航行光學39通常 組配成用以阻隔背景照射產生之雜訊。換言之,可>乂伏用 波前形式之光束分離器。 入射角之選擇取決於航行區域之材質特性。假#航行 表面不光滑,照射角產生較長之陰影以及較明確之#卩匕戒 20是AC信號。然而當照射角接近航行區域表面垂直線睛 "ί吕號強度隨之增加。 以照射角405照射航行區域220目標區域4〇3可>乂在顯 微層級具有高粗糙度航行區域220表面之應用中速作良 好。例如當航行區域為信紙、卡片、布料或皮膚時,光源 17 1253017 料二,m供與本質結構特性相關之高噪訊比資 方面,要在航行區域表面為 與透明膠膜追縱航行裝置移動位置t j光/fU氏張 光線照射時,在鏡射場檢視航純^使^直照射散射 航使其得以進行成像及以相關性為基礎之航行。 雕琢Γ 有細微之起伏使得當表㈣方形馬賽克或 10 15 20 ㈣/”此表面可以反射光線1行區域表面之大量方 =件反射光線方向輕微偏離垂直線。因此可以將包含散 線與全反射光線之視野視為由大量方塊組合成之表 面’母—傾斜皆與垂直線有些為差異。此一模組化過程斑 Pr〇c· Phys. Soc.期刊年第51卷第274〜292頁俽w B她as著作之“低光滑表面光線散射之全反射與漫射成分分 析之描述類似。 在接下來的實施例中說明以垂直入射角聚焦照射進行 =斑點為基礎之航行。_裝置與航行區域表面間之相對 私動可以藉由監看斑點圖像與航行感測器之相對移動追 蹤。假若只使用聚焦照射而不使用成像光學時,藉由選擇 =、之照魏域⑽航行區域表__轉關具有相 =广所產生之斑點圖像含有大小足以滿足一 =件之主要斑點。如第3圖所示,使用光束分離器可以 =入射光線與制狀散射麵方向靠近航行區域表面 #直線。在料實施财,使”時性的調變光源會有 K的效能。例如影像谓測系統可以鎖定照射源之時間頻 18 1253017 。及/或相位’用以和背景雜訊做區隔。 依據本發明’光學航行裝置會擷取在航行區域以預設 角又辜已圍反射之光線。典型地,光學航行裝置之偵測器配 $置乂抬貝取來自銳行區域表面之鏡射。&一鏡射產生與陰影 圖,像及斑點圖像不同之表面影像。鏡射典型地提供比 〜圖像影像方法更強之信號。如此即使在平滑表面上也 :以取得㊉對比圖像。此外,對於木質表面可以保持其品 、、因為光線會散射至鏡射方向。ϋ射圖{象取決於照射源 1〇波長讀,典型地當照射源的頻寬愈窄時鏡射圖像的對 ㊂Ν。因此以雷射為基礎之光源提供最高對比。 15 20 、、依據本發明,經由使用具有符合债測器響應曲線峰值 ^之照射源可以降低電源之需求。鏡射圖像之對比取決 射源之空域與時域相關度。使用窄頻帶照射源時,例 〇垂直腔表面發光雷射(VCSEL)或窄頻帶發光二極體 )可以使用較少的電源提供較佳的圖像對比。擴大波 長4見’包含平均化,會產生較低之對比,因為由不同波 又光、泉各自散射回來的光線會雜亂加成。因此,依據本發 明,為了達到可靠的光學航行,照射源頻寬必須小到具有 充分之相關干涉以產生高對比之圖像。例如頻寬為2〇微米 (nm)層、、及之知射源對於在辦公桌環境各種不同表面之光學 航行提供足夠的對比。 光束射線照射在平滑航行表面,從此平滑表面反射時 會維持集中在一束。然而當表面為顯微粗糙時,光線會以 各種不同方向反射及散射。與表面粗糙度對應之空間頻率 19 1253017 與照射波長成比例。每個獨立射線皆遵循反射定律。然而 在粗糙表面條件下,每一射線遇到具有不同方向的表面部 分。因此對不同入射光線而言表面垂直線亦不同。因此當 每一射線依據反射定律反射時,每一射線會以不同方向散 5 射。再者,當產生光線干涉或類干涉時,可以在鏡射方向 取得由反射與散射光線成分干涉產生之高對比度圖像。此 一干涉作用增加航行圖像之對比度。 第5圖展示依據本發明光學航行裝置101用元件之簡化 圖示。光源503為光源模組103的一部份(參考第1圖),其配 10 置於與表面垂直線550夾角為心處並且供應光束515射入光 學元件501以產生光束515’。光學元件501為選擇性元件, 其功能主要適用以增進光束515之集中率。例如光學元件 501可以是凸透鏡。然而假若當光源503為一雷射,例如 VCSEL或邊緣發光二極體時,光束515便不需要集中。假若 15 光源503為類單一光源時,例如窄頻帶LED(發光二極體)或 具有窄頻帶濾波器之LED,若在光滑表面航行時則需要光 學元件501或限制孔。使用限制孔會降低入射至表面220之 能量,但可以提高空間單一性。假若沒有使用光學元件501 時,光學元件501可以為一繞射或折射鏡或是其他合適之光 20 學元件並且可以塗上薄膜以增進效能。除了使用限制孔與 傳統窄頻帶LED外,可以使用窄頻帶邊緣發光LED替代作 為光源。 偵測器陣列217為偵測器模組104(參考第1圖)的一部 份,其配置於與表面垂直線550爽角為處,其中0r=0i。 20 1253017 10 15 20 從表面220反射且 ,、有Θ 0 i之反射光線565組成光束517並 由偵測器陣列2174立^ ± 妾收。表面220被照射部分由光學元件507 ^鱼表面220位置516由债測器陣列217擷取映對至债 測裔陣列217位士 置處。因此光學元件507允許偵測器陣 列2!7進行擷取。 性 由早切產生之圖像典型地包含表面特 。此干涉特性是由鏡射場中每一射線干涉所 //,凡件5G7可以為—繞射或折射鏡献其他合適之 光子兀件並且可以塗介 山而 丨甩潯馭以增進效能。光源5〇3通常 為乍頻帶雷射光源 邊料n A (直腔表面發光雷射)或 曰田貞測器陣列217通常為CCD、CM〇s、GaAs、 、 或’、他合適之偵測器陣列。可以在偵測器陣列217 塗上反反射介”膜以增進偵測器陣列217效能。 具有較高之表面料與解析度可以使光學航行裝置 HH妹光滑的表面航行。表面有效解析度定義為航行表面 220上最小之可解析特性。表面有效解析度取決於調變轉換 函數、光學放大率以及偵測器陣列,例如偵測器陣列217, 之有效像素大小。假如放大率固定時,解析度較高之表面 需要具有較小像素之偵測器陣列217。光學航行裝置ι〇ι在 表面220之最大航行速度受限於偵測器陣列2丨7最大訊框率 以及交叉相關計异之處理時間。光學航行裝置1〇1與表面 220之實際距離是以有效像素尺寸為單位量測。有效像素尺 寸為偵測器陣列217中一像素尺寸對應至表面22〇上之尺 寸。此意味著假如光學航行裝置ιοί之偵測器陣列217像素 尺寸縮小時,光學航行終至101之反應度或最大航行速度將For example, the 矽 detector responds to the infrared range of the peak. The H 10 parallel rays 213c-213d and 214c-214d typically illuminate the navigation area surface 220 at a non-normal incidence angle and are therefore reflected from the surface 220 partial areas 223 and 224 into reflected rays 213e-213f and 214e-214f. Such reflected lines are typically processed to produce processed rays 214g-214j, which are then captured by detector 217. The detector 217 then provides a signal corresponding to 15 to the processor 218 for the effect of the capture. By comparing successively stored frames, processor 218 can determine its relative movement so that correlation calculations of successive frames can be used to determine the relative movement distance and direction. The processor 218 obtains power, for example, a portion of the frame captured by the power source 210 via the power line 219 is overlapped with the frame of the subsequent capture. Therefore, the navigation software algorithm can "view, identify the identification point of one or more frames" and then calculate the relative movement distance and direction. By storing consecutive frame pairs, it can be used in the processor 218. The conventional correlation algorithm determines the overlap characteristics to find the direction and the amount of movement. This procedure is described in detail in U.S. Patent No. 5,786,804, and the patent is widely used in 12 1253017. The surface frame is generated according to a conventional technique, for example, by a shadow generated by a surface-reflected light ray. The various illumination sources having different characteristics may be applied to a specific navigation strip. For example, the illumination source may have different The spatial position will therefore have a different effect than the optical components, navigational area and sensor. Similarly, the illumination source may have different wavelengths, illumination, spectral linewidth, polarity or a combination of these parameters. Different spatial locations The parameters can tolerate loose manufacturing errors. For example, it can be selected during the manufacturing process or during operation. The optimal source of illumination for 10 lines of performance spatial position. This allows for looser design errors. For example, the spatial difference of the illumination source can be the equilibrium point between the illumination source position error and the multiple illumination sources. The choice of illumination source during the manufacture of the mouse It can be permanently set by introducing a current into the selected illumination source. In other words, it can be selected by electronic control during mouse operation. Under all conditions, 15 currents are introduced into one or more light sources to different degrees. As shown in the example of Fig. 2, the dual optical sources 203, 204 are in different forms in the optical mouse 200. For example, the source 203 may be an LED that emits a broad spectrum of light, and the source 204 may be a laser that emits a narrow wavelength spectrum. It also provides a long optical radiation agglomeration length of the optical mouse imaging system to enhance the navigation performance of some surfaces. The longer coagulation length can be used to align the surface of the navigation surface or provide a mirroring source for navigation. A surface change visible to the naked eye produces an intensity image at the detector. The cohesiveness referred to here includes time domain condensation. That is, the narrow bandwidth or the light source amplitude and/or phase of the light source at any time is closely related to the ray of the previous or subsequent time, and the spatial cohesion, that is, the wave between any two points of the light beam. The former immediate phase angle is closely related to the instantaneous amplitude (please refer to the 1986 University Science Series, pages 54-55, by AE Siegman, "Laser,,"). Low-cohesive light sources include LEDs, laser diodes of various modes or white light emitters of five white light (please refer to the application of optical journals published in January 1974, 13 volumes, 1st brother, 200-202 pages) , "White Light Extension Light Source Fine Interferometer" by JC Wyant. Because of the surface flaws (usually there are flaws, unless the surface is very smooth) or other areas on the area 223 are inconsistencies in external particles, different shots, such as 213e-213f and 214e-214f at different reflection points South has different delivery times. Different transmission times of different rays produce phase differences between different rays that produce phase images at 213e-213f and 214e-214f. These phase images can be imaged using interference techniques. Alternative interferometers that can be used in the present invention include 15 Michelson (Twyman-Green), Mach-Zehnder, Fizeau, and an interferometer having a single or multiple different components, as disclosed in U.S. Patent Application Serial No. 10/439,674, the disclosure of which is incorporated herein. The invention will be incorporated by reference. For a more detailed description of such interferometers, reference is made to Wiley-Interscience, in January 1992, "Optical Shop 20 Testing" by D. Malacara (Book No. ISBN 0471522325), Chapters 1 through 7, and will be incorporated herein by reference. . The optical mouse 200 optionally includes a transmission diffraction grating 215 that processes the phase images of the rays 213e-213f and 214e-214f before the detector array 217 is captured. Fence 215 produces two 14 1253017 overlapping displacement phase images, respectively, represented by 214 §-21, and 21411-214. The interference regions of rays 214h and 214i (and all rays between the two rays) are defined as overlapping regions 225, i.e., their interference is additive or subtracted depending on the phase between the two rays. Similarly, the rays 2136 and 21 产生 produced by the source 203 are diffracted by the barrier 215 into two diffraction levels to produce two 5-phase image displacement overlapping beams (not shown in Figure 2), which define Another heavy area. Therefore, the diffracted 4-volume 215 effectively performs the shredder function. For example, the diffraction fence 215 can be a parallel plate, a cymbal, two or more fences, or other optical components that can perform the function of the dicing plate, that is, an element capable of producing a fine interference. The parallel plate structure can be an example of a typical shredder interferometer whose optical interference is produced by a phase image light field and spatial overlap between the light fields after the phase image light field is shifted. While a finely divided interferometer typically provides better performance than other interfering interferers, the optical navigation techniques of the present invention are not limited to shredded interferometers, and different forms of interferers can be used depending on the needs of a particular 15 application. The optical element 216 between the diffraction fence 215 and the detector array 217 projects the area image 22 of the navigation area 2 2 0 to the detector array 217 via the diffraction fence 215. This program generates an amount of interference at the detector array 217, which detects the amount of interference and provides a corresponding signal to the processor 218. The optical element 216 and the diffraction fence 215 can be integrated into a single element or an integrated structure. However, if the navigation area 220 is moved by the directional arrows 221 and 222 to the optical mouse 200, a different and fixed amount of interference will occur, which is usually dependent on the new surface area reflected by the phase image. For example, if the surface 220 15 1253017 is moved radially toward the optical mouse in the direction of arrows 221 and 222 of arrow A, the new region 224 of the navigation region 220 will be imaged, thereby producing an amount of interference relative to the amount of movement of the previous interference. By using interference techniques, even on very smooth surfaces, such as glass (but usually not very brilliance), you can measure its relative movement. The third and fourth figures are diagrams depicting a detector 217 associated with illumination light, such as light source module 103. Fig. 4 illustrates the case of irradiation with an irradiation angle of 4〇5. Figure 3 shows that the illumination of the scattered light source 35 in the light source module 103 is directed perpendicular to the surface of the navigation area 220. If the navigation area 22 contains paper fibers that can be detected by the detector array 217, it is usually necessary to illuminate at an incident angle of 4 〇 5. One or more light emitting diodes (led) 45 may be used in the light source module 103. For example, each illumination source 35 and/or 45 may include a plurality of separate illumination elements. The illumination angle is the complementary angle of the angle of incidence, which typically ranges from 5 degrees to 2 degrees, although this range may vary due to the characteristics of the navigation area 220. In the fourth embodiment of the present invention, the light source 45 is shown together with the illumination optics 46, which may include a single optical element or a combination of lenses, filters and/or holographic elements to parallelize the light. And the average illumination 402 is to a surface area, such as surface area 403. Light reflected or scattered from surface area 403 is typically sampled perpendicular to surface area 403 and represented by exit beam 404. The selected light source 4 〇 5 light 20 wavelength is usually used to increase the spatial frequency information of navigation. Minimize fixed image noise for the illumination field. The light ray 4 〇1 illuminated by the source 45 needs to be adjusted to accommodate the reflection of the wide dynamic range navigation area 220, such as when the navigation device is in a printed material with ink or other markings that absorb or reflect light. In the illumination embodiment 300 of Fig. 3, the illuminating optical element 3^^led 16 1253017 is caused by the light source 301 generated by the light source 35 being parallelized, and the parallel beam 302 is then redirected by the beam oscillating separator 37. For the sake of clarity, the LED light energy portion that leads to beam splitting 37 and through the beam splitter is 37 is not shown in Figure 3. The light reflected by the beam splitter 37 can be illuminated in a direction perpendicular to the surface. Figure 3 also shows the portion of the light energy 304 that is reflected or scattered from the navigational region 220 by the beam splitter 37 that converges at element 38 and filters into the filtered beam 3〇5. The filtered beam 305 is then directed by the navigation optics 39 into the detected beam 306 to produce an image on the detector array 217. For clarity, the portion of the light energy that penetrates the navigation region 220 to the beam splitter 37 and is reflected by the beam splitter is not shown. The amplification of the navigation optics 39 generally covers the field of view of the detector array 217. In many applications, the modulation transfer function of the navigation optics 39, that is, the amplitude measurement of the optical frequency response, is set to be lower than the Nyquist spatial frequency, which depends on the detector array 21? Magnification of intensity and navigation optics 39. The navigation optics 39 are typically configured to block noise generated by background illumination. In other words, the beam splitter in the wavefront form can be > The choice of angle of incidence depends on the material properties of the navigation area. False #Navigation The surface is not smooth, the illumination angle produces a longer shadow and the clearer #卩匕戒20 is the AC signal. However, when the illumination angle approaches the vertical line on the surface of the navigation area, the intensity of the quotient increases. Irradiating the navigation area 220 with the illumination angle 405 to the target area 4〇3 can be performed quickly in applications where the micro-level has a high-roughness navigation area 220 surface. For example, when the navigation area is letterhead, card, cloth or skin, the light source 17 1253017 is the second, m for the high noise ratio related to the essential structural characteristics, and the surface of the navigation area is to be moved with the transparent film tracking navigation device. When the position tj light/fU's beam is irradiated, the illuminating field is observed in the mirror field, so that the direct illumination is scattered to enable imaging and correlation-based navigation.琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 琢Γ 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表The field of view of light is considered to be a combination of a large number of squares. The 'mother-tilt is somewhat different from the vertical line. This modular process spot is Pr〇c· Phys. Soc. Journal No. 51, pp. 274-292 俽w B She's book "The total reflection of low-smooth surface light scattering is similar to the description of diffuse composition analysis. In the following embodiments, focusing illumination at a normal incidence angle is performed to perform a spot-based navigation. The relative private movement between the device and the surface of the navigation area can be tracked by monitoring the relative movement of the spot image and the navigation sensor. If only focused illumination is used instead of imaging optics, the spot image produced by selecting the =, the Wei domain (10) navigation area table __ turns off with phase = wide contains a size sufficient to satisfy the primary spot of a piece. As shown in Figure 3, the beam splitter can be used = the incident light and the direction of the scattering surface are close to the surface of the navigation area #straight line. In the implementation of the material, so that the time-varying modulation source will have K performance. For example, the image prediction system can lock the time source of the illumination source 18 1253017. And / or phase 'to distinguish from the background noise. The optical navigation device of the present invention captures light that has been reflected at a predetermined angle in the navigation area. Typically, the detector of the optical navigation device is equipped with a mirror that is attached to the surface of the sharp region. A mirror produces a surface image that is different from the shadow map, like the spot image. The mirror typically provides a stronger signal than the image method. So even on a smooth surface: to get a ten-contrast image. In addition, the wood surface can retain its product, because the light will scatter to the mirror direction. The ray map {image depends on the illumination source 1 〇 wavelength reading, typically when the bandwidth of the illumination source is narrower, the image is mirrored. For the third lighter, the laser-based light source provides the highest contrast. 15 20 According to the present invention, the power supply can be reduced by using an illumination source having a peak value of the response curve of the debt detector. Airspace and time domain correlation of the source. When using a narrowband illumination source, a vertical cavity surface emitting laser (VCSEL) or a narrowband LED can provide better image contrast using fewer power supplies. Enlarging the wavelength 4 see 'contains averaging, which will produce a lower contrast, because the light scattered by the different waves and the light and spring will be added randomly. Therefore, according to the present invention, in order to achieve reliable optical navigation, the illumination source The bandwidth must be small enough to have sufficient correlation interference to produce a high contrast image. For example, a bandwidth of 2 〇 micrometers (nm), and a source of radiation provides sufficient optical navigation for various surfaces in a desk environment. Contrast. Beam ray is illuminated on a smooth sailing surface and will remain concentrated in one beam when reflected from this smooth surface. However, when the surface is microscopically rough, the light will reflect and scatter in various directions. The spatial frequency corresponding to the surface roughness 19 1253017 is proportional to the illumination wavelength. Each individual ray follows the law of reflection. However, under rough surface conditions, each ray encounters a different direction. The surface part. Therefore, the vertical line of the surface is different for different incident rays. Therefore, when each ray is reflected according to the law of reflection, each ray will be scattered in different directions. Further, when light interference or interference is generated, A high contrast image resulting from the interference of the reflected and scattered light components can be obtained in the mirror direction. This interference increases the contrast of the navigation image. Figure 5 shows a simplified representation of the components of the optical navigation device 101 in accordance with the present invention. 503 is a portion of the light source module 103 (refer to FIG. 1), the configuration 10 is placed at an angle with the surface vertical line 550 and the supply beam 515 is incident on the optical element 501 to generate the light beam 515'. The optical element 501 is The optional element, whose function is primarily adapted to enhance the concentration ratio of the beam 515. For example, the optical element 501 can be a convex lens. However, if the light source 503 is a laser, such as a VCSEL or an edge light emitting diode, the light beam 515 does not need to be concentrated. If the 15 light source 503 is a single light source, such as a narrowband LED (light emitting diode) or an LED having a narrow band filter, an optical element 501 or a limiting hole is required if sailing on a smooth surface. The use of a limiting aperture reduces the energy incident on surface 220, but can increase spatial unity. If the optical component 501 is not used, the optical component 501 can be a diffractive or refractive mirror or other suitable optical component and can be coated with a film to enhance performance. In addition to using limiting holes and conventional narrowband LEDs, narrowband edge emitting LEDs can be used instead as a light source. The detector array 217 is a portion of the detector module 104 (refer to FIG. 1) disposed at a refresh angle with the surface vertical line 550, where 0r=0i. 20 1253017 10 15 20 Reflected from surface 220, reflected light 565 having Θ 0 i forms beam 517 and is detected by detector array 2174. The surface 220 is illuminated by the optical element 507 ^ fish surface 220 position 516 from the debt detector array 217 to the target 217 array. Thus optical component 507 allows detector array 2! 7 to be captured. Sexuality Images produced by early cutting typically contain surface features. This interference characteristic is interfered by each ray in the mirror field. // 5G7 can be used as a diffractive or refracting mirror to provide other suitable photonic elements and can be coated to enhance performance. The light source 5〇3 is usually a 乍 band laser source material n A (straight cavity surface illuminating laser) or the 贞 field detector array 217 is usually CCD, CM〇s, GaAs, or ', and his suitable detection Array. A reflective anti-reflection film can be applied to the detector array 217 to enhance the performance of the detector array 217. A higher surface material and resolution can smooth the surface of the optical navigation device HH. The surface effective resolution is defined as The minimum resolvable property on the navigation surface 220. The effective surface resolution depends on the modulation conversion function, the optical magnification, and the effective pixel size of the detector array, such as the detector array 217. If the magnification is fixed, the resolution The higher surface requires a detector array 217 with smaller pixels. The maximum navigation speed of the optical navigation device ι〇ι on the surface 220 is limited by the maximum frame rate of the detector array 2丨7 and the cross-correlation calculation. The actual distance between the optical navigation device 101 and the surface 220 is measured in units of effective pixel size. The effective pixel size is the size of one pixel in the detector array 217 corresponding to the size on the surface 22〇. When the optical navigation device ιοί's detector array 217 is reduced in size, the optical navigation will reach 101 or the maximum speed will be

21 1253017 、、成小 第】 典型地’债測為陣列217成本、處理器105(參考 回)、總功率消耗以及所需之反應速度間之取捨考量及 、/相本發明實施敎表面解㈣及光學放大率。 5行壯當料航行装置101相對於表面220移動時’在光學航 =衣置=與表面22〇間不同的相對位置產生窄頻寬散射圖 射:Γ—散射圖像是由制器陣列217視野内之表面220鏡 ♦光^產生。窄頻寬散射圖像絕大部分取決於光源503之波 值鲤”,也所述擇之光源503波長為偵測器陣列217之峰 ^ T響應波長。因為在先前陰影圖像光學航行系統技藝已對 =像對比度及信號加以改良’因此需要較短之偵測器集成 、了間,使其有較高之訊框擷取率以進行較高之航行速度。 光學航行裝置1G1可能包含像光源5()3之多個光源。 、、…在處理器105中比較連續儲存之窄頻寬鏡射圖像,可以 ι ^定光學航行裝置101與表面220之相對移動。連續窄頻寬 15散,圖像之相關性通常用以測定以相對移動量。連續擷取 政射圖像彼此間會有部分相互重疊。因此處理器1〇5在每 擷取之散射圖像確認特徵並且計算此相對移動量及方 向。使用儲存之連續散射圖像,處理器1〇5利用標準影像相 關11/幾异法辨識重疊特徵以得知方向及移動量。更詳細之 20說明可以在美國專利第5,786,804中查得。依據本發明,即 使在平滑但非刨光表面如玻璃上之相對移動亦可以量測。 第6圖為依據本發明之系統6〇〇,其中光學滑鼠625在固 定之航行區域表面620上移動◦光學滑鼠625典型地包括偵 測為陣列單元,例如第5圖之偵測器陣列單元217。光學滑 22 1253017 鼠625也可能包含多個像光源503之光源。連續之鏡射圖像 通常由光學滑鼠625之處理器105(參考第1圖)轉換成位置資 訊並且連接線或無線傳輸至中央處理單元675用以在顯示 螢幕670上顯示為位置指標器,例如箭頭。換言之,可以將 5 偵測器陣列單元217(參考第5圖)之原始或中間資料傳送至 中央處理單元675處理。無線傳輸可以是無線電頻率或紅外 線。依據本發明之無線光學滑鼠625實施例,其電源可以由 可充式電池、燃料電池或太陽能電池供應。 第7A至7B圖為說明操作依據本發明具有多光學照射 10 源之光學航行系統之方法流程圖。第7A圖說明操作具有多 光學照射源之光學航行系統以測定光學航行裝置與物體間 相對移動之方法700。