TWI251253B - Semiconductor device manufacturing method and plasma oxidation method - Google Patents

Semiconductor device manufacturing method and plasma oxidation method Download PDF

Info

Publication number
TWI251253B
TWI251253B TW93105294A TW93105294A TWI251253B TW I251253 B TWI251253 B TW I251253B TW 93105294 A TW93105294 A TW 93105294A TW 93105294 A TW93105294 A TW 93105294A TW I251253 B TWI251253 B TW I251253B
Authority
TW
Taiwan
Prior art keywords
film
layer
plasma
gas
treatment
Prior art date
Application number
TW93105294A
Other languages
Chinese (zh)
Other versions
TW200531123A (en
Inventor
Masaru Sasaki
Yoshiro Kabe
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to TW93105294A priority Critical patent/TWI251253B/en
Publication of TW200531123A publication Critical patent/TW200531123A/en
Application granted granted Critical
Publication of TWI251253B publication Critical patent/TWI251253B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The invention includes the steps of forming polysilicon electrode layer l03 (the first electrode layer) on the gate oxide film 102 of silicon wafer 101; forming a tungsten layer 105 (the second electrode layer) on the polysilicon electrode layer 103, wherein before forming the tungsten layer 105, an electronic conductive barrier layer 104 is formed in advance on the polysilicon electrode layer 103; then performing an etching process by using silicon nitride 106 as an etching mask; and forming an oxide insulating film 107 on the exposing surface of the exposed polysilicon layer 103 by a plasma oxidation process using oxygen and hydrogen processing gases in the temperature above 300 DEG C. By this way it can carry out the selective oxidation process for polysilicon electrode layer 103 without oxidizing the tungsten layer 105.

Description

1251253 玖、發明說明·· 【發明所屬之技術領域】 :發明是有關半導體裝置的製造方法及電漿氧化處理方 使用電漿處理半導體基板。 【先前技術】 —近年來,為了電晶體的高速化,降低裝置比例等,而超 核化閘極氧化臈等。電晶體的間極,井1㈣ •問極的順序形成。在閑極形成後,對間極的側面施 口錢刻處理。所以,因為閘極成裸露,若在閘極施加電 姿’則在該裸露部份產生電場集中,造成漏電流增大等的 不良影響。因此’通常在閘極的露出部份形成絕緣膜。 問極通常使用多晶⑦,但是因為多⑭㈣膜電阻高, 而堆疊電阻值低的金屬。堆疊的金屬考慮到與石夕氧化膜和 矽本身的附著性、加工性,而選擇鎢等的高熔點金屬,或 其矽化物。在藉由蝕刻而露出的閘極側面形成絕緣膜時, 一般是在800°C以上的高溫中作熱氧化處理。 但是’鎢因為在大約30(rc急速的氧化,若對間極進行執 氧化處理,則鎢層的電阻值會上昇。其結果,造成閘極的、 電阻值提高。並且’鶴與多晶石夕反應,擴散防止層的氮化 鶴擴散,造成比電阻上昇。 亚且,熱虱化處理本身,需要比較上長的時間。因此, 使通量上升阻礙提高生產性。 熱氧化處理以外的急彳卜胺Μ加士、士、+ W虱化膜的形成方法,例如在特開平 O:\91\91615.DOC4 1251253 1 1 -293470號公報所記載 n m ^ ,棱木使用電漿形成氧化膜的 方法。忒方法,在處理室 ^ ^ ^入㊁有石夕的氣體及含右笥 氣氣肢生成該等氣體的 " 兒水,在基板堆疊矽氧 成膜矽氧化膜的成膜方牛^ /虱化肤,在 〇卿、L 方去,除含有上述矽氣體及含有氧 乱虱脰以外,將氫氣氣 丄a V入處理室内,在處理室内生 成含有氫的電漿。藉此, 好膜質。 了以侍到相當於熱氧化膜的良 為了在鎢防止氧化,最 一 取好為3〇〇c以下的處理,但是對矽 的氧化膜形成,在越高、、w 士 一 隹越间酿捋,在得到優質的膜質方面、氧 化比南方面、使因為圖宰 Μ + 茶的粗始、而產生的氧化比的差縮小 寺方面,為適合的條件。 【發明内容】 本發明的目的在於,提供 t 彳/、牛v體裝置之製造方法及電漿 氧化處理方法,並石蚀遊々 /、不使鎢或鎢矽化物層氧化,對多晶矽等 的其它層,可以在岭t、、w > 在T乂回,皿下進行選擇的氧化處理。 本發明的1個實施形能沾4主 ^ 、 心的特徵在於,藉由在半導體基板上 ’死^成以4烏為主成的腺· v:bq 成刀的膜、與以該鎢為主成分的膜不同成 为的膜製造特定的半導,梦罟 、 j干V虹衣置的方法中,包含:在上述半1251253 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明[Prior Art] - In recent years, in order to increase the speed of the transistor, the ratio of the device is lowered, and the gate ruthenium oxide or the like is super-nucleated. The interpole of the transistor, well 1 (four) • The order of the poles is formed. After the formation of the idle pole, the side of the pole is treated with money. Therefore, since the gate is exposed, if the electric potential is applied to the gate, electric field concentration occurs in the exposed portion, which causes an adverse effect such as an increase in leakage current. Therefore, an insulating film is usually formed on the exposed portion of the gate. It is usually the case that polycrystalline 7 is used, but because of the high resistance of 14 (four) films, the metal with low stacking resistance is used. The metal to be stacked is selected from a high melting point metal such as tungsten or a bismuth compound in consideration of adhesion to the stone oxide film and ruthenium itself and workability. When an insulating film is formed on the side surface of the gate exposed by etching, it is generally subjected to thermal oxidation treatment at a high temperature of 800 ° C or higher. However, because tungsten is oxidized rapidly at about 30 rc, the resistance value of the tungsten layer rises when the inter-electrode is oxidized. As a result, the gate resistance and resistance increase. And the crane and polycrystalline stone In the case of the reaction, the diffusion of the nitriding crane in the diffusion preventing layer causes the specific resistance to rise. In addition, the thermal desulfurization itself requires a relatively long time. Therefore, increasing the flux hinders the improvement of productivity. A method for forming a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium, a ruthenium The method of 忒, in the treatment chamber ^ ^ ^ into the gas with a stone and the gas containing the right sputum gas to generate the gas of the water, the film formation of the oxide film on the substrate stacking oxide film The cow ^ / 虱 skin, in the 〇 、, L, in addition to containing the above 矽 gas and containing oxygen chaos, the hydrogen gas 丄 a V into the treatment chamber, in the processing room to generate hydrogen containing plasma. , good film quality. It is good to serve the equivalent of thermal oxide film. In the prevention of oxidation of tungsten, the treatment is preferably 3 〇〇c or less, but the formation of an oxide film for ruthenium is higher, and the 捋 隹 隹 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋 捋In the south, it is a suitable condition to reduce the difference in the oxidation ratio due to the coarseness of the Μ Μ Μ + tea. [Invention] The object of the present invention is to provide a t 彳 /, a bovine device The manufacturing method and the plasma oxidation treatment method, and the stone erosion 々/, does not oxidize the tungsten or tungsten bismuth layer, and other layers such as polysilicon can be selected in the ridge, w > Oxidation treatment. One embodiment of the present invention is characterized in that a film is formed by a film formed on a semiconductor substrate by a gland of v:bq A method in which a film having a tungsten-based composition is used as a film to produce a specific semiconductor, and a method of setting a nightmare or a j-V-coating includes:

