TWI251976B - Switching control circuit for primary-side-controlled power converters - Google Patents

Switching control circuit for primary-side-controlled power converters Download PDF

Info

Publication number
TWI251976B
TWI251976B TW93125940A TW93125940A TWI251976B TW I251976 B TWI251976 B TW I251976B TW 93125940 A TW93125940 A TW 93125940A TW 93125940 A TW93125940 A TW 93125940A TW I251976 B TWI251976 B TW I251976B
Authority
TW
Taiwan
Prior art keywords
signal
current
voltage
switching
capacitor
Prior art date
Application number
TW93125940A
Other languages
Chinese (zh)
Other versions
TW200608674A (en
Inventor
Ta-Yung Yang
Guo-Kiang Hung
Jenn-Yu Lin
Chun-Ching Li
Shao-Wei Chiu
Original Assignee
System General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System General Corp filed Critical System General Corp
Priority to TW93125940A priority Critical patent/TWI251976B/en
Publication of TW200608674A publication Critical patent/TW200608674A/en
Application granted granted Critical
Publication of TWI251976B publication Critical patent/TWI251976B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The present invention discloses a switching control circuit for a primary-side controlled power converter. A voltage-waveform detector produces a voltage-feedback signal and a discharge-time signal. A current-waveform detector generates a current-waveform signal by measuring a primary-side switching current. An integrator generates a current-feedback signal by integrating the current-waveform signal with the discharge time. A time constant of the integrator is correlated with the switching frequency, thus the current-feedback signal is proportional to an output current of the power converter. A PWM circuit controls the pulse width of the switching signal in response to the outputs of a voltage-loop error amplifier and a current-loop error amplifier. The output voltage and the maximum output current of the power converter are therefore regulated.

Description

1251976 九、發明說明: 【發明所屬之技術領域】 本發明係_電雜應㈣控制電路,特糊於切換模式電源供應器 的切換式控制裝置。 【先前技術】 各種的電源供應器已經廣泛地使用在提供穩定調整的電壓與電流。基 於符合安規(safety)的考量,一離線式的電源供應器(〇ff_linep〇werc〇nverter) 必須在它的一次側與二次側之間提供電氣隔離(galvanie is〇lati〇n)。既然如 此’一切換式控制裝置配置在電源供應器的一次側,一光麵合器 (_cal-coupler)與二次侧穩定調整器(sec〇ndary side regulat〇r)係必須用來穩 f調整輸出電壓與輸出電流。本發明的主要目的係在電源供應器的一次側 提仏切換式控制裝置,在不需要光耦合器與二次側穩定調整器的情況 下,用以控制電源供應器的輸出電壓與輸出電流。再者,本發明進一步提 出頻率跳躍(frequency hopping)的特性,用以延長切換訊號的切換頻率而降 低電磁干擾(electric and magnetic interference,EMI)。因此可以使電源供應器 的體積與成本可以降低。 【發明内容】 一切換式控制裝置應用於一次側控制之電源供應器,包含一切換功率開 關透過電流感測裝置,用以切換變壓器。一切換訊號切換該功率開關, 用以穩定調整電源供應器的輸出電壓與最大輸出電流。一控制器係連接到 忒’交壓器與該電流感測裝置,用來產生電壓迴授訊號與電流迴授訊號。在 切換Λ唬的截止時間(Off time)的這段期間,藉由取樣電壓訊號與變壓器的放 黾寸間,在切換訊號的導通時間(ontime)的這段期間,藉由量測變壓器一次 1251976 侧的電流訊號。依據電壓迴授訊號與電流迴授訊號產生該切換訊號。 控制器包含一電壓波形偵測器,用以多次取樣電壓訊號,並且產生電壓 回授吼號與放電時間訊號。該電壓波形债測器係透過電阻性的分壓器 (resistive divider)連接到變壓器的輔助繞組(auxiiiary wincjing)。該放電時間訊 號表示變壓器的放電時間,同時也代表二次側切換電流的放電時間。一電 流波形偵測器,藉由量測變壓器一次側的電流訊號來產生電流波形訊號。 一振盪态(oscillator)產生振盈訊號(oscillation signal),用以決定切換訊號的切 換頻率。一積分器藉由積分電流波形訊號與放電時間來產生電流迴授訊 號。第一個運算放大器(first operational amplifier)與第一個參考電壓(flrst reference voltage)組成電壓迴路誤差放大器,用來放大電壓迴授訊號與提供 迴路增益(loop gain),其目的是用以輸出電壓控制。第二個運算放大器 (second operational amplifier)與第二個參考電壓(second reference v〇itage)組 成電流迴路誤差放大器,用來放大電流迴授訊號與提供迴路增益,其目的 疋用以輸出電流控制。一峰值電流限制器(peak-current limiter)係連接到電流 感測裝置,用來限制變壓器一次側的電流訊號的最大值。一脈寬調變器結 合第一個比較器(first comparat〇r)與第二個比較器(secon(j comparator),依據 電壓迴路誤差放大器的輸出、電流迴路誤差放大器的輸出與峰值電流限制 器的輸出,用來控制切換訊號的脈波寬度。一可程式的電流源(pr〇grammable current source)係連接到電壓波形賴測器的輸入端,用以作溫度補償。該可 程式的電流源依據控制器的溫度而產生可程式的電流,用以補償電源供應 為在輸出電壓上的溫度變化(temperature deviation)。 一模組產生器(pattern generator)產生數位模組碼(digital pattern code)。第 一個可程式的電容(first pr〇grammable capacitor)係連接到振盪器與模組產生 器,可依據數位模組碼用以調變切換頻率。該切換頻率的頻譜(spectrum)得 以延長,因此可降低電源供應的電磁干擾。第二個可程式的電容(sec〇nd Programmable capacitor)係連接到積分器與模組產生器,可用以將積分器的 1251976 時間常數與切換職_換鮮產生密切_係,該㈣迴 正比於電源供應器的輸出電流1—個可程式的電容 ^翻而係 容的電雜是自漁顯_。 ί财程式的電 要注意岐,以上的概述與接下來的詳細說明料示範性〜 進-步說明本發明的中請專利範圍,而有關本發明的其他目的 在後續的說明與圖表中加以闡述。 ~炎”” ^ 【實施方式】1251976 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a control circuit for an electric hybrid (four) control circuit, which is specially adapted to a switching mode power supply of a switching mode power supply. [Prior Art] Various power supplies have been widely used to provide stably adjusted voltages and currents. Based on compliance with safety considerations, an off-line power supply (〇ff_linep〇werc〇nverter) must provide electrical isolation between its primary and secondary sides (galvanie is〇lati〇n). In this case, a switch-type control device is disposed on the primary side of the power supply, and a _cal-coupler and a secondary-side stabilizer (sec〇ndary side regulat〇r) must be used to stabilize the f adjustment. Output voltage and output current. The main object of the present invention is to provide a switching control device for the primary side of the power supply, which is used to control the output voltage and output current of the power supply without requiring an optical coupler and a secondary side stabilizer. Furthermore, the present invention further provides frequency hopping characteristics for extending the switching frequency of the switching signal to reduce electrical and magnetic interference (EMI). Therefore, the volume and cost of the power supply can be reduced. SUMMARY OF THE INVENTION A switching control device is applied to a power supply of a primary side control, and includes a switching power switch through a current sensing device for switching a transformer. A switching signal switches the power switch to stably adjust the output voltage and the maximum output current of the power supply. A controller is coupled to the 忒' voltage regulator and the current sensing device for generating a voltage feedback signal and a current feedback signal. During the period of the switching off time (Off time), by sampling the voltage signal and the transformer's discharge time, during the switching on time (ontime), by measuring the transformer once 1251976 Side current signal. The switching signal is generated according to the voltage feedback signal and the current feedback signal. The controller includes a voltage waveform detector for sampling the voltage signal multiple times and generating a voltage feedback nickname and a discharge time signal. The voltage waveform detector is connected to the auxiliary winding of the transformer through a resistive divider (auxistary divider). The discharge time signal represents the discharge time of the transformer and also represents the discharge time of the secondary side switching current. A current waveform detector generates a current waveform signal by measuring a current signal on the primary side of the transformer. An oscillator generates an oscillation signal to determine the switching frequency of the switching signal. An integrator generates a current feedback signal by integrating the current waveform signal and the discharge time. The first operational amplifier and the first reference voltage constitute a voltage loop error amplifier for amplifying the voltage feedback signal and providing loop gain for the purpose of outputting the voltage. control. The second operational amplifier and the second reference voltage form a current loop error amplifier for amplifying the current feedback signal and providing loop gain for the purpose of output current control. A peak-current limiter is connected to the current sensing device to limit the maximum value of the current signal on the primary side of the transformer. A pulse width modulator combines a first comparator (first comparat〇r) with a second comparator (secon(j comparator), based on the output of the voltage loop error amplifier, the output of the current loop error amplifier and the peak current limiter The output is used to control the pulse width of the switching signal. A pr〇grammable current source is connected to the input of the voltage waveform detector for temperature compensation. The programmable current source A programmable current is generated based on the temperature of the controller to compensate for the temperature deviation of the power supply at the output voltage. A pattern generator generates a digital pattern code. The first pr〇grammable capacitor is connected to the oscillator and the module generator, and can be used to modulate the switching frequency according to the digital module code. The spectrum of the switching frequency is extended, so It can reduce the electromagnetic interference of the power supply. The second programmable capacitor (sec〇nd Programmable capacitor) is connected to the integrator and module generator. In order to make the integrator's 1251976 time constant closely related to the switching service, the (4) is proportional to the output current of the power supply. The power of the program should be noted. The above summary and the following detailed description demonstrate the scope of the patent application in the present invention, and other objects related to the present invention are described in the following description and diagrams. Explain. ~炎"" ^ [Embodiment]

圖1係顯示一電源供應器。電源供應器包含一變壓器1〇,具有辅耳 繞組na、一次側繞組Np與二次側繞組Ns。一次侧繞組Np係由電源供應多 的輸入電壓所提供。為了穩定調整電源供應器的輸出電壓v〇與輸出^ 流10 ’ 一控制器70產生切換訊號v_,透過電流感測裝置(_ent__ device)來控制例如電晶體2〇的功率開關,用以切換變壓器ι〇。電流感測, 阻30如同一電流感測裝置。 圖2係顯示如圖1的該電源供應器的各種訊號波形。當切換訊號^^^^ 轉變為導通(邏輯上為高準位),於是產生一次側切換電流匕。一次侧切換峰 值電流IP1可以由下式得到:Figure 1 shows a power supply. The power supply includes a transformer 1 〇 having a auxiliary ear winding na, a primary side winding Np and a secondary side winding Ns. The primary side winding Np is provided by an input voltage that is supplied by the power supply. In order to stably adjust the output voltage v〇 of the power supply and the output stream 10', a controller 70 generates a switching signal v_, and controls a power switch such as a transistor 2 through a current sensing device (_ent__device) for switching the transformer. 〇〇. Current sensing, resistance 30 is like the same current sensing device. FIG. 2 shows various signal waveforms of the power supply of FIG. 1. When the switching signal ^^^^ is turned on (logically high level), a primary side switching current 产生 is generated. The primary side switching peak current IP1 can be obtained from:

I — V|N -r P1—17 ---------------------------------------------------------------------⑴ 其中LP為變壓器i〇的一次側繞組Np的電感值;T〇N為切換訊號VpwM的導 通時間(on time)。 一旦切換訊號VPWM轉變為截止(邏輯上為低準位),此時變壓器1〇的错 能將會傳送到變壓器1〇的二次側,並且透過整流器4〇到電源供應器的輪 出端,於是產生二次側切換電流Is。二次侧切換峰值電流IS1可以表示成: (2) 1251976 其中v。為電源供應器的輪出龍;%為整流器4Q的順向壓降 voltage drop) ; ㈣二摘繞組叫的賴值;4為變壓器ι〇 ^放電時間’也可以表示為二次側切換電流Is的放電時間。同時,在變壓 器10的輔助繞組NaJi產生電壓訊號V皿,電壓訊號v舰】係表示成: VAUX1=^X(V0+VF)--------------------------------------- 1 NS (3) 其中TNA與TNS分別為變壓器1〇 _助繞組Na與二次側繞組Ns的繞鎌 數。 當二次側切換電流Is下降到零時,輔助繞組Na所產生的電壓訊號V繼 開始減少,這也表示變壓器10的儲能在這瞬間完全地釋放出來。因此,在 方程式⑺的放電時間Tds可糾切換減v_&下降魏(碰% edge)到 電壓訊號vAUX開始下降的轉角處(c〇mer)來量測到,如圖2所示。一次侧切 換峰值電流IP1與變壓器1G的繞組酿可以絲決定二次_換峰值電流 Isi,二次侧切換峰值電流isi可以表示成: 其中Tnp為變壓|§ 1〇的一次側繞組Np的繞組匝數。 控制态70包含電源供應端(supply terminal)VCC與接地端(gr〇und terminal)GND用以提供電源。一電阻5〇與電阻51係為串聯連接而形成分 壓器(divider),兩個電阻分別連接於變壓器1〇的輔助繞組Na與接地端參考 準位之間。控制器70的偵測端(detectionterminal)DET係連接到電阻5〇與 電阻51的連接處。在偵測端DET產生電壓ν〇Ετ,可以得到:I — V|N -r P1—17 ---------------------------------------- -----------------------------(1) where LP is the inductance value of the primary winding Np of the transformer i〇; T〇N is the switching The on time of the signal VpwM. Once the switching signal VPWM transitions to off (logically low level), the fault energy of the transformer 1〇 will be transmitted to the secondary side of the transformer 1〇, and through the rectifier 4 to the wheel terminal of the power supply. Then, the secondary side switching current Is is generated. The secondary side switching peak current IS1 can be expressed as: (2) 1251976 where v. For the power supply of the wheel out; dragon is the forward voltage drop of the rectifier 4Q; (4) the second winding is called the Lai value; 4 is the transformer ι〇 ^ discharge time ' can also be expressed as the secondary side switching current Is Discharge time. At the same time, in the auxiliary winding NaJi of the transformer 10, a voltage signal V is generated, and the voltage signal v is expressed as: VAUX1=^X(V0+VF)----------------- ---------------------- 1 NS (3) where TNA and TNS are the turns of the transformer 1〇_help winding Na and the secondary winding Ns . When the secondary side switching current Is drops to zero, the voltage signal V generated by the auxiliary winding Na starts to decrease, which also means that the energy storage of the transformer 10 is completely released at this moment. Therefore, the discharge time Tds of equation (7) can be corrected by subtracting v_& falling Wei (touch % edge) to the corner where the voltage signal vAUX starts to fall (c〇mer), as shown in Fig. 2. The primary side switching peak current IP1 and the winding of the transformer 1G can determine the secondary _ switching peak current Isi, and the secondary side switching peak current isi can be expressed as: where Tnp is the winding of the primary winding Np of the transformer § 1 变Number of turns. The control state 70 includes a supply terminal VCC and a ground terminal GND for supplying power. A resistor 5 〇 and a resistor 51 are connected in series to form a divider, and the two resistors are respectively connected between the auxiliary winding Na of the transformer 1 与 and the ground reference level. The detection terminal DET of the controller 70 is connected to the junction of the resistor 5 〇 and the resistor 51. When the detection terminal DET generates a voltage ν 〇Ε τ, it can be obtained:

Vdet R51 :Vaux R50 + R51 其中R%與R51分別為電阻5〇與51的電阻值 (5) 電壓訊號Vaux經由整流器60進一步對電容65進行充電,用以提供電 源給控制器70。電流感測電阻3〇係由電晶體20的源極(source)連接到接地 端參考準位,用以轉換一次側切換電流Ip成為電流訊號Vcs。控制器7〇的 1251976 感測端(sense terminal)CS係連接到電流感測電阻30,用以偵測電流訊號Vdet R51: Vaux R50 + R51 where R% and R51 are the resistance values of the resistors 5〇 and 51, respectively. (5) The voltage signal Vaux further charges the capacitor 65 via the rectifier 60 to supply power to the controller 70. The current sensing resistor 3 is connected from the source of the transistor 20 to the ground reference level for converting the primary side switching current Ip to the current signal Vcs. The 1251976 sense terminal CS of the controller 7 is connected to the current sensing resistor 30 for detecting the current signal.

Vcs 0 控制器70的輸出端(output terminal)〇UT產生切換訊號VpwM,用以切換 變壓器10。一補償網路係連接到控制器7〇的電壓補償端 (voltage-compensation terminal)COMV,用以電壓迴路頻率補償。該補償網 路可以使用一個電容連接到接地端參考準位,像是電容31。另一補償網路 係連接到控制器7〇的電流補償端(current-c〇mpensati〇ntermi血i)c〇m!,用以 電流迴路頻率補償。該補償網路也可以使用一個電容連接到接地端參考準 位’像是電容32。 圖3係顯示根據本發明之較佳實施例的控制器7〇。一電壓波形偵測器 1〇〇藉由多次取樣電壓vDET產生電壓迴授訊號乂乂與放電時間訊號,該放 電時間訊號sDS表示二次側切換電流Is的放電時間Tds。一電流波形偵測器 3〇〇藉由量測變壓器一次側的電流訊號Vcs而產生電流波形訊號¥^。一振盪 u。200產生振盛訊號pu ,用以決定切換訊號vpwM的切換頻率。一積分器4〇〇 藉由積分電流波形訊號\^與放電時間tds而產生電流迴授訊號%。一運算放 大器71與參考電壓Vr£fi組成電壓迴路誤差放大器,用以放大電壓迴授訊號 Vv與提供迴路增益,用以輸出電壓控制。一運算放大器72與參考電壓 組成電流迴路誤差放大器,用以放大電流迴授訊號%與提供迴路增益,用 以輸出電流控制。 一脈寬調變器500結合比較器73與比較器75,依據電壓迴路誤差放大 器的輸出、電流迴路誤差放大器的輸出與峰值電流限制器,用來控制切換 訊號vPWM的脈波寬度。運算放大器71與72皆具有傳導(trans_c〇nductance) 輪出的特性。運异放大器71的輸出係連接到電壓補償端與比較器 3的正鳊輸入。運异放大器72的輸出係連接到電流補償端c〇MI與比較器 75的正端輸入。比較器73的負端輸入係連接到加法器_的輸出。比較器The output terminal 〇UT of the Vcs 0 controller 70 generates a switching signal VpwM for switching the transformer 10. A compensation network is connected to the voltage-compensation terminal COMV of the controller 7 for voltage loop frequency compensation. The compensation network can be connected to the ground reference level using a capacitor, such as capacitor 31. Another compensation network is connected to the current compensation terminal (current-c〇mpensati〇ntermi blood i)c〇m! of the controller 7〇 for current loop frequency compensation. The compensation network can also be connected to ground reference level 'like capacitor 32' using a capacitor. Figure 3 shows a controller 7 in accordance with a preferred embodiment of the present invention. A voltage waveform detector 1 generates a voltage feedback signal 乂乂 and a discharge time signal by a plurality of sampling voltages vDET, and the discharge time signal sDS represents a discharge time Tds of the secondary side switching current Is. A current waveform detector 3 generates a current waveform signal ¥^ by measuring the current signal Vcs on the primary side of the transformer. An oscillation u. The 200 generates a vibration signal pu for determining the switching frequency of the switching signal vpwM. An integrator 4 产生 generates a current feedback signal % by integrating the current waveform signal \^ with the discharge time tds. An operational amplifier 71 and a reference voltage Vr£fi form a voltage loop error amplifier for amplifying the voltage feedback signal Vv and providing a loop gain for output voltage control. An operational amplifier 72 and a reference voltage form a current loop error amplifier for amplifying the current feedback signal % and providing a loop gain for output current control. A pulse width modulator 500 is coupled to the comparator 73 and the comparator 75 for controlling the pulse width of the switching signal vPWM according to the output of the voltage loop error amplifier, the output of the current loop error amplifier, and the peak current limiter. Both operational amplifiers 71 and 72 have the characteristics of conduction (trans_c〇nductance). The output of the operational amplifier 71 is connected to the voltage compensation terminal and the positive input of the comparator 3. The output of the operational amplifier 72 is coupled to the current compensation terminal c〇MI and the positive terminal input of the comparator 75. The negative input of comparator 73 is coupled to the output of adder_. Comparators

1C 的負端輸入是由斜坡訊號(ramp signal)RMp所提供,斜坡訊號是由 1251976 振盪器200所產生的。 加法器600藉由變壓器-次側的電流訊號Vcs與斜坡職證的相加 而產生斜率訊號(slope signal)VsLp,加法器的作用是對電壓迴路形成斜率補 償(slope compensation)。一比較器74的正端輸入係由參考電壓所提 仏比較器74的負端輸入係連接到感測端cs,可用來偵測變壓器一次側 的電流訊,並且賴-個獅又-個獅的(eyde_by_eyde)電流限 亲J NAND閘79的二個輸入分別連接到比較器乃、比較器%與比較器乃 的輸出。NA·閘79的輸出產生重置訊號(職t_雄ST。該重置訊^ 供應給脈寬調變器500,用以控制切換訊號VpwM的工作週期。 由一次側切換電流1?的_到切換訊號Vp侧的脈波寬度調變形成電流 控制迴路,依據參考電壓ν_來控制_次側切換電流&的振幅值 (magmtude)。二次側切換電流Is與一次側切換電流^有比例上的關係,如 方程式⑷所示。根制2所示的訊號波形,電源供應㈣輸出電糾為二 次側切換電流Is平均值。輸出電流可以表示成: 為切換减的切換週期,無盪器的時間常财密切的關係。電源 供應為的輸出電流1〇因此可以得到穩定調整。 皮^貞勒3⑻偵測電流訊號&,並且產生電流波形訊號Vw。 積刀器400藉由積分電流波形訊號v經與放電時㈤TDS進一步產生電流迴 授訊號V,。電流迴授訊號乂因此可以設計成: V, - Vw ^ds_ 2 1 (7) 其中電流波形訊號乂〜係表示成: V,The negative input of 1C is provided by the ramp signal RMp, which is generated by the 1251976 oscillator 200. The adder 600 generates a slope signal VsLp by adding the transformer-secondary current signal Vcs to the slope duty, and the adder functions to form a slope compensation for the voltage loop. The positive input of the comparator 74 is connected to the sensing terminal cs by the negative input of the comparator 74, which can be used to detect the current on the primary side of the transformer, and the Lai-Lion-Lion The two inputs of the (eyde_by_eyde) current-limited pro-J NAND gate 79 are connected to the output of the comparator, comparator %, and comparator, respectively. The output of the NA gate 79 generates a reset signal (the job t_雄ST. The reset signal is supplied to the pulse width modulator 500 for controlling the duty cycle of the switching signal VpwM. Switching the current 1? from the primary side The pulse width modulation to the switching signal Vp side forms a current control loop, and the amplitude value (magmtude) of the secondary side switching current & is controlled according to the reference voltage ν_. The secondary side switching current Is and the primary side switching current ^ The relationship between the ratios is shown in equation (4). The signal waveform shown in the root system 2, the power supply (4) output electric correction is the average value of the secondary side switching current Is. The output current can be expressed as: for the switching period of the switching subtraction, no The time of the stagnation is always close. The output current of the power supply is 1〇, so it can be stably adjusted. The 贞 贞 3 (8) detects the current signal & and generates the current waveform signal Vw. The integrated cutter 400 is integrated by The current waveform signal v and the discharge (5) TDS further generate a current feedback signal V. The current feedback signal can be designed as: V, - Vw ^ds_ 2 1 (7) wherein the current waveform signal 乂 ~ is expressed as: V ,

丨NS丨NS

Rs X ls ⑻ 其中T!係為積分器4〇〇 訊號%可以重新寫成: 的時間常數。由方程式(6)-(8)可以看出,電流迴授 (9) 1251976Rs X ls (8) where T! is the integrator 4〇〇 The signal % can be rewritten as: the time constant. It can be seen from equations (6)-(8) that current feedback (9) 1251976

Vl 二Vl II

1 NS1 NS

NSNS

我們可以發現到,電流迴授訊號%係正比於電源供應器的輸出電流 當輸出電流1〇增加時,電流迴授訊號乂係為增加,但電流迴授訊號%的 最大值透過電赌制魏的敎調整而被_在參考祕v_的數值。在 電流控制迴路的迴授控制之下,最大輸出電流〗。—)可以由下式得到: |〇(max) x ________We can see that the current feedback signal is proportional to the output current of the power supply. When the output current increases, the current feedback signal is increased, but the maximum value of the current feedback signal is transmitted through the electric bet. The 敎 adjusts the value of _ in the reference secret v_. Under the feedback control of the current control loop, the maximum output current is 〗 〖. —) can be obtained from: |〇(max) x ________

TnS 1 + (GaxGswx^) (10) 其中K為常數’係、等於Tl/T ; Ga《電流迴路誤差放大器的增益(咖);Gy 為切換電路的增益。當電流控制迴路的迴路增益很高(Ga χ Gsw>> U時, 最大輸出電流I〇(max)得以簡化為:TnS 1 + (GaxGswx^) (10) where K is a constant 'system, equal to Tl/T; Ga is the gain of the current loop error amplifier (Gay); Gy is the gain of the switching circuit. When the loop gain of the current control loop is high (Ga χ Gsw>> U, the maximum output current I〇(max) is simplified to:

l〇(max) = K XL〇(max) = K X

Tnp VREF2 (11) X »»-—Tnp VREF2 (11) X »»--

Tns Rs 電源供應器的最大輸itj電流i〇(max)依據參考賴Vref2的紐目*得到穩定 調整成固定電流。 此外,由電壓訊號vAUX取樣到切換訊號¥?別^的脈波寬度調變形成電 壓控制迴路,並依據參考電壓Vrefi的數值來控制電壓訊號Vaux的振幅值。 電壓訊號VAUX與輸出電壓\^〇有比例上的關係,如方程式(3)所示。電壓訊 號vAUX又經過適當的衰減得到電壓Vdet,如方程式(5)所示。電壓波形偵 測器100透過電壓VDET的多次取樣產生電壓迴授訊號Vv,該電壓迴授訊 號Vv的數值透過電壓控制迴路的穩定調整,並且依據參考電壓Vrefi的數 值而得到控制。電壓迴路誤差放大器與切換電路對於電壓控制迴路提供迴 路增益。因此,輸出電壓V〇可以簡化為:The maximum input itj current i〇(max) of the Tns Rs power supply is stably adjusted to a fixed current according to the reference* of the reference Vref2. In addition, the pulse width modulation of the voltage signal vAUX is sampled to the switching signal to form a voltage control loop, and the amplitude value of the voltage signal Vaux is controlled according to the value of the reference voltage Vrefi. The voltage signal VAUX has a proportional relationship with the output voltage \^〇, as shown in equation (3). The voltage signal vAUX is again attenuated to obtain the voltage Vdet as shown in equation (5). The voltage waveform detector 100 generates a voltage feedback signal Vv through multiple sampling of the voltage VDET. The value of the voltage feedback signal Vv is stably adjusted by the voltage control loop and controlled according to the value of the reference voltage Vrefi. The voltage loop error amplifier and switching circuit provide loop gain for the voltage control loop. Therefore, the output voltage V〇 can be simplified to:

Vo =Vo =

Rso + R51 R51Rso + R51 R51

Tns Tna x Vrefi)-Vf (12) 電壓訊號VAUX係藉由電壓波形偵測器100來達到多次取樣。在二次側 切換電流Is放電到零之前,立即進行電壓取樣與量測。因此,二次側切換 電流Is的改變並不會影響整流器40的順向壓降vF的數值。然而,當溫度 1251976 產生變化時,整流器40的順向壓降VF也隨之改變。一可程式的電流源80 係連接到電壓波形偵測器100的輸入端,用以溫度補償。該可程式的電流 源80依據控制器70的溫度產生可程式的電流Ιτ。可程式的電流Ιτ結合電 阻50與51產生電壓ντ,用來補償順向壓降VF的溫度變化。Tns Tna x Vrefi)-Vf (12) The voltage signal VAUX is multi-sampled by the voltage waveform detector 100. Voltage sampling and measurement are performed immediately before the secondary side switching current Is discharges to zero. Therefore, the change in the secondary side switching current Is does not affect the value of the forward voltage drop vF of the rectifier 40. However, as temperature 1251976 changes, the forward voltage drop VF of rectifier 40 also changes. A programmable current source 80 is coupled to the input of the voltage waveform detector 100 for temperature compensation. The programmable current source 80 produces a programmable current τ based on the temperature of the controller 70. The programmable current τ combined with the resistors 50 and 51 produces a voltage ντ that compensates for temperature variations in the forward voltage drop VF.

Vt = ,tx RsoxR^--------------------------------------------------------------(13)Vt = , tx RsoxR^-------------------------------------------- ------------------(13)

Rso + Rsi 參照方程式(12)與(13)可以發現,電阻值R5〇與R51的比例決定輸出電壓V〇。 電阻與R51的電阻值決定溫度係數(temperature coefficient),用以補償整流 器40的順向壓降Vf。由於可程式的電流源80,方程式(丨2)可以重新寫成··Rso + Rsi Referring to equations (12) and (13), it can be found that the ratio of the resistance values R5〇 to R51 determines the output voltage V〇. The resistance value of the resistor and R51 determines the temperature coefficient to compensate for the forward voltage drop Vf of the rectifier 40. Due to the programmable current source 80, the equation (丨2) can be rewritten as...

Vo = rR50 + Rsi R51 —-x Vrefi) ~ Vf H- Vt Τνα (14)Vo = rR50 + Rsi R51 —-x Vrefi) ~ Vf H- Vt Τνα (14)

圖4係顯示根據本發明之較佳實施例的電壓波形偵測器1〇〇。一取樣脈 波產生器(sample-pulse generator) 190產生取樣脈波訊號用以多次取樣。一臨 界電壓(threshold voltage)156加上電壓訊號VAUX,因而產生準位位移反射訊 说(level-shift reflected signal)。第一個訊號產生器(first signal generator)包含 D型正反器17卜兩個AND閘165與166,用以產生第一個取樣訊號(first4 is a diagram showing a voltage waveform detector 1 in accordance with a preferred embodiment of the present invention. A sample-pulse generator 190 generates a sampled pulse signal for multiple sampling. A threshold voltage 156 is applied to the voltage signal VAUX, thereby generating a level-shift reflected signal. The first signal generator includes a D-type flip-flop 17 and two AND gates 165 and 166 for generating a first sampled signal (first

sample signal)VSP1 與第二個取樣訊號(second sample signal)VSP2。第二個訊號 產生器(second signal generator)包含 D 型正反器 170、NAND 閘 163、ANDSample signal) VSP1 and the second sample signal VSP2. The second signal generator includes a D-type flip-flop 170, a NAND gate 163, and an AND signal.

閘164與比較器155,用以產生放電時間訊號Sds。一時間延遲電路 (time-delay circuit)包含反相器162、電流源180、電晶體181與電容182,The gate 164 and the comparator 155 are used to generate a discharge time signal Sds. A time-delay circuit includes an inverter 162, a current source 180, a transistor 181, and a capacitor 182.

當切換訊號Vpwm為禁能狀態(disable)時用以產生延遲時間Td。反相器161 的輸入是由切換訊號VPWM所提供,反相器ι61的輸出係連接到反相器162 的輸入,同時也連接到AND閘164的第一端輸入與d型正反器170的時脈 輸入(dock-input)。反相器162的輸出可導通或截止(〇n/〇ffm晶體⑻。電 容182係與電晶體181並聯連接,該電流源18〇係對電容182充電。因此, 電流源180的電流與電谷182的電容值決定時間延遲電路的延遲時間丁d, 而電容182係為時間延遲電路的輸出。d型正反器17〇的D輸入係上拉(puU 12 1251976 hlgh)到供應電壓u型正反器17〇的輸出係連接於趣^閘刚的第二 "J °亥八_閘164輸出放電時間訊號sDS。當切換訊號vPWM為禁能 狀心放電日守間訊號Sds因此為致能狀態(如北㈤。該閘π]的輸出 — 係連接於D型正反器17〇的重置輸入(獄此_)。ναν〇閘163的輸入係 連接到時間延遲電路的輸出與比較器155的輸出。比較器155的負端輸入 係由準位位移反射訊麟提供。比較器155的正端輸人係由賴迴授訊號 γ所提ί、。因此’在延遲時間Td之後,一旦準位位移反射訊號低於電壓迴 授减Vv ’放電時間訊號Sds為禁能狀態。此外,只要切換訊號Vpwm為 致能狀態,放電時間訊號SDS也為禁能狀態。 取樣脈波產生器190產生的取樣脈波訊號係施加於D型正反器171的修 時脈輸入、AND閘165與166的第三端輸入。D型正反器171的D輸入與 反向輸出端係連接在一起而形成除2計數器(divide_by_tw〇 c〇unter)。d型正 反器πι的輸出與反向輸出係分別連接於AND閘165與166的第二端輸 入。AND閘165與166的第一端輸入係由放電時間訊號Sds所提供。ΑΝ〇 閘165與166的第四端輸入係連接到時間延遲電路的輸出。因此,依據取 樣脈波訊號的輸出而產生出第—個取樣訊號Vspi與第二個取樣訊號v肥。 此外,在放電時間訊號SDS的致能狀態週期的這段期間,第一個取樣訊號 Vspl與第二個取樣訊號vSP2係為交替地產生出來。然而,在放電時間訊號鲁 SDS的一開始插入延遲時間Td,係用來禁止產生第一個取樣訊號VSP1與第二 個取樣訊號vSP2。在延遲時間Td的的這段期間,第一個取樣訊號v奶與第 二個取樣訊號VSP2因此為禁能狀態。 第一個取樣訊號vSP1與第二個取樣訊號Vsi>2經由偵測端DET與電阻性 分壓器係用以交替地取樣電壓訊號VAUX。第一個取樣訊號Vspl與第二個取 樣訊號VSP2控制開關121與開關丨22,用以分別地得到跨於電容11〇與電 容111的第一個維持電壓(first hold voltage)與第二個維持電壓(sec〇nd h〇ld voltage)。開關123係與電容丨10並聯連接,用來將電容i 1〇放電。開關i24 13 1251976 係與電容111並聯連接,用來將電容U1財 > 包含運算放大器15〇與⑸、二極體13()、器(buffei*amplifier) 產生維持電壓。運算放大器150與151 u、135用以 i雷& 111,b 鸲輸入係分別地連接到電容110 出二:广 51的負端輸入係連接到緩衝放大器的輸 出棘一極體13(M_由運算放大器15G的輪出到緩衝放大器的輸出。二 極體131係由運算放大器151的輪出連 ^ 7 ___放大H的輸出。因此,由 弟一個維持電壓與第二個維持電壓的較高 …金田h平乂⑽塗來侍到維持電壓。該電流源 ⑶係用來結束動作。開關125週期性地導通到電容出的維持電壓,用以 產生電壓迴授訊號Vv。關丨25係藉她親號pLs來產生導通或截止 的切換動作。在輯時間Td之後,第—錄樣峨、與第;取樣訊號 VSP2開始產生第-個維持電壓與第二個維持電壓,如此可消除電壓訊號 vAUX的突波干擾(spikeinterf⑽ce)。當切換訊號v_是禁能狀態,並且電 晶體20是截止的,此時將會產生電壓訊號Vaux的電壓突波。 當二次侧切換電流IS放制零,頓峨Vau>^始下降,藉由比較器 155的债測使放電日寺間訊號Sds為禁能狀態。放電時間訊號&的脈波寬度 因而與二次侧切換電流IS的放電時間Tds有密切的關係。同時,依據放電 時間訊號sDS為禁能狀態,而第一個取樣訊號Vspi與第二個取樣訊號Vsp2 為禁能狀態,並且多次取樣是停止的。此時,在緩衝放大器的輸出產生維 持電壓,表示終止電壓(end voltage)。終止電壓因而與電壓訊號Vaux有密切 的關係,在二次側切換電流Is下降到零之前,電壓訊號Vaux被取樣。維持 電壓的獲得是取第一個維持電壓與第二個維持電壓的較高電壓,並且當電 壓訊號VAUx開始減少時,將忽略被取樣的電壓。 圖5係顯示根據本發明之較佳實施例的振盪器200。運算放大器201、 電阻210與電阻250組成第一個電壓轉電流轉換器(first V-to-I converter)。 該第一個電壓轉電流轉換器依據參考電壓VreF而產生參考電流l25〇。數個電 晶體如251、252、253、254與255形成電流鏡(current mirror),依據參考 14 1251976 電流〗25〇用以產生振蘯充電電流(oscillator charge current)l253與振遷放電電流 (oscillator discharge cmrent)I255。電晶體253的汲極產生該振盪充電電流 I253。電晶體255的汲極產生該振盪放電電流1255。開關230係連接於電晶體 \ 253的汲極與電容215之間,開關231係連接於電晶體255的汲極與電容 215之間。斜坡號RMP係由電容215所獲得。比較器205的正端輸入連 接到電容215。比較器205輸出振盪訊號PLS,該振盪訊號PLS決定切換 頻率。開關232的弟一個端點係由高臨界電壓(j^gh threshold voltage)VH所 提供。開關233的第一個端點係由低臨界電壓(i〇wthresh〇ldv〇ltage)VL所提 供。開關232的第二個端點與開關233的第二個端點係皆連接於比較器2〇5 的負知輸入。反相器260的輸入係連接於比較器205的輸出,用以產生反 _ 相振盪訊號/PLS。振盪訊號PLS用來導通或截止開關231與開關233。反 相振盪訊號/PLS控制開關230與開關232的導通與截止。第一個可程式的 電容910與電容215並聯連接,依據數位模組ρΝ· ·Ρι的訊號用以調變切換 頻率。電阻210的電阻值^1()、電容215的電容值C2i5與第一個可程式的 電谷910的電谷值C91G決定切換頻率的切換週期τ,切換週期τ可以由下 式得到: (C215 + C910) X V〇SC VREF/R210 R210 x (C215 + C910))The delay time Td is generated when the switching signal Vpwm is disabled. The input of the inverter 161 is provided by the switching signal VPWM, and the output of the inverter ι61 is connected to the input of the inverter 162, and is also connected to the first terminal input of the AND gate 164 and the d-type flip-flop 170. Clock-input. The output of the inverter 162 can be turned on or off (〇n/〇ffm crystal (8). The capacitor 182 is connected in parallel with the transistor 181, which charges the capacitor 182. Therefore, the current and current of the current source 180 The capacitance value of 182 determines the delay time of the time delay circuit, and the capacitance 182 is the output of the time delay circuit. The D input of the d-type flip-flop 17〇 is pulled up (puU 12 1251976 hlgh) to the supply voltage u-type positive The output of the counter 17〇 is connected to the second "J °H8_gate 164 output discharge time signal sDS of the fun ^ gate. When the switching signal vPWM is disabled, the heart-to-day discharge signal Sds is enabled The state (such as North (5). The output of this gate π] is connected to the reset input of the D-type flip-flop 17〇. The input of the ναν〇 gate 163 is connected to the output and comparator of the time delay circuit. The output of 155. The negative input of comparator 155 is provided by the level shifting signal. The positive input of comparator 155 is boosted by the feedback signal γ. Therefore, after the delay time Td, once The position displacement reflection signal is lower than the voltage feedback Vv 'discharge time signal Sds is forbidden In addition, as long as the switching signal Vpwm is enabled, the discharging time signal SDS is also disabled. The sampling pulse signal generated by the sampling pulse generator 190 is applied to the clock input of the D-type flip-flop 171, The third terminals of the AND gates 165 and 166 are input. The D input of the D-type flip-flop 171 is connected to the inverted output terminal to form a divide-by-2 counter (divide_by_tw〇c〇unter). The output of the d-type flip-flop πι And the reverse output system is respectively connected to the second terminal input of the AND gates 165 and 166. The first terminal input of the AND gates 165 and 166 is provided by the discharge time signal Sds. The fourth terminal input system of the gates 165 and 166 Connected to the output of the time delay circuit. Therefore, the first sampling signal Vspi and the second sampling signal v are generated according to the output of the sampling pulse signal. In addition, during the period of the enabling state of the discharging time signal SDS During the period, the first sampling signal Vspl and the second sampling signal vSP2 are alternately generated. However, the insertion delay time Td at the beginning of the discharging time signal SDS is used to prohibit the generation of the first sampling signal VSP1 and Second The sampling signal vSP2. During the period of the delay time Td, the first sampled signal v milk and the second sampled signal VSP2 are therefore disabled. The first sampled signal vSP1 and the second sampled signal Vsi> The voltage signal VAUX is alternately sampled via the detecting terminal DET and the resistive voltage divider. The first sampling signal Vspl and the second sampling signal VSP2 control the switch 121 and the switch 22 for respectively obtaining the capacitance across the capacitor 11〇 and the first hold voltage of the capacitor 111 and the second hold voltage (sec〇nd h〇ld voltage). Switch 123 is connected in parallel with capacitor 丨10 for discharging capacitor i 1 。. The switch i24 13 1251976 is connected in parallel with the capacitor 111 for generating a sustain voltage by the capacitor U1 > including the operational amplifiers 15A and (5), the diode 13 (), and the buffei*amplifier. The operational amplifiers 150 and 151 u, 135 are used for the i-ray & 111, b 鸲 input system is respectively connected to the capacitor 110. The second: the negative input terminal of the wide 51 is connected to the output ratchet body 13 of the buffer amplifier (M_ The output of the operational amplifier 15G is output to the output of the buffer amplifier. The diode 131 is amplified by the output of the operational amplifier 151. The output of the sustain voltage is compared with the second sustain voltage. High... Jintian h flat 乂 (10) is applied to maintain voltage. The current source (3) is used to terminate the operation. Switch 125 is periodically turned on to the capacitor's sustain voltage to generate voltage feedback signal Vv. By her pro-number pLs, the switching action of turning on or off is generated. After the time Td, the first recording and the sampling signal VSP2 start to generate the first sustain voltage and the second sustain voltage, so that the voltage can be eliminated. The signal interference of the signal vAUX (spikeinterf(10)ce). When the switching signal v_ is disabled and the transistor 20 is turned off, the voltage spike of the voltage signal Vaux will be generated. When the secondary side switching current IS is released Zero, 峨 峨 Vau> Decrease, the signal Sds of the discharge day is disabled by the debt measurement of the comparator 155. The pulse width of the discharge time signal & is thus closely related to the discharge time Tds of the secondary side switching current IS. According to the discharge time signal sDS is disabled, and the first sampling signal Vspi and the second sampling signal Vsp2 are disabled, and multiple sampling is stopped. At this time, a sustain voltage is generated at the output of the buffer amplifier, indicating The end voltage is thus closely related to the voltage signal Vaux. Before the secondary side switching current Is drops to zero, the voltage signal Vaux is sampled. The sustain voltage is obtained by taking the first sustain voltage and the first The two higher voltages of the sustain voltage, and when the voltage signal VAUx begins to decrease, the sampled voltage will be ignored. Figure 5 shows an oscillator 200 in accordance with a preferred embodiment of the present invention. Operational amplifier 201, resistor 210 and resistor 250 constitutes the first voltage to current converter (first V-to-I converter). The first voltage to current converter generates a reference current according to the reference voltage VreF L25〇. Several transistors such as 251, 252, 253, 254 and 255 form a current mirror. According to the reference 14 1251976, the current is 25 〇 to generate the oscillator charge current l253 and the relocation discharge. The current discharge (current discharge) I255. The drain of the transistor 253 generates the oscillating charging current I253. The drain of transistor 255 produces the oscillating discharge current 1255. The switch 230 is connected between the drain of the transistor \253 and the capacitor 215, and the switch 231 is connected between the drain of the transistor 255 and the capacitor 215. The ramp number RMP is obtained by capacitor 215. The positive terminal input of comparator 205 is coupled to capacitor 215. The comparator 205 outputs an oscillation signal PLS which determines the switching frequency. One of the terminals of switch 232 is provided by a high threshold voltage (j^gh threshold voltage) VH. The first end of switch 233 is provided by a low threshold voltage (i〇wthresh〇ldv〇ltage) VL. The second end of switch 232 and the second end of switch 233 are both connected to the negative input of comparator 2〇5. The input of inverter 260 is coupled to the output of comparator 205 for generating an inverse _ phase oscillation signal / PLS. The oscillation signal PLS is used to turn on or off the switch 231 and the switch 233. The reverse phase oscillation signal/PLS control switch 230 and the switch 232 are turned on and off. The first programmable capacitor 910 is connected in parallel with the capacitor 215, and is used to modulate the switching frequency according to the signal of the digital module ρΝ··Ρι. The resistance value ^1() of the resistor 210, the capacitance value C2i5 of the capacitor 215, and the electric valley value C91G of the first programmable valley 910 determine the switching period τ of the switching frequency, and the switching period τ can be obtained by: (C215 + C910) XV〇SC VREF/R210 R210 x (C215 + C910))

Vosc Vref (15)Vosc Vref (15)

其中Vosc = VH-VL。第一個可程式的電容91〇的電容值c9i〇依據數位模組 Ρν··Ρι的變化而隨之改變。 圖6係顯示根據本發明之較佳實施例的電流波形偵測器3〇〇。一峰值偵 測器(peak detector)包含比較器31〇、電流源32〇、開關33〇、開關34〇與電 容361。取樣電流訊號Vcs的峰值用以產生峰值電流訊號(peak_cun^t signal)。比較器310的正端輸入係由電流訊號Vcs所提供。比較器31〇的負 端輸入係連接到電容361。開關330係連接於電流源320與電容361之間。 比較器31〇的輸出用來導通或截止開關BO。開關34〇與電容训並聯連接, 用以將電容301放電。開關mo週期性地導通到電容S62的峰值電流訊號, 15 1251976 用以產生電流波形訊號Vw。開關350藉由振盪訊號PLS來進行導通或截止 的動作。 圖7顯示為根據本發明之較佳實施例的積分器4〇〇。第二個電壓轉電流 轉換器(second V-to-I converter)包含運算放大器410、電阻450、電晶體420、 421與422。運算放大器410的正端輸入係由電流波形訊號vw所提供。運 算放大器410的負端輸入連接到電阻45〇。運算放大器41〇的輸出驅動電晶 體420的閘極。電晶體420的源極連接到電阻450。第二個電壓轉電流轉換 器依據電流波形訊號Vw,經由電晶體420的汲極產生電流1420。電晶體421 與422形成具有比例2:1的電流鏡。電流l42G經由電晶體422的汲極驅動電Where Vosc = VH-VL. The capacitance value c9i of the first programmable capacitor 91〇 changes according to the change of the digital module Ρν··Ρι. Figure 6 shows a current waveform detector 3A in accordance with a preferred embodiment of the present invention. A peak detector includes a comparator 31 〇, a current source 32 〇, a switch 33 〇, a switch 34 〇, and a capacitor 361. The peak value of the sampled current signal Vcs is used to generate a peak current signal (peak_cun^t signal). The positive input of comparator 310 is provided by current signal Vcs. The negative input of comparator 31 is coupled to capacitor 361. Switch 330 is coupled between current source 320 and capacitor 361. The output of the comparator 31 is used to turn the switch BO on or off. The switch 34 is connected in parallel with the capacitor train to discharge the capacitor 301. The switch mo is periodically turned on to the peak current signal of the capacitor S62, and 15 1251976 is used to generate the current waveform signal Vw. The switch 350 is turned on or off by the oscillation signal PLS. Figure 7 shows an integrator 4A in accordance with a preferred embodiment of the present invention. The second voltage-to-I converter includes an operational amplifier 410, a resistor 450, and transistors 420, 421 and 422. The positive input of operational amplifier 410 is provided by current waveform signal vw. The negative input of operational amplifier 410 is coupled to resistor 45A. The output of the operational amplifier 41A drives the gate of the transistor 420. The source of transistor 420 is coupled to resistor 450. The second voltage to current converter generates a current 1420 via the drain of the transistor 420 in accordance with the current waveform signal Vw. The transistors 421 and 422 form a current mirror having a ratio of 2:1. Current l42G is driven by the drain of transistor 422

〜l鏡,用來產生可程式的充電電流IpRG。該可程式的充電電流可以表示 成: 其中R450為電阻450的電阻值。The ~l mirror is used to generate a programmable charging current IpRG. The programmable charging current can be expressed as: where R450 is the resistance of resistor 450.

電谷471係用來產生積分訊號(integrated signal)。開關46〇係連接於電 曰日體422的汲極與電容471之間。該開關460係藉由放電時間訊號Sds來進 行導通與截止的動作。開關462與電容471並聯連接,用以將電容471放 電。在積分器400的Cx端,第二個可程式的電容93〇係與電容471並聯連 接’可用以將積分器400㈣間常數與切換頻率產生密切的關係。第二個 可程式的電容930的電雜C㈣依雜健組Ρν· $ _化也隨之改變。 開關损週期性地導通到電容472的積分訊號,用以產生電流迴授訊號%。 振堡訊號PLS控制開關461的導通與截止。跨於電容472兩端的電流迴授 訊號%因而可以得到:The electric valley 471 is used to generate an integrated signal. The switch 46 is connected between the drain of the body 422 and the capacitor 471. The switch 460 is turned on and off by the discharge time signal Sds. Switch 462 is coupled in parallel with capacitor 471 for discharging capacitor 471. At the Cx end of the integrator 400, a second programmable capacitor 93 is connected in parallel with the capacitor 471' to provide a close relationship between the integrator 400 (quad) constant and the switching frequency. The second programmable capacitor 930's electrical hybrid C (four) depends on the hybrid group Ρν· $ _ also changes. The switching loss periodically conducts an integral signal to capacitor 472 for generating a current feedback signal %. The ignition and signal PLS control switch 461 is turned on and off. The current feedback signal across the capacitor 472 can be obtained by:

Vi = 1 Vw ~R450 X(C471 + C930)XT~X ^ (17) 根據方程式(4)-(7),電流迴授訊號Vi與電源供應器的二次側切換電流Is 與輸出電流1〇有密切的_。因此,方程式(9)可以重新寫成: 16 (18) 1251976Vi = 1 Vw ~R450 X(C471 + C930)XT~X ^ (17) According to equations (4)-(7), the current feedback signal Vi and the secondary side switching current Is and the output current of the power supply are 1〇 Have a close _. Therefore, equation (9) can be rewritten as: 16 (18) 1251976

Vi =所 χ --— x Rs x |〇 Tnp 其中m係為固定值,可以由下式決定: (19) m __ R210 X (C215 + C910) Vosc R450 X (C471 + C930) Vref 電阻450的電阻值R45❶與電阻21〇的電阻值r2⑴有密切的關係。電容 471的電容值〜與電容930的電容值c93()兩者與電容215的電容值C215 與電容910的電容值Gw兩者有密切的關係。因此,電流回授訊號乂正比 於電源供應器的輸出電流1〇。 圖8係顯示根據本發明之脈寬調變器5〇〇的電路圖。脈寬調變器5〇〇包 S NAND閘511、D型正反器515、AND閘519、遮沒電路(blanking circmt)520與反相器512和反相器518。〇型正反器515的〇輸入係上拉到 供應電壓Vcc。振盪訊號PLS驅動反相器512的輸入。反相器512的輸出 D f jl&ii 515的時脈輸人,㈣使切換碱為致能狀態。 D型正反崙515的輸出係連接到ΑΝ〇閘519的第一端輸入。ΑΝ〇閘519 的第二端輸人係連接到反相器512的輸出。娜閘519輸出此切換訊號 PWM用來城電源供應11。^正反器515的重置輸人餅接到驗^間 曰的輸出NA恥閘511的第一端輸入係由重置訊號(應^ s㈣)RST所 提供’々用以-個週期又一個週期使切換訊號為禁能狀態閘 ===7_到遮沒電路52G_,—旦切換訊號¥簡是致 ^ 以石保切換訊號%_的最小導通時間(minimumon-time)。切換Vi = so χ --- x Rs x |〇Tnp where m is a fixed value and can be determined by: (19) m __ R210 X (C215 + C910) Vosc R450 X (C471 + C930) Vref resistance 450 The resistance value R45❶ is closely related to the resistance value r2(1) of the resistor 21〇. The capacitance value of the capacitor 471 is closely related to the capacitance value c93() of the capacitor 930 and the capacitance value C215 of the capacitor 215 and the capacitance value Gw of the capacitor 910. Therefore, the current feedback signal 乂 is proportional to the output current of the power supply 1〇. Fig. 8 is a circuit diagram showing a pulse width modulator 5A according to the present invention. The pulse width modulator 5 includes a S NAND gate 511, a D-type flip-flop 515, an AND gate 519, a blanking circmt 520, an inverter 512, and an inverter 518. The 〇 input of the 正-type flip-flop 515 is pulled up to the supply voltage Vcc. The oscillating signal PLS drives the input of the inverter 512. The output of the inverter 512 D f jl & ii 515 is input to the clock, and (4) the switching base is enabled. The output of the D-type positive and negative 515 is connected to the first terminal input of the brake 519. The second end of the gate 519 is connected to the output of the inverter 512. Nab 519 outputs this switching signal PWM is used for city power supply 11. ^The resetter of the flip-flop 515 is connected to the output of the test. The first input of the NA 511 is provided by the reset signal (should be s(4)) RST. The period causes the switching signal to be the disabled state gate ===7_ to the blanking circuit 52G_, and the switching signal is simply the minimum on time (minimumon-time) of the stone protection switching signal %_. Switch

小麵_將麵最小錢時間&,這絲證—個適當的 v __樣賴。放電時間I 側電感值LS如方程式(2〇)所示,放電時間&可以表示 -------—Facet _ face the minimum money time & this silk card - an appropriate v __ sample. The discharge time I side inductance value LS is as shown in equation (2〇), and the discharge time & can be expressed as -------

Ls=(^-)2xLp 17 (20) (21) 1251976 τ /- V IN 丁NS τLs=(^-)2xLp 17 (20) (21) 1251976 τ /- V IN D NS τ

Tds =( -)x X 1 ON ----------------Tds =( -)x X 1 ON ----------------

Vo + Vf Tnp 其中TON為切換訊號Vpwm的導通時間。Vo + Vf Tnp where TON is the on time of the switching signal Vpwm.

遮沒電路520的輸入係由切換訊號Vpwm所提供。當切換訊號VpwM是 致能狀態,遮沒電路520將產生遮沒訊號(blanking signal)VBLk來禁止D型 正反器515的重置。遮沒電路520包含NAND閘523、電流源525、電容 527、電晶體526與反相器521和522。切換訊號VPWM係供應反相器521 的輸入與NAND閘523的第一端輸入。電流源525係對電容527充電。電 晶體526與電容527係為並聯連接。反相器521的輸出控制電晶體526的 導通與截止。反相器522的輸入係連接到電容527。反相器522的輸出係連 接到NAND閘523的第二端輸入。NAND閘523的輸出端輸出遮沒訊號 VBLK。電流源525的電流與電容527的電容值決定遮沒訊號〜^^的脈波寬 度。反相器518的輸入係連接到NAND閘523的輸出。反相器518的輸出 產生清除訊號(clear signal)CLR,用來控制開關123、開關124、開關340與 開關462的導通與截止。The input of the occlusion circuit 520 is provided by the switching signal Vpwm. When the switching signal VpwM is enabled, the blanking circuit 520 will generate a blanking signal VBLk to disable the reset of the D-type flip-flop 515. The blanking circuit 520 includes a NAND gate 523, a current source 525, a capacitor 527, a transistor 526, and inverters 521 and 522. The switching signal VPWM is supplied to the input of the inverter 521 and the first terminal input of the NAND gate 523. Current source 525 charges capacitor 527. The transistor 526 and the capacitor 527 are connected in parallel. The output of inverter 521 controls the turn-on and turn-off of transistor 526. The input of inverter 522 is coupled to capacitor 527. The output of inverter 522 is coupled to the second terminal input of NAND gate 523. The output of the NAND gate 523 outputs the blanking signal VBLK. The current of the current source 525 and the capacitance of the capacitor 527 determine the pulse width of the masking signal ~^^. The input of inverter 518 is coupled to the output of NAND gate 523. The output of inverter 518 produces a clear signal CLR for controlling the turn-on and turn-off of switch 123, switch 124, switch 340 and switch 462.

圖9係顯不根據本發明之加法^§ 600的電路圖。一運算放大器610、電 晶體620、電晶體621、電晶體622與電阻650組成第三個電壓轉電流轉換 器(third V-to-I converter),依據斜坡訊號RMP的輸出用以產生電流l622。運 算放大為、611的正端輸入係由電流訊號Vcs所提供。該運算放大器611的 反相輸入與輸出係連接一起,用來建立運算放大器611如同緩衝器(buffer)。 電晶體622的汲極經由電阻651係連接到運算放大器611的輸出,在電晶 體622的沒極產生斜率訊號vSLP,該斜率訊號VSLp因而與斜坡訊號Rjvjp 以及電流訊號Vcs有密切的關係。 圖10係顯示根據本發明之較佳實施例的模組產生器9〇〇。一時脈產生 器(clock genemtor)951 產生時脈訊號(d〇ck signal)CK。數個暫存器 971、972 與975,以及XOR閘952組成線性位移暫存器(linear shift register),依據時 脈訊號CK用以產生線性碼(iinear C0(je)。x〇r閘952的輸入決定線性位移 18 1251976 暫存器的多項式(polynGmials),並且決定線性移位暫存器的輸出。該數位模 組碼(digital pattern code)PN· ·Ρι會採用源自於線性碼的部分來進行最佳化的 應用。 再者,為了產生頻率跳躍的特性用以降低電源供應器的電磁干擾,一模 組產生器_產生數位模組碼ρΝ · ·Ρι。第一個可程式的電容9ι〇係連接到 振m器2〇〇與模組產生器910,依據數位模組碼Ρν ·,Ρι的輸出用以調變切 換訊號vPWM的切換頻率。第二個可程式的電容93〇係連接於積分器_盘 模組產生器900,用以使積分器彻的時間常數與切換頻率產#關 係。數位模組碼PN ·々控制第一個可程式的電容_與二的 容930的電容值。 式的電 圖11係顯示根據本發曰月之較佳實施例的可程式的電容 程式的電容議與第二個可程式的電容93〇。可程式 ^^^#^t^^4(switching-capacitw sets),C 〇 s也..sN分別地形成切換式電容裝置。開關&與電容;;二^與開關 開關s2與電容〇2係為㈣連接,_ &與電容Cn係货聯^接, 組碼Ρν,.ΡΜ制開關Sl,S2, ..Sn的導通與截止,时數位模 電容值。 夂j私式的電容的 熟悉此項技藝者當可在不悖離本發明的精神與鱗 的結構進行各種修正與改變,由前述觀之 F,針對本發曰月# 的申請專利範圍及其等效解釋,皆可視為本發_一部^變只要合乎以下 19 1251976 【圖式簡單說明】 在此所附之圖表是用來清楚描述本發明,並引用與包含詳細規格的_ 部分,以下關表描%出本發_實施例,並配合詳細說明部份 釋本發明的原則。 圖1係顯示電源供應器具有切換式控制裝置的電路方塊圖·, 圖2係顯示電源供應器與切換式控制裝置的主要波形·, 圖3係顯示根據本發明之較佳實施例的控制器; 圖4係顯示根據本發明之較佳實施例的電壓波形偵測器·, 圖5係顯示根據本發明之較佳實施例的振盪器;Figure 9 is a circuit diagram showing the addition 600 according to the present invention. An operational amplifier 610, a transistor 620, a transistor 621, a transistor 622 and a resistor 650 form a third V-to-I converter for generating a current l622 according to the output of the ramp signal RMP. The operational amplifier is amplified, and the positive input of 611 is provided by the current signal Vcs. The inverting input of the operational amplifier 611 is coupled to the output system for establishing the operational amplifier 611 as a buffer. The drain of the transistor 622 is connected to the output of the operational amplifier 611 via a resistor 651. The slope signal vSLP is generated at the pole of the transistor 622. The slope signal VSLp is thus closely related to the ramp signal Rjvjp and the current signal Vcs. Figure 10 is a diagram showing a module generator 9A in accordance with a preferred embodiment of the present invention. A clock genemtor 951 generates a clock signal CK. A plurality of registers 971, 972 and 975, and an XOR gate 952 form a linear shift register, which is used to generate a linear code according to the clock signal CK (iinear C0(je). x〇r gate 952 The input determines the polynomial (polynGmials) of the linear displacement 18 1251976 register and determines the output of the linear shift register. The digital pattern code PN··Ρι uses the part derived from the linear code. Optimized application. Furthermore, in order to generate the frequency jump characteristic to reduce the electromagnetic interference of the power supply, a module generator generates a digital module code ρΝ · · Ρι. The first programmable capacitor 9ι The 〇 is connected to the oscillating device 2 〇〇 and the module generator 910, according to the digital module code Ρ ν, the output of the Ρ ι is used to modulate the switching frequency of the switching signal vPWM. The second programmable capacitor 93 连接 is connected The integrator_disk module generator 900 is configured to make the integrator time constant constant and the switching frequency. The digital module code PN · 々 controls the capacitance of the first programmable capacitor _ and the second capacitor 930 Value. The electric diagram of the type 11 is displayed according to this The capacitance of the programmable capacitor program of the preferred embodiment of the month is the same as that of the second programmable capacitor 93. The program ^^^#^t^^4(switching-capacitw sets), C 〇s also. .sN separately form a switched capacitor device. Switch &capacitance;; 2 and switch s2 and capacitor 〇 2 are (four) connection, _ & and capacitor Cn series cargo connection, group code Ρ ν,. Turn-on and turn-off of the switch S1, S2, ..Sn, the value of the digital-to-digital capacitance. 熟悉j The familiarity of the private capacitor can be modified without departing from the structure of the spirit and scale of the present invention. Change, from the above-mentioned view of F, the scope of the patent application for Benfa's ## and its equivalent explanation can be regarded as the same as the hair of the hair. The one that meets the following requirements is as follows: 19 1251976 [Simple description of the drawing] Attached here The drawings are used to clearly describe the present invention, and are cited and included in the detailed specification, the following description of the present invention, and the detailed description of the principles of the present invention. Figure 1 shows the power supply. Circuit block diagram with switching control device, Figure 2 shows power supply and switching Main waveform of the device, FIG. 3 shows a controller according to a preferred embodiment of the present invention; FIG. 4 shows a voltage waveform detector according to a preferred embodiment of the present invention, and FIG. 5 shows a waveform according to the present invention. The oscillator of the preferred embodiment;

圖6係顯示根據本發明之較佳實施例的電流波形偵測器; 圖7係顯示根據本發明之較佳實施例的積分器; 圖8係顯示根據本發明之脈寬調變器的電路圖; 圖9係顯示根據本發明之加法器的電路圖; 圖係顯示根據本發明之較佳實施例的模組產生器; 圖11係顯示根據本發明之較佳實施例的可程式的電容。 【主要元件符號說明】 10 變壓器 20 電晶體 30 電流感測電阻 31 電容 32 電容 40 整流器 45 電容 50 電阻 51 電阻 60 整流器 65 電容 70 控制器 71 運算放大器 72 運算放大器 73 比較器 74 比較器 75 比較器 79 NAND 閘 20 1251976 80 可程式的電流源 81 雙載子電晶體 82 雙載子電晶體 83 電阻 84 P鏡電晶體 85 P鏡電晶體 86 P鏡電晶體 87 η鏡電晶體 88 η鏡電晶體 100 電壓波形偵測器 110 電容 111 電容 115 電容 121 開關 122 開關 123 開關 124 開關 125 開關 130 二極體 131 二極體 135 電流源 150 運算放大器 151 運算放大器 155 比較器 156 臨界訊號 161 反相器 162 反相器 163 NAND 閘 164 AND閘 165 AND閘 166 AND閘 170 D型正反器 171 D型正反器 180 電流源 181 電晶體 182 電容 190 取樣脈波產生器 200 振盪器 201 運算放大器 202 運算放大器 205 比較器 210 電阻 211 電阻 215 電容 216 電容 230 開關 231 開關 232 開關 233 開關 234 開關 250 電晶體 1251976 251 電晶體 252 電晶體 253 電晶體 254 電晶體 255 電晶體 259 電晶體 260 反相器 300 電流波形债測裔 310 比較器 320 電流源 330 開關 340 開關 350 開關 361 電容 362 電容 400 積分器 410 運算放大器 411 運算放大器 420 電晶體 421 電晶體 422 電晶體 423 電晶體 424 電晶體 425 電晶體 450 電阻 452 電阻 460 開關 461 開關 462 開關 464 開關 466 開關 468 開關 471 電容 472 電容 473 電容 474 電容 500 脈寬調變器 511 NAND 閘 512 反相器 515 D型正反器 518 反相器 519 AND閘 520 空白電路 521 反相器 522 反相器 523 NAND 閘 525 電流源 526 電晶體 527 電容 1251976 600加法器 611 運算放大器 621電晶體 650 電阻 900模組產生器 930 第二個可程式的電容 952 XOR 閘 972暫存器 610運算放大器 620電晶體 622電晶體 651 電阻 910 第一個可程式的電容 951 時脈產生器 971暫存器 975暫存器6 is a current waveform detector according to a preferred embodiment of the present invention; FIG. 7 is a diagram showing an integrator according to a preferred embodiment of the present invention; and FIG. 8 is a circuit diagram showing a pulse width modulator according to the present invention. Figure 9 is a circuit diagram showing an adder in accordance with the present invention; Figure 1 is a block diagram showing a module generator in accordance with a preferred embodiment of the present invention; and Figure 11 is a view showing a programmable capacitor in accordance with a preferred embodiment of the present invention. [Main component symbol description] 10 Transformer 20 Transistor 30 Current sense resistor 31 Capacitor 32 Capacitor 40 Rectifier 45 Capacitor 50 Resistor 51 Resistor 60 Rectifier 65 Capacitor 70 Controller 71 Operational Amplifier 72 Operational Amplifier 73 Comparator 74 Comparator 75 Comparator 79 NAND gate 20 1251976 80 Programmable current source 81 Double carrier transistor 82 Double carrier transistor 83 Resistor 84 P mirror transistor 85 P mirror transistor 86 P mirror transistor 87 η mirror transistor 88 η mirror transistor 100 Voltage Waveform Detector 110 Capacitor 111 Capacitor 115 Capacitor 121 Switch 122 Switch 123 Switch 124 Switch 125 Switch 130 Diode 131 Diode 135 Current Source 150 Operational Amplifier 151 Operational Amplifier 155 Comparator 156 Critical Signal 161 Inverter 162 Inverter 163 NAND gate 164 AND gate 165 AND gate 166 AND gate 170 D-type flip-flop 171 D-type flip-flop 180 current source 181 transistor 182 capacitor 190 sample pulse generator 200 oscillator 201 operational amplifier 202 operational amplifier 205 Comparator 210 Resistor 211 Resistor 215 Capacitor 216 Capacitor 230 On 231 Switch 232 Switch 233 Switch 234 Switch 250 Transistor 1251976 251 Transistor 252 Transistor 253 Transistor 254 Transistor 255 Transistor 259 Transistor 260 Inverter 300 Current Waveform Debt Sense 310 Comparator 320 Current Source 330 Switch 340 Switch 350 Switch 361 Capacitor 362 Capacitor 400 Integrator 410 Operational Amplifier 411 Operational Amplifier 420 Transistor 421 Transistor 422 Transistor 423 Transistor 424 Transistor 425 Transistor 450 Resistor 452 Resistor 460 Switch 461 Switch 462 Switch 464 Switch 466 Switch 468 Switch 471 Capacitor 472 Capacitor 473 Capacitor 474 Capacitor 500 Pulse Width Modulator 511 NAND Gate 512 Inverter 515 D-type Reactor 518 Inverter 519 AND Gate 520 Blank Circuit 521 Inverter 522 Inverter 523 NAND Gate 525 Current Source 526 transistor 527 capacitor 1251976 600 adder 611 operational amplifier 621 transistor 650 resistor 900 module generator 930 second programmable capacitor 952 XOR gate 972 register 610 operational amplifier 620 transistor 622 transistor 651 resistor 910 a programmable capacitor 951 Generator 971 register register 975

23twenty three

Claims (1)

1251976 j气.片日爆(:更)止替換暴 》,一 一-一'吵二心 “ 感丨·· ·ΙββΓ 十、申請專利範圍: 1· 一種切換式控制器,應用於一次側控制之電源供應器,包括: 一切換功率開關,透過一電流感測裝置用以切換一變壓器;其中該變壓 杰係連接到電源供應器的輸入電壓; 一切換讯號,控制該切換功率開關,用以穩定調整電源供應器的輪出電 壓與最大輸出電流; 一電壓波形偵測器,連接到該變壓器,藉由多次取樣由該變壓器的辅助 繞組所產生一電壓訊號,因而產生一電壓迴授訊號與一放電時間訊號; 其中該放電時間訊號表示該變壓器的放電時間; 一電流波形偵測器,連接該電流感測裝置,藉由量測該電流訊號用以產 · 生電流波形訊號;其中該電流訊號依據該變壓器的一次側切換電流而產 生出來; 一積分器,藉由積分該電流波形訊號與該放電時間,用以產生該電流迴 授訊號; 振盛器’用以產生振盈訊號來決定該切換訊號的切換頻率; 一電壓迴路誤差放大器與一電流迴路誤差放大器,分別地用以放大該電 壓回授訊號與該電流回授訊號;以及 一脈寬調變器,依據該電壓迴路誤差放大器的輸出與該電流迴路誤差放 鲁 大裔的輸出’用以產生該切換訊號; 其中’在该切換訊號的截止時間,猎由取樣該電壓訊號與該變壓器的放 電時間,用來產生該電壓回授訊號;在該切換訊號的導通時間,藉由量 測該變壓器的該電流訊號,用來產生電流回授訊號,其中該切換訊號依 據該電壓迴授訊號與該電流迴授訊號而產生出來。 2·如申請專利範圍第1項所述之切換式控制器,其中進一步包括: 一可程式的電流源,連接於該電壓波形偵測器的輸入,用以溫度補償; 24 其中該可紋的電流源依據該控制器的溫度產生可程式的電流。 3·如申請專利細第1項所述之切換式控制ϋ,射更進—步包括: 一模組產生器,用以產生一數位模組碼; 第可私式的電谷,連接到該振盪器與該模組產生器,依據該數位模 組碼,用以調變該切換頻率;以及 一第二可程式_容,連接職積分器與該模域生器,用以使該積分 為的時間常數與該切換頻率產生密切的關係;其中該數位模組碼控制該 第一可程式的電容與該第二可程式的電容的電容值。1251976 j gas. The film bursts (: more) to replace the storm, one-one-one 'noisy two hearts' feelings · · · ΙββΓ Ten, the scope of application for patents: 1 · A switching controller for primary side control The power supply includes: a switching power switch for switching a transformer through a current sensing device; wherein the transformer is connected to an input voltage of the power supply; a switching signal, controlling the switching power switch, The voltage output detector is connected to the transformer, and a voltage signal is generated by the auxiliary winding of the transformer by multiple sampling, thereby generating a voltage back. a signal and a discharge time signal; wherein the discharge time signal indicates a discharge time of the transformer; a current waveform detector connected to the current sensing device for measuring the current signal for generating a current waveform signal; The current signal is generated according to the primary side switching current of the transformer; an integrator, by integrating the current waveform signal and the discharge Time for generating the current feedback signal; the oscillator </ RTI> is used to generate a vibration signal to determine the switching frequency of the switching signal; a voltage loop error amplifier and a current loop error amplifier respectively for amplifying the voltage feedback a signal and the current feedback signal; and a pulse width modulator, according to the output of the voltage loop error amplifier and the current loop error of the output of the Lu's generation to generate the switching signal; wherein 'in the switching signal The cut-off time is used to generate the voltage feedback signal by sampling the voltage signal and the discharge time of the transformer; and measuring the current signal of the transformer during the on-time of the switching signal to generate current feedback a switching signal, wherein the switching signal is generated according to the voltage feedback signal and the current feedback signal. 2. The switching controller according to claim 1, further comprising: a programmable current source, An input connected to the voltage waveform detector for temperature compensation; 24 wherein the smear current source is based on the control The temperature produces a programmable current. 3. The switching control method described in the first application of the patent application, the step further comprises: a module generator for generating a digital module code; a type of electric valley connected to the oscillator and the module generator, according to the digital module code, for modifying the switching frequency; and a second programmable code, connecting the job integrator and the mode domain The time constant for the integral is closely related to the switching frequency; wherein the digital module code controls the capacitance of the first programmable capacitor and the second programmable capacitor. 4·如申w專利細第1項所述之切換式控繼,其巾該積分獅時間常數 與該切換訊號的切換週期具有密切的關係。 5·如申請專利範圍第1項所述之切換式控制器,其中該電壓波形偵測器包 括: 一取樣脈波產生器,用以產生取樣脈波訊號; 一臨界訊號,其中該臨界訊號加上該電壓訊號來產生一準位位移訊號; 一第一電容與一第二電容; 一第一訊號產生器,用以產生第一取樣訊號與第二取樣訊號,其中該第 · 一取樣訊號與該第二取樣訊號係用以交替地取樣該電壓訊號,其中第一 維持電壓與第二維持電壓係分別地維持住跨於該第一電容與該第二電 容,其中該第一取樣訊號與該第二取樣訊號,在該放電時間訊號的致能 狀態週期的這段期間,依據該取樣脈波訊號係交替地產生出來;其中一 延遲時間被插入到該放電時間訊號的一開始,其中該第一取樣訊號與該 第二取樣訊號在該延遲時間的週期的這段期間係禁能狀態; 一缓衝放大器,由該第一維持電壓與該第二維持電壓的較高電壓來產生 254. According to the switching control described in the first item of the patent application, the time constant of the integral lion has a close relationship with the switching period of the switching signal. 5. The switching controller of claim 1, wherein the voltage waveform detector comprises: a sampling pulse generator for generating a sampling pulse signal; a critical signal, wherein the critical signal is added The voltage signal is used to generate a level shift signal; a first capacitor and a second capacitor; a first signal generator for generating a first sample signal and a second sample signal, wherein the first sample signal is The second sampling signal is used to alternately sample the voltage signal, wherein the first sustain voltage and the second sustain voltage are respectively maintained across the first capacitor and the second capacitor, wherein the first sampling signal and the The second sampling signal is alternately generated according to the sampling pulse signal period during the period of the enabling state of the discharging time signal; wherein a delay time is inserted at the beginning of the discharging time signal, wherein the first sampling signal a sampling signal and the second sampling signal are disabled during a period of the delay time; a buffer amplifier, the first sustain voltage and the second High voltage holding voltage to generate 25 一維持訊號; 二第一輸出電容,藉由取樣該維持訊號用以輸出該電壓回授訊號;以及 第-個讀產生器,用以產生該放電時間訊號,當該切換訊號係禁能狀 態,其中該放電時間訊號是致能狀態,其中在該延遲時間之後,一旦該 準位位移《低於該賴迴授訊號,職電_減為禁能狀態,其中 魏电時間錢也為禁能狀態,只要該切換峨是致能狀態。 6·如申請專利範II第1項所述之_式控制器,其中該電壓波形彳貞測器多次 取樣该電壓訊絲產生終止,㈣產生該電壓迴授訊號,其中在該 變壓器的二次側切換電流下降到零之前進行立即取樣與量測該終止電 壓0 7·如申請專利範圍第3項所述之切換式控制器,其中該模組產生器包括: 一時脈產生器,用以產生時脈訊號;以及 一線性位移暫存器,依據該時脈訊號用以產生該數位模組碼。 8·如申明專利範圍弟1項所述之切換式控制器,其中該振盤器包括: 一第一電壓轉電流轉換器,用以產生振盪充電電流與振盪放電電流,其 中該第一電壓轉換電流轉換器包含振盪運算放大器、振盪電阻與振带 ^ 晶體; % 一振盪電容,並聯連接於該第一可程式的電容; 一第一振盪開關,其中該第一振盪開關的第一端點係由該振盪充電電沪 所提供,並且該第一振盪開關的第二端點係連接到該第一振盪電容; 一第二振盪開關,其中該第二振盪開關的第一端點係連接到該振盪略 容,並且該第二振盪開關的第二端點係由該振盪放電電流所驅動; 一振盪比較器,具有一非反相輸入端連接到該第一振盪器電容,其中兮 26 te烫9轉(心^替換!: ^ 1^—丨_ I |丨丨·丨丨丨丨丨丨丨,⑽||, m _… 弟一比較器產生該振盪訊號; -振盪比鮮’具有-正端輸人連接到該顧電容,其中該紐比較器 產生該振盪訊號; -第三振《1關,具有第-端點係由高臨界電壓所供給,並且第二端點 連接到該振盪比較器的負端輸入; —Μ -第四振1開關,具有第—端點係由低臨界電壓所供給,並且第二端點 連接到該振盪比較器的該負端輸入;以及 一”” -振盪反相n ’具有-輪人端連制該紐比較_輪出端,用以產生 反相振盪喊;其巾該顧訊鱗通錢讀第二振盪卿與該第四振 個關’其中該反相振盈訊號導通或截止該第一振盡開關與該第三振盈 9. 如申請專繼圍第8項所述之切換式控㈣,其巾該振魏容雜該第一 可程式的電容為並聯連接’其中該第一可程式的電容包括振盈職電 容,其中該振盪切換電容係藉由該數位模組碼來進行導通或截止。、^ 10. 如申請專利範圍第1項所述之切換式控繼,其中該電流波糊測 括: 、σ 一峰值偵測器,藉由量測該電流訊號的峰值用以產生峰值電流訊號· 一第三電容,用以維持該峰值電流訊號; 一第二輸出電容,用以產生該電流波形訊號;以及 -開關,用以導通該峰值電流訊號到該第二輸出電容,其中該開關係藉 由該振盪訊號來進行導通或截止。 ”曰 11. 如申請專利範圍第1項所述之切換式控制器,其中該積分器包括· -第二電壓轉電流轉換n,藉由時間運算放大器、時間電 = 與時間電晶 27 1裳5| 1土替墙, in.[- …' ‘** ·” « rl -.·,·一_ 體群所組成,其中該第 程式的充電電流; 一電壓轉電流轉換器依據該電流波形訊號產生可 ’’ ί該第,程式的電容並聯連接,用以產生積分訊號; 給,“二二中4¥—開關的第—端點係由該可程式的充電電流所供 w 弟開關的第二端點係連接到該時間電容,並中該一第一開 關,係藉由該放電時間訊號來進行導通或截止; f 一開關n日獨電容並聯連接,㈣放電該時間電容; 第二輸出電容’用以輸出該電流迴授訊號;以及a sustaining signal; a second output capacitor for sampling the sustain signal for outputting the voltage feedback signal; and a first read generator for generating the discharge time signal, when the switching signal is disabled The discharge time signal is an enable state, wherein after the delay time, once the level displacement is lower than the feedback signal, the service power is reduced to the disabled state, and the Wei electricity time is also disabled. As long as the switch is enabled. 6. The controller of claim 1, wherein the voltage waveform detector repeatedly samples the voltage signal to terminate, and (4) generates the voltage feedback signal, wherein the transformer is in the second The switching controller of the third aspect of the invention is the same as the switching controller of the third aspect of the invention, wherein the module generator comprises: a clock generator for Generating a clock signal; and a linear shift register for generating the digital module code according to the clock signal. 8. The switching controller of claim 1, wherein the vibrator comprises: a first voltage to current converter for generating an oscillating charging current and an oscillating discharging current, wherein the first voltage conversion The current converter comprises an oscillating operational amplifier, an oscillating resistor and a sinusoidal crystal; a oscillating capacitor connected in parallel to the first programmable capacitor; a first oscillating switch, wherein the first apex of the first oscillating switch Provided by the oscillating charging device, and the second end of the first oscillating switch is connected to the first oscillating capacitor; and a second oscillating switch, wherein the first end of the second oscillating switch is connected to the Oscillation is slightly, and the second end of the second oscillation switch is driven by the oscillating discharge current; an oscillating comparator having a non-inverting input connected to the first oscillator capacitor, wherein 兮26 te 9 turns (heart ^ replacement!: ^ 1^ - 丨 _ I | 丨丨 · 丨丨丨丨丨丨丨, (10) | |, m _... Brother a comparator produces the oscillation signal; - Oscillation ratio fresh 'has - The positive input connects to the a capacitor, wherein the button comparator generates the oscillation signal; - a third oscillator "1 off, having a first-end phase supplied by a high threshold voltage, and a second terminal connected to a negative terminal input of the oscillation comparator; Μ - a fourth-vibration 1 switch having a first-end terminal supplied by a low threshold voltage, and a second terminal connected to the negative-end input of the oscillation comparator; and a ""-oscillation inversion n' having - The round man is connected to the new one. The round-out end is used to generate the reverse-phase oscillation. The towel is used to read the second oscillation and the fourth oscillation. The reverse-phase vibration signal is turned on. Or, the first vibrating switch and the third vibrating end are cut off. 9. If the switching control (4) described in item 8 is applied, the wiper of the first vibrating capacitor is connected in parallel. The first programmable capacitor includes a oscillating capacitance, wherein the oscillating switching capacitor is turned on or off by the digital module code. 10. The switching control as described in claim 1 Following, the current wave paste includes: σ-peak detector, by volume The peak of the current signal is used to generate a peak current signal, a third capacitor for maintaining the peak current signal, a second output capacitor for generating the current waveform signal, and a switch for turning on the peak current signal To the second output capacitor, wherein the open relationship is turned on or off by the oscillation signal. The switch controller according to claim 1, wherein the integrator comprises: - second Voltage to current conversion n, by time op amp, time power = with time crystal 27 1 skirt 5 | 1 soil for the wall, in.[- ...' '** ·" « rl -.·, · a _ body a group consisting of a charging current of the first program; a voltage-to-current converter generates a signal according to the current waveform signal, and the capacitors of the program are connected in parallel to generate an integrated signal; The first end of the switch is connected to the time capacitor by the programmable charging current, and the first end of the switch is connected to the time switch by the discharge time signal. Turn on or cut f; f a switch n day alone capacitor connected in parallel, (4) discharge the time capacitor; second output capacitor ' is used to output the current feedback signal; 用鱗·積分域職第三輸轉容,其愧第三開關 係猎由该振盪訊號來進行導通或截止。 12.如=請,細第〗項所述之切換式控繼,其中物換織具有一最 守門—物換喊是係致能狀態’可進-步確保該放電時間 的最小值,用以多次取樣該電壓訊號。 13·-種切換式控制II,應用於—次側控制之電源供應器,包括·· -切換功率關,肋切換—變壓器,其中該變壓器係連接到電源供應 器的輸入電壓; 〜The third switch of the scale and integral domain is used, and the third switch is turned on or off by the oscillation signal. 12. If the method is as follows, please refer to the switching control described in item 〖, in which the material exchange has a maximum gate--the object is called the enable state, and the minimum value of the discharge time can be ensured. The voltage signal is sampled multiple times. 13·- Switching control II, applied to the power supply of the secondary side control, including ··· switching power off, rib switching-transformer, wherein the transformer is connected to the input voltage of the power supply; -切換訊號,控繼切換神關,肋穩定電驗魅的輸出電 壓與最大輸出電流; -電壓波職·,連接_變_,藉衫次取樣由該麵器的輔助 繞組所產生該電壓訊號,因而產生該電壓迴授訊號與放電時間訊號;其 中該放電時間訊號表示該變壓器的該放電時間; 一振盪器’用以產生振盪訊號來決定該切換訊號的切換頻率; 一電壓迴路誤差放大器與一電流迴路誤差放大器,分別地用以放大該電 壓回授訊號與該電流回授訊號;以及 28 1¾¾¾.(更征替換; ............. II =寬調變器,依據該電魏路誤差放大器的輪出與該電流迴路誤差放. 大器的輸出,用以產生該切換訊號。 其中丄-控制器,連接到該變壓器,在該切換訊號的截止時間的這段期 間藉由夕次取樣電壓訊號與該變麼器的放電時間,用來產生電壓回授 訊號,其中該切換訊號依據該電壓迴授訊號而產生出來。 H·如申請專利範圍第13項所述之切換式控制器,其中進一步包括: 可私式的電流源,連接到該電壓波形制器的輸入端,用以溫度補償, 其中該可程式的電流驗據該控制H的溫度產生可程式的電流。 15·如申請專利範圍第13項所述之切換式控制器,其中更進一步包括: 模組產生器,用以產生一數位模組碼; 第可紅式的電谷,連接到該振盪器與該模組產生器,依據該數位模 組碼,用以調變該切換頻率;以及 一第二可程式的電容,連接到該積分器與該模組產生器,用以使該積分 器的時間常數與該切換頻率產生密切的關係,其中該數位模組碼控制該 第一可程式的電容與該第二可程式的電容的電容值。 29 1251976 ΓΜΜ『~ΊΠ[ι_ I III u mr «uiBuniUMrm 晴«II tKtrnmm-Mm丨_«u 11 师晒 ㈣.;Um* -, 光月日修(更j正替換h 94 :. 咖―'-H ll( ......,. 十一、圖式: VinC y- Vaux 65 一 J7 5 -N- l 60 /50 51 31- Vdet、 1~Wt 70 一 vcc DET COMV OUT COMI CS GND Vpwm Vcs Ht: -32 IP1 s Lp Π, T Is VAl-Switching the signal, controlling the switching of the gods, the output voltage and the maximum output current of the rib-stabilized electric enchantment; - voltage wave, · connection _ change _, the sampling of the voltage generated by the auxiliary winding of the mixer Therefore, the voltage feedback signal and the discharge time signal are generated; wherein the discharge time signal indicates the discharge time of the transformer; an oscillator 'is used to generate an oscillation signal to determine the switching frequency of the switching signal; a voltage loop error amplifier and a current loop error amplifier for respectively amplifying the voltage feedback signal and the current feedback signal; and 28 13⁄43⁄43⁄4. (replacement replacement; ............. II = wide modulation The output of the amplifier is generated according to the output of the error amplifier of the electric Wei road and the output of the current loop. The 丄-controller is connected to the transformer at the cutoff time of the switching signal. During this period, the voltage signal and the discharge time of the converter are used to generate a voltage feedback signal, wherein the switching signal is generated according to the voltage feedback signal. The switching controller of claim 13 , further comprising: a private current source connected to the input end of the voltage waveform controller for temperature compensation, wherein the programmable current test Controlling the temperature of H to generate a programmable current. The switching controller of claim 13, further comprising: a module generator for generating a digital module code; An electric valley connected to the oscillator and the module generator for modulating the switching frequency according to the digital module code; and a second programmable capacitor connected to the integrator and the module And the time constant of the integrator is closely related to the switching frequency, wherein the digital module code controls a capacitance value of the first programmable capacitor and the second programmable capacitor. 29 1251976 ΓΜΜ ~ΊΠ[ι_ I III u mr «uiBuniUMrm clear«II tKtrnmm-Mm丨_«u 11 师(四).;Um* -, 光月日修 (more j is replacing h 94 :. 咖-'-H ll( ......,. XI. Schema: VinC y- Vaux 65 a J7 5 -N- l 60 /50 51 31- Vdet, 1~Wt 70 a vcc DET COMV OUT COMI CS GND Vpwm Vcs Ht: -32 IP1 s Lp Π, T Is VAl Vblk^^&quot;*^CLR _ VSP2 Vspi^^n_ IS1 To TDS △- △ Δ Ip 30,: -V/ \Vblk^^&quot;*^CLR _ VSP2 Vspi^^n_ IS1 To TDS △- △ Δ Ip 30,: -V/ \ Td- -Tp 第2圖 30Td- -Tp Figure 2 30 第3圖Figure 3 156 第4圖 31 I25 千 P\ M l〇v i3156 Figure 4 31 I25 thousand P\ M l〇v i3 32 正替換32 positive replacement 500500 33 600 1251^76 釈更)正替换g 一.. . _ι 一 一——'J33 600 1251^76 釈更) is replacing g one.. . _ι one one - 'J 900900 Pn 第10圖 34 1?5灰91(更}正替* Μ, 1,1.3_ Pi P2 PnPn Figure 10 34 1? 5 Gray 91 (More} Positive * Μ, 1,1.3_ Pi P2 Pn 第11圖Figure 11 3535
TW93125940A 2004-08-27 2004-08-27 Switching control circuit for primary-side-controlled power converters TWI251976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93125940A TWI251976B (en) 2004-08-27 2004-08-27 Switching control circuit for primary-side-controlled power converters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93125940A TWI251976B (en) 2004-08-27 2004-08-27 Switching control circuit for primary-side-controlled power converters

Publications (2)

Publication Number Publication Date
TW200608674A TW200608674A (en) 2006-03-01
TWI251976B true TWI251976B (en) 2006-03-21

Family

ID=37453841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93125940A TWI251976B (en) 2004-08-27 2004-08-27 Switching control circuit for primary-side-controlled power converters

Country Status (1)

Country Link
TW (1) TWI251976B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411202B (en) * 2010-12-20 2013-10-01 Richtek Technology Corp Controller for power converter and method for controlling power converter
TWI423004B (en) * 2006-07-06 2014-01-11 Ricoh Co Ltd A method and apparatus for detecting temperature to control a plurality of circuits with small circuit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191671B2 (en) * 2007-02-17 2013-05-08 セイコーインスツル株式会社 Adder and current mode switching regulator
TWI402653B (en) * 2010-04-30 2013-07-21 Richpower Microelectronics Temperature compensation circuit and method for a primary side feedback system of an isolated type power converter
EP3485562B1 (en) 2016-07-15 2022-05-04 Analog Devices International Unlimited Company Balancing charge pump circuits
CN108716319A (en) * 2018-08-01 2018-10-30 珠海格力电器股份有限公司 Intelligent door lock, intelligent door lock method of supplying power to and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423004B (en) * 2006-07-06 2014-01-11 Ricoh Co Ltd A method and apparatus for detecting temperature to control a plurality of circuits with small circuit
TWI411202B (en) * 2010-12-20 2013-10-01 Richtek Technology Corp Controller for power converter and method for controlling power converter
US8634212B2 (en) 2010-12-20 2014-01-21 Richtek Technology Corp Controller and controlling method for power converter

Also Published As

Publication number Publication date
TW200608674A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US10277132B2 (en) Systems and methods for constant voltage mode and constant current mode in flyback power converters with primary-side sensing and regulation
TWI448060B (en) A system and method for adjusting a power converter
US7382633B2 (en) DC converter
US20170163026A1 (en) System and method providing reliable over current protection for power converter
US7342812B2 (en) Switch mode power supply systems
TWI357708B (en) Output current control circuit and output current
TWI478470B (en) Switch power controller and method of operating switch power
US8199538B2 (en) Switched mode power supply with improved current sensing
US8922174B2 (en) Power factor correction circuit with frequency jittering
TWI385499B (en) Slave switching circuit and interleaved slave switching method
CN101252800A (en) LED drive circuit
CN101243602B (en) Close-loop PWM controller for primary-side controlled power converters
TW201029302A (en) Slope compensation circuit
CN105978317A (en) Switching power supply device control circuit and switching power supply device
US6515874B2 (en) Clocked power supply
JP2004040856A (en) Switching power supply
JP2006254590A (en) Artificial resonance system switching power supply and artificial resonance system switching power circuit using the same
KR100982169B1 (en) Switching control circuit for primary-side controlled power converters
TWI251976B (en) Switching control circuit for primary-side-controlled power converters
JP4733186B2 (en) Switching control circuit with variable switching frequency for a power converter with controlled primary side
CN100433520C (en) Switching control device for primary side control output current of power supply
CN100397766C (en) Suitching type controller
TWI251979B (en) Switching control circuit with variable switching frequency for primary-side-controlled power converters
TWM303563U (en) Primary-side controlled switching regulator
JP2021103931A (en) Resonance voltage attenuation detection circuit, semiconductor device for switching power supply, and switching power unit