此方法包括在程序702中提供一光學 航行系統,例如光學航行系統1〇〇或光學滑鼠200。此光學 航行系統包括至少一個第一光源,例如光源203,以及第二 15 光學照射源,例如光源204,用以照射如航行區域表面220 之物體。必備之第一光源與第二光源兩者間至少有一運作 參數不同。此光學航行系統更包括擷取照射後射出光束, 例如射出光線213e-213f與214e-214f圖像用偵測器,例如偵 測器陣列217。如程序703所述,此方法更包含分別為必備 20 之第一與第二光源203、204選擇至少一個不同之初始運作 參數,在程序704中,切換電流至第一及/或第二光源以實 現至少一個不同之運作參數。在程序705中,此方法更包含 照射物體,在程序706中擷取照射後光射線圖像,以及在程 序707計算擷取之圖像。在程序708中,此方法更包括依據 1253017 、策條件調整先前選擇至少一個不同之運作參數。 第73圖5兒明運作方法7〇〇之延伸運作,依據本發明實施 幻其說明在程序708中依據決策條件調整先前選擇之運作 5苓數範例。如程序710所述,光學航行系統100計算已擷取 5之圖像及其他運作條件以決定是否產生危害眼睛安全之狀 况。饭若出現危害眼睛安全狀況時,如同程序711所述,將 流入光學照射源203、204之電流降低至預設較低層級,在 私序716中,此系統回復計算圖像並且重複處理程序7〇8與 710 〇 假若在权序710中沒有出現危害眼睛安全狀況時,接著 進入耘序712,光學航行系統1〇〇計算電池電力以測定電力 否開始衣減。假若電池電力開始衰減時,接著進入程序 11將電流降低並且此系統以類似於偵測危害眼睛狀況之 &序710進行程序716、708與71〇。 假右程序712對電池電力測定為沒有衰減時,接著進入 矛壬序713 ’系統依據預設之決策條件計算所擷取之訊框以決 定是否有足夠之適航性。假若沒有足夠之適航性,接著進 入程序714,依據決策條件調整所選定之運作參數,接著此 系統進行程序716與708以及程序710。假若程序713測定之 I躭11足夠日寸,此系統繼續進行程序715、716及而不需 調整運作參數,直到第7圖程序71〇危害眼睛安全狀況、程 序712之電池電力衰減狀況以及程序713之適航性不足狀況 之决策條件日寸才需要調整運作參數。必須注意到除了第 圖所述之決策條件範例外,其他預設條件或是各種條件之 24 1253017 組合皆可以用作決策條件。 多光學照射源方法之優點為增加可信度,因為產生光 學照射之作用裝置影響光學滑鼠之整體可信度。使用多光 學照射源可以延伸航行能力,使用額外的光學照射源作為 5 備用,以備當一光學照射源因為各種原因故障時使用。 假若在緊急狀況下欲延長電池壽命時,例如當電池電 壓下降時,供應電流至光源之電子切換器可以設計成選擇 消耗最低功率之光學照射源。在目前的技術中,為了達到 高照射亮度,其光源需為雷射式,例如使用具有大約40% 10 效率之垂直腔表面發光雷射(VCSEL)技術。相對地,傳統 LED以高亮度發光時需要大約30mA之電流。然而當需要低 亮度照射時,例如在較亮或較不會吸收光線之表面航行 時,LED將會比VCSEL更有效率。具有不同干涉長度之光 學照射源在典型的實施例中會被分離。如此使之可以選擇 15 低單一性光學照射源做標準表面成像,以及對最佳化切割 干涉計、鏡射方法或斑點方法選擇高單一性光學照射源。 本發明實施例提供改進之航行區域種類以及降低光學 滑鼠之電力消耗,特別是對於以電池為電源之裝置。在不 確定的航行區域提供更佳效能,例如具有很少特徵之平滑 20 表面,如玻璃。經由切換式電流供應安排,可以選擇性地 供應電力至單一或多個光學照射源,增加光學量測系統效 能同時降低峰值消耗電流,因而提供更長之電池壽命。 在部分實施例中,光學照射源可能包括於低干涉性應 用使用之LED,例如可以在其中至入特定波長帶通濾波器 25 1253017 以增加干涉長度。此一光源組配簡單地提供雙干涉優點及 低建製成本,但除了在低照射亮度外無法降低電流消耗。 部分實施例可以自動地切換至低功率模式提供較暗之光學 照射,例如當人眼暴露於此光學照射源時以降低危害眼睛 5 安全之情況,以及例如當光學滑鼠掉落或離開航行表面 時。在依實施例中實現對眼睛安全防護之改進,其使用不 可見光源作為主要航行以及可見光波長LED之組合。在此 實施例中,可見光波長LED,例如紅光,供應眼睛可見之 照射以降低瞳孔大小。降低瞳孔大小可以增加作為主要航 10 行用不可見光波長光源容許之功率,進而改進對眼睛之安 全性。 儘管本發明是以特定實施例作說明,然而必須瞭解到 可以有各種之變化、修改以及更動而不背離本發明上述之 說明。因此此類變化、修改以及更動皆包含在本發明專利 15 申請範圍之主要精神與範疇内。 【圖式簡單說明3 第1圖為依據本發明光學導航系統之高階方塊圖。 第2圖為依據本發明可選擇之連貫性光學滑鼠,其包括 由雙光源表示之多光源。 20 第3與第4圖為依據本發明與照射光源連接之偵測器圖 示。 第5圖為依據本發明光學導航裝置元件簡化圖。 第6圖為依據本發明之系統,其光學滑鼠移動經過固定 之航行區域表面;以及 1253017 第7A與第7B圖為依據本發明具有多光源光學導航系 統之運作方式流程圖。 【圖式之主要元件代表符號表】 101···光學航行裝置 215…衍射柵欄 102…航行區域 217···偵測器 103···光源模組 218…處理器 104···偵測器 220…航行區域表面 105···影像處理器 35、45、503···光源 116···輸出信號 36、46···光學元件 200···光學滑鼠 37…光束分離器 201、202…結構支撐構件 501、507…凸透鏡 203、204···雙光源 620…航行區域表面 205···電子切換器 625…光學滑鼠 206···遠端控制信號輸入 670…螢幕 210···電源 211、216…視準元件 675…中央處理器21 1253017, 、成小第] typically 'debt measurement is the cost of array 217, processor 105 (reference back), total power consumption and the required reaction speed and / / phase implementation of the invention Optical magnification. When the 5 rows of strong navigation device 101 move relative to the surface 220, a narrow bandwidth scattering map is generated at a different relative position between the optical navigation = clothing = surface 22: the Γ - scattering image is determined by the array 217 The surface of the field of view 220 mirror ♦ light ^ generated. The narrow bandwidth scatter image depends mostly on the wave value 光源" of the light source 503, and the wavelength of the selected light source 503 is the peak response wavelength of the detector array 217. Because of the previous shadow image optical navigation system technology The = contrast and signal have been improved' so it requires a shorter detector integration, so that it has a higher frame capture rate for higher navigation speed. Optical navigation device 1G1 may contain image source A plurality of light sources of 5()3, ..., compare the continuously stored narrow-bandwidth mirror images in the processor 105, and the relative movement of the optical navigation device 101 and the surface 220 can be determined. The continuous narrow bandwidth is 15 The correlation of the images is usually used to determine the amount of relative movement. The successively captured political images will partially overlap each other. Therefore, the processor 1〇5 confirms the features in each captured scattering image and calculates the relative The amount and direction of movement. Using the stored continuous scatter image, the processor 〇5 uses the standard image correlation 11/different method to identify the overlapping features to know the direction and amount of movement. A more detailed description of 20 can be found in U.S. Patent No. 5,786,804. check According to the present invention, even relative movements on a smooth but non-planed surface such as glass can be measured. Figure 6 is a system 6 in accordance with the present invention in which the optical mouse 625 is on a fixed navigation surface 620. The mobile ◦ optical mouse 625 typically includes an array of elements detected as an array unit, such as detector array unit 217 of Figure 5. Optical slide 22 1253017 The mouse 625 may also contain multiple sources of light source 503. Continuous mirror images The processor 105 (refer to FIG. 1) of the optical mouse 625 is typically converted to positional information and wired or wirelessly transmitted to the central processing unit 675 for display on the display screen 670 as a position indicator, such as an arrow. In other words, The raw or intermediate data of the 5 detector array unit 217 (refer to Figure 5) is transmitted to the central processing unit 675. The wireless transmission may be radio frequency or infrared. The wireless optical mouse 625 embodiment in accordance with the present invention, the power supply It can be supplied by a rechargeable battery, a fuel cell or a solar cell. Figures 7A to 7B are diagrams illustrating the operation of an optical aircraft having multiple optical illumination sources 10 in accordance with the present invention. Method flow chart for a row system. Figure 7A illustrates a method 700 of operating an optical navigation system having multiple optical illumination sources to determine relative movement between an optical navigation device and an object. The method includes providing an optical navigation system, such as optical, in program 702. A navigation system 1 or an optical mouse 200. The optical navigation system includes at least one first light source, such as a light source 203, and a second 15 optical illumination source, such as a light source 204, for illuminating an object such as the surface of the navigation area 220. At least one operating parameter is different between the first light source and the second light source. The optical navigation system further includes a beam that emits light after capturing the light, for example, an image detector for emitting light 213e-213f and 214e-214f, for example, detecting Array 217. As described in the procedure 703, the method further includes selecting at least one different initial operational parameter for the first and second light sources 203, 204 of the mandatory 20, respectively, and in the process 704, switching the current to the first and/or second light source to Implement at least one different operational parameter. In the routine 705, the method further includes illuminating the object, extracting the illuminated light ray image in the program 706, and calculating the captured image in the program 707. In the process 708, the method further includes adjusting the previously selected at least one different operational parameter in accordance with 1253017. Figure 73 is a schematic diagram showing the operation of the method 7 in accordance with the present invention. In the procedure 708, the operation of the previous selection is adjusted in accordance with the decision conditions. As described in routine 710, optical navigation system 100 calculates images and other operational conditions that have been captured to determine whether a condition that is hazardous to the eye is produced. If there is a hazard to the eye, if the meal is as described in the procedure 711, the current flowing into the optical illumination sources 203, 204 is reduced to a predetermined lower level. In the private sequence 716, the system returns to the calculated image and repeats the process 7 〇8 and 710 〇If the eye safety condition does not occur in the weight sequence 710, then the sequence 712 is entered, and the optical navigation system 1 calculates the battery power to determine whether the power starts to decrease. If the battery power begins to decay, then proceed to program 11 to reduce the current and the system proceeds to procedures 716, 708, and 71, in a sequence similar to detecting an eye condition. When the false right program 712 determines that the battery power is not attenuated, it then enters the spear order 713' system to calculate the captured frame based on the predetermined decision conditions to determine if there is sufficient seaworthiness. If there is insufficient airworthiness, then proceed to process 714 to adjust the selected operational parameters in accordance with the decision conditions, and then the system proceeds to programs 716 and 708 and program 710. If the I 躭 11 measured by the program 713 is sufficient, the system continues with the procedures 715, 716 and without adjusting the operational parameters until the program 71 of Figure 7 jeopardizes the eye safety condition, the battery power decay condition of the program 712, and the program 713 The decision-making conditions for the lack of airworthiness conditions require adjustment of operational parameters. It must be noted that in addition to the example of the decision conditions described in the figure, other preset conditions or combinations of various conditions can be used as decision conditions. The advantage of the multi-optical illumination source approach is increased credibility because the device that produces the optical illumination affects the overall confidence of the optical mouse. The use of a multi-optical source can extend the voyage and use an additional optical source as a backup for use when an optical source fails for various reasons. If the battery life is to be extended in an emergency, such as when the battery voltage drops, the electronic switch that supplies current to the source can be designed to select the optical source that consumes the lowest power. In the current technology, in order to achieve high illumination brightness, the light source needs to be of a laser type, for example using a vertical cavity surface illuminating laser (VCSEL) technique having an efficiency of about 40%. In contrast, conventional LEDs require approximately 30 mA of current when illuminated with high brightness. However, LEDs will be more efficient than VCSELs when low brightness illumination is required, such as when sailing on a lighter or less absorbing surface. Optical illumination sources having different interference lengths are separated in a typical embodiment. This allows for the selection of low-integral optical sources for standard surface imaging, as well as the selection of highly unitary optical sources for optimal cutting interferometers, mirroring methods or speckle methods. Embodiments of the present invention provide improved navigational area types and reduced power consumption of optical mice, particularly for battery powered devices. Provides better performance in uncertain navigation areas, such as smooth surfaces with few features, such as glass. The switched current supply arrangement allows selective supply of power to single or multiple optical sources, increasing the efficiency of the optical measurement system while reducing peak current consumption, thus providing longer battery life. In some embodiments, the source of optical illumination may include LEDs for use in low interference applications, such as where a particular wavelength bandpass filter 25 1253017 may be added to increase the length of the interference. This combination of light sources simply provides the advantages of dual interference and low cost, but does not reduce current consumption except for low illumination. Some embodiments may automatically switch to a low power mode to provide darker optical illumination, such as when the human eye is exposed to the optical illumination source to reduce the risk of harm to the eye 5, and for example when the optical mouse drops or leaves the navigation surface Time. Improvements to eye safety protection are achieved in accordance with embodiments that use a source of invisible light as a combination of primary navigation and visible wavelength LEDs. In this embodiment, a visible wavelength LED, such as red light, provides illumination visible to the eye to reduce pupil size. Reducing the pupil size can increase the power allowed by the invisible wavelength source as the primary navigation line, thereby improving eye safety. While the invention has been described in terms of specific embodiments, it is understood that various modifications, modifications and changes may be made without departing from the invention. Accordingly, such changes, modifications, and alterations are intended to be included within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a high-order block diagram of an optical navigation system in accordance with the present invention. Figure 2 is a view of an alternative optical optical mouse in accordance with the present invention comprising a plurality of light sources represented by dual light sources. 20 Figures 3 and 4 show detectors connected to an illumination source in accordance with the present invention. Figure 5 is a simplified diagram of the components of an optical navigation device in accordance with the present invention. Figure 6 is a system in accordance with the present invention in which the optical mouse moves past the surface of the fixed navigation area; and 1253017 Figures 7A and 7B are flow diagrams showing the operation of the multi-source optical navigation system in accordance with the present invention. [Main component representative symbol table of the drawing] 101···Optical navigation device 215...Diffraction fence 102...Navigation area 217···Detector 103···Light source module 218...Processor 104···Detector 220... navigation area surface 105···image processor 35, 45, 503···light source 116···output signal 36, 46···optical element 200··· optical mouse 37...beam splitter 201, 202 ... structural support members 501, 507... convex lenses 203, 204 ... double light source 620 ... navigation area surface 205 · · electronic switch 625 ... optical mouse 206 · · remote control signal input 670 ... screen 210 ··· Power supply 211, 216... Sight element 675... central processor

2727

Claims (1)

1253017拾1253017 申請專利範圍: 94.06.07. 之光學航行系 第93111868號申請案申請專利範圍修正本 1 · 一種用於測定與航行區域相對的移動 統,該系統包含·· 照射部分該航行區域之第一光學照射源與第二光 學照射源,該第一光源與該第二光源至少有一個不同之 運作參數;Patent application scope: 94.06.07. Optical Navigation System No. 93111868 Application Patent Revision No. 1 1. A mobile system for measuring a navigation area opposite to a navigation area, the system comprising: · illuminating a first optical portion of the navigation area An illumination source and a second optical illumination source, the first source and the second source having at least one different operational parameter; 一種依據決策條件各自選擇該第一光源與該第二 光源之方法;以及 一個在該照射該航行區域後擷取該光線圖像用偵 測器。 、A method of individually selecting the first light source and the second light source according to a decision condition; and a detector for capturing the light image after the illuminating the navigation area. , 2·如申請專利範圍第1項所述之光學航行系統,其中該至 少-個運作參數是由空間位置、光束分離度、光束收斂 度、入射角、照射量、波長、光譜線寬、極性、干涉性、 電流消耗、時間調變以及該等運作參數之組合中選擇。 3·如申請專利範圍第1項所述之光學航行系統,其中該第 光源與该第二光源是由二極體發射器、LED、垂直腔 表面發光雷射(VCSEL)、雷射二極體及白光之中選擇。 4.如申清專利範圍第1項所述之光學航行系統,其中該等 圖像為從陰影、斑點、散射、相位以及鏡射圖像中選擇。 5·如申請專利範圍第4項所述之光學航行系統,其更包含 個轉換该等相位圖像為干涉圖像給該偵測器操取用 之干涉計元件。 6·如申請專利範圍第5項所述之光學航行系統,其中該干 28 1253017 涉计7L件為從切細干涉計元件、菲師丨_)干涉計元 件、麥克森(Mkhelson)干涉計元件、麥克-詹達 (Mach-Zehnder)干涉計元件以及太曼·格林 (Twyman-Green)干涉計元件中選擇。 5 7·如申請專利範圍第5項所述之光學航行系統,其中該干 β计兀件為配置於該航行區域與該偵測器間之切細元 件,用以在該等相位圖像之間產生重疊干涉。 8·如申請專利範圍第丨項所述之光學航行系統,其包含一 個能夠於該航行區域相對移動之光學航行裝置。 鲁 10 9.如申請專利範圍第】項所述之光學般行系統,其中該欲 使用之方法是由電子切換裝置、電阻性裝置、電子調^ 裝置以及濾、光裝置中作選擇。 10· -種測定光學航行裝置與航行區域間相對移動之方 法,該方法包含下列步驟·· k供一種光學航行系統,該系統包含·· 照射部分該航行區域之第一光學照射源與第 二光學照射源,該第一光源與該第二光源至少有一 鲁 個不同之運作參數;以及 個在该照射該航行區域後擷取該光線圖像 G 用偵測器; 分別為該第一光源與該第二光源選擇至少一個不 同之初始運作參數; 照射該航行區域部分; 於該照射後擷取該光線圖像; 29 計算該等擷取之圖像;以及 &據決策條件調整該至少—個不同之運作參數。 如申請專利範圍第Π)項所述之方法,其中該至少一個不 同之運作參數是由空間位置、光束分離度、光束收叙 入射角、照射量、波長、光譜線寬、極性、干涉性、 電流消耗'時間調變以及該等運作參數之組合中選擇。 .如申請專利範㈣H)項所述之方法,其中僅選擇該第一 10 ,其中同時選擇多個 其中该寺決策條件 眼睛安全、光學校2. The optical navigation system of claim 1, wherein the at least one operational parameter is spatial position, beam separation, beam convergence, angle of incidence, amount of illumination, wavelength, spectral linewidth, polarity, Interference, current consumption, time modulation, and a combination of these operational parameters are selected. 3. The optical navigation system of claim 1, wherein the first light source and the second light source are a diode emitter, an LED, a vertical cavity surface emitting laser (VCSEL), and a laser diode. And choose among white light. 4. The optical navigation system of claim 1, wherein the images are selected from the group consisting of shadows, spots, scatter, phase, and mirror images. 5. The optical navigation system of claim 4, further comprising an interferometer component for converting the phase images into an interference image for the detector to operate. 6. The optical navigation system of claim 5, wherein the dry 28 1253017 is related to a 7L piece from a shredded interferometer element, a Philippine 丨 _ interferometer element, a Mkhelson interferometer element , Mach-Zehnder interferometer components and Twyman-Green interferometer components. The optical navigation system of claim 5, wherein the dry beta device is a shredded component disposed between the navigation region and the detector for use in the phase images There is overlapping interference between them. 8. The optical navigation system of claim 3, comprising an optical navigation device capable of relative movement in the navigational area. Lu 10 9. The optical system as described in the scope of the patent application, wherein the method to be used is selected from an electronic switching device, a resistive device, an electronic device, and a filter or optical device. 10. A method of determining relative movement between an optical navigation device and a navigational area, the method comprising the steps of: k for an optical navigation system comprising: a first optical illumination source and a second illumination portion of the navigation region An optical illumination source, the first light source and the second light source have at least one different operational parameter; and a detector for capturing the light image G after the illumination of the navigation area; respectively, the first light source and The second light source selects at least one different initial operational parameter; illuminates the navigation region portion; extracts the light image after the illumination; 29 calculates the captured image; and & adjusts the at least according to the decision condition - Different operating parameters. The method of claim 2, wherein the at least one different operational parameter is a spatial position, a beam splitting degree, a beam retracting incident angle, an irradiation amount, a wavelength, a spectral line width, a polarity, an interference, Current consumption 'time modulation and selection of combinations of these operational parameters. For example, the method described in the patent application (4) H), wherein only the first 10 is selected, wherein at the same time, multiple selections are made in which the decision condition of the temple is eye safety, light school 3·如申請專利範圍第10項所述之方法 该等第一光源與該等第二光源。 14·如申請專利範圍第10項所述之方法, 為該航行區域適航性、電流消耗量、 準σ吳差以及该等決策條件組合之一。 15 ^申請專利範圍第1G項所述之方法,其中該調整步驟 3將該等計算過之圖像與該決策條件作比較。3. The method of claim 10, wherein the first light source and the second light source. 14. The method of claim 10, which is one of the combination of airworthiness, current consumption, quasi-σ difference, and such decision conditions. 15 ^ The method of claim 1G, wherein the adjusting step 3 compares the calculated image with the decision condition. 16·=請專職圍㈣項所述之方法,其中該等圖像為 陰衫、斑點、散射、相位以及鏡射圖像中選擇。 17t=__項所述之方法,其更包含在該般. 20 —夕姑航彳了裝置,該光學航行裝置包含該第. 光源與該第二光源。 置控制-電腦顯示器上位置指標器。 19·如申料鄕㈣17顧叙方法,其中該計算# 含轉換該等連續擷取圖像對間之相關性成與㈣ 30 1253017 置在該航行區域相對移動之信號。 20.如申請專利範圍第19項所述之方法,其更包含使用該等信 號建立由該等擷取影像代表之部分該航行區域之表面圖 像。 3116·=Please refer to the method described in the full-time sub-paragraph (4), where the images are selected for the shirt, the spot, the scattering, the phase, and the mirror image. The method described in the item 17t=__, further includes the device. The optical navigation device includes the first light source and the second light source. Set Control - Position indicator on the computer monitor. 19. The method of claim 鄕 (4) 17 顾 叙 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 20. The method of claim 19, further comprising using the signals to create a surface image of a portion of the navigational area represented by the captured images. 31
TW93111868A 2003-05-16 2004-04-28 Low power consumption, broad navigability optical mouse TWI253017B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/439,674 US20040227954A1 (en) 2003-05-16 2003-05-16 Interferometer based navigation device
US10/630,169 US7321359B2 (en) 2003-07-30 2003-07-30 Method and device for optical navigation
US10/680,525 US7161682B2 (en) 2003-07-30 2003-10-06 Method and device for optical navigation
US10/697,421 US7116427B2 (en) 2003-10-30 2003-10-30 Low power consumption, broad navigability optical mouse

Publications (2)

Publication Number Publication Date
TW200511129A TW200511129A (en) 2005-03-16
TWI253017B true TWI253017B (en) 2006-04-11

Family

ID=37564979

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93111868A TWI253017B (en) 2003-05-16 2004-04-28 Low power consumption, broad navigability optical mouse

Country Status (1)

Country Link
TW (1) TWI253017B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737959B2 (en) * 2005-09-08 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Position detection system using laser speckle
KR101053369B1 (en) * 2010-05-11 2011-08-01 삼성전기주식회사 Optical pointing module having lighting function and electronic device
TWI482054B (en) * 2012-03-15 2015-04-21 Wen Chieh Geoffrey Lee High resolution and high sensitivity cursor maneuvering device using multiple color light sources

Also Published As

Publication number Publication date
TW200511129A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US7116427B2 (en) Low power consumption, broad navigability optical mouse
US7161682B2 (en) Method and device for optical navigation
JP4772036B2 (en) Apparatus and method for detecting blood flow
JP3480793B2 (en) Eye tracking system and method
JP5461470B2 (en) Proximity detector
US8730167B2 (en) Pointing device with optical positioning on low-diffusive surfaces
US7450250B2 (en) Method and apparatus for determining surface displacement based on an image of a retroreflector attached to the surface
KR101801355B1 (en) Apparatus for recognizing distance of object using diffracting element and light source
US7257236B2 (en) Methods and systems for detecting and recognizing objects in a controlled wide area
US8937612B2 (en) Coordinate locating method, coordinate locating device, and display apparatus comprising the coordinate locating device
TW200426665A (en) Interferometer based navigation device
JPH08506193A (en) Device and method for diffusion-assisted localization for visual detection of pens
JPH11118475A (en) Control of robot grip and method and device for starting guide based on contrast
JP2004532088A (en) Apparatus and method for identifying intact skin
US20070146719A1 (en) Scanning apparatus for optically scanning surfaces
EP2413263A1 (en) 3d biometric scanner
CN115053168B (en) System and method for optical imaging and measurement of objects
KR20220134753A (en) Detector for object recognition
US20030067538A1 (en) System and method for three-dimensional data acquisition
CN114127520A (en) Spectrometer device
US20170302907A1 (en) Depth sensing using structured illumination
TWI253017B (en) Low power consumption, broad navigability optical mouse
TWI258706B (en) Method and device for optical navigation
US9993158B2 (en) Apparatus for measuring condition of object
WO2017034517A1 (en) Digital spectroscopic and holographic microscope and method thereof