導體基板上,成形盘LV μ 'X' ΛΑ W ^ /、 述鎢為主成分的膜不同成分的膜 的第1層的工序;在上述丰導 ^ 4干V脰板上’形成以鎢為主成分的 '、第層的工序,與使用含有氧氣氣體與氮氣氣體的處理 氣體,藉由處理溫度為300t以上的電襞處理,在上述第丨 層的露出面,形成氧化膜的工序。 O:\9I\9I6I5.D0C4 1251253 並且’本發明的其它施實 .,v 貝t l之特徵在於,形成以鎢為 主成为的膜、與以鎢為主成 风刀的腠不同成分的膜的半導體 基板的,電漿氧化處理盥 /、上述鎢為主成分的膜不同成分 、、、方法’使用含有氧氣氣體與氫氣氣體的處理氣體, 精t處理溫度為3帆以上的電漿處理,在與以上述鎢為主 成分的膜不同成分的膜的露出面形成氧化膜。 树明適用於電晶體的閘極形成,電漿氧化處理閘極側面。 【貫施方式] 以下’有關實施形態參照圖面說明本發明的細節。^ 表不本發明的一實施形態的電漿處理裝置10的概略構成的 例a水處理裝置10,具備保持被處理基板的石夕晶圓W的 基板保持台12的處理容器U。處理容器_的氣體,從排 風孔11A及11B通過未所於圖的排氣壓縮機排氣。尚且,基 板保持台12’具有加熱矽晶圓评的加熱器功能。在基板保 持台Π的周圍’配置㈣氣錢板(分隔板)%。在氣體播板 26的上面設置石英蓋28。 在處理容HU的裝置上面,對應基板保持台12上的石夕晶 圓W設置開口部,口部,藉由誘電體板13其包含石英 與Al2〇3塞著。在介電體板13的上部(處理容器11的外側), 配置平面天線丨4。在該平面平線14,形成為通過從導波管供 給的電磁波的多數的溝槽。更加在平面平線14上部(外側), 配置波長短縮板15與導波管18。覆蓋波長短縮板15的上部 的,在處理容器11的外側配置冷卻板16。在冷卻板丨6的内 部’設置流動冷媒的冷媒路16a。 O:\9l\91615.DOC4 1251253 在處理容器1丨的内部側壁,設置在電漿處理時為導入氣 體的氣體供給〇22。該氣體供給σ22,也可在每個導入的 乳體設置。此時,作為調整流量方法在每個供給口設置未 示於圖的分子流量控制器。另一方面,預先將導入的氣體 混合送出’供給口 22也可為—個噴嘴。在此時也未示於圖 入的氣體的流量調整是為,在混合階段中,流量調整 閥等並且,在處理容器11的内壁的内側,圍繞容器全部 的形成冷媒流路24。 ° 在私水處理裝置1〇中,具有未示於圖的電磁波產生器, f產生為產生電㈣數千兆赫的電磁波。在該電磁波產生 器產生的微波,傳送在導波管18導入處理容器^。 、在形成半導體裝置的閘極時,首先切晶圓上形成井區 域。在其石夕晶圓上,藉由電漿氧化處理或熱氧化處理,形 成閘極氧化膜。之後,藓由 乂 稭由CVD(化學氣相沉積)成膜多晶矽On the conductor substrate, a forming disk LV μ 'X' ΛΑ W ^ /, a step of forming a first layer of a film of a different component of the film containing tungsten as a main component; forming a tungsten on the above-mentioned rich V 4 The step of the 'component of the main component' and the step of forming an oxide film on the exposed surface of the second layer by treating the treatment gas containing the oxygen gas and the nitrogen gas with a treatment temperature of 300 t or more. O:\9I\9I6I5.D0C4 1251253 and 'Other implementations of the present invention, the v-feet t1 is characterized by forming a film mainly composed of tungsten and a film different from the composition of a tungsten-based air knife. The substrate, the plasma oxidation treatment 盥 /, the above-mentioned tungsten as a main component of the film different components, the method 'use a treatment gas containing oxygen gas and hydrogen gas, fine t treatment temperature of 3 sail or more plasma treatment, in An oxide film is formed on the exposed surface of the film of different components of the film containing tungsten as a main component. Shuming is suitable for the gate formation of the transistor, and the plasma is oxidized to treat the side of the gate. [Complex] Hereinafter, the details of the present invention will be described with reference to the drawings. An example of the schematic configuration of the plasma processing apparatus 10 according to the embodiment of the present invention, the water treatment apparatus 10 includes a processing container U for holding the substrate holding stage 12 of the substrate W of the substrate to be processed. The gas of the processing vessel_ is exhausted from the exhaust holes 11A and 11B through an exhaust compressor not shown. Further, the substrate holding stage 12' has a heater function for heating the crucible. The (4) gas money board (separator) % is placed around the substrate holding table. A quartz cover 28 is provided on the upper surface of the gas panel 26. On the apparatus for processing the volume HU, an opening portion is provided corresponding to the stellite circle W on the substrate holding table 12, and the mouth portion is filled with the quartz and the Al2 〇3 by the electric conductor plate 13. On the upper portion of the dielectric plate 13 (outside of the processing container 11), a planar antenna 丨4 is disposed. The plane flat line 14 is formed as a majority of the grooves passing through the electromagnetic waves supplied from the waveguide. Further, the wavelength shortening plate 15 and the waveguide 18 are disposed on the upper (outer side) of the plane flat line 14. The cooling plate 16 is disposed outside the processing container 11 so as to cover the upper portion of the wavelength shortening plate 15. A refrigerant passage 16a for flowing a refrigerant is provided in the inner portion of the cooling plate 丨6. O:\9l\91615.DOC4 1251253 The inner side wall of the processing vessel 1 is provided with a gas supply port 22 for introducing a gas during the plasma treatment. The gas supply σ22 can also be set in each of the introduced milk bodies. At this time, as a method of adjusting the flow rate, a molecular flow controller not shown in the figure is provided at each supply port. On the other hand, the introduced gas may be mixed and sent out to the supply port 22 in advance. The flow rate of the gas which is not shown in the figure is adjusted so that the flow rate adjustment valve or the like is formed in the mixing stage, and the refrigerant flow path 24 is formed around the entire inside of the inner wall of the processing container 11. ° In the private water treatment device 1A, there is an electromagnetic wave generator not shown in the figure, and f is generated to generate electric (four) electromagnetic waves of several gigahertz. The microwave generated by the electromagnetic wave generator is transmitted to the waveguide 18 and introduced into the processing container. When forming the gate of the semiconductor device, the well region is first formed on the wafer. On its Shi Xi wafer, a gate oxide film is formed by plasma oxidation treatment or thermal oxidation treatment. After that, polycrystalline germanium is formed by CVD (chemical vapor deposition) from 乂 straw.

