TWI251373B - Low-complexity intelligent-type antenna system for use in dedicated channel - Google Patents

Low-complexity intelligent-type antenna system for use in dedicated channel Download PDF

Info

Publication number
TWI251373B
TWI251373B TW93137702A TW93137702A TWI251373B TW I251373 B TWI251373 B TW I251373B TW 93137702 A TW93137702 A TW 93137702A TW 93137702 A TW93137702 A TW 93137702A TW I251373 B TWI251373 B TW I251373B
Authority
TW
Taiwan
Prior art keywords
antenna
module
antenna system
signal
complexity
Prior art date
Application number
TW93137702A
Other languages
Chinese (zh)
Other versions
TW200620750A (en
Inventor
Tsuen-Jian Huang
Shiann-Shiun Jeng
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW93137702A priority Critical patent/TWI251373B/en
Application granted granted Critical
Publication of TWI251373B publication Critical patent/TWI251373B/en
Publication of TW200620750A publication Critical patent/TW200620750A/en

Links

Abstract

A low-complexity intelligent-type antenna system for use in dedicated channel is provided in the present invention. In the invention, a parallel connection is used to connect with the original communication system, and the entire software and hardware modules of the original communication system are retained. The original communication system can be the network terminal equipment or the user terminal equipment, and is mainly composed of the major modules including one array antenna module composed of plural antennas, plural RF and middle frequency circuit modules corresponding to the number of antennas of the array antenna module, plural chip/symbol bit correlation devices corresponding to the number of antennas, plural beam composing modules corresponding to the number of users, one exchanging module and one control module. By integrating simple hardware architecture and beam composing mechanism to decrease system complexity, it is able to provide the intelligent type antenna system with the advantages of enhanced communication quality and frequency spectrum.

Description

1251373 九、發明說明: 【發明所屬之技術領域】 本發明屬於-種制鮮的硬體轉錢束合賴制來降低 系統複雜度的應用在專屬通道的低複雜度智慧型天線系統。 【先前技術】 .......° 按,智慧型天線系統具備增加通訊品質與頻譜效益等優點,盆 實現的形式可以概略分毅束域&自雜㈣合成兩大類型, 其中,波束碰_的智_天線系統大都_巴特勒矩陣的硬 體架構產生數組蚊驗束來涵蓋_區域翻,具有架構簡 單、實現容易的特點。 然而,隨著數位訊號處理器效能的增長,大幅提昇需要進行較 多運算需求的自適性波束合成類型智慧型天㈣統的實現卢,自 適性波束合賴型智_天、為會隨著傳魏境的特性將 波束形狀作自雜的膽,所以μ魏比波束切換麵智慧型 天線系統優異的性能表現。 自適性波束合成翻智_天«統_(或產生)波束形狀 的方法為··_狀㈣每—路轉單搞細或細信號乘 上-個姆應的加權值(包括振幅及相位),整個陣列天線所乘上 的加權值_之為加敎量”峰上加權向量的目的為補償無線 通迢特性所造成的信號失真現象。如(1)式所示: 订· Η 二 7 其中4加權向量;Η為無線通道特性矩陣;7為單位向量。 1251373 【發明内容】 本發明係提供一種應用在專屬通道的低複雜度智慧型天線系 、洗藉由整合簡單的硬體架構及波束合成機制來降低系統的複雜 度以獲得比傳統天線系統優異的性能表$見,並使用並接的方式與 原始的分碼多重接取通訊純連結而保留原始通訊祕的所有 軟、硬體模組。 【實施方式】 如圖-、圖二及圖三所示’本發明係„種細並接的方式為原 始通訊系統U始通訊系統天線卜原始通訊編衡中頻模組2 及原始通H絲賴組3)提供錢型天_魏,並保留了原 始it訊系統所有的軟、硬體_的應用在專屬通道的低複雜度智 慧型天線糸統4,主要包括: 陣列天線拉組4卜該陣列天線模組41係由若干個天線川所 中各天線411可以為全方向性、扇形或其他高指向性的 ,天線4丨1之排列方式可以為線性或環 由陣列天線模組41的特定排列結構 := =㈣輪目姆她 傳輸後所軸料酬植啦間特微; 率及時序,識_心::=;= 天線系統4,作為各模_作之_或參數輕的依據;㈢d 1251373 射頻&中頻模I且排43,兮玄鉍4s j? tb u:s » 4311 秘中頻杈組排43中編中頻模組 的數置相對應於陣列天線模組41的天線411數旦,自 責將各天線4:11所收到的% 、 / ⑼射鱗換成基頻信號後||入智_ 天線糸統基頻模組45,或將知_刑1仏/ 、、 4將曰慧型天線糸統基頻模組45所•的 基齡號轉換成射頻信簡透過各天線411發射出去; 交換模組44,該交換模組44係作為原始通訊系統射 組2與原始通㈣絲麵組3 _介接界面,因域播通= 接取控制通道需要做整個細彡_範_涵蓋且鶴作^ 脱"的放大輯出功率,交換模組44將蘭通道 通道的信號軸始通蝴天線丨與原始辑統衡中= 組2進订傳輸,而其他話務或㈣通道職錢模組44以分产的 形式饋人智慧型天㈣統4,進行適當的錢處理之後再進行發射 /接收的動作’因為智慧型天線系統4不需要負擔整個扇形區域範 圍的系統廣播及接取作業,故可減少發射機對功率的需求而得以 使用較低廉價格的收發機’所以這種架構安排除了可保留原始通 訊系統的所有軟、硬體模組外,尚可減低實現智慧型天線系統4 的困難度及費用; 智慧型天線系統細模組45,該智慧型天線系統基頻模組45 係每-铜戶的基頻信號處理核心,主要包含:晶^符元相關器 排45卜合成器452、分配器453及波束合成模組454, 如圖四所示,該晶片/符元相關器排中451的晶片/符元相關 1251373 器4511〜4513主要的組件包括:同步及碼搜尋器45111、解展頻器 45112、犁耙式接收機45113及功率合成器45114,而晶片/符元相 關器4511〜4513之功用是進行時(time)域信號處理,即把導引信 號由chip rate降至symb〇i rate並將較大功率的路徑信號合成 後饋入波束合成模組454作進一步的方位估測及智慧型天線加權 向量的計算; 如圖五所示,該波束合成模組454主要的組件包括:方位監 控器4541、接收加權向量產生器4542、接收乘法器4543、發射加 權向里產生态4544及發射乘法器4545,而該波束合成器454的功 用是進行空(space)域信號處理,即接收信號時把晶片/符元相關 器排451中各晶片/符元相關器4511〜4513所饋入的導引信號萃取 出目標用戶的方位資訊並計算—组適#的智慧型天線接收加權向 里後’再將傳輸資料乘上接收加權向量韻人原始通訊I统基頻 模、、且3’發射彳§號時把原始通訊系統基頻模組3饋入的信號乘上經 接收/發射補償處理後的智慧型天線發射加權向量後饋入射頻&中 頻模組排451 ; 叶算智慧型天線的加權向量以形成波束場型的類型可以分為 切換式或自適性波束合成兩大麵,若為城式波束形式,因為 本發明利用軟體控制的方式來產生適當的波束場型,所以比習知 使用巴特勒矩陣的硬體架構獲得較大的彈性調整空間與系統效 能。若為自適性波束形式,本發明可以用軟體操作的方式實現習 1251373 知的各種自適性波束合成演算法則(例如:LMS (Least Mean Square) 、 VS-LMS(Variable Step-size Least Mean Square)、 N-LMS(Normalized Least Mean Square) 、 RLS (Recursive Least Square)、MVDR (Minimum Variance Distortionless Response)、 SMI (Sample Matrix Inversion)、WSF (Weighted Subspace Fit)、 CMA (Constant Modulus Algorithm) 、 CGA(Conjugate Gradient Algorithm) 、 NNA(Neural Network Algorithm) 、 CCSS(Coniplex Conjugate Spatial Signature) λ PISS(Pseud〇-Inverse Spatial Signature) ^ DD0A(Dorainant Direction of Arrival) λ PIDOA(Pseudo-Inverse Direction of Arrival)等)及信號方位估 測演算法則(例如:Conventional Beamforming、ESPRIT (Estimation of Signal Parameters via Rotational Invariance1251373 IX. Description of the invention: [Technical field to which the invention pertains] The present invention belongs to a low-complexity intelligent antenna system for use in a dedicated channel, which is a hard-to-make hardware-to-bundle system for reducing system complexity. [Previous technology] .......° Press, the smart antenna system has the advantages of increasing communication quality and spectrum efficiency, and the form of basin implementation can be roughly divided into two types: the bundle domain and the self-heterogeneous (four) synthesis. The beam-touch _ _ _ antenna system mostly _ Butler matrix hardware architecture to generate array mosquitoes to cover _ region flip, with a simple architecture, easy to achieve features. However, with the increase in the performance of digital signal processors, the self-adapted beam synthesis type that requires more computing needs is greatly improved, and the adaptive beam is integrated into the system. The characteristics of Wei Jing make the beam shape self-heavy, so the μ Weibi beam switching surface smart antenna system has excellent performance. The method of adaptive beamforming _ _ _ _ _ _ (or generated) beam shape is · · _ shape (four) per-road transfer single fine or fine signal multiply - a weight of the value (including amplitude and phase) The weighting value multiplied by the entire array antenna is the sum of the weighting vectors on the peak. The purpose of the weighting vector on the peak is to compensate for the signal distortion caused by the wireless communication characteristics. As shown in (1): ··Η 2 7 4 weighting vector; Η is a wireless channel characteristic matrix; 7 is a unit vector. 1251373 SUMMARY OF THE INVENTION The present invention provides a low complexity intelligent antenna system for use in a dedicated channel, with a simple integrated hardware architecture and beam Synthetic mechanism to reduce the complexity of the system to obtain a superior performance table than the traditional antenna system, and use the parallel connection to the original code division multiple access communication pure link to retain all the soft and hard mode of the original communication secret [Embodiment] As shown in Figure-, Figure 2 and Figure 3, the present invention is a fine-grained connection method for the original communication system, the U-communication system antenna, the original communication, and the intermediate frequency module 2 and the original communication. H silk group 3) Providing money-type days _ Wei, and retaining all the soft and hardware _ applications of the original IT system in the low-complexity intelligent antenna system 4 of the exclusive channel, including: Array antenna pull group 4 The antenna module 41 is composed of a plurality of antennas 411, which may be omnidirectional, fan-shaped or other highly directional. The arrangement of the antennas 丨1 may be linear or ring-specific by the array antenna module 41. Structure: = = (4) Wheels, after the transmission, the axles are compensated; the rate and timing, the knowledge _ heart::=;= antenna system 4, as the basis of each model _ or the light parameters; (3) d 1251373 RF & intermediate frequency mode I and row 43, 兮玄铋 4s j? tb u:s » 4311 The number of intermediate frequency modules in the middle of the frequency group 43 corresponds to the array antenna module 41 Antenna 411 is a few days old, self-blame to replace the %, / (9) scales received by each antenna 4:11 with the baseband signal || into the wisdom _ antenna system baseband module 45, or will know _ penalty 1仏 / 4, converting the base age number of the antenna system of the Huihui antenna system into a radio frequency signal transmitted through each antenna 411; the switching module 44, the exchange Group 44 is used as the original communication system shooting group 2 and the original communication (four) silk surface group 3 _ interface, because the domain broadcast = access control channel needs to do the whole fine _ _ _ cover and crane work ^ off The power is exchanged, and the switching module 44 transmits the signal axis of the blue channel channel to the original group balance = group 2, while the other traffic or (four) channel money module 44 is in the form of distribution. Feeding the smart day (4) system 4, performing the appropriate money processing and then transmitting/receiving the action 'Because the smart antenna system 4 does not need to bear the system broadcast and access operations of the entire sector area, the transmitter pair can be reduced The power demand can be used to lower the price of the transceiver' so this architecture can save the difficulty and cost of implementing the smart antenna system 4 in addition to retaining all the soft and hardware modules of the original communication system; The antenna system fine module 45, the intelligent antenna system baseband module 45 is a baseband signal processing core of each copper main, mainly comprising: a crystal symbol correlator row 45 synthesizer 452, a distributor 453 and Beam synthesis module 454 As shown in FIG. 4, the main components of the wafer/symbol related 1251373 4511~4513 in the wafer/symbol correlator row include: synchronization and code searcher 45111, despreader 45112, plough receiving The machine 45113 and the power combiner 45114, and the function of the chip/symbol correlator 4511~4513 is time domain signal processing, that is, the pilot signal is reduced from chip rate to symb〇i rate and the power is relatively high. The path signal is synthesized and fed into the beamforming module 454 for further azimuth estimation and calculation of the smart antenna weight vector. As shown in FIG. 5, the main components of the beamforming module 454 include: azimuth monitor 4541, receiving weight The vector generator 4542, the receive multiplier 4543, the transmit weighted inward generation state 4544, and the transmit multiplier 4545, and the beam synthesizer 454 functions to perform space domain signal processing, that is, to receive the signal when the chip/symbol The pilot signals fed by the respective chip/symbol correlators 4511~4513 in the correlator row 451 extract the orientation information of the target user and calculate the smart antenna of the group suitable for receiving the weighted inward and then transmitting the data. The received weighting vector is used to transmit the signal of the original communication system baseband module 3 to the smart antenna transmitted by the receiving/transmitting compensation process. The weight vector is fed into the RF & IF module row 451; the weight vector of the smart antenna to form the beam pattern can be divided into two types: switched or adaptive beamforming. Because the present invention utilizes software control to generate an appropriate beam pattern, a larger elastic adjustment space and system performance is obtained than the conventional hardware architecture using the Butler matrix. In the case of an adaptive beam form, the present invention can implement various adaptive beamforming algorithms known in the art of 1251373 by software operation (for example, LMS (Least Mean Square), VS-LMS (Variable Step-size Least Mean Square), N-LMS (Normalized Least Mean Square), RLS (Recursive Least Square), MVDR (Minimum Variance Distortion Less Response), SMI (Sample Matrix Inversion), WSF (Weighted Subspace Fit), CMA (Constant Modulus Algorithm), CGA (Conjugate Gradient) Algorithm), NNA (Neural Network Algorithm), CCSS (Coniplex Conjugate Spatial Signature) λ PISS (Pseud〇-Inverse Spatial Signature) ^ DD0A (Dorainant Direction of Arrival) λ PIDOA (Pseudo-Inverse Direction of Arrival), etc. Estimate algorithms (eg Conventional Beamforming, ESPRIT (Estimation of Signal Parameters via Rotational Invariance)

Technique)、MUSIC (Multiple Signal Classification)、MVDR、 SAGE (Space-Alternating Generalized Expectation-maximization 等)。 本發明可以依據信號特性、數位訊號處理器的運算能力及系統 負載能力等因素選擇適當演算法則,考量到現有硬體的信號處理 能量及整個系統必須在極有限的信號處理週期時間内完成運算, 本發明提出下列五種降低複雜度的機制,來增加實現智慧型天線 系統的可行性: (a)使用訊符速率計算智慧型天線的加權向量來降低數位訊號處 1251373 理器計算量的需求。 (b)使用Tinie/Space分離估測的架構而避免直接使用 Ί1 me-Space聯合估測的架構來計算智慧型天線的加權向 量,以減低數位訊號處理器計算量的需求。以RLS演算法為 例,若犁耙式接收機45113的fing’er數(1()為4,陣列天線 模、、且41的天線數(μ)為8,則使用了丨肥―gpace聯合估測的架 構時,每次遞迴的運算複雜度為〇((Μ+κΛ=〇(144);使用 Time/Space分離估測的架構時,每次遞迴的運算複雜度為 〇((K)2)+〇((m)2)=〇(8〇)。 (c)兩卩以又區塊掃目田法·在特定時槽週期内將整個扇形區域範圍 切割成數舰塊區域範圍,I。、進行區塊區域細的目標信 號方位掃目苗作為目標用戶方位追蹤之用,來降低數位訊號處 理器計算量的絲。為降低智慧型天«、_複雜度,本發 明盡量避免進行使用習知的方位估測演算法。 ⑷依紐位信號處理器運算能力、系統操作特性(TDD/_及系 統容量需求/現況,由下列四種低複雜度計算加權向量演算法 (主要到達方向法、共輛複數空間特徵法、虛擬反運算到達方 向法及虛擬反運算空間特徵法)中擇一進行運算,為降低智慧 型天線系__度,本發财量避免使㈣知的最佳化遞 迴收斂演算法。 在較單純的無線電環境且信號強度(品質)允許情況下,使用調 1251373 整子天線__的機齡降低數位訊號處理ϋ計算量的需求, 信號品質可以依據信號強度、位几錯誤率、符元錯 塊 誤率進行判斷。 乂 L尤在曰 另外,自適性波束合成類型智慧型天線系統產生加權向量的方 式可概略分成使用目翻戶財位資訊計算加勸量與不使用目 標用戶的方位資訊計算加權向量兩種類型。 使用目‘用戶方位Μ 5叫昇加軸量麵的自適性智_型天 線系統適用於分頻雙工⑽)的無線通訊系統,因為統上/ 下鏈路分別使用不同的頻段進行傳輸,所以其通道特性不盡相 同,尤其是高紐絲親訊系統,其上/τ鏈料麵性差里性 更大’所㈣統發射/接收信號時所使用的加權向量不可以直接相 互*用’相對地’其目標用戶的方位資訊變化卻不大,故可以利 用此特性來簡化發射/接收信號的加權向量轉換程相不需做兩 次不同且運算複雜的加權向量計算。分時雙功_系統因為上/ 下鏈路分職__搬進行傳輸,所以其通道特性大略相 同’故系統發射/接收信號時的加權向量可以直接相互流用。如⑵ 式所示:Technique), MUSIC (Multiple Signal Classification), MVDR, SAGE (Space-Alternating Generalized Expectation-maximization, etc.). The invention can select an appropriate algorithm according to the signal characteristics, the computing power of the digital signal processor and the system load capacity, etc., considering the signal processing energy of the existing hardware and the entire system must complete the operation within a very limited signal processing cycle time. The present invention proposes the following five mechanisms for reducing complexity to increase the feasibility of implementing a smart antenna system: (a) Calculating the weighting vector of the smart antenna using the symbol rate to reduce the computational load of the 1251373 processor at the digital signal. (b) Use the Tinie/Space separation estimation architecture to avoid direct use of the Ί1 me-Space joint estimation architecture to calculate the weighted vector of the smart antenna to reduce the computational complexity of the digital signal processor. Taking the RLS algorithm as an example, if the number of fing'er of the ploughshare receiver 45113 (1 () is 4, the array antenna mode, and the number of antennas (μ) of 41 is 8, then the man-fertilizer-gpace joint is used. When estimating the architecture, the computational complexity of each recursion is 〇((Μ+κΛ=〇(144); when using the Time/Space separation estimation architecture, the computational complexity of each recursion is 〇(( K) 2) + 〇 ((m) 2) = 〇 (8 〇). (c) Two 卩 又 又 区 扫 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 切割 切割 切割 切割 切割I. Performing a fine target signal orientation in the block area as the target user's position tracking to reduce the amount of calculation of the digital signal processor. To reduce the intelligence day, the complexity of the invention is avoided as much as possible. The conventional azimuth estimation algorithm is used. (4) According to the signal processing capability and system operation characteristics (TDD/_ and system capacity requirement/current status), the following four low complexity calculation weighting vector algorithms (mainly arrived) Direction method, common vehicle complex space feature method, virtual inverse operation arrival direction method and virtual inverse operation space feature method) As soon as the calculation is performed, in order to reduce the smart antenna system __ degree, the present financial amount avoids the optimization of the (four) knowledge recursive convergence algorithm. In a simpler radio environment and the signal strength (quality) allows, use the tone 1251373 The age of the whole sub-antenna __ is reduced by the digital signal processing. The signal quality can be judged according to the signal strength, the bit error rate, and the symbol error rate. 乂L Especially in addition, the adaptive beam The method of generating the weight vector by the synthetic type intelligent antenna system can be roughly divided into two types: calculating the weighting vector by using the information of the target household financial position information and calculating the weighting vector without using the target user. Axis-quantity adaptive _-type antenna system is suitable for frequency division duplex (10) wireless communication system. Because the upper/lower links use different frequency bands for transmission, the channel characteristics are different, especially high. In the Nussian system, the weighting vector used to transmit/receive signals on the /4 chain is not as large as possible. The location information of the target user does not change much, so this feature can be used to simplify the weighted vector conversion phase of the transmitted/received signal without having to do two different and computationally complex weight vector calculations. Time-division dual-work _ system Because the uplink/downlinks are assigned to transmit, the channel characteristics are roughly the same. Therefore, the weighting vectors when the system transmits/receives signals can be directly used with each other. As shown in (2):

R ·七7 二 I 甘+ (2) 、中4發射加權向量;為接收加權向量;【為單位矩陣 本發明中,透過交換模組判斷該通訊系統為或觸系統操 作模式。料系統則㈣((*表共輛複數運算)直接置換 來節省计异需求;若為FDD系統則以所獲得的目標用戶方位資 訊進行A的置換計算。 本發明依據目前信號處理器能力所及,建議使用的加權向量計 外/秀异法包括·主要到達方向法(£j〇minant d〇A approach)、共 車厄複數生間特徵法(C〇mpiex c〇njUgate SS approach)、虛擬反運 力·到達方向法(pseud〇-inverse d〇a approach)與虛擬反運算空間 特徵法(Pseudo-inverse SS approach),其描述如下: (a)主要到達方向法(Dominant DOA approach) 首先,先取得上鏈信號在陣列天縣模組所形成的陣列天線響 應’再利用以頻譜估測為基礎的DFT、以子空間為基礎的 ^iUSIC、EOTIT或本發服出之兩階段區塊掃晦法等演算法則 估測出信號之入射角度,再根據所估測出的信號入射角度及所 對應的相對振幅大小W 5選擇相對振幅最大者所對應的信號 入射角度產生此角度的陣列天線並取其共滅數作 為下鍵的加權向量。 ⑹曰共輛複數空間特徵法(complexc〇n細ess叩卿^ 取仔上鏈的信號在陣列天縣模組所形成的陣列天線塑應々 後,利用上鏈陣列天線響應的共輛複數產生下鏈的加權向量。 这個方法的主要目的可將信號功率或訊雜比增加至最大,而不 =:波束指向干擾源來抑制其干擾效應。此法較適 1251373R · 7 7 2 I 甘 + (2) , medium 4 transmission weight vector; is a reception weight vector; [in unit matrix. In the present invention, the communication system is judged to be a system operation mode by a switching module. The material system is (4) ((* table total vehicle complex operation) direct replacement to save the different needs; if it is FDD system, the replacement target calculation is performed with the obtained target user orientation information. The invention is based on the current signal processor capability The recommended weighted vector extra/six method includes: the main arrival direction method (£j〇minant d〇A approach), the common vehicle 复 ie ie ie 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The Pseudo-inverse d〇a approach and the Pseudo-inverse SS approach are described as follows: (a) Dominant DOA approach First, obtain The array antenna response generated by the uplink signal in the array Tianxian module 'reuses the DFT based on spectrum estimation, the subspace-based ^iUSIC, EOTIT or the two-stage block broom method The equalization algorithm estimates the incident angle of the signal, and then selects the incident angle of the signal corresponding to the largest relative amplitude according to the estimated incident angle of the signal and the corresponding relative amplitude W 5 . The angled array antenna takes its common extinction number as the weighting vector of the down key. (6) 曰Complex complex spatial feature method (complexc〇n fine ess叩卿^ Take the signal of the chain on the array formed by the array Tianxian module After the antenna is molded, the weighted vector of the downlink is generated by the complex complex of the uplink array antenna response. The main purpose of this method is to increase the signal power or the signal-to-noise ratio to the maximum, instead of = beam pointing to the interference source. Inhibit its interference effect. This method is more suitable for 1251373

(c) 虛擬反運算到達方向法(Pseudo-inverse DOA approach) 這個方法與Dominant DOA approach相當類似,在上鏈中取得 每個用戶端的信號入射角度,將信號到達方向的天線陣列 響應做虛擬反置(pseudo-inverse)產生用戶端的加權向量。 這個方法把天線場形零強度波束(nulls)放置在不要信號的 k號到達的方向’這樣就可以把干擾最小化。若第k個用戶端 有一直接路徑的信號及一個多重路徑的信號,其到達角度分別_ 為0及θ2,所以下鏈的信號天線陣列響應可表示為 〜= ,其中«))為第k個用戶的第一個路徑 之天線陣列響應,〜為第k個多重路徑信號相對於直接路徑 信號的相位與振幅。以簡單表示,假設有兩獨立信號源功)及 〜(ί),假如這兩信號的加權向量為%和#2,那麼第一個用戶 端所接收到的信號為 (3)(c) Pseudo-inverse DOA approach This method is quite similar to the Dominant DOA approach. In the uplink, the angle of incidence of each user's signal is obtained, and the antenna array response of the signal arrival direction is virtualally inverted. (pseudo-inverse) Generates a weight vector for the client. This method minimizes interference by placing the antenna field zero-intensity beam (nulls) in the direction in which the k-number of the signal does not arrive. If the kth client has a direct path signal and a multipath signal, the angle of arrival is _0 and θ2, respectively, and the signal antenna array response of the following chain can be expressed as ~=, where «)) is the kth The antenna array response of the user's first path is ~ the phase and amplitude of the kth multipath signal relative to the direct path signal. In simple terms, suppose there are two independent source functions) and ~(ί), if the weighted vectors of the two signals are % and #2, then the signal received by the first user is (3)

假如巧設計成垂直辦))、#2設計成垂直辦))和咖”)並且 岁(0^1 ,那麼⑽。換句話說,即使傳送兩個同頻信 號,第一個用戶端只會接收到想要的信號以)。所以我們只要 設計一個加權向量% ,把陣列天線的傳送場型(paUern)的 零強度波束指向除了q以外的所有信號。同樣地,%也是如 13 1251373 此設計。 ⑷虛擬反運算空間特徵法(1)職do-lnVerse ss ap_ch) 這方法與共輛複數信號空㈣㈣⑽細㈤师& % 卿籠_法_ ’只是仙_上難號天、㈣卿應的虛擬 反置(PSaKb-lnverse)來產生下_加權向駟,⑽是以信號源 的上鏈信號天線陣列響應來產生,所以會有的結 果,其中w。比照pseud0-lnv⑽職的所提例子中,在這裡 我們只要把加權向量設計成具有㈣及以=ι的結果,因此,在 第一個用戶端所接收到的信號為 g(wlS](,)+(/)(/) 1 ^ ⑷ 然而相關於,2_陣列天線場型从可以容易地把零強度位置 才曰向所有與&(/)有關的信號到達方向,即外>和外),雖然 ,>2 =^(,/')>P2 +,V'(,(2)k =〇 , . t^#^(,(〇),2 即可、不需要完全的與劇及剩正交,我們設^可以去控 制兩路控的振幅及相位就可正確地把第—個用戶端的信號消除 掉。此法較適用在邛!)系統。 以下以一基地台使用8個線性等距離排列的均勻線性陣列天線 模組41架構的智慧型天線系統4制在㈣μα ι制操作流程 為例’使餘查韻能進-步了解本發明之_及技術内容: 14 1251373 ι·目標用戶(行動用戶終端設備或手機)接收到原始通訊系統(基 地台)的廣播通道信號後利用接取通道與基地台完成接取作土 業。 2.基地台透過交換模組44將完成接取程相目標用戶信號相關 資訊(例如:操作頻率及時序、用戶酬資料、(解)展頻碼、 信號品質等)饋入智慧型天線系統4控制模組处作為各模組操 作之流程或參數調整的依據。 3·接收鏈路操作程序:陣列天線模組41獲取陣列響應後—射頻& 中頻模組削〜4313將射頻健轉換成基頻域—智慧型天線 系統基頻模組45利用陣列響應所隱含的目標用戶具有獨特性 的空間特徵,來估測目標用戶的方位#訊(例如··路徑數、每 個路彳二成分的彳s號強度、信號到達方位及角度展延等)—計算 曰慧型天線的接收加權向量形成適當的波束場型來提升目標 信號的信號品質及抑制干擾的影響—將智慧型天線處理後的 較佳信號品質目標信號饋入原始通訊系統。 毛射鏈路操作私序·原始通訊系統的基^^員發射信號饋入智慧型 天線系統基頻模、组45-)根據目標用戶白勺方位資訊計算智慧型 天線的發射加權向量—射頻&中頻模組431卜4313將基頻信號 轉換成射頻信號—陣列天線模組41將射頻信號發射出去,並 以適當的波料絲提升目標錢的減信號品質及抑綱 其他用戶的干擾。 1251373 上列詳細說明係針對本發明之一可行實施例之具體說明,惟該 實施例並_赚制本發日此專·圍,凡未麟本發明技藝精/ 神所為之等效實施或變更,均應包含於本案之專利範圍中。 綜上所述,本案不但在技術思想上確屬創新,並能較習用物品 增進上述多項魏,應已充分符合新雛及進步性之法定發明專 利要件’爰依法提出申請,懇請貴局核准本件發明專利申請案, 以勵發明,至感德便。 【圖式簡單說明】 請參閱以下有關本發明一較佳實施例之詳細說明及其附圖, 將可進-步瞭解本發明之技術内容及其目的姐;有關該實施例 之附圖為: 圖一為本發明應用在專屬通道的低複雜度智慧型天線系統之 系統架構圖; 圖二、智慧型天線系統前端架構圖; 圖三、智慧型天線系統基頻模組架構圖; 圖四、晶片/符元相關器架構圖;以及 圖五、波束合成模組架構圖。 【主要元件符號說明】 1 :原始通訊系統之天線 2 :原始通訊系統之射頻/中頻模組 3·原始通訊系統之基頻模組 4:智慧型天線系統 1251373 1兔慧型天線系統之陣列天線模組 411〜413:丨率列天線模組之天線1〜天線M 42:智慧型天線系統之控制模組 3 ·智慧型天線系統之射頻&中頻模組排 頻/中頻模組1〜射頻 4311〜4313:射頻&中頻模組排之射 /中頻模組Μ 才果組1〜中頻 4321〜4323 ·•射鎖中麵組排之中頻/射頻 /射頻模組Μ ' 44 ·智慧型天線系統之交換模組 45 ·智慧型天線系統之智慧型天線系統基頻模組 451 :智慧型天線系統基頻模組之晶片/符元相關器排 4511〜4513:晶片/符元相關器排之晶片/符元相關器^ 晶片/符元相關器Μ 45111 ·晶片/付元相關器1之同步及碼搜尋哭 45112 :晶片/符元相關器1之解展頻器 45113·晶片/符元相關器]之犁耗式接收機 45114 :晶片/符元相關器1之功率合成器 452 :智慧型天線系統基頻模組之合成器 453 :智慧型天線系統基頻模組之分配器 454 ·智慧型天線系統基頻模組之波束合成模組 4541 :波束合成模組之方位監控器 17 1251373 4542 :波束合成模組之接收加權向量產生器 4543 :波束合成模組之接收乘法器 4545 : 4544 :波束合成模組之發射加權向量產生器 波束合成模組之發射乘法器If it is designed to be vertical (), #2 is designed to be vertical) and coffee") and aged (0^1, then (10). In other words, even if two co-frequency signals are transmitted, the first client will only Receive the desired signal to.) So we only need to design a weight vector % to point the zero-intensity beam of the array antenna's transmit field type (paUern) to all signals except q. Similarly, % is also like 13 1251373. (4) virtual inverse computing space feature method (1) job do-lnVerse ss ap_ch) This method and the total vehicle complex signal space (four) (four) (10) fine (five) division & % Qing cage _ law _ 'only fairy _ Shang Nanhao, (four) Qing Ying The virtual inverse (PSaKb-lnverse) to generate the lower _weighted 驷, (10) is generated by the signal source's uplink signal antenna array response, so there will be a result, where w is compared to the example of pseudo0-lnv(10) Here, we only need to design the weight vector to have the result of (4) and ==, so the signal received at the first client is g(wlS](,)+(/)(/) 1 ^ (4) However, related to the 2_array antenna field type can easily put the zero intensity position曰To all directions related to &(/), ie outside > and outside), though, >2 =^(,/')>P2 +,V'(,(2)k =〇 , t^#^(,(〇),2 can be, does not need to be completely orthogonal to the drama and leftover, we can control the amplitude and phase of the two channels to correctly put the first client The signal is eliminated. This method is more suitable for 邛!) system. The following is an example of a (4) μα ι operating flow system using a linear antenna system with a linear linear array of 41 linear equidistant arrays. 'Let Yu Cha Yun can step in and understand the invention _ and technical content: 14 1251373 ι · Target user (mobile user terminal equipment or mobile phone) receives the broadcast channel signal of the original communication system (base station) and then uses the access channel The base station is connected to the base station for the earthwork. 2. The base station will complete the information related to the target user signal through the exchange module 44 (for example: operating frequency and timing, user reward data, (solution) spread spectrum code, signal Quality, etc.) fed into the intelligent antenna system 4 control module as the process or parameter adjustment of each module operation 3. Receive link operation procedure: After the array antenna module 41 acquires the array response, the RF & IF module is cut ~4313 to convert the RF key into the fundamental frequency domain - the smart antenna system baseband module 45 utilizes the array Respond to the unique spatial characteristics of the target user to estimate the target user's position # (for example, the number of paths, the strength of the 彳s of each of the two components, the arrival direction of the signal, and the angle extension, etc. ) - Calculate the receive weight vector of the Hui-Hing antenna to form an appropriate beam pattern to improve the signal quality of the target signal and suppress the influence of interference - the better signal quality target signal processed by the smart antenna is fed into the original communication system. The hairline link operation private sequence · The original communication system's basic transmit signal is fed into the smart antenna system baseband mode, group 45-) Calculate the transmit weight vector of the smart antenna based on the target user's orientation information - RF & The intermediate frequency module 431 and 4313 convert the baseband signal into a radio frequency signal. The array antenna module 41 transmits the radio frequency signal, and uses the appropriate wave material to improve the signal quality of the target money and suppress the interference of other users. 1251373 The detailed description above is a detailed description of one of the possible embodiments of the present invention, but the embodiment is exemplified by the fact that it is equivalent to the implementation or modification of the present invention. , should be included in the scope of the patent in this case. In summary, this case is not only innovative in terms of technical thinking, but also can enhance the above-mentioned multiple Weis compared with the customary items. It should fully comply with the new and progressive legal patent requirements of the ''laws, and apply for it according to law. Invention patent application, in order to invent invention, to the sense of virtue. BRIEF DESCRIPTION OF THE DRAWINGS The following is a detailed description of a preferred embodiment of the present invention and its accompanying drawings, and the technical contents of the present invention and its objects will be further understood; the drawings relating to this embodiment are: FIG. 1 is a system architecture diagram of a low complexity intelligent antenna system applied to a dedicated channel according to the present invention; FIG. 2 is a front end architecture diagram of a smart antenna system; FIG. 3 is a schematic diagram of a baseband module architecture of a smart antenna system; The chip/symbol correlator architecture diagram; and Figure 5, the beamforming module architecture diagram. [Main component symbol description] 1: Antenna of the original communication system 2: RF/IF module of the original communication system 3. Baseband module of the original communication system 4: Smart antenna system 1251373 1 Array of rabbit-shaped antenna system Antenna modules 411 to 413: Antenna 1 to antenna M 42 of the antenna array of the antenna array: Control module 3 of the smart antenna system 3. RF & IF module of the intelligent antenna system 1~RF 4311~4313: RF & IF module row / IF module 才 Talent group 1 ~ IF 4321 ~ 4323 ·• Shot lock mid-range FIFO / RF / RF module Μ ' 44 · Smart Antenna System Switching Module 45 · Smart Antenna System Smart Antenna System Baseband Module 451 : Smart Antenna System Baseband Module Chip / Symbol Correlator Row 4511~4513: Wafer /symbol correlator row wafer / symbol correlation device ^ chip / symbol correlation device 111 45111 · wafer / pay unit correlator 1 synchronization and code search cry 45112: wafer / symbol correlation device 1 solution spreader 45113·wafer/symbol correlator] plow receiver 45114: power of chip/symbol correlator 1 452: Synthesizer 453 for smart antenna system baseband module: splitter for smart antenna system baseband module 454 · Smart antenna system baseband module beam synthesis module 4541: beam synthesis module Azimuth monitor 17 1251373 4542 : Receive weight vector generator for beam synthesis module 4543 : Receive multiplier for beam synthesis module 4545 : 4544 : Transmit multiplier for beamforming module of beamforming module

1818

Claims (1)

1251373 十、申請專利範圍: 種應用在專屬通道的低複雜度智慧型天線系統,尤指一種利 用並接的方柄原始通1瞒統提供智慧型天線的功能,並保留 了原七通成系統所有的軟、硬體架構的應用在專屬通道的低複 雜度智慧型天線系統,主要包括: _天_組’鱗列天__由針個天線所組成; 匕制楔組’输概組提係供控制軟體下載的機伽及透過原 始m統將完成接取_戶信號相隨訊饋人智慧型天線 糸統’作為各模_作之流程或參數婦的依據; 2頻&中頻模組排’該射頻&中麵組排中娜中頻模組的數 量相對應於_天__天線數量,負餘各天線所收到的 射頻l賴換成基頻錢韻人智慧型天線系統基頻模組,或 :曰慧m%統基軸㈣獻的基齡_換成射頻信 號再透過各天線發射出去; - 父換模組’該交換模組係作為原始通訊系統射頻/中頻模組盘 原始通訊系統基頻模組間的介接界面; /、 智慧型巧系統基頻模組,該智慧型天線系統細莫組主要包 含晶片/符7"相_、合成器、分配器及波束合成模組。 如申请專利範圍第1項所述之應用在專屬通道的低複雜度智普 型天線系統,其中該原始通訊系統可為任—種通訊規範的舰 如申請專利範圍第1項所述之應用在專屬通道的低複雜度智慧 1251373 型天線系統,其中該晶片/符元相關器係進行時域信號處理的 核〜,把導引k號由chip rate降至symb〇i rate後利用犁耙 式接收機將較大鱗的路㈣號合成後,饋人波束合成模組作 進一步的方位估測及智慧型天線加權向量的計算,其中該晶片 /符兀相關器主要的組件包括同步及碼搜尋器、解展頻器、犁 耗式接收機及功率合成器。 如申請專利範圍第1項所述之應用在專屬通道的低複雜度智慧 型天線系統,其巾該絲合賴組係進行空域信號處理,接收 4諕時,把各晶片/符元相關器所饋入的導引信號萃取出目標 ^的方位資訊,並計算—_#的智慧鼓線接收加權向 ^將傳輸資料乘上加權向量後饋人原始翻系統的基頻模 、、、I射乜號日守,把原始通訊系統的基頻模組饋入的信號乘上 ,接收發射補償處理後的智慧型天線發射加權向量後饋入射 肩/中麵組,其巾财束合成额主要祕綠監控器、接 權向里產生為、接收乘法器、發射加權向量產生器及發射 =申明專利範®帛4項所狀制在彻通道的倾雜度智 型天線系統,射該加權向量產生ϋ計算加權㈣的方式㈤ 切換式或自適性波束形式。 申明專利細第1項所述之應用在專屬通道的倾雜戶知4 型天線系統,射該_天線额巾各天射以為全方='、 20 1251373 扇形或其他高指向性的天線,而天線之排列方式可以為線性或 環狀的幾何結構。1251373 X. Patent application scope: A low-complexity intelligent antenna system applied to an exclusive channel, especially a function of providing a smart antenna by using a parallel-connected square-handle, and retaining the original seven-pass system. All low-complexity intelligent antenna systems with soft and hardware architectures are used in exclusive channels, including: _天_组' scales __ consists of a pin antenna; 匕 wedge group' The machine for downloading the control software and the original system will complete the access to the _ household signal and send the smart antenna system as the basis of the process or parameter of the model; 2 frequency & IF The number of IF modules in the module row 'the RF & middle face row corresponds to the number of _ days __ antennas, and the RF received by each antenna is replaced by the base frequency. Antenna system baseband module, or: 曰慧m% base shaft (four) offer the base age _ replaced by RF signal and then transmitted through each antenna; - the father change module 'the switch module as the original communication system RF / medium Interface between the baseband modules of the original communication system of the frequency module disk Surface; / smart clever system baseband module, the smart antenna system comprises a fine set of primary wafer Mo / symbol 7 " _ phase, a synthesizer, a distributor and a beamformer module. As described in claim 1, the low-complexity smart antenna system applied to the exclusive channel, wherein the original communication system can be used for any of the communication specifications, as described in the first application of the patent scope. The low-complexity wisdom 1251373 antenna system of the dedicated channel, wherein the chip/symbol correlator performs the core of the time domain signal processing~, and uses the plow-type receiving to reduce the guiding k number from the chip rate to the symb〇i rate After the machine combines the larger scales (4), the beamforming module is fed to further the azimuth estimation and the calculation of the smart antenna weight vector. The main components of the chip/symbol correlator include the synchronization and code searcher. , de-spreader, plough receiver and power combiner. For example, in the low-complexity smart antenna system of the exclusive channel described in the first application of the patent scope, the towel-based group is subjected to spatial domain signal processing, and when receiving 4 turns, each chip/symbol correlator is used. The fed-in pilot signal extracts the orientation information of the target ^, and calculates the wisdom drum line receiving weight of -_#, multiplies the transmission data by the weight vector, and feeds the fundamental frequency mode of the original flip system, and I shoot No. shou, multiply the signal fed by the baseband module of the original communication system, and receive the transmit-compensated smart antenna transmit weight vector back-feeding shoulder/middle group, the main secret green of the bundle The monitor, the relay inward generation, the receiving multiplier, the transmission weight vector generator, and the transmission = the patent paradigm 帛4 items are in the channel of the distressed intelligent antenna system, and the weight vector generation is generated. The way to calculate the weighting (four) (5) the switched or adaptive beam form. The patent application described in item 1 of the patent is applied to the exclusive channel type 4 antenna system, and the antenna of the antenna is used to shoot the antenna = ', 20 1251373 sector or other high directivity antenna. The antennas can be arranged in a linear or circular geometry.
TW93137702A 2004-12-07 2004-12-07 Low-complexity intelligent-type antenna system for use in dedicated channel TWI251373B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93137702A TWI251373B (en) 2004-12-07 2004-12-07 Low-complexity intelligent-type antenna system for use in dedicated channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93137702A TWI251373B (en) 2004-12-07 2004-12-07 Low-complexity intelligent-type antenna system for use in dedicated channel

Publications (2)

Publication Number Publication Date
TWI251373B true TWI251373B (en) 2006-03-11
TW200620750A TW200620750A (en) 2006-06-16

Family

ID=37433564

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93137702A TWI251373B (en) 2004-12-07 2004-12-07 Low-complexity intelligent-type antenna system for use in dedicated channel

Country Status (1)

Country Link
TW (1) TWI251373B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698052B (en) * 2018-11-23 2020-07-01 耀登科技股份有限公司 High-frequency antenna device and antenna array thereof

Also Published As

Publication number Publication date
TW200620750A (en) 2006-06-16

Similar Documents

Publication Publication Date Title
KR100689399B1 (en) Apparatus and method for control of forward-link beamforming in mobile communication system
EP0953235B1 (en) Smart antenna cdma wireless communication system
US6980527B1 (en) Smart antenna CDMA wireless communication system
US6694155B1 (en) Downlink beamforming method
US6249251B1 (en) Hardware-efficient demodulator for CDMA adaptive antenna array systems
Choi et al. A novel adaptive beamforming algorithm for antenna array CDMA systems with strong interferers
US20140161018A1 (en) Multi-user mimo via frequency re-use in smart antennas
US20040043795A1 (en) Genetic algorithm-based adaptive antenna array processing method and system
Choi et al. A comparison of tracking-beam arrays and switching-beam arrays operating in a CDMA mobile communication channel
TWI284465B (en) Blind signal separation using correlated antenna elements
KR20020093185A (en) Method for processing signal in CDMA with adaptive antenna array, System for the same
CN1802771B (en) Adaptive antenna reception method and device
Mahmood et al. Sub-array selection in full-duplex massive MIMO for enhanced self-interference suppression
Eisenbeis et al. Hybrid beamforming analysis based on MIMO channel measurements at 28 GHz
TWI251373B (en) Low-complexity intelligent-type antenna system for use in dedicated channel
JP2001094488A (en) Communication unit using adaptive antenna
JP3999517B2 (en) Method and apparatus for evaluating uplink radio signals
Kawitkar Issues in deploying smart antennas in mobile radio networks
RU2278471C2 (en) Method for directional transmission with check connection
Mahmood et al. Adaptive Modulus RF Beamforming for Enhanced Self-Interference Suppression in Full-Duplex Massive MIMO Systems
Manai et al. Interference management by adaptive beamforming algorithm in massive MIMO networks
Rani et al. MUSIC and LMS algorithms for a smart antenna system
Kaushik et al. Flexible Hybrid Beamforming for Spectrally Efficient 6G Joint Radar-Communications
Que et al. Communication and Localization with Extremely Large Linear Distributed Lens Antenna Arrays
Bromberg et al. The use of programmable DSPs in antenna array processing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees