1251950 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於一種發光二極體的製造方法,且特別有關 於一種有機無機複合發光二極體的製造方法。 【先前技術】 有機發光二極體(Organic Light Emitting Diode,簡稱 OLED )顯示器乃為一種利用有機化合物作為發光材料的平板 顯示器(Flat Panel Display ):其發光機制為電致發光 (electroluminescence,簡稱EL ),所以又稱有機電致發光顯 示器(Organic Electroluminescence Device,簡稱 0LED)或有 機電放射顯示器(Organic Electroemissive Device,簡稱 0ED ), 其結構如第1圖所示,包含基材10、陽極電極20、電洞傳輸 層(Hole Transport Layer,簡稱 HTL ) 30、電致發光層 (Electroluminescent Layer,簡稱 EL ) 40、電子傳輸層(Electron Transport Layer,簡稱ETL ) 50與陰極電極60 ;當於此結構外 加一電壓時,電子51與電洞31將會藉由電子傳輸層50與電 洞傳輸層30傳輸至電致發光層40,然後在電致發光層40中再 結合(recombination )而放出光,簡單地說,就是一種由電生 成光的裝置。 其中的基材可為玻璃基材或塑膠基材,基材為塑膠材質的 有機發光二極體具有可撓區性;此外,由於電子與電洞僅在電 致發光層中再結合發出光,而此電致發光層非常薄,甚至可只 為單層分子層的塗佈,故結合的速度非常快,使響應時間 (response time )非常短;另外,面版可由4微米的微顯示器 (microdiaplay)做到100时的大面版,應用非常廣,且無液晶 1251950 顯示器的視角問題,且具有高解析度、 … 而言之,有機發光二極體可說 ’.,夕項k點,紅 作由σ 種相§理想的顯示器類型。 發極體材料本身的限制,使得其穩定性、 i先效率與發光波長等特性一 體發光層皆是由有機材質所,且成1:善。由於有機發光二極 成有機發光二極體的使用U 義村料穩定性不佳,造 用妄命已可、雖目㈣機發光材料使 料卻有色偏的fh “ — α吏哥1"ρ較長的有機發光材 Ρ有色偏的問喊’如紅S變成橘紅色 :=本身外部量子效率(~~二:= 件二=:!:,也就是元件所發出的光能相對於所輸入元 么尤渡長對於顯不斋而言相當 光材料在發光光譜, 由於有機發 M 所具有的“寬(Ml.Width at Half 簡稱贿M)皆很寬,無法具高色彩純度的特質, 且叙先波長的選擇有限。這歧問 用的限制。 -’璉…成育加發光二極體應 【發明内容】 制土有4"於此,本發明的目就是提供—種有機無機發光二極體 法,藉由有機無機複合量子點的使用,改善發光二極體 的穩定度、發光效率及發光波長。 _ 、土為達上述目的,本發明提供一種有機無機發光二極體之製 l方去&括·提供基材;形成第一電極於上述基材上 有機無機發光層;L . , r _ ^ 或知尤赝於上述弟一電極上,其中此有機無機發光層包 含複數個有機無機複合量子點分散於高分子令,且每 機複合量子點包括尬(X係擇自於3^與其組合= 1251950 =之=群中)量子點與有機分子包覆該量子點表面;以及形 成弟二笔極於上述有機無機發光層上。 本發明是在習知之有機發光二極體結構中,使用 =複合量子點做為發光材料,此特徵之發光二極體具有下列優 担一⑴由於ZnX無機物質时在,使得發光元件的财孰性 鈥南,進而提高其穩定性’使使用壽命增加。 ⑺本發明之發光元件的發光效率高於—般使用高分子或 小分子的有機發光二極體(即PLED肖〇led)的發光效率, 且也比早獨使用量子點之發光元件的發光效率還高。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating a light-emitting diode, and more particularly to a method of fabricating an organic-inorganic composite light-emitting diode. [Prior Art] An Organic Light Emitting Diode (OLED) display is a flat panel display using an organic compound as a light-emitting material: its light-emitting mechanism is electroluminescence (EL) Therefore, it is also called an Organic Electroluminescence Device (OLED) or an Organic Electroemissive Device (0ED). The structure is as shown in FIG. 1 and includes a substrate 10, an anode electrode 20, and electricity. a hole transport layer (HTL) 30, an electroluminescent layer (EL) 40, an electron transport layer (Electron Transport Layer, ETL) 50 and a cathode electrode 60; when a voltage is applied to the structure At this time, the electrons 51 and the holes 31 will be transmitted to the electroluminescent layer 40 by the electron transport layer 50 and the hole transport layer 30, and then recombined in the electroluminescent layer 40 to emit light, simply Is a device that generates light by electricity. The substrate may be a glass substrate or a plastic substrate, and the organic light-emitting diode of the plastic material has a flexible region; and, since the electrons and the holes are only combined in the electroluminescent layer to emit light, The electroluminescent layer is very thin, and can even be coated only by a single layer of molecular layers, so the speed of bonding is very fast, so that the response time is very short; in addition, the panel can be microdisplay by 4 micron (microdiaplay) The 100-meter large-format version is widely used, and has no viewing angle problem of the liquid crystal 1251950 display, and has high resolution, ..., the organic light-emitting diode can be said to be '., the evening item k point, red A type of display that is ideal for σ. The limitation of the polar body material itself makes the stability, the efficiency of the first, and the wavelength of the light emission. The light-emitting layer is made of organic materials and is 1: good. Due to the poor stability of the organic light-emitting diodes into the organic light-emitting diodes, the stability of the U-village material is not good, and the life-threatening effect is good, although the (4) machine-emitting materials make the materials have a color-biased fh “—α吏哥1"ρ Long organic luminescent material Ρ 问 ' ' 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 = = = = = = = = = = = = = = = =尤尤渡长 is quite a light material in the luminescence spectrum for the display of the fast, because the organic hair M has a wide (Ml. Width at Half bribe M) is wide, can not have the characteristics of high color purity, and The choice of wavelength first is limited. The limitation of this disambiguation. - '琏...成育+LEDs should be [invention] The soil has 4" Here, the object of the present invention is to provide an organic-inorganic light-emitting diode The method improves the stability, luminous efficiency and luminescent wavelength of the light-emitting diode by using the organic-inorganic composite quantum dot. _, soil for the above purpose, the invention provides an organic-inorganic light-emitting diode & provide a substrate; form a first electrode on The organic-inorganic luminescent layer on the substrate; L., r _ ^ or 赝 赝 on the above-mentioned electrode, wherein the organic-inorganic luminescent layer comprises a plurality of organic-inorganic composite quantum dots dispersed in a polymer, and each compound is compounded The quantum dots include 尬 (X is selected from 3^ and its combination = 1251950 = = in the group) quantum dots and organic molecules cover the surface of the quantum dots; and the formation of the second is extremely above the organic inorganic luminescent layer. In the conventional organic light-emitting diode structure, the composite quantum dot is used as the light-emitting material, and the light-emitting diode of this feature has the following advantages: (1) The luminescent property of the light-emitting element due to the ZnX inorganic substance South, and thus improve its stability, 'increasing the service life. (7) The luminous efficiency of the light-emitting element of the present invention is higher than that of a general-purpose or small molecule organic light-emitting diode (ie, PLED), and It is also higher in luminous efficiency than a light-emitting element that uses quantum dots earlier.
⑺由於無機㈣的發光波峰原本就比有機材料的發光波 缘較窄’也就是發光色彩純度較純,加上量子點的發光波峰更 ^窄’所以可得色彩純度高的發光元件;此外,藉由控制ZnX 里子點的摻雜及/或尺寸,即可得不同發光顏色的發光元件,故 發光顏色的選擇性相當廣泛。 【實施方式】 【實施方式1】 第2圖為本發明實施方式i中之有機無機發光二極體之結 構圖’由下而上依序為基材11〇、陽極電# 12〇、電洞傳輸層 130、電致發光層14〇與陰極電極⑽。其中陰極電極16〇可二 含:個或-個以上之電極,例如圖示中包括第一陰極電極⑹ 與第二陰極電極162 ;且有複數個有機無機複合量子點1C均 句^散在南分子144中,形成電致發光層14Q,此有機無機複 合夏子點143包括(無機)量子點141與有機材料,且 機材料142包覆量子點141表面。 1251950 承上所述之有機無機發光二極體,由於此有機無機發光二 極體為下方發光,故所使用的基材11 〇與陽極電極120需為透 明材質;在本實施方式中,基材110為玻璃基材或塑膠基材, 且以塑膠基材所製成的有機發光二極體會具有可撓區性的優 點;而陽極電極120為銦錫氧化物(indium tin oxide,簡稱 ITO),銦錫氧化物為一種導電材質,常用在有機發光二極體 中。陰極電極160為金屬電極,如Ca、Ag、Li、LiF、Mg、Α1 與其組合物。位於陽極電極120上的電洞傳輸層130為 N,N’-di(naphthalen)-N,N’-diphenyl-benzidine ( NPB )、N,N’-bis (naphthalen-l-yl)-N?N,-bis(phenyl)benzidine ( α-ΝΡΒ ) ' N3N5-di (naphthalene-1 -yl)N,N5-diphenyl-9?95-dimethyl-fluorene( DMFL-NPB ) - N?N5-di(naphthalene-l-yl)-N5N5-diphenyl-spiro ( Spiro-NPB ) ^ N5N!-Bis-(3-methylphenyl)-N?Nf-bis-(phenyl)-benzidine (TPD )、N?N5-bis-(3-methylphenyl)-N5N5-bis-(phenyl)-spiro (Spiro-TPD) - N?N5-bis-(3-methylphenyl)-N5N?-bis-(phenyl)-95 9-diphenyl-fluorene (DMFL-TPD)、l,3-bis(carbazol-9-yl)-benzene (MCP)、l,3,5-tris(carbazol-9-yl)-benzene (TCP)、N, N?N53N5-tetrakis(naphth-l-yl)-benzidine ( TNB ) - poly (N-vinyl carbazole) ( PVK)。電致發光層140為本發明最重要的一層, 其中量子點141為ZnX ( X係擇自於S、Se、Te與其組合物所 組成之族群中),且此ZnX量子點尚可摻雜其它元素,如過渡 元素、鹵素或其組合,以改變此量子點的發光效率與發光波長 等特性;此外,不同的量子點尺寸也會影響其發光效準與發光 波長;另外’包覆量子點141表面的有機材料142為脂肪酸或 磷脂;量子點141與有機材料142構成有機無機複合量子點 143,此有機無機複合量子點143可藉一分子間作用力均勻分 1251950 散於高分子144中,此高分子144為導電高分子,此導電高分 子為發光高分子或共輛高分子,為卩〇1;/(2-1111:11〇1}^5-(2、 ethylhexyloxy)-l54-phenylenevinylene) ( MEH-PPV) 、poly[2-Methoxy-5-(2 ?-ethylhexyloxy)-l,4-phenyleneviny 1^16-00-4,41-bis phenylenevinylene]( MEH-BP-PPV)、poly[(9,9-dioctylfluoren-2, 7-diyl)-co-(l54-diphenylene-vinylene-2-methoxy-5- {2-ethylhexy loxyjbenzene)] (PF-BV-MEH) 、poly[(9,9-dioctylfluoren-2,7-diyl)-co-(2,5-dimethoxybenzen-l54-diyl)] ( PF-DMOP ) " poly[(95 9-dihexylfluoren-257-diyl)-alt-co-(benzen-154-diyl)]( PFH ) ^ poly [(959-dihexylfluoren-257-diyl)-co-(9-ethylcarbazol-237-diyl)]( PFH-EC) 、poly[(9,9-dihexylfluoren-2,7-diyl)-alt>co-(2-methoxy -5- {2-ethylhexyloxy}phenylen-134-diyl)]( PFH-MEH )" poly[(9,9-dioctylfluoren-2,7-diyl)( PFO)、poly[(9,9-di-n-octylfluoren-2,7-diyl)-co-(l34-vinylenephenylene)] ( PF-PPV)、p〇ly[(9,9-dihexylfluoren-257-diyl)-alt-co-(benzen-l,4-diyl)] ( PF-PH )、 poly[(959-dihexylfluoren-2?7-diyl)-alt-co-(939,-spirobifluoren-2? 7-diyl)] (PF-SP) 、poly(N,N’-bis(4-butylphenyl)-N,N’-bis (phenyl)benzidine (poly-TPD)、poly(N,Nf-bis(4-butylphenyl)-N3Nf-bis(phenyl)benzidine ( poly-TPD-POSS )、poly[(9,9-dihexylfluoren-257-diyl)-co-(N5N,-di(4-butylphenyl)-N5N,-diphe nyl-^Uiyl-1,4-diaminobenzene)] ( TAB-PFH )、N,N’-pis (phenanthren-9-yl)-N5N,-diphenylbenzidine ( PPB) 〇 如第2圖所示之有機無機發光二極體,其製造方法如下: 提供基材110 ;形成陽極電極120於基材110上;形成電洞傳 輸層130於陽極電極120上;形成電致發光層140於上述電洞 傳輸層130上;以及形成依序第一陰極電極161與第二陰極電 10 1251950 極162於電致發光層140上,構成陰極電極160。 承上所述之有機無機發光二極體之製造,其中陽極電極 120、電洞傳輸層130、第一陰極電極161與第二陰極電極162 的形成皆利用習知之製造方法;但本發明特色之電致發光層 140之詳細製法如下:將包覆脂肪酸或磷脂之ZnSe量子點與 MEH-PPV、MEH-BP-PPV、PF、PF-BV-MEH、PF-DMOP、PFH、 PFH-EC、PFH-MEH、PFO、PFOB、PF-PPV、PF-PH、PF-SP、 poly-TPD、poly-TPD-P〇SS、TAB-PFH、PPB 混合,混合方式 為先將高分子以10 mg/ml溶於甲苯溶劑中,其後再將量子點以 高分子:量子點材料為1 ·· 〇、1 : 〇·〇25、1 ·· 0·05之重量比例 摻混於前述之高分子溶液中,形成一混合溶液;再將此混合溶 液旋轉塗佈於電洞傳輸層130上,此旋轉塗佈方式為在充滿氮 氣之手套箱内,將前述混合液滴於銦錫氧化物透明導電玻璃 上,並使用旋轉塗佈機,以4000 rpm之旋塗轉速旋塗20秒, 以將高分子膜製備於銦錫氧化物透明導電玻璃上。將鍍好的高 分子膜置於真空烘箱中烘乾,此真空烘箱的真空度為ίο-3 toir,再經70〜80°C與5小時的熱處理後,即形成電致發光層 140。 【實施方式2】 第5圖為本發明實施方式2中之有機無機發光二極體之結 構圖,由下而上依序為基材210 '陽極電極220、電洞傳輸層 230、電致發光層240、電子傳輸層250與陰極電極260。其中 陰極電極260可包含一個或一個以上之電極,例如圖示中包括 第一陰極電極261與第二陰極電極262 ;且有複數個有機無機 複合量子點243均勻分散在高分子244中’形成電致發光層 11 1251950 241 輿 240,此有機無機複合量子點243包括(無機)量子點 有機材料224,且有機材料242包覆量子點241表面。 承上所述之有機無機發光二極體,由於此有機無機聲$ 極體為下方發光,故所使用的基材210與陽極電極220需%〜 明材質;在本實施方式中’基材210為玻璃基材或塑膠基0 且以塑膠基材所製成的有機發光二極體會具有可撓區性# _ 點;陽極電極220為與銦錫氧化物(indium tin oxide,鈴< 間% 1丁〇),銦錫氧化物為一種導電材質,常用在有機發光二極體 中。陰極電極260為金屬電極,如Ca、AgLi、LiF、Mg、A1 與其組合物。位於陽極電極220上的電洞傳輸層230為 N5N’-di(naphthaleii)-N,N’-diphenyl-benzidine ( NPB )、N,N、bis (naphthalen-l-yl)-N5N,-bis(phenyl)benzidine ( α-ΝΡΒ ) - N5N5-di (naphthalene-1 -yl)N5N5-diphenyl-959,-dimethyl-fluorene( DMFL-NPB )、N,N’-di(naphthalene-l-yl)-N,N’-diphenyl-spiro ( Spiro-NPB ) - N,N'-Bis-(3-methylphenyl)-N5N!-bis-(phenyl)-benzidine (TPD )、N3N5-bis-(3-methylphenyl)-N5N5-bis-(phenyl)-spiro (Spiro-TPD) ^ N3N5-bis-(3-methylphenyl)-N?N,-bis-(phenyl)-95 9-diphenyl-fluorene (DMFL-TPD) 、l,3-bis(carbazol-9-yl)- benzene ( MCP )、l,3,5-tris(carbazol-9-yl)-benzene ( TCP )、N,N, N,,NMetrakis(naphth-l-yl)-benzidine ( TNB )、poly (N-vinyl carbazole) ( PVK)。電致發光層240為本發明最重要的一層, 其中量子點241為ZnX ( X係擇自於S、Se、Te與其組合物所 組成之族群中),且此ZnX量子點尚可摻雜其它元素,如過渡 元素、A素或其組合,以改變此量子點的發光效率與發光波長 等特性;此外,不同的量子點尺寸也會影響其發光效率與發光 波長;另外,包覆量子點241表面的有機材料242為脂肪酸或 12 1251950 石粦脂,置子點2 41與有機材料2 4 2構成有機無機複合量子點 243,此有機無機複合量子點243可藉一分子間作用力均勻分 散於高分子244中,此高分子244為導電高分子,此導電高分 子為發光高分子或共#厄高分子,為卩〇1;/(2-1111:11〇叉;7-5-(2’-ethylhexyloxy)-1 ?4-phenylenevinylene) ( MEH-PPV ) 、poly[2-Methoxy-5-(2r-ethylhexyloxy)-l 54-phenylenevinylene-co-454f-bis phenylenevinylene]( MEH-BP-PPV) - poly[(959-dioctylfluoren-25 7-diyl)-co-(l ?4-diphenylene-vinylene-2-methoxy-5- {2-ethylhexy loxyjbenzene)] (PF-BV-MEH) - poly[(9?9-dioctylfluoren-2?7-diyl)-co-(235-dimethoxybenzen-l34-diyl)] ( PF-DMOP ) - p〇ly[(95 9-dihexylfluoren-2,7-diyl)-alt-co-(benzen-1,4-diyl)]( PFH )、poly [(9,9-dihexylfluoren-2,7-diyl)-co-(9-ethylcarbazol-2,7-diyl)]( PFH-EC ) " poly[(9,9-dihexylfluoren-257-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}phenylen-l,4-diyl)] ( PFH-MEH)-poly[(959-dioctylfluoren-257-diyl) (PFO) - poly[(9?9-di-n-octylfluoren-237-diyl)-co-(l,4-vinylenephenylene)] ( PF-PPV)、 poly[(959-dihexylfluoren-257-diyl)-alt-co-(benzen-1 ?4-diyl)]( PF-PH) 、poly[(9,9-dihexylfluoreii_2,7-diyl)-alt-co-(9,9f-spirobifluoren-2,7-diyl)](PF-SP)、poly(N,Nf-bis(4-butylphenyl)-N,N’-bis(plienyl)benzidine( poly-TPD)、poly(N,N’-bis(4-butylphenyl)-N5N,-bis(phenyl)benzidine ( poly-TPD-POSS ) ' poly[(9?9-dihexylfluoren-257-diyl)-co-(N?N,-di(4- butylplienyl)-N,N’-diplienyl-4,4’-diyl-1,4-diaminobenzene)]( TAB-PFH) > N?N,-pis(phenanthren-9-yl)-N?N,-diphenylbenzidine (PPB )。位於電致發光層240上的電子傳輸層250為訌15-(8-hydroxyquinoline) aluminum ( Alq3 ) 、bis-(2-methyl-8_ 13 1251950 quinolinolate)-4-(phenylphenolato)-aluminium ( BAlq3 ) Λ 2?9-dimethyl-437-diphenyl-1,10-phenanthroline ( BCP)、4,4f-bis (carbazol-9-yl)biphenyl (CBP) ^ 3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole ( TAZ ) o 如第5圖所示之有機無機發光二極體,其製造方法如下: 提供基材210 ;形成陽極電極220於基材210上;形成電洞傳 輸層230於陽極電極220上;形成電致發光層240於上述電洞 傳輸層230上;形成電子傳輸層250於電致發光層240上;以 及形成依序第一陰極電極261與第二陰極電極262於電子傳輸 層250上,構成陰極電極260。 承上所述之有機無機發光二極體之製造,其中陽極電極 220、電洞傳輸層230、電子傳輸層250、第一陰極電極261與 第二陰極電極262的形成皆利用習知之製造方法;但本發明特 色之電致發光層240之詳細製法如下:將包覆脂肪酸或磷脂之 ZnSe 量子點與 MEH-PPV、MEH-BP-PPV、PF、PF-BV-MEH、 PF-DMOP、PFH、PFH-EC、PFH-MEH、PFO、PF〇B、PF-PPV、 PF-PH、PF-SP、poly-TPD、poly-TPD-POSS、TAB-PFH、PPB 混合,混合方式為先將高分子以10 mg/ml溶於曱苯溶劑中,其 後再將量子點以高分子:量子點材料為1 : 〇、1 : 〇·〇25、1 : 0.05之重量比例摻混於前述之高分子溶液中,形成一混合溶 液;再將此混合溶液旋轉塗佈於電洞傳輸層230上,此旋轉塗 佈方式為在充滿氮氣之手套箱内,將前述混合液滴於電洞傳輸 層230上,並使用旋轉塗佈機,以4000 rpm之旋塗轉速旋塗 20秒,以將高分子膜製備於電洞傳輸層230上。將鍍好的高分 子膜置於真空烘箱中烘乾,此真空烘箱的真空度為10° torr, 再經70〜80°C與5小時的熱處理後,即形成電致發光層240。 14 1251950 【實施方式3】 構圖第由 =本發明實施方式3中之有機無機發光二極體之結 340、電子傳^依序為基材I陽極電極32°、電致發光層 人一個力 ^與陰極電極36〇。其中陰極電極36〇可包 二二^上之電^ ·圖示中包括第一陰極電極361 ”弟一 U電極362;且有複數個有機無機複合量子點⑷均 ^散在高分子344中,形成電致發光層340,此有機無機複 :里子點343包括(無機)量子點341與有機材料324,且有 機材料342包覆量子點341表面。 承上所述之有機無機發光二極體,由於此有機無機發光二 極體為下方發光,故所使用的基材31〇與陽極電極32〇需為透 明材質 '在本實施方式中,基材310為玻璃基材或塑膠基材, 、土膠基材所製成的有機發光二極體會具有可撓區性的優 點;陽極電極320為與銦錫氧化物(mdmm tm 〇xide,簡稱 IT〇),銦锡氧化物為—種導電材f,常用在有機發光二極體 T。陰極電極360為金屬電極,如LiF、A卜Li、Ca、Mg、Ag 與其組合物。電致發光層340為本發明最重要的一層,其中量 :點341為ZnX(x係擇自於s、〜、Te與其組合物所組成之 知群中),且此ZnX量子點尚可摻雜其它元素,如過渡元素、 鹵素或其組合,以改變此量子點的發光效率與發光波長等特 ^生’此外,不同的量子點尺寸也會影響其發光效率與發光波 長,另外,包覆量子點341表面的有機材料342為脂肪酸或鱗 月曰,里子點341與有機材料342構成有機無機複合量子點343, 此有機無機複合量子點343可藉一分子間作用力均勻分散於高 刀子344中,此咼分子344為導電高分子,此導電高分子為發 15 1251950 光高分子或共牵厄高分子,為poly(2-mthoxy-5-(2'-ethylhexyl〇xy) -1,4-phenylenevinylene) ( MEH-PPV) > poly[2-Methoxy-5-(2f-ethylhexyloxy)-1 ?4-phenylenevinylene-co-434,-bisphenyleneviny lene] ( MEH-BP-PPV ) - poly[(959-dioctylfluoren-2?7-diyl)-co-(134-diphenylene-vinylene-2-methoxy-5- {2-ethylhexyloxy} benze ne)] ( PF-BV-MEH) - poly[(959-dioctylfluoren-2?7-diyl)-co-(2?5-dimethoxybenzen-l54-diyl)] ( PF-DMOP) 、poly[(959-dihexylfluoren-257-diyl)-alt-co-(benzen-l34-diyl)] ( PFH)、poly [(959-dihexylfluoren-237-diyl)-co-(9-ethylcarbazol-2?7-diyl)]( PFH-EC )" poly[(959-dihexylfluoren-237-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}phenylen-l,4-diyl)]( PFH-MEH)、poly[(9,9-dioctylfluoren-2,7-diyl) (PFO)、poly[(9,9-di-n-octylf!uoren-2, 7-diyl)-co-(l54-vinylenephenylene)] ( PF-PPV)、p〇ly[(9,9-dihexylfluoren-2,7-diyl)-alt-co-(benzen-l,4-diyl)]( PF-PH )、poly [(939-dihexylfluoren-257-diyl)-alt-co-(959f-spirobifluoren-257-di yl)] ( PF-SP ) ' poly(N5N!-bis(4-butylpheny^-NjN*-bis(phenyl) benzidine (poly-TPD) 、poly(N,N丨-bis(4-butylphenyl)-N,N丨-bis (phenyl)benzidine ( poly-TPD-POSS ) ^ poly[(939-dihexylfluoren-257-diyl)-co-(N?N,-di(4-butylphenyl)-N5N,-diphenyl-434,-diyl-l 54 -diaminobenzene)] ( TAB-PFH )、N,Nf-pis(phenanthren-9-yl)-Ν,Ν’-diplienylbenzidine ( PPB )。位於電致發光層 240 上的電 子傳輸層 350 為 tris-(8-hydroxyquinoline) aluminum ( Alq3 )、 bis-(2-me thy 1-8-quinolinolate)-4-(phenylphenolato)-aluminium (BAlq3 ) " 259-dimethyl-4?7-diphenyl-1 ? 10-phenanthroline ( BCP ) 、4,4、bis(carbazol-9-yl)biphenyl ( CBP ) 、3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole ( TAZ )。 16 1251950 如第8圖所示之有機無機發光二極體,其製造方法如下: 提供基材310 ;形成陽極電極320於基材310上;形成電致發 光層340於上述陽極電極320上;形成電子傳輸層350於電致 發光層340上;以及形成依序第一陰極電極361與第二陰極電 極362於電子傳輸層350上,構成陰極電極360。 承上所述之有機無機發光二極體之製造,其中陽極電極 320、電子傳輸層350、第一陰極電極361與第二陰極電極362 的形成皆利用習知之製造方法;但本發明特色之電致發光層 340之詳細製法如下:將包覆有機材料之ZnSe量子點與 MEH-PPV、MEH-BP-PPV、PF、PF-BV-MEH、PF-DMOP、PFH、 PFH-EC、PFH-MEH、PF〇、PF〇B、PF-PPV、PF-PH、PF-SP、 poly-TPD、poly-TPD-POSS、TAB-PFH、PPB 混合,且此有機 無激發光二極體於此高分子中的濃度分別為〇、〇_25、0.5 mg/ml,混合方式為先將高分子以1 〇 mg/ml溶於甲苯溶劑中, 其後再將量子點以高分子:量子點材料為1 : 〇、1 : 〇·〇25、1 : 0.05之重量比例摻混於前述之高分子溶液中,形成一混合溶 液;再將此混合溶液旋轉塗佈於陽極電極320上,此旋轉塗佈 方式為在充滿氮氣之手套箱内,將前述混合液滴於陽極電極 320上,並使用旋轉塗佈機,以4000 rpm之旋塗轉速旋塗20 秒,以將高分子膜製備於陽極電極320上。將鍍好的高分子膜 置於真空烘箱中烘乾,此真空烘箱的真空度為10-3 torr,再經 70〜80°C與5小時的熱處理後,即形成電致發光層340。 為使本發明之上述和其他目的、特徵和優點能更明顯易 懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如 下: 17 1251950 【貫施例1】 清二=圖J先進行銦锡氧化物透明導電輪。的 里,5°。。之超音梅於稀釋之專用清潔劑、=:: 了^、去離子水、丙酮、異丙醇十依序各震堡^八鐘再 以虱乳吹乾備用。再將銦錫氧化物透 :入里 之體積比例為5:1:1的離子 〇-入㈣ 中40分鐘。 虱化辽.虱虱化銨的溶液 來/電洞傳輸材料與^混合,形成10响1之 电/、f液,再將有機發光高分子材料與甲苯混合,形成5 7二彻發光高分子溶液;然後再將量子點材料混入發光 「刀子,谷液中,形成發光高分子:量子點材料重量比為n ==〇:°:之發光高分子與量子點混合溶液。接著將配 衣、_电’同、輸/谷液以及發光高分子與量子點混合溶液以0·45 μιη孔徑的針筒過遽器純化,至溶液無明顯顆粒懸浮其中為止。 、在充滿氮氣之手套箱内將電洞傳輸溶液滴於銦錫氧化物 透明導電玻璃12G上,並利用旋轉塗佈機以侧啊之旋塗轉 遠旋塗2G秒,即形成電洞傳輸^ m於銦踢氧化物透明導電 玻璃120上。將鍍好的電洞傳輸層丨3〇置於真空烘箱裡進行退 火處理12小日夺’其真空度為1()·3 ωπ>且溫度為π。。。 接著將發光高分子與量子點混合溶液利用上述之旋塗步 驟鍍製發光高分子層140於電洞傳輸層上,並利用上述之烘乾 步驟施以退火處理。 接下來分別以0.5及1 nm/sec之蒸鍍速率製作鈣金屬陰極 161與銀保護層ία。 18 1251950 【比較實施例1】 此實施例之有機發光二極體之結構及製 無機複合量子點143存在外,其餘盘方=無有機 1相同。 苒。衣^方法與實施例 接下來將測量實施例1與比較實施 極體的效能。 例1之有機無機發光二 第3圖為具有機無機複合量子點之有| *具有機無機複合量子點之有機發光二極體 ^电仙·大於比不具有機無機複合量子點之有機發光二 =體:電流,此與量子點表面於低電流密度時,形成電㈣; 載侧(carnertrap),並於量子點表面造成—局部電場 效應所致,此電場效應可增進電荷載子注入速率,導致一 口兩子"沾之有機發光二極體具有較佳之發光效能。 第4圖為具有機無機複合量子點之有機無機發光二極體盘 不具有機無機複合量子點之有機發光二極體的電應流明圖。圖 中顯不在相同電壓下,具有機無機複合量子點之有機無機發光 二極體之流明值大於比不具有機無機複合量子點之有機‘光 二極體之流明值,故此兩發光二極體處於相同電壓時,本:明 之有機無機發光二極體的發光效率大於習知之有機發光二極 體的發光效率,·此外,實施例工之有機無機發光二極體之最大 流㈣為2200 cd/m2左右,而比較實施例j之有機發光二極體 之最大流明值只約為12〇〇 cd/m2左右,差了 1〇〇〇cd/m2左右, 表示本發明之發光二極體發光效能確實比習知之發光二極體 效能更好。 19 1251950 【實施例2】 土*請參閱第5圖,首先進行銦錫氧化物透明導電玻璃22〇的 清潔,先將銦錫氧化物透明導電玻璃22〇以專用 洗,再於贼之超音波振堡於稀釋之專用清潔劑、去^水接 異^醇、去離子水、丙酮、異丙醇中依序各震盪15分鐘,再 以氮氣°人乾備用。再將銦錫氧化物透明導電玻璃浸入⑽。〔 之體積比例為5 : 1 : i的離子水:過氧化氫:氯氧化按的溶液 中40分鐘。 接下來,將電洞傳輸材料與甲苯混合,形成i〇 之 電洞傳輸溶液;再將有機發光高分子材料與甲苯混合,形成5 mg/ml之有機發光高分子溶液;然後再將量子點材料混入發光 高分子溶液中,形成發光高分子:量子點村料重量比為1:〇、 1 . 0.025、1 : 〇.()5之發光高分子與量子點混合溶液。接著將配 製好的電洞傳輸溶液以及發光高分子與量子點混合溶液以Μ μη孔徑的針筒過濾器純化,至溶液無明顯顆粒懸浮其中為止。 在充滿氮氣之手套箱内將電洞傳輸溶液滴於銦錫氧化物 透明導電玻璃220上,並利用旋轉塗佈機以侧啊之旋塗轉 速旋塗20秒’即形成電洞傳輸層23()於銦錫氧化物透明導電 玻璃上。將鍍好的電洞傳輸層置23G於真空烘箱裡進行退火處 理丨2小日才,其真空度為1〇-3 t〇rr且溫度為7〇它。 接著將發光高分子與量子點混合溶液制上述之旋(7) Since the illuminating peak of the inorganic (four) is originally narrower than the luminescent wavelength of the organic material, that is, the illuminating color purity is relatively pure, and the luminescent peak of the quantum dot is more narrow, so that a luminescent element having a high color purity can be obtained; By controlling the doping and/or size of the ZnX neutron point, light-emitting elements of different luminescent colors can be obtained, so the selectivity of the luminescent color is quite extensive. [Embodiment] [Embodiment 1] FIG. 2 is a structural diagram of an organic-inorganic light-emitting diode according to Embodiment 1 of the present invention, which is a substrate 11 〇, an anode electric # 12 〇, a hole from bottom to top. The transport layer 130, the electroluminescent layer 14 and the cathode electrode (10). The cathode electrode 16 can contain two or more electrodes, for example, including a first cathode electrode (6) and a second cathode electrode 162; and a plurality of organic-inorganic composite quantum dots 1C are scattered in the south molecule. In 144, an electroluminescent layer 14Q is formed. The organic-inorganic composite summer sub-spot 143 includes an (inorganic) quantum dot 141 and an organic material, and the organic material 142 coats the surface of the quantum dot 141. 1251950 According to the above-mentioned organic-inorganic light-emitting diode, since the organic-inorganic light-emitting diode is emitted below, the substrate 11 and the anode electrode 120 used need to be transparent materials; in the embodiment, the substrate 110 is a glass substrate or a plastic substrate, and the organic light-emitting diode made of the plastic substrate has the advantage of flexible region; and the anode electrode 120 is indium tin oxide (ITO). Indium tin oxide is a conductive material commonly used in organic light-emitting diodes. The cathode electrode 160 is a metal electrode such as Ca, Ag, Li, LiF, Mg, Α1 and a combination thereof. The hole transport layer 130 on the anode electrode 120 is N, N'-di(naphthalen)-N, N'-diphenyl-benzidine (NPB), N, N'-bis (naphthalen-l-yl)-N? N,-bis(phenyl)benzidine (α-ΝΡΒ ) ' N3N5-di (naphthalene-1 -yl)N,N5-diphenyl-9?95-dimethyl-fluorene( DMFL-NPB ) - N?N5-di(naphthalene -l-yl)-N5N5-diphenyl-spiro ( Spiro-NPB ) ^ N5N!-Bis-(3-methylphenyl)-N?Nf-bis-(phenyl)-benzidine (TPD), N?N5-bis-( 3-methylphenyl)-N5N5-bis-(phenyl)-spiro (Spiro-TPD) - N?N5-bis-(3-methylphenyl)-N5N?-bis-(phenyl)-95 9-diphenyl-fluorene (DMFL- TPD), l,3-bis(carbazol-9-yl)-benzene (MCP), 1,3,5-tris(carbazol-9-yl)-benzene (TCP), N, N?N53N5-tetrakis (naphth -l-yl)-benzidine (TNB) - poly (N-vinyl carbazole) (PVK). The electroluminescent layer 140 is the most important layer of the invention, wherein the quantum dot 141 is ZnX (the X system is selected from the group consisting of S, Se, Te and its composition), and the ZnX quantum dot can be doped with other An element, such as a transition element, a halogen or a combination thereof, is used to change the luminous efficiency and the wavelength of the light-emitting point of the quantum dot; in addition, different quantum dot sizes also affect the light-emitting efficiency and the wavelength of the light-emitting; The organic material 142 on the surface is a fatty acid or a phospholipid; the quantum dot 141 and the organic material 142 constitute an organic-inorganic composite quantum dot 143, and the organic-inorganic composite quantum dot 143 can be uniformly dispersed in the polymer 144 by an intermolecular force. The polymer 144 is a conductive polymer, and the conductive polymer is a luminescent polymer or a co-polymer, which is 卩〇1; /(2-1111:11〇1}^5-(2, ethylhexyloxy)-l54-phenylenevinylene) (MEH-PPV), poly[2-Methoxy-5-(2 ?-ethylhexyloxy)-l,4-phenyleneviny 1^16-00-4,41-bis phenylenevinylene] (MEH-BP-PPV), poly[( 9,9-dioctylfluoren-2, 7-diyl)-co-(l54-diphenylene-vinylene-2-methoxy-5- {2-ethylhexy Loxyjbenzene)] (PF-BV-MEH), poly[(9,9-dioctylfluoren-2,7-diyl)-co-(2,5-dimethoxybenzen-l54-diyl)] ( PF-DMOP ) " poly[ (95 9-dihexylfluoren-257-diyl)-alt-co-(benzen-154-diyl)]( PFH ) ^ poly [(959-dihexylfluoren-257-diyl)-co-(9-ethylcarbazol-237-diyl) (PFH-EC), poly[(9,9-dihexylfluoren-2,7-diyl)-alt>co-(2-methoxy -5- {2-ethylhexyloxy}phenylen-134-diyl)] ( PFH-MEH )" poly[(9,9-dioctylfluoren-2,7-diyl)( PFO), poly[(9,9-di-n-octylfluoren-2,7-diyl)-co-(l34-vinylenephenylene)] (PF-PPV), p〇ly[(9,9-dihexylfluoren-257-diyl)-alt-co-(benzen-l,4-diyl)] (PF-PH), poly[(959-dihexylfluoren-2) ?7-diyl)-alt-co-(939,-spirobifluoren-2? 7-diyl)] (PF-SP), poly(N,N'-bis(4-butylphenyl)-N,N'-bis ( Phenyl)benzidine (poly-TPD), poly(N,Nf-bis(4-butylphenyl)-N3Nf-bis(phenyl)benzidine (poly-TPD-POSS), poly[(9,9-dihexylfluoren-257-diyl) -co-(N5N,-di(4-butylphenyl)-N5N,-diphe nyl-^Uiyl-1,4-diaminobenzene)] (TAB-PFH), N,N'-pis (phenanthren-9-yl)- N5N,-diphenylbenzidine ( PP B) The organic-inorganic light-emitting diode as shown in FIG. 2 is produced by the following method: providing a substrate 110; forming an anode electrode 120 on the substrate 110; forming a hole transport layer 130 on the anode electrode 120; forming The electroluminescent layer 140 is on the above-mentioned hole transport layer 130; and the first cathode electrode 161 and the second cathode electrode 10 1251950 are formed on the electroluminescent layer 140 to form a cathode electrode 160. The manufacture of the organic-inorganic light-emitting diode according to the above, wherein the anode electrode 120, the hole transport layer 130, the first cathode electrode 161 and the second cathode electrode 162 are formed by a conventional manufacturing method; The electroluminescent layer 140 is prepared in the following manner: ZnSe quantum dots coated with fatty acids or phospholipids and MEH-PPV, MEH-BP-PPV, PF, PF-BV-MEH, PF-DMOP, PFH, PFH-EC, PFH -MEH, PFO, PFOB, PF-PPV, PF-PH, PF-SP, poly-TPD, poly-TPD-P〇SS, TAB-PFH, PPB mixed, the first method is to first polymer 10 mg / ml Dissolved in a toluene solvent, and then the quantum dots are mixed in the polymer solution in a weight ratio of a polymer: quantum dot material of 1 ··〇, 1: 〇·〇25, 1 ············ Forming a mixed solution; the mixed solution is spin-coated on the hole transport layer 130 by spraying the mixture onto the indium tin oxide transparent conductive glass in a glove box filled with nitrogen. And using a spin coater, spin coating at a spin speed of 4000 rpm for 20 seconds to prepare the polymer film for indium tin oxidation. A transparent conductive glass. The plated high molecular weight film was dried in a vacuum oven having a vacuum of ίο-3 toir, and after 70 to 80 ° C and 5 hours of heat treatment, the electroluminescent layer 140 was formed. [Embodiment 2] Fig. 5 is a structural view of an organic inorganic light-emitting diode according to Embodiment 2 of the present invention, which is sequentially composed of a substrate 210' anode electrode 220, a hole transport layer 230, and electroluminescence. Layer 240, electron transport layer 250 and cathode electrode 260. The cathode electrode 260 may include one or more electrodes, for example, including a first cathode electrode 261 and a second cathode electrode 262; and a plurality of organic-inorganic composite quantum dots 243 are uniformly dispersed in the polymer 244. The luminescent layer 11 1251950 241 舆 240, the organic-inorganic composite quantum dot 243 comprises an (inorganic) quantum dot organic material 224, and the organic material 242 coats the surface of the quantum dot 241. In the organic-inorganic light-emitting diode according to the above description, since the organic-inorganic sound-emitting body has a lower-emitting light, the substrate 210 and the anode electrode 220 used need to have a %~ming material; in the present embodiment, the substrate 210 The organic light-emitting diode made of glass substrate or plastic base 0 and made of plastic substrate will have flexible region # _ point; anode electrode 220 is indium tin oxide (indium tin oxide) 1 〇 〇), indium tin oxide is a conductive material, commonly used in organic light-emitting diodes. The cathode electrode 260 is a metal electrode such as Ca, AgLi, LiF, Mg, A1 and a combination thereof. The hole transport layer 230 on the anode electrode 220 is N5N'-di(naphthaleii)-N, N'-diphenyl-benzidine (NPB), N, N, bis (naphthalen-l-yl)-N5N, -bis ( Phenyl)benzidine (α-ΝΡΒ ) - N5N5-di (naphthalene-1 -yl)N5N5-diphenyl-959,-dimethyl-fluorene (DMFL-NPB ), N,N'-di(naphthalene-l-yl)-N , N'-diphenyl-spiro ( Spiro-NPB ) - N,N'-Bis-(3-methylphenyl)-N5N!-bis-(phenyl)-benzidine (TPD ), N3N5-bis-(3-methylphenyl)- N5N5-bis-(phenyl)-spiro (Spiro-TPD) ^ N3N5-bis-(3-methylphenyl)-N?N,-bis-(phenyl)-95 9-diphenyl-fluorene (DMFL-TPD), l, 3-bis(carbazol-9-yl)-benzene (MCP), 1,3,5-tris(carbazol-9-yl)-benzene (TCP), N,N, N,,NMetrakis(naphth-l-yl )-benzidine (TNB), poly (N-vinyl carbazole) (PVK). The electroluminescent layer 240 is the most important layer of the present invention, wherein the quantum dot 241 is ZnX (the X system is selected from the group consisting of S, Se, Te and its composition), and the ZnX quantum dot can be doped with other An element, such as a transition element, a substance A or a combination thereof, is used to change the luminous efficiency and the wavelength of the light-emitting point of the quantum dot; in addition, different quantum dot sizes also affect the luminous efficiency and the wavelength of the emission; in addition, the quantum dot 241 is coated. The surface organic material 242 is a fatty acid or 12 1251950 stone ruthenium, and the organic point 241 and the organic material 242 constitute an organic-inorganic composite quantum dot 243, and the organic-inorganic composite quantum dot 243 can be uniformly dispersed by an intermolecular force. In the polymer 244, the polymer 244 is a conductive polymer, and the conductive polymer is a luminescent polymer or a total of 厄1;/(2-1111:11 〇; 7-5-(2 '-ethylhexyloxy)-1 ?4-phenylenevinylene) ( MEH-PPV ) , poly[2-Methoxy-5-(2r-ethylhexyloxy)-l 54-phenylenevinylene-co-454f-bis phenylenevinylene] ( MEH-BP-PPV) - poly[(959-dioctylfluoren-25 7-diyl)-co-(l ?4-diphenylene-vinylene-2-methox Y-5- {2-ethylhexy loxyjbenzene)] (PF-BV-MEH) - poly[(9?9-dioctylfluoren-2?7-diyl)-co-(235-dimethoxybenzen-l34-diyl)] (PF- DMOP ) - p〇ly[(95 9-dihexylfluoren-2,7-diyl)-alt-co-(benzen-1,4-diyl)] ( PFH ), poly [(9,9-dihexylfluoren-2,7 -diyl)-co-(9-ethylcarbazol-2,7-diyl)]( PFH-EC ) " poly[(9,9-dihexylfluoren-257-diyl)-alt-co-(2-methoxy-5- {2-ethylhexyloxy}phenylen-l,4-diyl)] (PFH-MEH)-poly[(959-dioctylfluoren-257-diyl) (PFO) - poly[(9?9-di-n-octylfluoren-237- Diyl)-co-(l,4-vinylenephenylene)] (PF-PPV), poly[(959-dihexylfluoren-257-diyl)-alt-co-(benzen-1 ?4-diyl)] (PF-PH) , poly[(9,9-dihexylfluoreii_2,7-diyl)-alt-co-(9,9f-spirobifluoren-2,7-diyl)](PF-SP),poly(N,Nf-bis(4-butylphenyl) )-N,N'-bis(plienyl)benzidine(poly-TPD), poly(N,N'-bis(4-butylphenyl)-N5N,-bis(phenyl)benzidine (poly-TPD-POSS ) 'poly[ (9?9-dihexylfluoren-257-diyl)-co-(N?N,-di(4-butylplienyl)-N,N'-diplienyl-4,4'-diyl-1,4-diaminobenzene)] (TAB -PFH) > N?N,-pis(phenanthren-9-yl)-N?N,-diphenylb Enzidine (PPB). The electron transport layer 250 on the electroluminescent layer 240 is 讧15-(8-hydroxyquinoline) aluminum (Alq3), bis-(2-methyl-8_ 13 1251950 quinolinolate)-4-(phenylphenolato)-aluminium (BAlq3 ) Λ 2?9-dimethyl-437-diphenyl-1,10-phenanthroline (BCP), 4,4f-bis (carbazol-9-yl)biphenyl (CBP) ^ 3-(4-Biphenylyl)-4-phenyl-5- Tert-butylphenyl-1,2,4-triazole (TAZ) o The organic inorganic light-emitting diode as shown in Fig. 5 is produced by the following method: providing a substrate 210; forming an anode electrode 220 on the substrate 210; forming The hole transport layer 230 is on the anode electrode 220; the electroluminescent layer 240 is formed on the hole transport layer 230; the electron transport layer 250 is formed on the electroluminescent layer 240; and the first cathode electrode 261 is formed in sequence The two cathode electrodes 262 are on the electron transport layer 250 to constitute a cathode electrode 260. The manufacture of the organic-inorganic light-emitting diode according to the above, wherein the anode electrode 220, the hole transport layer 230, the electron transport layer 250, the first cathode electrode 261 and the second cathode electrode 262 are formed by a conventional manufacturing method; However, the electroluminescent layer 240 of the present invention is prepared in the following manner: ZnSe quantum dots coated with fatty acids or phospholipids are combined with MEH-PPV, MEH-BP-PPV, PF, PF-BV-MEH, PF-DMOP, PFH, PFH-EC, PFH-MEH, PFO, PF〇B, PF-PPV, PF-PH, PF-SP, poly-TPD, poly-TPD-POSS, TAB-PFH, PPB mixed, the first method is to polymer Dissolve 10 mg/ml in the solvent of benzene, and then mix the quantum dots with the polymer: quantum dot material: 1: 〇, 1: 〇·〇25, 1: 0.05 by weight. In the solution, a mixed solution is formed; and the mixed solution is spin-coated on the hole transport layer 230 by dropping the aforementioned mixture onto the hole transport layer 230 in a glove box filled with nitrogen. And using a spin coater, spin coating at a spin speed of 4000 rpm for 20 seconds to prepare the polymer film in the hole transport layer 230 on. The plated high molecular weight film was dried in a vacuum oven having a vacuum of 10 ° to rr, and after 70 to 80 ° C and 5 hours of heat treatment, the electroluminescent layer 240 was formed. 14 1251950 [Embodiment 3] The composition of the organic inorganic light-emitting diode in the third embodiment of the present invention is 340, and the electron transfer is sequentially performed on the substrate I anode electrode 32°, and the electroluminescent layer is a force ^ With the cathode electrode 36〇. The cathode electrode 36 〇 can be packaged on the second electrode. The first cathode electrode 361 ” ” a U electrode 362 is included in the drawing; and a plurality of organic-inorganic composite quantum dots (4) are dispersed in the polymer 344 to form The electroluminescent layer 340, the organic-inorganic complex: the neutron point 343 includes an (inorganic) quantum dot 341 and an organic material 324, and the organic material 342 coats the surface of the quantum dot 341. The organic-inorganic light-emitting diode is supported by The organic inorganic light-emitting diode has a lower light emission. Therefore, the substrate 31A and the anode electrode 32 to be used need to be a transparent material. In the present embodiment, the substrate 310 is a glass substrate or a plastic substrate, and the earth glue is used. The organic light-emitting diode made of the substrate has the advantage of flexible region; the anode electrode 320 is made of indium tin oxide (mdmm tm 〇xide, referred to as IT〇), and the indium tin oxide is a kind of conductive material f, It is commonly used in the organic light-emitting diode T. The cathode electrode 360 is a metal electrode such as LiF, A, Li, Ca, Mg, Ag and a combination thereof. The electroluminescent layer 340 is the most important layer of the invention, wherein the amount: 341 ZnX (x is selected from s, ~, Te and its composition In the Zhizhi group), and the ZnX quantum dots can be doped with other elements, such as transition elements, halogens or a combination thereof, to change the luminous efficiency of the quantum dots and the wavelength of the emission, etc. In addition, different quantum dots The size also affects the luminous efficiency and the wavelength of the light. In addition, the organic material 342 covering the surface of the quantum dot 341 is a fatty acid or a squama, and the ionic point 341 and the organic material 342 constitute an organic-inorganic composite quantum dot 343, which is an organic-inorganic composite quantum. The point 343 can be uniformly dispersed in the high knife 344 by an intermolecular force. The germanium molecule 344 is a conductive polymer, and the conductive polymer is a 15 1251950 light polymer or a co-carrying polymer, which is a poly(2-mthoxy). -5-(2'-ethylhexyl〇xy)-1,4-phenylenevinylene) (MEH-PPV) > poly[2-Methoxy-5-(2f-ethylhexyloxy)-1 ?4-phenylenevinylene-co-434,- Bisphenyleneviny lene] ( MEH-BP-PPV ) - poly[(959-dioctylfluoren-2?7-diyl)-co-(134-diphenylene-vinylene-2-methoxy-5- {2-ethylhexyloxy} benze ne)] ( PF-BV-MEH) - poly[(959-dioctylfluoren-2?7-diyl)-co-(2?5-dimethoxybenzen-l54-diyl)] (PF-DMOP), poly[ (959-dihexylfluoren-257-diyl)-alt-co-(benzen-l34-diyl)] (PFH), poly [(959-dihexylfluoren-237-diyl)-co-(9-ethylcarbazol-2?7-diyl )]( PFH-EC )" poly[(959-dihexylfluoren-237-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}phenylen-l,4-diyl)] ( PFH-MEH ), poly[(9,9-dioctylfluoren-2,7-diyl) (PFO), poly[(9,9-di-n-octylf!uoren-2, 7-diyl)-co-(l54-vinylenephenylene) (PF-PPV), p〇ly[(9,9-dihexylfluoren-2,7-diyl)-alt-co-(benzen-l,4-diyl)] (PF-PH), poly [(939- Dihexylfluoren-257-diyl)-alt-co-(959f-spirobifluoren-257-di yl)] ( PF-SP ) ' poly(N5N!-bis(4-butylpheny^-NjN*-bis(phenyl) benzidine (poly -TPD), poly(N,N丨-bis(4-butylphenyl)-N,N丨-bis (phenyl)benzidine ( poly-TPD-POSS ) ^ poly[(939-dihexylfluoren-257-diyl)-co- (N?N,-di(4-butylphenyl)-N5N,-diphenyl-434,-diyl-l 54-diaminobenzene)] (TAB-PFH), N,Nf-pis(phenanthren-9-yl)-Ν, Ν'-diplienylbenzidine (PPB). The electron transport layer 350 on the electroluminescent layer 240 is tris-(8-hydroxyquinoline) aluminum (Alq3), bis-(2-me thy 1-8-quinolinolate)-4-(phenylphenolato)-aluminium (BAlq3 ) " 259-dimethyl-4?7-diphenyl-1 ? 10-phenanthroline (BCP), 4,4, bis(carbazol-9-yl)biphenyl (CBP), 3-(4-Biphenylyl)-4-phenyl-5 -tert-butylphenyl-1,2,4-triazole (TAZ). 16 1251950 The organic inorganic light-emitting diode shown in FIG. 8 is manufactured by: providing a substrate 310; forming an anode electrode 320 on the substrate 310; forming an electroluminescent layer 340 on the anode electrode 320; forming The electron transport layer 350 is on the electroluminescent layer 340; and the first cathode electrode 361 and the second cathode electrode 362 are formed on the electron transport layer 350 to form a cathode electrode 360. The manufacture of the organic-inorganic light-emitting diode according to the above, wherein the anode electrode 320, the electron transport layer 350, the first cathode electrode 361 and the second cathode electrode 362 are formed by using a conventional manufacturing method; The luminescent layer 340 is prepared in the following manner: ZnSe quantum dots coated with organic materials and MEH-PPV, MEH-BP-PPV, PF, PF-BV-MEH, PF-DMOP, PFH, PFH-EC, PFH-MEH , PF〇, PF〇B, PF-PPV, PF-PH, PF-SP, poly-TPD, poly-TPD-POSS, TAB-PFH, PPB mixed, and the organic non-excited photodiode is in the polymer The concentrations are 〇, 〇 _25, 0.5 mg/ml, respectively. The mixing method is to dissolve the polymer in 1 〇mg/ml in toluene solvent, and then the quantum dots are made of polymer: quantum dot material: 〇, 1: 〇·〇25, 1: 0.05 by weight ratio is blended into the above polymer solution to form a mixed solution; the mixed solution is spin-coated on the anode electrode 320, and the spin coating method is The aforementioned mixture was dropped on the anode electrode 320 in a glove box filled with nitrogen, and a spin coater was used at 4000 rpm. Coating speed of spin coating for 20 seconds, to the preparation of the polymer film on the anode electrode 320. The plated polymer film was dried in a vacuum oven, and the vacuum oven had a vacuum of 10-3 torr, and after 70 to 80 ° C and 5 hours of heat treatment, the electroluminescent layer 340 was formed. The above and other objects, features and advantages of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Figure J first performs an indium tin oxide transparent conductive wheel. In, 5°. . Super-light plum in the special detergent for dilution, =:: ^, deionized water, acetone, isopropanol, 10 in sequence, each of the earthquakes, and then dried with sputum. Then, the indium tin oxide was immersed in a volume ratio of 5:1:1 for 40 minutes in the ion-in (four). Suihua Liao. The solution of ammonium hydride and the hole transport material are mixed with ^ to form a 10 ring 1 electric / f liquid, and then the organic light emitting polymer material is mixed with toluene to form a 5 7 two-light emitting polymer. Solution; then, the quantum dot material is mixed into the illuminating "knife, valley liquid to form a luminescent polymer: the quantum dot material weight ratio is n == 〇: °: the luminescent polymer and the quantum dot mixed solution. Then the coating, _Electric 'same, transfer/trough solution and luminescent polymer and quantum dot mixed solution are purified by a syringe with a pore size of 0·45 μηη, until the solution has no obvious particles suspended therein. In the glove box filled with nitrogen The hole transport solution is dropped on the indium tin oxide transparent conductive glass 12G, and is rotated by a spin coater to the side by spin coating for 2G seconds, thereby forming a hole transmission ^ m in the indium kick oxide transparent conductive glass 120. The plated hole transport layer 丨3〇 is placed in a vacuum oven for annealing treatment for 12 hours, and the vacuum degree is 1 ()·3 ωπ> and the temperature is π. The solution mixed with the quantum dots is plated by the above spin coating step The photopolymer layer 140 is on the hole transport layer and subjected to annealing treatment by the above-described drying step. Next, the calcium metal cathode 161 and the silver protective layer ία are formed at an evaporation rate of 0.5 and 1 nm/sec, respectively. 1251950 [Comparative Example 1] The structure of the organic light-emitting diode of this embodiment and the inorganic composite quantum dot 143 were present, and the remaining disk = no organic 1. The method and the example were followed by measurement implementation. Example 1 and comparison of the performance of the polar body. Example 3 of the organic inorganic light-emitting two Figure 3 is an organic-inorganic composite quantum dot | * Organic-emitting diode with organic inorganic quantum dots ^ Electric fairy · greater than the ratio Organic light-emitting two-body with organic inorganic quantum dots: current, which forms electricity with the surface of the quantum dot at a low current density (4); the carrier side (carnertrap), and caused by the local electric field effect on the surface of the quantum dot, The electric field effect can increase the charge carrier injection rate, resulting in a better light-emitting efficiency of a two-child "diluted organic light-emitting diode. Figure 4 is an organic-inorganic light-emitting diode with organic inorganic quantum dots. The electrical response lumen diagram of the organic light-emitting diode of the organic inorganic quantum dot is not shown in the figure. The lumen value of the organic inorganic light-emitting diode with organic inorganic quantum dots is greater than that of the machine. The lumen value of the organic 'photodiode of the inorganic composite quantum dot, so when the two light-emitting diodes are at the same voltage, the luminous efficiency of the organic-inorganic light-emitting diode of the present invention is greater than that of the conventional organic light-emitting diode. In addition, the maximum flow (IV) of the organic-inorganic light-emitting diode of the embodiment is about 2200 cd/m2, and the maximum lumen value of the organic light-emitting diode of the comparative example j is only about 12 〇〇cd/m2, which is poor. Approximately 〇〇〇cd/m2 indicates that the luminous efficacy of the light-emitting diode of the present invention is indeed better than that of the conventional light-emitting diode. 19 1251950 [Embodiment 2] Soil * Please refer to Figure 5, first clean the indium tin oxide transparent conductive glass 22 ,, first indium tin oxide transparent conductive glass 22 〇 special wash, then the thief's ultrasonic Zhenbao was shaken in a special detergent for dilution, dehydrated with water, deionized water, acetone, and isopropanol for 15 minutes, and then dried with nitrogen. The indium tin oxide transparent conductive glass is then immersed in (10). [The volume ratio is 5:1: i ion water: hydrogen peroxide: chlorine oxidation in a solution for 40 minutes. Next, the hole transport material is mixed with toluene to form a hole transport solution of i〇; the organic light-emitting polymer material is mixed with toluene to form a 5 mg/ml organic light-emitting polymer solution; and then the quantum dot material is further The luminescent polymer is mixed into the luminescent polymer solution to form a luminescent polymer: a quantum dot mixture having a weight ratio of 1: 〇, 1. 0.025, 1: 〇. Then, the prepared hole transport solution and the mixed solution of the luminescent polymer and the quantum dot are purified by a syringe filter of Μ μη pore size until the solution has no significant particles suspended therein. The hole transport solution was dropped on the indium tin oxide transparent conductive glass 220 in a glove box filled with nitrogen, and spin-coated by a spin coater at a side spin speed for 20 seconds to form a hole transport layer 23 ( ) on indium tin oxide transparent conductive glass. The plated hole transport layer was placed in a vacuum oven for annealing for 2 hours, and the vacuum was 1 〇 -3 t rr and the temperature was 7 〇. Then, the luminescent polymer and the quantum dot mixed solution are used to make the above-mentioned spin
驟鍍製發光高分子層24〇於電洞傳輸層上,並利用上述之 步驟施以退火處理。 L 接下來利用真空熱蒸鍍裝置將電子傳輸材料則The luminescent polymer layer 24 is applied to the hole transport layer and subjected to annealing treatment by the above steps. L Next, use the vacuum thermal evaporation device to transfer the electron transport material.
之蒸鍍速率鍍製於笋#古八 /SCC 刀子層上以形成電子傳輸層250;最 20 1251950 及1之蒸鑛速率製作舞金屬陰極-與 【比較實施例2】 此實施例之有機發光二極體之結構及製 無機複合量子點243在,抓甘纟入 ’ ’除無有機 2相同。 43存在外,其餘之結構與製造方法與實施例 極體=將測量實施例2與比較實施例2之有機無機發光二 不4::具機複合量子點之有機無機發光二極體與 "貞ΐ: 有機發光二極體帽流明圖。圖 令顯不在相同電壓下,具有機 s 二極體之、、六昍枯一 、倾。里子點之有機無機發光 二極:::明:大:比不具有機無機複合量子點之有機發光 之有nr 兩發光二極體歧相同電_,本發明 光二極體的發光效率大於習知之有機發 先效率’·此外,實施例2之有機無機發光二極體之最大 之最大流明值只料ΓΙ’Γ/ 例2之有機發光二極體 本一“ 々為1_ cd/m左右,差了 3000cd/m2左右, 明之發光二極體發光效能確實比習知之發光二極體 不呈圖為具有機無機複合量子點之有機無機發光二極體與 不/、有機無機複合量早既 里子點之有機發光二極體的光激發光光譜 此圖顯示PPV與量子料譜之加成作用。 【貫施例3】 請參閱第8圖 首先進行銦錫氧化物透明導電玻璃32〇的 21 1251950 Γ再=乳化物透明導電破竭320以專用清潔劑仔細搓 ^再於5GC之超音波㈣於稀釋之專料潔劑、去離子水、 /、丙醇、去離子水、丙酮、異丙醇中依序各震盡Η分鐘,再 以乱氣吹乾備用。再將銦錫氧化物透明導電玻璃32〇浸入 =列為5:1:1的離子水:過氧化氣·氨氧化-的溶液 接下來,將有機發光高分子材料㈣苯混合,形力5mg/mi 之有機發先南分子溶液;然後再將量子點材料混入發光高分子 洛液中,形成發光高分子··量子點材料重量比為1:0、1:〇.〇25、 5之毛光间'刀子與置子點混合溶液。接著將配製好的發 先南^舆量子點混合溶液以〇·45 _孔徑的針筒過遽器純 化,至洛液無明顯顆粒懸浮其中為止。 心 於銦手套箱内將發光高分子與量子點混合溶液滴 於扣錫乳化物透明導電玻璃32〇上,並利用旋轉塗佈機以侧 ㈣速旋塗2〇秒’即形成發光高分子層州於鋼錫氧 透V電玻璃320上。將鑛好的發光高分 =箱裡進行退火處理12小時,其真空度為…加且溫度為 :下來利用真空熱蒸鍍裝置將電子傳輸材料以0.一咖 Γ: 製於發光高分子層35〇上以形成㈣ &361=4ρ/別以〇·5及1聰/咖之蒸鍛速率製作转金屬陰 極361與銀保護層362。 不同比例有機無機複合量子點之有機無機發光二 極脰的亀明圖,此有機無機複合量子點於高分子中所佔的 比例分別為5 ms/mh / n 刀卞r尸的 顯示在相同電壓下,濃度:1二、一 、又Iν的有機無機複合量子點的存在, 22 1251950 其流明值越高,表示其發光效率越好,但在濃度由15 mg/mi 至20 mg/ml後,流明值反而降低,此現象可利用奈米理論中的 濃度消光(concentration quenching)解釋。 第10圖為不同比例有機無機複合量子點之有機無機發光 二極體的電流密度流明圖,此有機無機複合量子點於高分^中 所佔的比例分別為5 、丨〇 mg/m卜丨5 mg/ml與2〇卜The evaporation rate is plated on the bamboo shoots #古八/SCC knife layer to form the electron transport layer 250; the steaming rate of the most 20 1251950 and 1 is used to make the dance metal cathode - and [Comparative Example 2] The organic light emission of this embodiment The structure of the diode and the inorganic composite quantum dot 243 are the same as those of the organic compound. Except for the existence of the remaining structure, manufacturing method and embodiment poles = organic and inorganic light-emitting diodes of measurement example 2 and comparative example 2: organic-inorganic light-emitting diodes with organic quantum dots and "贞ΐ: Luminous figure of organic light-emitting diode cap. The command is not under the same voltage, and has the s diode, the six smash, and the tilt. The organic-inorganic light-emitting diode of the neutron point::: Ming: Large: Compared with the organic light-emitting of the inorganic composite quantum dot, there is nr, two light-emitting diodes, the same electric_, the luminous efficiency of the photodiode of the invention is greater than that of the conventional one. In addition, the maximum maximum lumen value of the organic-inorganic light-emitting diode of Example 2 is only ΓΙ'Γ/ the organic light-emitting diode of Example 2 is "1" cd/m or so, and the difference is At about 3000 cd/m2, the luminous efficacy of the light-emitting diode of Ming is indeed a picture of an organic-inorganic light-emitting diode with organic inorganic quantum dots and no organic organic-inorganic composites. Photoexcitation Spectra of Organic Light-Emitting Diodes This figure shows the addition of PPV to the quantum material spectrum. [Example 3] Please refer to Figure 8 for the first indium tin oxide transparent conductive glass 32 〇 21 1251950 Γ Then = emulsion transparent conductive depletion 320 with special cleaning agent carefully 再 ^ and then 5GC ultrasonic (four) in diluted special detergent, deionized water, /, propanol, deionized water, acetone, isopropanol In order to shock each minute, and then chaos Blow dry, then infiltrate the indium tin oxide transparent conductive glass 32 = into the solution of ionized water: peroxidized gas and ammonia oxidation, which is listed as 5:1:1, and then mix the organic light-emitting polymer material (tetra)benzene. An organic hair precursor solution with a force of 5 mg/mi; then the quantum dot material is mixed into the luminescent polymer solution to form a luminescent polymer·quantum dot material weight ratio of 1:0, 1: 〇.〇25, 5 The mixture of the knife and the spot is mixed between the hair and the light. Then, the prepared mixed solution of the first quantum dot is purified by a syringe of 〇·45 _ pore size, and the suspension is suspended without obvious particles. So far, the luminescent polymer and the quantum dot mixed solution are dropped on the tin-filled emulsion transparent conductive glass 32 铟 in the indium glove box, and spin-coated at the side (four) speed by a spin coater for 2 sec seconds to form a high luminescence. The molecular layer is on the steel tin-oxygen V-glass 320. The high-luminous luminescence of the mine is corrected in the box for 12 hours, and the vacuum is... and the temperature is: the electron is transferred by the vacuum heat evaporation device. The material is made of 0. a curry: formed on the luminescent polymer layer 35 以 to form &361=4ρ/Do not make the metal cathode 361 and the silver protective layer 362 with the steaming and forging rate of 〇·5 and 1 Cong/Cai. The 无机明图 of the organic-inorganic luminescent diode of different ratios of organic-inorganic composite quantum dots, The proportion of the organic-inorganic composite quantum dots in the polymer is 5 ms/mh / n. The presence of the organic-inorganic composite quantum dots at the same voltage, concentration: 1 2, 1 and Iν, respectively. 22 1251950 The higher the lumen value, the better the luminous efficiency, but after the concentration is from 15 mg/mi to 20 mg/ml, the lumen value decreases. This phenomenon can be exploited by concentration quenching in nano theory. )Explanation. Figure 10 is a current density lumen diagram of an organic-inorganic light-emitting diode of different ratios of organic-inorganic composite quantum dots. The proportion of the organic-inorganic composite quantum dots in the high-scores is 5, 丨〇mg/m dime 5 mg/ml with 2 〇
圖中顯示在相同電流密度下,濃度越高的有機無機複合量子點 的存在,其流明值越高,表示其發光效率越好,但在潭产由W mg/ml至i 5 mg/ml後,流明值反而降低,此現象可利用^米理 論中的濃度消光(concentratlon quenching)解釋。 【比較實施例3】 此實施例之有機發光二極體之結構及製造方法 無機複合量子點343存在外,其餘之結 :有枝 3相同。 饵〇衣坆方法與實施例 接下來將測量實施例3與比較實施例3 極體的效能。 饵…、饨僉光一 第11圖為具有機無機複合量子點之有 與不具量子點之有機發光—極雕 …、、务光一極體 同電壓下,具有機無機複合 中頦不在相 Μ ^ , 于J之有機無機發光二極I#之冶 明值大於比不具有機無機複合 “之机 明值,故此兩發光-極~^ 之有械發光二極體之流 發光二極體的發光本發明之有機無機 率’·此外,在實施例3中之有機無發光效 為。有機無機複合量子點於高分==添加濃度 為6500 cd/ηΟ就會高 ^明值(約 叙A例3之無添加有機無機複合 23 1251950 ϊ子3的有枝务光一極體,所以只要低濃度的添加就會產生更 好的效用;若有機無機複合量子點的添加濃度達15 mg/ml時 (請參閱第9圖),其流明值即達8500 cd/m2以上,與無添加 有機無機複合量子點之習知有機發光二極體之流明值相距 2000 cd/m2 以上。 第12圖為具有機無機複合量子點之有機無機發光二極體 與不具置子點之有機發光二極體的電流密度流明圖。圖中顯示 在相同電流密度下’具有機無機複合量子點之有機無機發光二 極版之机明值大於比不具有機無機複合量子點之有機發光二 極體之流明值’故此兩發光二極體處於相同電流密度時,本發 月之有枝無機發光二極體的發光效率大於習知之有機發光二 ,體的發^效率;此外,在實施例3中之有機無機發光二極體 只要添加濃度為〇.25mg/ml有機無機複合量子點於高分子中, 其流明值、(約為_就會高於比較實施例3之無添加 有機無機複合里子點的有機發光二極體,所以只要低濃度的添 力就曰產生更好的效用;^有機無機複合量子點的添加濃度達 15 mg/ml 5月參閱第1〇圖),其流明值即達以上, ,、無添加有機無機複合量子點之習知有機發光二極體之流明 值相距2000 cd/m2以上。 菸明雖;'本發明已揭露較佳實施例如上,然其並非用以限定本 :,壬㈣習此技藝者,在不脫離本發明之精神和範圍内, 二:ί:更動與潤飾,因此本發明之保護範圍當視後附之 曱明專利耗圍所界定者為準。 24 1251950 【圖式簡單說明】 =1圖為習知之有機發光二極體之結構圖。 極體1:::本發明實施方式1與實施例1之有機無機發光二 二極例1與比較實施例1之有機無機發光 1 本發明實施例1與比較實施例1之有機無機發光 一極to之電壓流明圖。 機無機發光 二 第5圖為本發明實施方式2與實施例2之有 極體之結構圖。 -極二6 :為本發明實施例2舆比較實施例2之有機無機發光 一極體之電壓流明圖。 為本發明實施例2與比較實施例2之有機無機發光 一極肢之電致發光光譜圖。 第8圖為本發明實施方式3與實施例3之有機無機發光二 極體之結構圖。 明圖。 第9圖為本發明實施例3之有機無機發光二極體之電 壓流 第10圖為本發明實施例3之有撫 度流明圖。 輪―先—極體之電流密 第Π圖為本發明實施例3與 -+广 、比車乂貝鈀例3之有機無機發光 一極體之電壓流明圖。 第12圖為本發明實施例3與 一 ^ 一比杈貫施例3之有機無機發光 二極體之電流密度流明圖。 . 符號說明】 25 1251950 10、110、210、310〜基材 20、120、22〇、320〜陽極電極 30、130、230〜電洞傳輸層 3 1〜電洞 40、140、240、340〜電致發光層 141、 241、341〜量子點 142、 242、342〜有機材料 143、 243、343〜有機無機複合量子點 144、 244、344〜高分子 50、250、350〜電子傳輸層 5 1〜電子 60、160、260、360〜陰極電極 161、 261、361〜第一陰極電極 162、 262、3 62〜第二陰極電極The figure shows the presence of the higher concentration of organic-inorganic composite quantum dots at the same current density. The higher the lumen value, the better the luminous efficiency, but after the production of W mg/ml to i 5 mg/ml The lumen value is reduced, and this phenomenon can be explained by concentration quenching in the ^m theory. [Comparative Example 3] Structure and manufacturing method of the organic light-emitting diode of this embodiment The inorganic composite quantum dot 343 was present, and the other junctions were the same as the branch 3. Method and Example of Bait Coating Next, the performance of the electrode body of Example 3 and Comparative Example 3 will be measured. Bait..., Shuguang No. 11 is an organic-inorganic composite quantum dot with and without quantum dots, organic light-polar carving..., and Wuguang one-pole with the same voltage, with organic-inorganic composite The smelting value of the organic-inorganic luminescent diode II of J is greater than that of the machine-inorganic composite, so the illuminating of the illuminating diode of the two-light-pole-^ The organic-inorganic ratio of the invention '· In addition, the organic non-luminescence effect in Example 3 is. The organic-inorganic composite quantum dot is at a high score == the added concentration is 6500 cd/ηΟ, which is high and clear value (about Example A) No added organic-inorganic composite 23 1251950 The scorpion 3 has a branched light polar body, so as long as the low concentration is added, it will produce better effect; if the organic-inorganic composite quantum dot is added at a concentration of 15 mg/ml (please See Figure 9), the lumen value is above 8500 cd/m2, which is more than 2000 cd/m2 from the lumen value of the conventional organic light-emitting diode without added organic-inorganic composite quantum dots. Figure 12 shows organic inorganic Organic quantum light-emitting diodes with composite quantum dots Current density lumen diagram of an organic light-emitting diode with a set point. The figure shows that at the same current density, the organic-inorganic light-emitting diode with organic inorganic quantum dots has a larger value than the organic inorganic composite quantum. The lumen value of the organic light-emitting diode of the point. Therefore, when the two light-emitting diodes are at the same current density, the luminous efficiency of the branched inorganic light-emitting diode of the present month is greater than that of the conventional organic light-emitting diode. In addition, the organic-inorganic light-emitting diode in the embodiment 3 has a lumen value (about _ will be higher than that of the comparative example 3) as long as a concentration of 〇.25 mg/ml of the organic-inorganic composite quantum dot is added to the polymer. There is no organic light-emitting diode with added organic-inorganic composite neutron points, so as long as the low concentration of the force is applied, the effect is better; ^The concentration of organic-inorganic composite quantum dots is 15 mg/ml. See Figure 1 for the month of May. The lumen value of the conventional organic light-emitting diode having no added organic-inorganic composite quantum dots is more than 2000 cd/m2 or more. Although the smoke is clear; the invention has been disclosed as a preferred embodiment. As above, it is not intended to limit the scope of the present invention, and the scope of protection of the present invention is not limited to the spirit and scope of the present invention. 24 1251950 [Simple description of the diagram] =1 Figure is a structural diagram of a conventional organic light-emitting diode. Polar body 1::: Organic and inorganic in the first embodiment and the first embodiment of the present invention The organic-inorganic light-emitting 1 of the light-emitting diode and the organic-inorganic light-emitting device 1 of the comparative example 1 is a voltage lumen diagram of the organic-inorganic light-emitting one of the first embodiment and the comparative example 1. The fifth embodiment of the inorganic light-emitting device is the embodiment of the present invention. 2 and the structure diagram of the polar body of the embodiment 2. - Pole 2: This is a voltage lumen diagram of the organic-inorganic light-emitting body of Comparative Example 2 of Example 2 of the present invention. The electroluminescence spectrum of the organic-inorganic light-emitting body of Example 2 of the present invention and Comparative Example 2. Fig. 8 is a structural view showing an organic-inorganic light-emitting diode according to Embodiment 3 and Embodiment 3 of the present invention. Ming map. Fig. 9 is a graph showing the flow of the organic inorganic light-emitting diode according to the third embodiment of the present invention. Fig. 10 is a graph showing the illuminance of the third embodiment of the present invention. The current-capacity of the wheel-first-pole body is a voltage lumen diagram of the organic-inorganic light-emitting body of the third embodiment of the present invention, which is the same as that of the invention. Fig. 12 is a flow chart showing current density of the organic-inorganic light-emitting diode of Example 3 of the present invention and Example 3. DESCRIPTION OF REFERENCE NUMERALS 25 1251950 10, 110, 210, 310~ substrate 20, 120, 22, 320~ anode electrode 30, 130, 230~ hole transport layer 3 1 to hole 40, 140, 240, 340~ Electroluminescent layer 141, 241, 341~ quantum dots 142, 242, 342~ organic material 143, 243, 343~ organic-inorganic composite quantum dots 144, 244, 344~ polymer 50, 250, 350~ electron transport layer 5 1 〜Electronics 60, 160, 260, 360~ cathode electrodes 161, 261, 361~ first cathode electrodes 162, 262, 3 62 to second cathode electrodes
2626