〇以降低閘極的電阻A 且為目的’在多晶矽上堆疊比多晶矽比 龟阻小的咼溶點電極材料 蟲 … τ 1下局堆宜閘極。該鬲熔點電極 材料’可以使用例如鶴。 、 ^對閘極的側面施加濕蝕刻處理。 在裸露的堆疊閘極你丨;g 面及下。卩,照原樣,則因為電場集 中而引起漏電流的增大π莖 ’、 曰穴不寺的不良影響。在此,本發明,在 閘極的側面及下部葬ώ + 丨错由电漿處理形成絕緣膜。即是,在 處理裝置10的處理容g u中< 7 ^ a。 杰11中故置蝕刻閘極絕緣膜的側面的 石夕日日圓W。之後,诵讲尸 、過排氣孔11A、UB,進行處〇In order to reduce the resistance A of the gate and for the purpose of 'stacking on the polycrystalline crucible than the polycrystalline germanium than the turtle resistance, the melting point electrode material worm ... τ 1 lower stack should be the gate. As the ruthenium melting electrode material, for example, a crane can be used. , ^ Apply a wet etching treatment to the side of the gate. In the bare stack gate you 丨; g face and down.卩, as it is, the leakage current increases due to the concentration of the electric field, and the adverse effects of π stems and 曰 acupuncture are not affected. Here, in the present invention, the insulating film is formed by plasma treatment on the side and the bottom of the gate. That is, in the processing capacity of the processing device 10, < 7 ^ a. In the case of Jie 11, the side of the gate insulating film is etched. After that, I will tell the corpse, the vent hole 11A, UB, and carry out

内部空氣的排氣,將處理六σσιι+ 谷杰U 地 处理谷為11内部設定成特定的處理壓。 接下,從供給口 22,供仏卜主α γ 供、生氣體與氧氣氣體與氫 O:\91\91615.DOC4 1251253 另-方面,在電磁波產生器所產生的數千死赫的電磁波 的微波,通過導波管18供給處理容器u。通過平面天線14 *介電體板13,將該微波導人處理容器。藉由該微波 、生電漿’生成基。藉由在處理容器u内的微波產生所生 成的向密度電漿,在矽晶圓上W形成氧化膜。 如上述,若鎢超過約3〇(rC,WSl超過4〇(rc,則急速的 開始氧化。本實施形態’藉由與氧氣氣體同時導入:氣氣 體,控制氣體的還元性,在職以上也可以_邊防止鎢的 氧化’ 一邊只有使矽選擇的氧化。 尚且,有關鎢以外的其它高熔點電極材料也相同。 (貫施例) 以下,以在本導體裝置的M〇s(金屬_氧化物_半導體)電晶 體形成的閘極為例,說明有關本發明的實施例。 圖2圖型的表示本發明實施例在閘極上,選擇的形成氧化 膜的模樣。圖2⑷表㈣刻後的閘極丨⑻。1Ql切晶圓w。 在矽晶圓101,形成掺雜P+或矿的井區域。在矽晶圓上 ,藉由熱氧化處理,形成閘極氧化膜1〇2。在閘極氧化膜⑺2 上,藉由CVD成膜多晶矽,形成多晶矽電極層ι〇3(第—電 極層)。為了降低閘極100的比電阻,以高熔點電極材料电 在多晶矽上藉由濺鍍形成如鎢層1〇5(第二電極層)。尚且, 在形成鎢層105之前,為了防止其界面的矽化,預先在多曰 矽電極層103上形成導電性的隔離層1〇4。在此例中,=阳 層104使用氮化鎢。在鶴層1()5上最上層形成兼為姓刻3 的氮化矽層106。 0'^!\91615.D0C4 -10- 1251253 之後,氮化石夕層關乍為银刻光罩,進用钱刻處理, 閘極100。此時’蝕刻閘極氧化膜102(絕 : 的側面及下部成裸露。 、、、閘極100 在裸露的閘極1〇〇的側面及下部’藉由電漿處理裝置w ,進行電漿氧化處理。藉此,在石夕晶圓1〇1、多曰曰曰石夕層⑻ 、氮化石夕層1〇6的表面,選擇的形成氧化絕緣膜1〇7,曰成^ 如圖2⑻所示的閉極11〇。此時’在鎢層1〇5及隔離層⑽未 形成氧化膜。 尚且,代替鎢層1〇5,可以採用其它的高炫點電極材料 例如鉬、鈕、鈦、該等的矽化物、合金等。 圖3(a)表示,本實施例,藉由的電浆處理,在m⑽電晶 體的閘極側面形成氧化膜的閘極110。該堆疊的閘極,:J 晶石夕層103至氮化石夕層106為止為25〇職的厚度。此時石夕基 板溫度為25(TC,處理時間為5〇秒。圖3⑻是表示在為比^ 只有氧氣氣體的熱氧化。此時的矽基板溫度為4〇〇它,處理 時間為11G秒。從該圖明顯的可知,在只有氧氣氣體的熱氧 化,因為處理溫度高’而使鎢飛散(脫落)。因為鎢飛散而可 能 >可染基板。在實施例中,即使在矽基板溫度5〇(rc的氧化 ,也不會呈現如此的現象。 圖4(a)、(b)表示鎢層105的氧化,藉由電漿氧化處理,如 何的變化。處理時間50秒進行5〇(rc的電漿氧化處理。氧化 曲線是藉由EELS(電子能量損失光譜器)測定。圖4(a)表示作 電漿處理前的氧氣曲線的狀態。沿著圖2(a)的A-A,斷面,觀 測鎢層105 °並且圖4(b)表示電漿處理後的氧化曲線的狀態 O:\91\91615.DOC4 -11 - 1251253 。沿著圖2(b)的B-B,斷面相同的觀測鎢層i〇5。縱軸表示依 照氧氣的量比例的發光強度。橫軸,藉由規格化A-A,斷面 或B-B’斷面部分的長度的數值表示。依該等的結果,鎢層 1 05的氧化膜,在電漿氧化處理的前後,可知幾乎無變化, 而鐫層10 5的氧化非常微量。 依據本實施例的半導體裝置的閘極,藉由TEM(透過型電 子顯微鏡)觀察電漿氧化處理前後的多晶矽層1〇3側面的^ 化膜厚。其結果,對於蝕刻處理後的濕洗淨後的閘極側面 的乳化膜厚約為2·〇 nm,電漿氧化處理後的閘極侧面的氧 化膜厚約為3.3 nm。即藉由本實施例,在多晶矽層確實的 選擇的形成氧化膜。 攸上述的結果,可知藉由本實施例,在多晶石夕層選擇的 形成氧化膜,在鎢層不追加的形成氧化膜。並且,藉由時 間與處理溫度等的條件,可以控制氧化膜的生成。 在裸露的M0S電晶體的閘極100的側面,藉由上述的電聚 處理裝置10,纟電漿氧化處理時加上氫氣氣體。結果,在 基虱化處理時形成還元氣體,而未使鎢氧化,並提高只有 使多晶矽更加氧化的選擇性。 圖5在導入氫氣氣體時與使其流量變化時,藉由XPS(X: 光電子光譜)裝置的表面分析表示嫣有多少程度氧化。縱, 為W與wo3的大峰強度,橫軸表示結合強度。圖中⑽②: 示各自以30, 20, 10 sccm的流量導入的氫氣氣體。為了! 較在θ表示只有氬與氧氣mw的未處理(氧化處理 。❻、@、@、咖基板上的氧化膜厚為相同的3 nm叫 O:\91\916l5.DOC4 1251253 該結果可知,鎢的尖峰31〜34附近的強度是氫氣流量越多時 越高。另一方面,在氧化鎢的尖峰35〜39附近的強度是沒③= ❾的虱氣氣體處理方法時高。因此,可知,放入氫氣氣體在 與氧氣氣體的流量比中氫氣氣體越多則鎢難越以氧化。 圖6表示使氫氣氣體與氧氣氣體的流量比變化,測量矽氧 化膜、與氧化鎢膜的形成膜厚的結果。縱軸表示在同一严 理時間形成的石夕氧化膜及氧化鶴膜的膜厚,在橫轴表示氣 乳氣體流/氧氣氣體流量的比。碎的氧化率表示在氫氣氣體 的比在1〜2為最大,關於鎢,則藉由導入氫氣氣體,而減: 氧化膜厚,在流量比為2以上時,可知幾乎未形成氧化鎢。 尚且,該例的處理時的基板溫度在25〇艽氧氣氣體流量為 100SCCM,S力為6,7Pa,給電漿的供給電力為22請: 圖5、6中可知藉由導入氫氣氣體,可以控制鶴的氧化, 並藉由控制與氧氣氣體的流量比,可以控制只有石夕的選擇 的氧化。而鎢的氧化控制,最好氣體流量比為15以上,更 好為2.G以上,㈣的氧化率最好的氣體流量比為0.5以上並 且為4以下。依據該等,最好氫氣氣體流量/氧氣氣體流量 的比為1.5以上,更好為2以上並且為4以下。 圖7在石夕基板上,在使溫度變化進行8請氧化時,辟 5相同的xps裝置的表面分析’表 3 士 衣不鎢有多少程度氧化。此 日丁的ΑΓ/Η2/〇2流量為1〇〇〇/2〇〇/1〇〇 sccm,壓力為8…仏 電裝的供給電力為2.2KW。從該結果可知,氧化鎮的叫 的大峰強度,在曲線A所示的紅沉積時為最高,並可知藉 由導入氫氣氣體與氧氣氣體的電漿處理,在沉積時與㈣ 〇Λ91\9|615 DOC4 -13 1251253 後,表面自然氧化,所形成的氧化鎢還元。尚且,同圖中 ,表示曲線B溫度為25〇r,曲線c溫度為300°C,曲線D溫 度為35GC ’曲線E溫度為400°C,曲線F為6〇〇°c。可知鶴急 速的氧化'Μ度為3 0 0 C以上’在本發明,即使在6 〇 〇 °c也未 造成鎢的氧化。 圖8表示氧化6 nm石夕基板時的,緣出對於基板溫度的石夕的 氧化率及氧化時間的圖。該例的處理時的氣體流量 Ai*/H2/〇2為 1000/200/100 sccm,壓力為 6·7 pa,給電漿的供 給電力為2.2 KW。如同圖中所示,對於基板溫度25〇。〇的處 理,500 C的處理具有約2倍的氧化速度,可知在須要相同 氧化量時,越高溫處理時間則縮短。並且,如上述之,對 矽的氧化膜形成,越高溫,可以得到優良的膜質,使因為 圖案的粗密而產生的氧化率的差縮小。因此,處理溫度最 好為300°C以上。 以上,依幾個例說明有關本發明的實施形態及實施。本 I明不,、限疋於幾個該等的實施例。在申請專利的範圍所 示^技術的想法的範圍可以作變更。例如,閘極是說明以 堆登多晶㈣鶴的物體,但是也可為單層其包含鶬、其它 高熔點電極材料或只有該等的矽化物。並且,纟電晶體的 閘極以外也可以適用,並可以適用於須要一邊控制對鎢層 乂外的金屬的氧化,—邊選擇的氧化含有石夕的I ,例如多 晶矽等的層的各種的半導體製造。 述兒月之,藉由電漿處理,因為氧化處理閘極等的 表面’並不使鶴或鶏石夕化物層氧化,而可以選擇的氧化多 O:\91\91615.DOC4 -14- 1251253 晶矽等的其它層。 有關本發明料導體裝置之製造方法及⑽氧化處理方 法,可以使用在進行半導體裝的製造的半導體製造產業等 。隨之,可以利用在產業上。 【圖式簡單說明】 圖1表示本發明電聚處理裝置的構成的-例的概略圖(斷 面圖)。 /2圖型的表示藉由本發明在閘極,選擇的形成氧化膜的 核樣圖(a)疋在電襞氧化處理前,⑻是在電裝氧 的狀態。 “圖3圖型的表示在堆疊的閘極側面形成氧化臈的問極的 ㈣圖’⑷是藉由電漿氧化處理’⑻是表示在為比較所示 南溫的氧化。 圖4表示鹤層的氧化,藉由電漿氧化處理如何變化的㈣ 圖’⑷是作電聚處理前的氧氣曲線的狀態,⑻表示作電聚 處理後的氧氣曲線的狀態。 ’表示在導人氫氣氣體時與使其流量變化時,鎢有多少 程度氧化的曲線圖。 圖6表示藉由電漿氧化形成的石夕的氧化膜厚度、與鹤的氧 化膜厚度’對應氫氣氣體與氧氣氣體的流量變化的模樣的 曲線圖。 圖7表示鶴及氧化嫣的尖峰,藉由處理溫度, 的曲線圖。 圖8表示在藉由電焚氧化處理形成6細石夕氧化膜時的,使 O:\9I\916l5DOC4 -15- 1251253 處理溫度變化時的,氧化比及所需要的處理時間的曲線圖。 【圖式代表符號說明】 10 電漿處理裝置 11 處理容器 11A、 11B排氣孔 12 基板保持台 13 介電體板 14 平面平線 15 波長短縮板 16 冷卻板 16a 冷媒路 18 導波管 22 供給口 24 冷媒流路 26 氣體撞板 28 石英蓋 100 閘極 101 碎晶圓 102 閘極氧化膜 103 多晶矽電極層 104 隔離層 105 鎢層 106 氮化矽層 107 氧化絕緣膜 110 閘極 O:\91\91615.DOC4 -16The exhaust of the internal air will be treated to a specific processing pressure for the interior of the processing area of the six σσιι+ Gu Jie U. Next, from the supply port 22, the supply of the main alpha γ, the raw gas and the oxygen gas and the hydrogen O: \91\91615.DOC4 1251253, another aspect, the electromagnetic wave generated by the electromagnetic wave generator The microwave is supplied to the processing container u through the waveguide 18. The microwave is guided to the container by the planar antenna 14 * dielectric plate 13. The base is generated by the microwave and the green plasma. An oxide film is formed on the germanium wafer by generating the generated density plasma in the microwave in the processing container u. As described above, when the tungsten exceeds about 3 Torr (rC, WS1 exceeds 4 〇 (rc, the oxidation starts rapidly. This embodiment can be controlled by the introduction of gas gas at the same time as the gas gas), and it is also possible to control the gas. _ While preventing the oxidation of tungsten', the oxidation of the ruthenium is selected only on the one side. The other high-melting electrode materials other than tungsten are also the same. (Examples) Hereinafter, M〇s (metal_oxide) in the present conductor device _Semiconductor) An example of the invention is described with respect to a gate formed by a transistor. Fig. 2 is a view showing a pattern of forming an oxide film on a gate electrode in the embodiment of the present invention. Figure 2 (4) Table (4) Gate after engraving丨(8). 1Ql cuts the wafer w. On the germanium wafer 101, a well region doped with P+ or ore is formed. On the germanium wafer, a gate oxide film 1〇2 is formed by thermal oxidation treatment. On the film (7) 2, a polycrystalline germanium electrode layer ι 3 (first electrode layer) is formed by CVD film formation. In order to reduce the specific resistance of the gate 100, a high melting point electrode material is electrically formed on the polysilicon by sputtering to form, for example, tungsten. Layer 1〇5 (second electrode layer). Before the formation of the tungsten layer 105, in order to prevent deuteration of the interface, a conductive isolation layer 1〇4 is formed on the multi-turn electrode layer 103 in advance. In this example, the positive layer 104 is made of tungsten nitride. The uppermost layer on 1()5 forms a tantalum nitride layer 106 which is also a surname 3. 0'^!\91615.D0C4 -10- 1251253 After that, the nitride layer is a silver engraved mask, and the money is engraved. Treatment, gate 100. At this time, the gate oxide film 102 is etched (the side and the lower portion of the gate are exposed. The gate 100 is on the side and the lower side of the exposed gate 1) by the plasma processing device. w, the plasma oxidation treatment is carried out. Thereby, the oxide insulating film 1〇7 is formed on the surface of the Shixi wafer 1〇1, the multi-stone layer (8), and the nitride layer 1〇6, 曰As shown in Fig. 2 (8), the closed electrode 11 〇. At this time, an oxide film is not formed in the tungsten layer 1 〇 5 and the isolation layer (10). Further, instead of the tungsten layer 1 〇 5, other high-dot electrode materials may be used, for example. Molybdenum, button, titanium, such telluride, alloy, etc. Fig. 3(a) shows that, in this embodiment, by plasma treatment, formation on the gate side of the m(10) transistor The gate of the film 110. The gate of the stack, the thickness of the J-Crystal layer 103 to the nitride layer 106 is 25 〇 thickness. At this time, the temperature of the substrate is 25 (TC, processing time is 5 〇). Fig. 3(8) shows the thermal oxidation of oxygen gas in the ratio of 氧气. The temperature of the ruthenium substrate is 4 〇〇, and the treatment time is 11 G sec. It is apparent from the figure that in the thermal oxidation of only oxygen gas, The tungsten is scattered (dropped) because of the high processing temperature. The substrate may be dyed because of the scattering of tungsten. In the embodiment, even if the temperature of the substrate is 5 〇 (the oxidation of rc does not occur). 4(a) and (b) show how the oxidation of the tungsten layer 105 is changed by plasma oxidation treatment. The treatment time was 50 seconds for 5 〇 (plasma oxidation treatment of rc. The oxidation curve was measured by EELS (Electron Energy Loss Spectroscopy). Fig. 4 (a) shows the state of the oxygen curve before the plasma treatment. 2 (a) AA, section, observation of the tungsten layer 105 ° and Figure 4 (b) shows the state of the oxidation curve after plasma treatment O: \91 \91615.DOC4 -11 - 1251253. Along the Figure 2 (b BB, the same observation tungsten layer i〇5. The vertical axis represents the luminous intensity according to the proportion of oxygen. The horizontal axis, by the normalized AA, the length of the section or the length of the B-B' section According to the results, the oxide film of the tungsten layer 156 is hardly changed before and after the plasma oxidation treatment, and the oxidation of the ruthenium layer 10 is extremely small. According to the gate of the semiconductor device of the present embodiment, The film thickness of the side surface of the polycrystalline germanium layer 1〇3 before and after the plasma oxidation treatment was observed by TEM (transmission electron microscope). As a result, the thickness of the emulsion film on the side surface of the gate after wet cleaning after the etching treatment was about 2·〇nm, the oxide film thickness of the gate side after plasma oxidation treatment is about 3.3 nm. In the example, the oxide film was formed selectively in the polycrystalline germanium layer. As a result of the above, it was found that an oxide film was formed in the polycrystalline layer by the present embodiment, and an oxide film was not formed in the tungsten layer. The formation of the oxide film can be controlled by conditions such as time and processing temperature, etc. On the side surface of the gate 100 of the exposed MOS transistor, hydrogen gas is added to the ruthenium plasma oxidation treatment by the above-described electropolymerization treatment device 10. As a result, a reductive gas is formed at the time of the base treatment without oxidizing the tungsten, and the selectivity which only makes the polycrystalline germanium more oxidized is improved. Fig. 5 When the hydrogen gas is introduced and the flow rate thereof is changed, by XPS (X: photoelectron) The surface analysis of the spectroscopic device indicates how much enthalpy is oxidized. Vertically, the large peak intensity of W and wo3, and the horizontal axis indicates the bonding strength. In the figure, (10) 2: shows hydrogen gas introduced at a flow rate of 30, 20, 10 sccm. Compared with θ, it means that only argon and oxygen mw are untreated (oxidation treatment. ❻, @, @, the thickness of the oxide film on the coffee substrate is the same as 3 nm called O:\91\916l5.DOC4 1251253. The result shows that tungsten of The intensity near the peaks 31 to 34 is higher as the hydrogen gas flow rate is higher. On the other hand, the intensity near the peaks 35 to 39 of the tungsten oxide is higher than that of the helium gas treatment method without 3 = 。. Therefore, it is known that In the flow ratio of the hydrogen gas to the oxygen gas, the more the hydrogen gas is, the more difficult it is for the tungsten to oxidize. Fig. 6 shows the ratio of the flow rate of the hydrogen gas to the oxygen gas, and the film thickness of the tantalum oxide film and the tungsten oxide film are measured. As a result, the vertical axis represents the film thickness of the Osmanthus oxide film and the Oxygen gas film formed at the same strict time, and the horizontal axis represents the ratio of the gas-milk gas flow/oxygen gas flow rate. The crushed oxidation rate indicates the ratio of the hydrogen gas gas. 1 to 2 is the largest, and when tungsten is introduced, hydrogen oxide gas is introduced to reduce the thickness of the oxide film. When the flow rate ratio is 2 or more, it is found that tungsten oxide is hardly formed. Furthermore, the substrate temperature during the treatment of this example is 25 〇艽 oxygen gas flow rate is 100 SCCM, S force is 6,7 Pa, and the power supply to the plasma is 22: Figure 5 and 6 show that hydrogen gas can be controlled by introducing hydrogen gas. The oxidation of the crane, and by controlling the flow ratio to the oxygen gas, can control the oxidation of only the choice of Shi Xi. The oxidation control of tungsten preferably has a gas flow ratio of 15 or more, more preferably 2. G or more, and (4) a gas flow ratio of preferably 0.5 or more and 4 or less. According to these, it is preferable that the ratio of the hydrogen gas flow rate to the oxygen gas flow rate is 1.5 or more, more preferably 2 or more and 4 or less. Fig. 7 shows the surface analysis of the same xps device on the Shishi substrate when the temperature change is performed. The daily ΑΓ/Η2/〇2 flow rate is 1〇〇〇/2〇〇/1〇〇 sccm, and the pressure is 8...仏 The electric power supply of the electric equipment is 2.2KW. From this result, it is known that the intensity of the large peak of the oxidized town is the highest at the red deposition shown by the curve A, and it can be known that the plasma is treated by introducing a hydrogen gas and an oxygen gas, and at the time of deposition (4) 〇Λ91\9| After 615 DOC4 -13 1251253, the surface is naturally oxidized and the formed tungsten oxide is reverted. Further, in the same figure, the temperature of the curve B is 25 〇r, the temperature of the curve c is 300 ° C, the temperature of the curve D is 35 GC 'the temperature of the curve E is 400 ° C, and the curve F is 6 〇〇 ° c. It can be seen that the rapid oxidation of the crane has a 'twice of 300 C or more'. In the present invention, oxidation of tungsten is not caused even at 6 〇 〇 °c. Fig. 8 is a graph showing the oxidation rate and oxidation time of the substrate temperature when the 6 nm celestial substrate is oxidized. In the case of this example, the gas flow rate Ai*/H2/〇2 was 1000/200/100 sccm, the pressure was 6·7 pa, and the supply power to the plasma was 2.2 KW. As shown in the figure, the substrate temperature is 25 〇. In the treatment of ruthenium, the treatment at 500 C has an oxidation rate of about 2 times, and it is understood that the higher the treatment time, the shorter the treatment time is. Further, as described above, the formation of the oxide film of ruthenium is higher, and an excellent film quality can be obtained, and the difference in oxidation rate due to the coarseness of the pattern is reduced. Therefore, the treatment temperature is preferably 300 ° C or more. The embodiments and implementations of the present invention have been described above based on a few examples. This description is limited to a few of these embodiments. The scope of the idea of the technology shown in the scope of the patent application can be changed. For example, the gate is an object that describes the stacking of polycrystalline (four) cranes, but may also be a single layer containing germanium, other high melting point electrode materials or only such germanium compounds. Further, it is also applicable to the gate of the germanium transistor, and can be applied to various semiconductors which are required to control the oxidation of the metal other than the tungsten layer, and to selectively oxidize a layer containing I, such as polycrystalline germanium. Manufacturing. In the case of the moon, by plasma treatment, because the surface of the oxidation gate or the like does not oxidize the crane or the ruthenium layer, the oxidation can be selected O:\91\91615.DOC4 -14- 1251253 Other layers such as wafers. The method for producing a material conductor device of the present invention and (10) the oxidation treatment method can be used in a semiconductor manufacturing industry or the like for manufacturing a semiconductor package. With that, it can be used in the industry. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view (cross-sectional view) showing an example of a configuration of an electropolymerization apparatus according to the present invention. The /2 pattern is represented by the present invention in the gate electrode, the selected nuclear sample of the oxide film (a) is before the electro-oxidation treatment, and (8) is in the state of oxygen-filled. "The pattern of Figure 3 shows the formation of yttrium oxide on the side of the gate of the stack. (4) Figure '(4) is treated by plasma oxidation' (8) is the oxidation of the south temperature shown for comparison. Figure 4 shows the river layer Oxidation, how it changes by plasma oxidation treatment (4) Figure '(4) is the state of the oxygen curve before electropolymerization, and (8) shows the state of the oxygen curve after electropolymerization. 'Indicating when hydrogen gas is introduced How much is the degree of oxidation of tungsten when the flow rate is changed. Fig. 6 shows the thickness of the oxide film formed by plasma oxidation and the thickness of the oxide film of the crane, which corresponds to the flow rate of hydrogen gas and oxygen gas. Fig. 7 is a graph showing the peak of the crane and yttrium oxide by the treatment temperature. Fig. 8 shows the formation of 6 fine oxidized oxide film by electrooxidation oxidation treatment, so that O:\9I\916l5DOC4 - 15- 1251253 Graph of oxidation ratio and required processing time when temperature is changed. [Description of Symbols] 10 Plasma Processing Unit 11 Processing Containers 11A, 11B Exhaust Hole 12 Substrate Holding Table 13 Dielectric 14 Plane flat line 15 Wavelength shortening plate 16 Cooling plate 16a Refrigerant line 18 Wave tube 22 Supply port 24 Refrigerant flow path 26 Gas striker 28 Quartz cover 100 Gate 101 Broken wafer 102 Gate oxide film 103 Polysilicon electrode layer 104 Isolation Layer 105 Tungsten layer 106 Tantalum nitride layer 107 Oxide insulating film 110 Gate O:\91\91615.DOC4 -16

Claims (1)

I25 l2H〇5294號專利中請案 中文申請專利範圍替換本(94年10月) 拾、申請專利範圍: 1· -種半導體裝置之製造方法,其係藉由在半導體基板上 成:成以鎢:主成分的膜和與該以鎢為主成分的膜不同 刀的膜k特定的半導體I置的方法,·其特徵在於 含: 膜不導體基板上,形成由與以上述嫣為主成分的 膜不同成/刀的膜所構成的第1層的工序; 在上述半導體基板上,形 成的第2層的工序;及/成由以鎢為主成分的膜所構 使用含有氧氣與氫氣的處理氣體,藉由以處理溫度為 3 0 0 C以上的雷):审 1. , 處理,在上述弟1層的露出面形成氧化 膜的工序。 取乳化 2. 如申請專利範圍第1項 上述半導體裝置為電 閘極。 之半導體裝置之製造方法,其中, 晶體,藉由上述第1層及第2層形成 3. 如申請專利範圍第_項之半導體裳置之製造方法,其 中,上述第2層為鎢層或矽化鎢層。 4. 如申請專利範圍第】項之半導體裝置之製造方法,其中, 上述第1層為多晶矽層。 5·如申請專利範圍第1項之半導體裝置之製造方法,其中, 相對於上述處理氣體中的氧氣’氫氣流量比為(氫氣流量/ 氧氣流量)為1.5以上。 6.如t请專利範圍第!項之半導體裝置之製造方法,其中, 相對於上述處理氣體中的氧氣,氫氣流量比(氫氣流量/ 91615-941028.doc 1251253 氧氣流量)為2以上4以下。 7· 種電桌氣化處理方法,直特微 〃特倣在於係電漿氧化處理形 成有以鶴為主成分的膜和與該以鶴為主成分的膜不同成 分的膜的半導體基板的與 〃 Λ上逐竭為主成分的膜不同成 分的膜的方法;且使用令右氫尸 有乳乳與風氣的處理氣體,藉 由以處理溫度為3〇〇°c以上的電嗖虑 、 日7电水處理,在與以上述鎢為 主成分的膜不同成分的膜的露出面形成氧化膜。 8. 如申請專利範圍第7項之電聚氧化處理方法,其中,相對 :上述處理礼體的氧就’氫氣流量比(氫氣流量/氧氣流量 )為1.5以上。 9. 如申請專利範圍第7項之電聚氧化處理方法,其中,相以 對於上述處理氣體的氧氣,氫氣流量比(氯氣流量/氧氣流 量)為2以上4以下。 種半導體裝置之製造方法,其係在半導體基板上,形 成包含金屬的膜及包含矽的膜,其包含: 形成月|j料導體基板上的包含石夕的義第i層的工序; 形成則述半導體基板上的包含金屬的膜的第2層的工 序; 使前述半導體基板的處理溫度為⑽t以上,藉由電磁 波發生urn的電磁波’產生包含氧氣與氫氣的處理 n電浆’而對前述半導體基板進行電漿處理,藉此 於别述第1層的露出面形成氧化膜的工序。 11. 如請求項1〇之半導體裝置之製造方法,其中前述處理氣 體包含惰性氣體。 91615-941028.doc 1251253 12. 13. 14. 15. 16. 17. 18. 如明求項7或1〇之半導體裝置之製造方法,其中前述電磁 波係U波,經由平面天線被導入前述處理容器内而產生 前述電漿。 如明求項10之半導體裝置之製造方法,其中前述包含矽 之膜係多晶矽臈。 如請求項10之半導體裝置之製造方法,其中前述包含金 屬之膜係選自鎢、wsi、由鉬、鈕、鈦及彼等之矽化物、 合金所組成之高熔點金屬。 一種電漿處理方法,其係於處理容器内以電漿處理至少 包含金屬的膜及包含矽的膜的表面露出而形成之基板, 其包含: 於前述處理容器内配置前述基板的工序; 供給包含氧氣與氫氣的處理氣體至前述處理容器内的 工序; 藉由電磁波激發前述處理氣體,於前述處理容器内產 生電漿的工序; 使前述半導體基板的處理溫度為300r以上,藉由前述 包含氧氣與氫氣的處理氣體的電漿,而於前述包含矽的 膜的露出面形成氧化膜的工序。 如請求項15之電漿處理方法,其中前述處理氣體包含惰 性氣體。 如請求項15之電漿處理方法,其中前述電磁波係微波, 經由平面天線被導入前述處理容器内而產生前述電漿。 如請求項15之電漿處理方法,其中前述包含矽之膜係多 91615-941028.doc 1251253 19. 20. 21. 22. 23. 24, 晶石夕膜。 如請求項1 5之電漿處理方法 适自鎢、WSi、由鉬、鈕、鈦 成之高熔點金屬。 如請求項1 5之電漿處理方法 量比為1·5以上。 如請求項1 5之電漿處理方法 置比為2以上。 如晴求項1 5之電漿處理方法 C為上限。 如請求項I5之電漿處理方法 量比為〇. 5〜4。 其中前述包含金屬之膜係 彼等的石夕化物、合金所組 其中前述氧氣與氫氣之流 &中前述氧氣與氫氣之流 其中前述處理溫度係以600 其中前述氧氣與氫氣之流 一種電漿氧化處理方法, ,ν ^ ^ 4 Λ ^ 、係電漿虱化處理以鎢為主成 刀的膜和與該以鎮為主成. 丰導 的膑不同成分的膜所形成的 千等體基板之中,與該以鎮Α 者; 3马主成分的膜不同成分的膜 ,、曰由使用s有氧軋與氫氣的處理氣體進行電漿處理 ’以在與該以鎢為主成分的膜不同成分的膜的露出 氧化膜。 25. 一種半導體裝置之製造方法’其係在半導體基板上,形 成包含金屬的膜及包含矽的膜者,其包含·· 在則述半導體基板上形成包含前述矽的膜的第1層的 工序; 曰 的膜的第2層 在如述半導體基板上形成包含前述金屬 91615-941028.doc 1251253 的工序; 藉由電磁波發生器所產生的電磁波,產生包含氧氣與 氫氣的處理氣體的電漿,而對前述半導體基板進行電漿 處理,藉此於前述第1層的露出面形成氧化膜的工序。 91615-941028.docI25 l2H〇5294 Patent Application Case Chinese Application Patent Range Replacement (October 94) Pickup, Patent Application Range: 1. A method of manufacturing a semiconductor device by forming a tungsten substrate a method of disposing a film of a main component and a film K specific to a film different from the film containing tungsten as a main component, and characterized in that: the film is formed on a non-conductor substrate, and the ruthenium is mainly composed of the ruthenium a step of forming a first layer of a film different from a film, a step of forming a second layer on the semiconductor substrate, and a process of using a film containing tungsten as a main component to contain oxygen and hydrogen. The gas is processed by forming a film on the exposed surface of the first layer of the first layer by a treatment with a treatment temperature of 300 ° C or higher. Emulsification 2. As in the scope of patent application, the above semiconductor device is an electric gate. The method of manufacturing a semiconductor device, wherein the crystal is formed by the first layer and the second layer, wherein the second layer is a tungsten layer or a germanium layer. Tungsten layer. 4. The method of manufacturing a semiconductor device according to the invention, wherein the first layer is a polysilicon layer. 5. The method of manufacturing a semiconductor device according to the first aspect of the invention, wherein the hydrogen gas flow rate ratio (hydrogen flow rate / oxygen flow rate) is 1.5 or more with respect to the gas in the processing gas. 6. If t please patent scope! The method for producing a semiconductor device according to the invention, wherein the hydrogen flow rate ratio (hydrogen flow rate / 91615-941028.doc 1251253 oxygen flow rate) is 2 or more and 4 or less with respect to oxygen in the processing gas. 7. A method for gasification of a power table, which is a semiconductor substrate in which a plasma-based film is formed by a plasma-based film and a film of a component different from the film containing the crane as a main component. 〃 方法 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 逐 右 右 右 右 右 右 右 右 右 右7 Electro-water treatment, an oxide film is formed on the exposed surface of a film different from the film containing the tungsten as a main component. 8. The method according to claim 7, wherein the oxygen flow rate (hydrogen flow rate/oxygen flow rate) of the treated body is 1.5 or more. 9. The electro-polyoxidation treatment method according to the seventh aspect of the invention, wherein the hydrogen gas flow rate (chlorine gas flow rate/oxygen flow rate) is 2 or more and 4 or less for the oxygen of the processing gas. A method of manufacturing a semiconductor device, comprising: forming a film containing a metal and a film containing germanium on a semiconductor substrate, comprising: forming a layer containing an i-th layer on the moon-j material conductor substrate; a step of forming a second layer of a film containing a metal on a semiconductor substrate; and processing the temperature of the semiconductor substrate to be (10) t or more, and generating an n-plasma containing oxygen and hydrogen by electromagnetic waves generated by electromagnetic waves urn The substrate is subjected to a plasma treatment to form an oxide film on the exposed surface of the first layer. 11. The method of fabricating a semiconductor device according to claim 1 wherein said processing gas comprises an inert gas. The method for manufacturing a semiconductor device according to claim 7 or claim 1, wherein the electromagnetic wave U wave is introduced into the processing container via a planar antenna The aforementioned plasma is produced internally. The method of manufacturing a semiconductor device according to claim 10, wherein the film-forming polysilicon containing ruthenium is used. The method of manufacturing a semiconductor device according to claim 10, wherein the metal-containing film is selected from the group consisting of tungsten, wsi, and a high melting point metal composed of a molybdenum, a button, a titanium, and the like. A plasma processing method for treating a substrate comprising at least a metal film and a surface of a film containing ruthenium by plasma treatment in a processing container, comprising: a step of disposing the substrate in the processing container; a step of injecting a treatment gas of oxygen and hydrogen into the processing container; a step of generating a plasma in the processing container by exciting the processing gas by electromagnetic waves; and a processing temperature of the semiconductor substrate of 300 r or more, wherein the oxygen is contained A process of forming an oxide film on the exposed surface of the film containing ruthenium by a plasma of a hydrogen gas treatment gas. The plasma processing method of claim 15, wherein the process gas comprises an inert gas. The plasma processing method according to claim 15, wherein the electromagnetic wave system microwave is introduced into the processing container via a planar antenna to generate the plasma. The plasma processing method of claim 15, wherein the foregoing film system comprising ruthenium is 91615-941028.doc 1251253 19. 20. 21. 22. 23. 24, a crystal film. The plasma treatment method according to claim 15 is suitable for tungsten, WSi, high melting point metal composed of molybdenum, button and titanium. The amount of the plasma treatment method of claim 15 is more than 1.5. The plasma processing method of claim 15 is set to be 2 or more. For example, the plasma treatment method C of Qingyi 1 is the upper limit. The ratio of the plasma treatment method of claim I5 is 〇. 5~4. Wherein the foregoing metal-containing film is the same as the above-mentioned oxygen and hydrogen flow in the above-mentioned oxygen and hydrogen flow, wherein the aforementioned treatment temperature is 600, wherein the aforementioned oxygen and hydrogen flow is a plasma Oxidation treatment method, ν ^ ^ 4 Λ ^, is a plasma-based treatment of tungsten-based knives and a 1000-millimeter substrate formed by a film composed of different components of the bismuth Among them, a film having a different composition from the film of the main component of the horse, and a film treated by a process gas using aerobic rolling and hydrogen gas, is used to form a film mainly composed of tungsten. An exposed oxide film of a film of different compositions. A method for producing a semiconductor device, which comprises forming a film containing a metal and a film containing germanium on a semiconductor substrate, comprising: a step of forming a first layer of the film including the germanium on the semiconductor substrate The second layer of the ruthenium film forms a process comprising the aforementioned metal 91615-941028.doc 1251253 on the semiconductor substrate as described above; the electromagnetic wave generated by the electromagnetic wave generator generates a plasma containing a treatment gas of oxygen and hydrogen, and The semiconductor substrate is subjected to a plasma treatment to form an oxide film on the exposed surface of the first layer. 91615-941028.doc
TW93105294A 2004-03-01 2004-03-01 Semiconductor device manufacturing method and plasma oxidation method TWI251253B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93105294A TWI251253B (en) 2004-03-01 2004-03-01 Semiconductor device manufacturing method and plasma oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93105294A TWI251253B (en) 2004-03-01 2004-03-01 Semiconductor device manufacturing method and plasma oxidation method

Publications (2)

Publication Number Publication Date
TW200531123A TW200531123A (en) 2005-09-16
TWI251253B true TWI251253B (en) 2006-03-11

Family

ID=37433541

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93105294A TWI251253B (en) 2004-03-01 2004-03-01 Semiconductor device manufacturing method and plasma oxidation method

Country Status (1)

Country Link
TW (1) TWI251253B (en)

Also Published As

Publication number Publication date
TW200531123A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
TWI250583B (en) Manufacturing method for semiconductor integrated circuit device
KR101088233B1 (en) Semiconductor device manufacturing method, plasma oxidation treatment method and plasma processing apparatus
TWI388004B (en) A semiconductor device manufacturing method, a plasma oxidation treatment method, and a plasma processing apparatus
TW200945443A (en) Methods for oxidation of a semiconductor device
TW201207939A (en) Method of improving oxide growth rate of selective oxidation processes
US20060003565A1 (en) Method and apparatus for manufacturing semiconductor device
WO2010038900A1 (en) Silicon oxide film, method for forming silicon oxide film, and plasma cvd apparatus
WO2007099922A1 (en) Plasma oxidation method and method for manufacturing semiconductor device
TW201013781A (en) Film forming method of silicon oxide film, silicon oxide film, semiconductor device, and manufacturing method of semiconductor device
WO2006106667A1 (en) Method for forming insulating film and method for manufacturing semiconductor device
TW201342445A (en) Method for forming a semiconductor device
TW201203365A (en) Silicon oxide film forming method, and plasma oxidation apparatus
US7981785B2 (en) Method for manufacturing semiconductor device and plasma oxidation method
TW201216362A (en) Etching method and apparatus
TW201303999A (en) Plasma processing method and element separation method
TWI389255B (en) Method for fabricating integrated circuit structures
TWI324364B (en)
TW201030172A (en) Method for depositing silicon nitride film, computer-readable storage medium, and plasma cvd device
TW200805501A (en) Method and apparatus for forming silicon oxide film
TWI377619B (en) Low-temperature dielectric formation for devices with strained germanium-containing channels
TW200830411A (en) Plasma oxidizing method
TW201030846A (en) Method and apparatus for forming silicon oxide film
US7094637B2 (en) Method for minimizing the vapor deposition of tungsten oxide during the selective side wall oxidation of tungsten-silicon gates
JP2008004841A (en) Semiconductor device and method for manufacturing the same
TWI251253B (en) Semiconductor device manufacturing method and plasma oxidation method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees