TWI250556B - Lithographic apparatus, device manufacturing method, and device manufactured thereby - Google Patents

Lithographic apparatus, device manufacturing method, and device manufactured thereby Download PDF

Info

Publication number
TWI250556B
TWI250556B TW091116147A TW91116147A TWI250556B TW I250556 B TWI250556 B TW I250556B TW 091116147 A TW091116147 A TW 091116147A TW 91116147 A TW91116147 A TW 91116147A TW I250556 B TWI250556 B TW I250556B
Authority
TW
Taiwan
Prior art keywords
substrate
wafer
alignment unit
rotation
edge
Prior art date
Application number
TW091116147A
Other languages
Chinese (zh)
Inventor
Johannes Herman Hoogenraad
Vasudeva Nayak Puttur
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Application granted granted Critical
Publication of TWI250556B publication Critical patent/TWI250556B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A lithographic projection apparatus with a pre-alignment unit for determining the position and orientation of the substrate, comprising an edge sensor for determining the distance of the edge of the substrate along a measurement axis from an axis of rotation; means for rotating the substrate about said axis of rotation in order to vary the part of the edge of the substrate that coincides with the measurement axis; means for determining, from the determined distances of the edge of the substrate from the axis of rotation and the corresponding angle of rotation of the substrate, the position and orientation of the substrate.

Description

A7 B7 1250556 五、發明説明(彳) 本發明係關於一種微影投射裝置,其包括: -一用以提供照射投射光束的照射系統; -一甩以支撐圖樣裝1^]支撐結構,該圖樣裝置係用以根 據所需要的圖樣設計該投射光束的圖樣; -一用以固定一基板的基板平檯(substrate table);以及 -一用以將該圖樣光束投射在該基板的目標部份的投射系 統。 此處所謂的「圖樣裝置(patterning means)」所泛指的係 可以提供具有圖樣切面(patterned cross-section)的入射光 束’該圖樣切面與要在該基板目標部份所產生的圖樣一致 ,本文中亦使用到「光閥(light valve)」一詞。一般而言 ’該圖樣會與欲在該目標部份所產生之元件中,如積體電 路或是其它元件之類(如下所述),的一特殊功能層相同。 這類圖樣裝置的實例包括: -光罩。光罩的概念在微影技術中已經為吾人所熟知,其 種類包括二位元式(binary),交換式相位移動⑷ternating phase-shift),衰減式相位移動(attenuated phase-shift), 以及各種混成(hybrid)光罩種類。根據該光罩的圖樣而 定,這類光罩在照射光束中的位置,會造成照射在該光 罩上之光線的選擇性穿透(在穿透光罩的情況中)或是反 射(在反射光罩的情況中)。婕用光罩時,該支撐結構通 常會係一光罩平檯以確保該光罩可以固定在該入射光束 中所需要的位置上,並且如果需要的話可以相對於該光 束作移動。 -4- 本纸張尺度適用中國國家標準(CNS) A4規格(21〇x297公釐)---— 1250556 五、發明説明( 可程式鏡面陣列。這類元件杳一 乃只έ 的κ例係一具有伸縮控制層 及反射表面的可定址矩陣表 r與点丨十〜、、 乂頸裝置的基本原理是 (牛例來祝)該反射表面的定 射央蛣^ ^ ^ 疋址£域會將入射光反射成繞 对九線,而未定址的區域則合 a A i 將入射先反射成非繞射光 適當的遽波器,可以將該非繞射光線從該反射 2中遽除,僅留下繞射光;依照此種方式,可以根據 =可=址矩陣表面的定址圖樣對該光束進行圖樣處理。 =式鏡轉列的另-種具體實施例則係運用小鏡面的 矩陣排列,藉由施加適當的區域雷塭七 <田w L•兑冤%或運用壓電啟動裝 置便可以將每個鏡面相對一轴線個別地予以傾斜。同樣 地’該鏡面係可定址矩陣式,因此已定址的鏡面會將入 射照射光束以不同的方向反射至未定址的鏡面;依照此 種方式>f更可根據該可定址矩陣鏡面的定址圖樣對該光 束進行圖樣處理。該所需要的矩陣定址可以利用適當的 =子裝置來完成。在上述的兩種情形中,該圖樣裝置可 能包括一個或多個可程式的鏡面陣列。舉例來說,在美 國專利案件118 5,296,891及1^ 5,523,193及1^丁專利申請 案wo 98/38597及,〇 98/33096中可以獲得更多關於這 類鏡面陣列的資訊,此處以引用的方式併入本文中。使 用可程式鏡面陣列時,該支撐結構可能係一框架或是一 平檯,舉例來說,視需要其可能係固定式的或是可移動 式的。 可程式LCD陣列。這類的架構的實例在美國專利案件 US 5,229,872中有提及,此處以引用的方式併入本文中 5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) A7 B7 1250556 五、發明説明(3 ) 。如上所述,該支撐結構可能係一框架或是一平檯,舉 例來說’視需要其可能係固定式的或是可移動式的。 為了簡化起見,本文的其餘部份的某些地方,會特別導向 於光罩及光罩平檯的情形;不過,在這些實例中所討論的 通用原理都應該會在上述所提及之圖樣裝置的廣義文章中 發現。 舉例來說 ',在製造積體電路(IC)時可能利用到微影投射 裝置。在此情形中,該圖樣裝置可能會產生一種與該1(:各 層相對應的電路圖樣,而此圖樣則會成像於已經塗佈一層 感光材料(光組)的基板(矽晶圓)的目標部份(例如,包含一 個或是多個晶粒)。一般而言,單晶圓會含有經由該投射 系統以每次一個的方式連續照射之後相鄰目標部份的整個 網絡。在目前的裝置中,藉由光罩平檯上的光罩進行圖樣 處理,有兩種不同的機器類型。在其中一種微影投射裝置 中,係藉由同時曝露該目標部份上所有的光罩圖樣以照射 每個目標部份,這類裝置通常稱之為晶圓步進器(wafer stepper)。在替代的裝置中-通常稱之為步進-掃描 and-SCan)裝置則係藉由在某個參考方向下(“掃描方向”)漸 進式地掃描該投射光束下的光罩圖樣以照射每個目標部份 ,同時以與該方向平行或是反向平行的方向掃描該基板平 檯;因為通常該投射系統都會有一放大係數(magnificati〇n factor) Μ (通常會小於1},因此該基板平檯的掃描速度v 會是該光罩平檯掃描速度的“倍。舉例來說,在美國專利 案件US 6,046,792中可以獲得更多關於這類微影元件的資 1250556 發明説明 訊’此處以引用的方式併入本文中。 在利用微影投射裝置的製程中,會在一基板上產生一圖 樣(舉例來說,在一光罩中)影像,該基板至少部份會被感 光材料(光阻)所覆蓋。在此成像步驟之前,該基板可能會 經過各種處理,如裁切(priming),光阻塗佈及軟烘烤(s〇ft bake)之類。在曝光之後,該基板可能會再經過其它的處 理’如後曝光烘烤(Post-exposure bake,PEB),顯影,硬烘 烤(hard bake)及量測與檢查該成像的特徵之類。該系列處 理係作為對一元件,舉例來說1C,的個別層進行圖樣處理 的基礎。接著這類經過圖樣處理的層可能會再接受各種處 理’如餘刻,離子植入(摻雜),金屬化,氧化,化學-機械 研磨等’其目的都係為了對個別層進行拋光處理。如果需 要數個層的話,那麼便可對每一新層重複整個處理,或是 其變化的處理。最後,在該基板(晶圓)上便會產生一系列 的元件。接著便會利用類似切割(dicing)或是鋸(sawing)的 技術將這些元件彼此分開,因此各個元件都可以安裝在一 載體上,與腳線(pin)相連接等。舉例來說,關於這類處理 的進一步資訊可以從 McGraw Hill Publishing Co.,1997 年 發行,由 Peter van Zant所著之 “Microchip Fabrication: A Practical Guide to Semiconductor Processing,,,ISBN 0-07-067250-4中獲得,此處以引用的>式併入本文中。 為了間化起見,此後將該投射系統稱之為“透鏡(lens)’, ;不過,該術語應該廣泛地解釋成包含各種類型的投射系 統,舉例來說,包括折射式光學系統,反射式光學系統, 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1250556 五、發明説明(5 乂及王屈光(catadi0ptric)系統。該照射系統亦可能包括根 據廷些設計類型中任一項進行操作的組件,以便用以對該 "ϋχ射光束導向’改變形狀或是控制,而這類組件以後 將稱之為透鏡。再者,該微影裝置可能係具有兩個或是 多個基板平檯(及/或兩個或是多個光罩平檯)。在這類“多 重階段,,的元件中,链々k从不μ . 額外的平檯可能會同時使用,或是當 另外的個或夕個平檯正在進行曝光時,可以在一個或多 個平檯上進行準備步驟。舉例來㉟,在US 5,969,441及 W〇 98M〇791中便說明了雙平檯的微影裝置,此處以引用 的方式併入本文中。 在此種裝置中的條件限制是必須將該基板(舉例來說, 晶圓)從一預設位置輸送至預設範圍内的基板平擾中,並 且必須具有與該預設位置已知的移動及旋轉偏移。其一般 都係由晶圓處理李鲚φ & ^ 置對齊器,,,來進行ΛΥ置= 的前Λ對齊單元,或“前 該前置對齊器的方向,;,曰^進:::定該晶圓相對於 抵達該晶圓平檯,並二定位使其可在規格内 它偏移。 I且决-將會與該預設位置所產生的其 以前已經熟知用以前置對齊晶圓的方式 將該晶圓的一邊緣或-角落壓印在-熟知的表面=方式 上。不過,其缺點係因為精確心目當低,非常/ :组 成晶圓邊緣的碎裂因而進一步地降低精確度,:污= :了丨磨損及晶圓膨脹的影響,無法俄測到::: 如,用以標記該晶圓的方向),以及其通常會受限於可(= -8 x 297公釐) 本紙張尺度適财g S家蘇(C_ Α4規格g 1250556A7 B7 1250556 V. INSTRUCTION DESCRIPTION (彳) The present invention relates to a lithographic projection apparatus comprising: - an illumination system for providing an illumination projection beam; - a support structure for supporting the pattern, the pattern The device is configured to design a pattern of the projected beam according to a desired pattern; - a substrate table for fixing a substrate; and - a projection beam for projecting the pattern on the target portion of the substrate Projection system. The term "patterning means" as used herein generally refers to an incident beam having a patterned cross-section that is consistent with the pattern to be produced in the target portion of the substrate. The term "light valve" is also used in the middle. In general, the pattern will be the same as a special functional layer of the component to be produced in the target portion, such as integrated circuits or other components (described below). Examples of such patterning devices include: - a reticle. The concept of photomasks is well known in lithography, and its types include binary, alternating phase-shift, attenuated phase-shift, and various blends. (hybrid) type of mask. Depending on the pattern of the reticle, the position of such a reticle in the illuminating beam causes selective penetration (in the case of penetrating the reticle) or reflection of the illuminating light on the reticle (in the case of the illuminating beam) In the case of a reflective reticle). When a reticle is used, the support structure will typically be a reticle stage to ensure that the reticle can be secured in the desired position in the incident beam and can be moved relative to the beam if desired. -4- This paper scale applies to China National Standard (CNS) A4 specification (21〇x297 mm)---- 1250556 V. Invention description (programmable mirror array. This type of component is only a κ κ 系 system An addressable matrix table r with a telescopic control layer and a reflective surface, and the basic principle of the 乂 neck device, is a fixed-range 蛣 蛣 ^ ^ ^ £ site of the reflective surface The incident light is reflected into a pair of nine lines, and the unaddressed area is combined with a A i to reflect the incident first into a non-diffracted light appropriate chopper, and the non-diffracted light can be removed from the reflection 2, leaving only The light is diffracted downward; in this way, the beam can be patterned according to the address pattern of the surface of the = addressable matrix. Another embodiment of the mirror-type mirror is a matrix arrangement using a small mirror surface, by Each mirror can be individually tilted relative to an axis by applying an appropriate area Thunder seven or using a piezoelectric actuator. Similarly, the mirror is addressable matrix, so The mirror of the address will have the incident illumination beam in a different way Reflected to the unaddressed mirror; in this way, the beam can be patterned according to the address pattern of the addressable matrix mirror. The required matrix addressing can be done with the appropriate = sub-device. In either case, the patterning device may include one or more programmable mirror arrays. For example, in U.S. Patent Nos. 1,158,296,891 and 1 5,523,193 and 1 patent application, WO 98/38597, More information on such mirror arrays can be found in 〇 98/33096, which is incorporated herein by reference. When using a programmable mirror array, the support structure may be a frame or a platform, for example, Illustrated in the U.S. Patent No. 5,229,872, the disclosure of which is incorporated herein by reference. The scale applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) A7 B7 1250556 V. Description of invention (3). As mentioned above, the support structure may be a frame or a Platform, for example, 'can be fixed or portable as needed. For the sake of simplicity, some parts of the rest of this article will be specifically directed to the reticle and reticle platform. However, the general principles discussed in these examples should be found in the broad article of the above mentioned patterning device. For example, 'a lithographic projection device may be utilized in the fabrication of integrated circuits (ICs) In this case, the pattern device may generate a circuit pattern corresponding to the layer (1:: each layer, and the pattern is imaged on a substrate (tantal wafer) to which a layer of photosensitive material (light group) has been applied. The target part (for example, contains one or more dies). In general, a single wafer will contain the entire network of adjacent target portions after successive illuminations through the projection system one at a time. In current installations, there are two different machine types for pattern processing by means of a reticle on the reticle stage. In one of the lithographic projection devices, each of the target portions is illuminated by simultaneously exposing all of the reticle patterns on the target portion. Such devices are commonly referred to as wafer steppers. In an alternative device - commonly referred to as a step-and-scan and-SCan device, the device is scanned progressively under a certain reference direction ("scanning direction") to illuminate the reticle pattern under the projected beam. The target portion, while scanning the substrate platform in a direction parallel or anti-parallel to the direction; since the projection system usually has a magnification factor (usually less than 1}, the substrate The scanning speed v of the platform will be "multiplied by the scanning speed of the reticle platform. For example, in the US patent case US 6,046,792, more information about such lithographic components can be obtained. 1250556 Invention Description" The method is incorporated herein. In a process utilizing a lithographic projection apparatus, a pattern (for example, in a reticle) is produced on a substrate, the substrate being at least partially exposed to a photosensitive material (resistance) Covered. Prior to this imaging step, the substrate may undergo various treatments such as priming, photoresist coating, and soft bake (s〇ft bake). After exposure, the substrate may be It will undergo other processing 'Post-exposure bake (PEB), development, hard bake and measurement and inspection of the characteristics of the image. The series is treated as a component. For example, 1C, the individual layers are the basis for pattern processing. Then such patterned layers may undergo various treatments such as residual, ion implantation (doping), metallization, oxidation, chemical-mechanical The purpose of grinding, etc., is to polish individual layers. If several layers are required, then the entire process can be repeated for each new layer, or the process of its change. Finally, on the substrate (wafer) A series of components are produced on the top. These components are then separated from each other by techniques like dicing or sawing, so that each component can be mounted on a carrier, in contrast to the pin. Connections, etc. For example, further information on this type of processing can be obtained from McGraw Hill Publishing Co., 1997, by Peter van Zant, "Microchip Fabrication: A Practical Guide to Semiconductor Processing,,, ISBN 0-07-067250-4, which is incorporated herein by reference. For the sake of simplification, the projection system is hereinafter referred to as "lens" However, the term should be interpreted broadly to encompass various types of projection systems, including, for example, refractive optical systems, reflective optical systems, and this paper scale applies to the Chinese National Standard (CNS) A4 specification (210 X 297). PCT) 1250556 V. Description of the invention (5 乂 and Wang diguang (catadi0ptric) system. The illumination system may also include components that operate in accordance with any of a number of design types to redirect the "beam beam' to change shape or control, and such components will hereinafter be referred to as lenses. Furthermore, the lithography apparatus may have two or more substrate platforms (and/or two or more reticle platforms). In this "multiple stage," the component k is never μ. Additional platforms may be used at the same time, or when another or a platform is exposing, one or more The preparation steps are carried out on the platform. For example, a dual-platform lithography apparatus is described in US Pat. No. 5,969, 441 and the entire disclosure of which is incorporated herein by reference. It is necessary to transport the substrate (for example, a wafer) from a predetermined position to the substrate symmetry within the preset range, and must have a known movement and rotational offset from the preset position. The wafer is processed by the wafer 鲚 φ & ^ aligner,, to perform the = Λ alignment unit of the = =, or "the direction of the front aligner,; 曰 ^ 进 ::: The circle is positioned relative to the wafer platform and positioned so that it can be offset within specifications. I and - will emboss an edge or corner of the wafer to the well-known surface = mode with the pre-determined position of the wafer that was previously known to be aligned with the wafer. However, its shortcomings are due to the low precision, very /: the fragmentation of the wafer edge thus further reduces the accuracy: pollution =: the impact of 丨 wear and wafer expansion, can not be measured in Russia ::: , to mark the direction of the wafer), and it is usually limited to (= -8 x 297 mm). This paper scale is suitable for g S home Su (C_ Α 4 specification g 1250556

處理的晶圓大小。 亦為吾人所熟知的係可以對圓形晶圓進行光學前置對齊 不此方法以則並無法適用於方形或矩形的晶圓。 本發明的目的便係提供—種前置對其多邊形基板的方法 與裝置’其可防止因為碎裂所造成的損壞風險,並且能約 比慣用的方法更快速且更精確。 所有的目的都可根據本發明於開頭段落中所述的微影裝 置來達成,其特徵微該裝置進一步包括一前置對齊單元用 以決=在該前置對齊單元㈣基板的位置及方向,其包括: -沿者垂直於該基板平面的旋轉轴旋轉該基板的裝置; _ 一 2接觸式邊緣感測器,其係用以在該基板的一旋轉角 度範圍處,沿著平行於該基板平面的量測轴決定與該基 板邊緣旋轉軸之間的距離; •用以利用與由所決定的距離及對應角度所界定出來的每 個邊緣相關聯的點決定該基板至少兩個主邊緣的最適線 之裝置;及 •用以利用該決定的最適線決定該前置對齊單元内該基板 的位置與方向的裝置; 亚且該前置對齊單元可調整用以決定多邊形,平面基板的 位置與方向。 使用此裝置的優點係,其可將前置對齊處理期間對該基 板邊緣所造成的損壞風險降至最低程度,而且該基板不需 要有任何的旋轉對稱性。再者,即使基板的角落已經損壞 或其具有一凹口,此裝置能夠精確地決定該基板的位置與The wafer size processed. Also known to us is the ability to optically pre-align circular wafers. This method is not suitable for square or rectangular wafers. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for pre-positioning a polygonal substrate thereof which prevents the risk of damage due to chipping and which is faster and more accurate than conventional methods. All of the objects are achieved according to the lithographic apparatus described in the opening paragraph of the present invention, characterized in that the apparatus further comprises a front alignment unit for determining the position and orientation of the substrate in the front alignment unit (four). The method comprises: - means for rotating the substrate along a rotation axis perpendicular to the plane of the substrate; - a contact edge sensor for paralleling the substrate at a range of rotation angles of the substrate The measuring axis of the plane determines the distance from the axis of rotation of the edge of the substrate; • the point at which the at least two major edges of the substrate are determined by the points associated with each edge defined by the determined distance and the corresponding angle Optimum line device; and means for determining the position and orientation of the substrate in the front alignment unit by using the optimum line of the decision; and the front alignment unit is adjustable to determine the position of the polygon, the planar substrate and direction. The advantage of using this device is that it minimizes the risk of damage to the edge of the substrate during the pre-alignment process and the substrate does not require any rotational symmetry. Moreover, even if the corner of the substrate has been damaged or has a notch, the device can accurately determine the position of the substrate and

五、發明説明( 在本發明的較佳具體眚 與方向的裝置可從交又:d;以決定該基板的位置 -個角落的位置…二;中兩條建立該基板至少 八T §該基板的角落已經指掠 裝置將能夠決定遭到損瓌的^ 叫貝壞時’此 兮a 壞的基板角落的位置。因此,即使 該基板已經損壞,仍铁处夕A 丨1史 向。 W然施夠精確地決定該基板的位置與方 用以決定最適線的裝置可能包括一藉由尋找最適合每一 邊ί之每:相鄰點的圓以預測由該決定距離及角 又I疋之母個4定點之基板邊緣的曲率半徑的裝置; 該曲率預測半徑決定哪個點與該基板的角落相關聯的裝置 ,及用以決疋在被決^為與角落相關聯的相鄰點之間的點 的最適線的裝置。 ” 在本發明進-步的較佳具體實施例中,該裝置進一步包 括一輸送裝置,用以將該基板放置在該基^平棱上,ϋ 使用到用以決定該基板的位置與方向的裝置的結果,以便 月巨夠將該基板放置在該基板平檯上與一預設位置距離一預 設範圍内ϋ且與該預言免位置具有—已知的移㈣旋轉偏移。 根據本發明進一步的觀點提供一種元件製造方法,其包 括的步驟如下·· ' -提供一至少部份被一感光材料層覆蓋的基板; -利用照射系統提供一種照射投射光束; -利用圖樣裝置提供一於其切面具有圖樣的投射光束; •將該經過圖樣處理後之照射光束投射在感光材料層的目 -10- 本紙張尺度適用中國國家標準(CNS)八4胡7格(210 X297公¢) 1250556 A7 ---------B7 五、發明説明(8 ) 標部份; 其特徵為在將該經過圖樣處理後之照射光束投射在該基板 上之前先利用下面的方式決定前置對齊單元内的基板位置 與方向: —沿著實質垂直於該基板平面的旋轉轴旋轉該基板; •使用一非接觸式邊緣感測器用以在該基板的複數個旋轉 角度處,沿著平行於該基板平面的量測軸決定與該基板 邊緣旋轉軸之間的距離; -利用與所決定的距離及對應角度所界定出來的每個邊緣 相關聯的點決定該基板至少兩個主邊緣的最適線;及 -利用該決定的最適線決定該前置對齊單元内該基板的位 置與方向; 並且該前置對齊單元可調整用以決定多邊形,平面基板的 位置與方向❶ 根據本發明進一步的觀點提供一種電腦程式用以操作一 微影投射裝置,該電腦程式包括編碼裝置用以指導該裝置 執行下面的步驟: •計算前置對齊單元内基板的位置及方向;及 -使用所计算出來的該基板的位置及方向控制一輸送裝置 用以將該基板放置在一基板平檯上位於預設的位置及方 向的範圍内,並且具有已知的_偏移; 其特徵為該用以計算該前置對齊單元内該基板的位置及方 向的編碼裝置包括編碼裝置用以執行下面的步驟: -從一非接觸式邊緣感測器接收第一複數個資料元素,每 -11 - 本紙張尺度適财S @家標準(CNS) A4規格(21G X 297公爱) ----- 1250556 A7V. Description of the Invention (In the preferred embodiment of the present invention, the device can be made from: d; to determine the position of the substrate - the position of a corner ... two; the two of the substrate are established to at least eight T § the substrate The corner has already been pointed out that the swept device will be able to determine the location of the damaged substrate corner when the 叫 叫 坏 坏 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The means for accurately determining the position of the substrate and determining the optimum line may include finding a circle that is most suitable for each side: a circle of adjacent points to predict the distance determined by the distance and angle. Means for the radius of curvature of the edge of the substrate of the four fixed points; the curvature prediction radius determines which point is associated with the corner of the substrate, and is used to determine between the adjacent points associated with the corner Preferably, in a preferred embodiment of the invention, the apparatus further includes a transport device for placing the substrate on the base ridge for use in determining The position and orientation of the substrate The result is such that the substrate is placed on the substrate platform within a predetermined range from a predetermined position and has a known shift (four) rotation offset from the predicted position. A further aspect provides a component manufacturing method comprising the steps of: - providing a substrate at least partially covered by a layer of photosensitive material; - providing an illumination projection beam by means of an illumination system; - providing a The projected beam with a pattern on the cut surface; • The irradiated beam after the pattern is projected onto the photosensitive material layer. The paper size is applicable to the Chinese National Standard (CNS) 八四胡7 (210 X297 mm) 1250556 A7 ---------B7 V. Inventive Note (8) Standard part; characterized in that the pre-alignment unit is determined by the following method before projecting the patterned illumination beam onto the substrate Position and orientation of the substrate: - rotating the substrate along a rotational axis substantially perpendicular to the plane of the substrate; • using a non-contact edge sensor at a plurality of rotation angles of the substrate, The measuring axis parallel to the plane of the substrate determines the distance from the axis of rotation of the substrate edge; - the point associated with each edge defined by the determined distance and the corresponding angle determines at least two masters of the substrate An optimum line of the edge; and - an optimum line using the decision determines the position and orientation of the substrate in the front alignment unit; and the front alignment unit is adjustable to determine the position of the polygon, the planar substrate and the orientation ❶ according to the present invention A further aspect provides a computer program for operating a lithography projection device, the computer program including an encoding device for directing the device to perform the following steps: • calculating the position and orientation of the substrate within the front alignment unit; and - using the calculated The position and direction of the substrate is controlled by a transport device for placing the substrate on a substrate platform within a predetermined position and direction, and having a known offset; The encoding device for calculating the position and orientation of the substrate in the pre-aligned unit includes an encoding device for performing the following steps: A non-contact sensor to receive a first plurality of edge information elements, each -11-- present paper Choi S @ appropriate scale of Standards (CNS) A4 size (21G X 297 Kimiyoshi) ----- 1250556 A7

個資料元素都相當於該基板邊緣與該前置對齊單元旋轉 軸的距離; _接收第二複數個資料元素,每個資料元素都相當於該基 板相對於與該第一複數個資料元素中其中—個相關聯^ 前置對齊單元旋轉軸的旋轉角度; -從與每個邊緣相關聯的第一及第二資料元素中計算該美 板至少兩彳固主邊緣的最適線;及 -«該最適線計算該前置對齊單元内該基板的位置及方向; 並且該前置對齊單元可調整用以決定多邊形,平面基板的 位置與方向。 雖然在内文中將本發明的裝置使用於1(3製造方面,不過 應該清楚地瞭解此類裝置具有許多其它可能的應用。舉例 來說,其可能運用在製造整合光學系統,磁性記憶體導引 及 <貞測圖樣’液晶顯示面板,薄膜磁頭等。熟習本技蓺的 人士將會發現,在此類替代應用的内文中所使用到的術語 ,“主光罩(reticle)’’,“晶圓(wafer),,或是“晶粒(die)”都應 該可分別以更通用的術語“光罩(mask),,,“基板(substrate),, 以及“目標部分(target portion)”取代。 在本文件中,術語“照射(radiation),,以及‘‘光束(beam),, 係用以涵蓋全部的電磁照射,其包括紫外線照射(例如波 長365,248,193,157或是126 nm)以及EUV (極紫外線照 射(extreme ultra-violet radiation),例如波長範圍 5-20 nm) ,以及顆粒光束,例如離子光束或是電子光束。 圖式簡單說明 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The data elements are equivalent to the distance between the edge of the substrate and the rotation axis of the front alignment unit; _ receiving a second plurality of data elements, each data element corresponding to the substrate relative to the first plurality of data elements - an associated ^ front alignment unit rotation axis rotation angle; - an optimum line for calculating at least two tamping main edges of the stencil from the first and second data elements associated with each edge; and - « The optimum line calculates the position and direction of the substrate in the front alignment unit; and the front alignment unit is adjustable to determine the position and direction of the polygon, the planar substrate. Although the device of the present invention is used in the context of 1 (3 manufacturing), it should be clearly understood that such devices have many other possible applications. For example, it may be used in the manufacture of integrated optical systems, magnetic memory guidance. And <testing the pattern' liquid crystal display panel, thin film magnetic head, etc. Those skilled in the art will find the term "reticle" used in the context of such alternative applications, " Wafers, or "die" should be in the more general terms "mask", "substrate", and "target portion", respectively. In this document, the terms "radiation," and "beam" are used to cover all electromagnetic radiation, including ultraviolet radiation (eg, wavelengths 365, 248, 193, 157 or 126). Nm) and EUV (extreme ultra-violet radiation, eg wavelength range 5-20 nm), and particle beams, such as ion beams or electron beams. Zhang scale applies Chinese National Standard (CNS) A4 specification (210 X 297 mm)

装 訂Binding

12505561250556

圖1所示的係根據本發明一具體實施例的微影投射裝置; 圖2所不的係根據本發明的前置對齊單元示意圖; 圖3a所不的係該邊緣感測器座標系統及該標記感測器座 標系統之間的關係圖; 圖3b所示的係該幾何晶圓座標系統; 圖4所不的係用以決定該前置對齊器内該晶圓的位置及 方向的步驟〆 圖5所示的係該邊緣感測器座標系統及該幾何晶圓座標 系統之間的偏移;及 圖6所示的係用以決定該邊緣感測器座標系統及該幾何 晶圓座標系統之間的偏移的步驟。 在該些圖式中,相同的參考符號表示相同的部份。 县體實施例1 圖1所示的係根據本發明一特殊具體實施例的微影投射 裝置。該裝置包括: •一照射系統Ex , IL· ,用以提供照射投射光束PB (例如uv 照射)’在此特殊實例中其亦包括依照射源la ; .一第一物件平檯(光罩平檯)MT,其配置有一光罩固定 器用以固定光罩MA (例如主光罩),並且連接到第一定 位裝置用以將該光罩精確地放置在相對於PL的位置上; •一第二物件平檯(基板平檯)WT,其配置有一基板固定 器用以固定基板W (例如已經塗佈光阻之矽晶圓),並且 連接到第二定位裝置用以將該基板精確地放置在相對於 PL的位置上; -13· 本紙張尺度適用巾國國家標準(CNS) A4規格(21G X 297公爱) ' 一 A7 B7 1250556 五、發明説明(11 ) • 一投射系統(“透鏡,,)PL (例如透鏡組,折反射或反射系 統)用以將該光罩MA所發光的部份成像於該基板w的目 標部份C (例如包括一個或是多個晶粒)。 如此處所示,該裝置係穿透式(也就是,具有一穿透式光 罩)。不過,舉例來說,其通常亦可能係反射式的(具有一 反射式光罩)。或者,該裝置可能會運用其它類型的圖樣 裝置,如上遂類型的可程式鏡面陣列。 光源LA (例如水銀燈,準分子雷射,離子放電光源或電 子搶)會產生一照射光束。舉例來說,該光束可能會直接 饋入或是經過調整裝置,如光束放大器(beam eXpande〇 Ex ’之後饋入一發光系統(發光器(iiiuminat〇r)) a。該發 光器IL可能包括調節裝置am用以設定該光束中外環及/或 内環的強度分配(通常稱之為σ-外側及σ-内側)。此外,其 通常包括各種其它的元件,如整合器以及聚光器C〇。依 照此種方式,射入該光罩ΜΑ的光束ΡΒ在其剖面上會具有 所需要的均勻度與強度分配。 應該注意的係,圖1中的光源LA可能係置於該微影投射 裝置的機殼内(舉例來說,如同大部份使用水銀燈泡作為 光源L A的情況),但是其亦可能與該微影投射裝置相隔一 段距離,其所產生的照射光束則會被導引至該裝置上(例 如藉由適當的導向鏡面);當光]原LA為準分子雷射時,通 常便會是後面的情況。本發明及申請專利範圍則涵蓋兩種 情形。1 is a lithographic projection apparatus according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a front alignment unit according to the present invention; FIG. 3a is not the edge sensor coordinate system and the Marking the relationship between the sensor coordinate system; Figure 3b shows the geometric wafer coordinate system; Figure 4 is a step for determining the position and orientation of the wafer in the pre-aligner. Figure 5 shows the offset between the edge sensor coordinate system and the geometric wafer coordinate system; and Figure 6 is used to determine the edge sensor coordinate system and the geometric wafer coordinate system The steps between the offsets. In the drawings, the same reference numerals indicate the same parts. County Embodiment 1 FIG. 1 shows a lithographic projection apparatus according to a specific embodiment of the present invention. The apparatus comprises: • an illumination system Ex, IL· for providing an illumination projection beam PB (e.g., uv illumination). In this particular example, it also includes an illumination source la; a first object platform (mask a MT, which is provided with a reticle holder for fixing the reticle MA (for example, a main reticle), and is connected to the first positioning device for accurately placing the reticle at a position relative to the PL; a two object platform (substrate platform) WT configured with a substrate holder for fixing a substrate W (for example, a photoresist wafer having been coated with a photoresist), and connected to a second positioning device for accurately placing the substrate Relative to the position of the PL; -13· This paper scale applies to the National Standard for Towels (CNS) A4 specification (21G X 297 public) 'A7 B7 1250556 V. Description of invention (11) • A projection system ("lens, , PL (for example, a lens group, a catadioptric or reflective system) for imaging a portion of the reticle MA that is illuminated by the target portion C of the substrate w (eg, including one or more dies). As shown, the device is transmissive (ie, has a transmissive mask. However, for example, it may also be reflective (with a reflective mask). Alternatively, the device may use other types of patterning devices, such as the type of programmable Mirror array. A light source LA (such as a mercury lamp, an excimer laser, an ion discharge source, or an electron grab) produces an illumination beam. For example, the beam may be fed directly or through an adjustment device such as a beam amplifier (beam eXpande) 〇Ex ' is fed into an illumination system (illuminator). The illuminator IL may include an adjustment device am for setting the intensity distribution of the outer and/or inner rings in the beam (generally referred to as σ). - outside and σ-inside). In addition, it usually includes various other components, such as an integrator and a concentrator C. In this way, the beam 射 incident on the reticle will have the desired Uniformity and intensity distribution. It should be noted that the light source LA in Figure 1 may be placed in the casing of the lithographic projection device (for example, as most of the mercury bulbs are used as In the case of the light source LA), but it may also be spaced apart from the lithographic projection device, and the resulting illumination beam will be directed onto the device (for example by means of a suitable guiding mirror); when the light is the original LA When it is an excimer laser, it will usually be the latter case. The invention and the scope of the patent application cover two situations.

實質上該光束PB會截斷由光罩平檯MT所固定的光罩MA -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1250556 A7 B7 五、發明説明(12 ) 。穿過該光罩MA之後,該光束PB便會穿過該透鏡&amp;,其 會將該光束PB聚焦於該基板w的目標部份c中。藉由該第 一定位裝置(以及干涉量測裝置IF),可以精確地移動該基 板平檯WT,舉例來說,以便定位該光束pB路徑上不同的 目標部份c。同樣地,舉例來說,當從光罩庫(mask library)以機器方式取出該光罩MA之後,或是在掃描期間 ’該第一定位裝置可用以將該光罩MA精確地放置在相對 於該光束PB的路徑上。通常,該物件平檯mt,WT的移動 都係藉由一長程(l〇ng-str〇ke)模組(路徑定位)以及一短程 (short-stroke)模組(細部定位)以達成,圖並未清楚地描 繪。不過’在晶圓步進器的情況中(與步進_掃描裝置相反) ’該光罩平檯MT可能僅會連接到一短程啟動器,或可能 是固定的。 所描繪的裝置可能應用在兩種模式中: ^步進模式,基本上該光罩平檯MT係保持不動的,而整 個光罩影像則會一次完全投射(也就是,單“閃光(flash),,) 在一目標部份C。接著該基板平檯WT會在X及/或y方向移 動’因此該光束PB可照射不同的目標部份c。 2·掃描模式,基本上會有相同的情況,但是不會將特定 的目標部份C曝光於單“閃光,,之下。取而代之的係,該光 罩平檯MT可以在一特定的方向上(所謂的“掃描方向,,,例 如y方向)以速度V移動,因此該投射光束PB會在光罩影像 上掃描;同時,該基板平檯WT會同時以速度V=Mv在相同 或是相反的方向上移動,其中Μ係該透鏡PL的放大倍率(通 L __________ 15· 本紙張尺國國家標準(CNS) Μ規格(⑽〉〈挪公爱) 裝 訂 !25〇556In essence, the light beam PB intercepts the photomask MA -14 fixed by the mask platform MT - the paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1250556 A7 B7 V. Invention Description (12 ). After passing through the reticle MA, the light beam PB passes through the lens &amp; which will focus the light beam PB in the target portion c of the substrate w. With the first positioning device (and the interference measuring device IF), the substrate platform WT can be accurately moved, for example, to position different target portions c on the path of the beam pB. Similarly, for example, after the reticle MA is mechanically removed from the mask library, or during scanning, the first locating device can be used to accurately position the reticle MA relative to The path of the light beam PB. Generally, the movement of the object platform mt, WT is achieved by a long-range (l〇ng-str〇ke) module (path positioning) and a short-stroke module (detail positioning). Not clearly depicted. However, in the case of a wafer stepper (as opposed to a step-scan device), the mask platform MT may only be connected to a short-range actuator or may be fixed. The device depicted may be used in two modes: ^ Step mode, basically the reticle stage MT remains stationary, and the entire reticle image is fully projected at a time (ie, a single "flash" ,, in a target part C. Then the substrate platform WT will move in the X and / or y direction 'so the beam PB can illuminate different target parts c. 2 · Scan mode, basically the same The situation, but will not expose the specific target part C to a single "flash,". Instead, the reticle stage MT can be moved at a speed V in a specific direction (so-called "scanning direction," for example, y direction), so that the projected beam PB is scanned over the reticle image; The substrate platform WT will move in the same or opposite direction at the same speed V=Mv, wherein the magnification of the lens PL is passed (through L __________ 15 · National Standard for Paper (CNS) Μ Specifications ((10) 〉 <Novogong Love) Binding! 25〇556

常’_/4或是1/5)。依照此種方式’可能會曝光較大的 目標部份C,但是解析度卻不會變差。 該裝置進-步包括-前置對齊器,舉例來說,可以機械 方式與該基板平台隔離以避免該前置對齊器傳送任何震動 至該基板平檯。-基板搬運H,如―晶圓搬運機器人之類 ,用以將該晶圓運送至該前置對齊器。接著,基板搬運器 便會將該晶圓輸送至該基板平檯WT。此基板搬運器可能 與將該晶圓輸送至該前置對齊器的係同一個,或其可能2 第二個基板搬運器。為確保不會喪失位移精確度,該基板 搬運器可能在相對於該前置對齊器的固定位置。或者,該 基板搬運器可能會在移動期間以機械方式與該前置對齊器 隔離。在此情形中,在拾取該晶圓之前置對齊單元,該基 板搬運器會暫時地連結至該前置對齊器以便界定其與該前 置對齊器的相對位置。舉例來說,從Ep-1 052 548-A2中便 可發現到一種此類系統,此處以引用的方式併入本文中。 該前置對齊器能夠利用,舉例來說,氣載機支撐該晶圓 ,其僅需要使用有限的機械接觸方式固定該晶圓的位置並 且必要時進行移動。該前置對齊器亦可充當幾種其它功能 。β玄氣載機中的氣體可進行加熱或冷卻以便幫助該晶圓中 的溫度穩定。該氣體可能進行充氣然後再對該晶圓上所堆 積的氣體逐漸地放氣並且其可能經過過濾之後用以吹走該 晶圓底面的任何污染物。所有的使用方式都可降低對該晶 圓損壞的可能性並且有助於改善定位精確度。舉例來說, 從EP-1 05 2 546-Α2中便可發現到一種此類前置對齊器,此 -16- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公董)Often '_/4 or 1/5). In this way, a larger target portion C may be exposed, but the resolution will not deteriorate. The apparatus further includes a pre-aligner, for example, mechanically separable from the substrate platform to prevent the front aligner from transmitting any shock to the substrate platform. - Substrate handling H, such as a wafer handling robot, for transporting the wafer to the pre-aligner. The substrate carrier then transports the wafer to the substrate platform WT. The substrate carrier may be the same as the one that transports the wafer to the pre-aligner, or it may be a second substrate carrier. To ensure that the displacement accuracy is not lost, the substrate carrier may be in a fixed position relative to the front aligner. Alternatively, the substrate carrier may be mechanically isolated from the front aligner during movement. In this case, an alignment unit is placed prior to picking up the wafer, and the substrate carrier is temporarily coupled to the pre-aligner to define its relative position to the front aligner. One such system is found, for example, from Ep-1 052 548-A2, which is incorporated herein by reference. The pre-aligner can utilize, for example, an air carrier to support the wafer, which only requires a limited mechanical contact to fix the position of the wafer and, if necessary, move. The pre-aligner can also serve several other functions. The gas in the beta helium carrier can be heated or cooled to help stabilize the temperature in the wafer. The gas may be inflated and then gradually deflated from the gas deposited on the wafer and it may be filtered to blow away any contaminants from the underside of the wafer. All uses reduce the likelihood of damage to the crystal and help improve positioning accuracy. For example, one such pre-aligner can be found in EP-1 05 2 546-Α2, this -16- paper scale applies to the Chinese National Standard (CNS) Α4 specification (210 X 297 DON)

裝 訂Binding

A7 B7 1250556 五、發明説明(14 處以引用的方式併入本文中。 如圖2所示’本發明的前置對齊器包括一晶圓支撐器1用 以相對於該前置對齊器的軸線RA旋轉晶圓W及再與該晶圓 平行的平面中移動該晶圓,一邊緣感測器E S用以決定該基 板邊緣與該晶圓平面内轴線之軸線R A之間的距離(此後稱 之為半徑),及一標記感測器MS用以決定該晶圓表面上標 記的位置。’ 當該晶圓W從該基板搬運器輸送至該前置對齊器時,其 將會在該晶圓支撐物丨中的任意及未知的位置。所以該前 置對齊器必須精確地決定該晶圓的位置及方向。未達到此 目的必須使用四個座標系統。其中兩個,該邊緣感測器座 標系統ESCS及該標記感測器座標系統MSCS,都係相對於 該前置對齊器為固定的。其餘的兩個,該幾何晶圓座標系 統GWCS及該晶圓座標系統WCS,則係分別相對於該晶圓 的幾何形狀及該晶圓上的標記為固定的。 圖3a所示的係該邊緣感測器座標系統ESCS及該標記感 測器座標系統MSCS之間的關係。該邊緣感測器座標系統 係由其X軸,即穿過該前置對齊器之旋轉轴RA及與該旋轉 軸RA距離最遠的邊緣感測器ES的像素的軸線,所界定的 。Y轴則係與該X轴垂直的軸線,亦會穿過該前置對齊器 之旋轉轴RA。當放置在該前置對齊器中時,兩條軸線都 係位於該晶圓的平面中。該標記感測器座標系統的X軸則 係穿過該前置對齊器之旋轉軸RA及與該標記感測器MS中 之設定點的轴線。 二_ -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1250556 A7 B7 五、發明説明(15 ) 該標記感測器MS的配置方式可讓該邊緣感測器座標系 統及該標記感測器座標系統個別的軸線具有一預設的角度 C6 (舉例來,兄,60°)。貫際上,因為該邊緣感測器ES及該 標記感測器MS的安裝誤差容忍值的關係,所以該以會有 一小偏移,即C60ffset。所以,該軸線之間的整體角度應該 係C6 + C60ffset。該C60ffset可能會在校正程序期間便已經決 定。 圖3b所不的係該幾何晶圓座標系統Gwcs。該GWCS的 軸線平行於該晶圓W的邊緣,在此情形中其為正方形。該 GWCS的原點便係該正方形晶圓的幾何中心。如果有一凹 口 N的話,舉例來說,其可能會係在該座標系統的第四象 限Q4中。該晶圓座標系統WCS係由特定標記,如該晶圓 表面上的基準點’的位置所界定的。所以,在該幾何晶圓 座標系統及對於每個個別的晶圓來說係恆定的晶圓座標系 統之間會有偏移。 圖4所示的係決定該前置對齊器内該晶圓w的位置及方 向。當該前置對齊器收納該晶圓之後,該晶圓便會旋轉 3 60。,該邊緣感測器ES,在此具體實施例中其係一電荷耦 合元件’會取得二百個數值(稱為CCD值)。顯而易見的係 ,本發明並不侷限於200個CCD值,亦可取得更多或較少 的CCD值。接著便會將該CCD轉換成半徑值陣歹,!,各與進 行量測的角度相關聯。在此例中,“半徑,,所指的係從該前 置對齊器之旋轉軸RA至由該邊緣感測器ES所決定之該晶 圓邊緣上的點之間的距離。所以,該晶圓邊緣上的每個量A7 B7 1250556 5. Inventive Description (14 is incorporated herein by reference. As shown in Figure 2, the front aligner of the present invention includes a wafer support 1 for axis RA relative to the front aligner Rotating the wafer W and moving the wafer in a plane parallel to the wafer, an edge sensor ES is used to determine the distance between the edge of the substrate and the axis RA of the plane of the plane of the wafer (hereinafter referred to as a radius), and a mark sensor MS is used to determine the position of the mark on the surface of the wafer. 'When the wafer W is transported from the substrate carrier to the front aligner, it will be on the wafer Any and unknown position in the support, so the pre-aligner must accurately determine the position and orientation of the wafer. Four coordinate systems must be used for this purpose. Two of them, the edge sensor coordinates The system ESCS and the mark sensor coordinate system MSCS are fixed relative to the pre-aligner. The remaining two, the geometric wafer coordinate system GWCS and the wafer coordinate system WCS are respectively relative to The geometry of the wafer and The mark on the wafer is fixed. Figure 3a shows the relationship between the edge sensor coordinate system ESCS and the mark sensor coordinate system MSCS. The edge sensor coordinate system is based on its X axis. That is, the axis of the pixel passing through the rotation axis RA of the front aligner and the edge sensor ES farthest from the rotation axis RA is defined. The Y axis is an axis perpendicular to the X axis, and Passing through the rotation axis RA of the front aligner. When placed in the front aligner, both axes are located in the plane of the wafer. The X axis of the mark sensor coordinate system is passed through The rotation axis RA of the pre-aligner and the axis of the set point in the mark sensor MS. _ -17- This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1250556 A7 B7 V. Inventive Description (15) The marking sensor MS is configured in such a manner that the edge sensor coordinate system and the individual axis of the marking sensor coordinate system have a predetermined angle C6 (for example, brother , 60°). In the end, because the edge sensor ES and the marking sensor MS are installed The relationship of the difference tolerance value, so there will be a small offset, C60ffset. Therefore, the overall angle between the axes should be C6 + C60ffset. The C60ffset may have been decided during the calibration procedure. Figure 3b does not. The geometric wafer coordinate system Gwcs. The axis of the GWCS is parallel to the edge of the wafer W, in this case it is a square. The origin of the GWCS is the geometric center of the square wafer. If there is a notch N For example, it may be in the fourth quadrant Q4 of the coordinate system. The wafer coordinate system WCS is defined by a particular mark, such as the position of the reference point ' on the wafer surface. Therefore, there is an offset between the geometric wafer coordinate system and the wafer coordinate system that is constant for each individual wafer. The position shown in Figure 4 determines the position and orientation of the wafer w in the pre-aligner. When the pre-aligner accommodates the wafer, the wafer is rotated by 3 60. The edge sensor ES, which in this embodiment is a charge coupled device, will take two hundred values (referred to as CCD values). Obviously, the invention is not limited to 200 CCD values, and more or less CCD values can be obtained. Then the CCD will be converted into a radius value matrix! Each is associated with the angle at which the measurement is taken. In this example, "radius," refers to the distance from the axis of rotation RA of the pre-aligner to the point on the edge of the wafer as determined by the edge sensor ES. Therefore, the crystal Each amount on the edge of the circle

裝 訂Binding

-18--18-

A7 B7 1250556 五、發明説明(16 ) 測點的特徵為該邊緣感測器座標系統中的柱狀座標。從該 些數值便可決定該邊緣感測器座標系統與該幾何晶圓座標 系統之間的關係,或“偏移向量’’(參看下面)。如圖5所示 ’此關係的特徵為兩個座標系統原點之間的距離r,及該 ESCS與該GWCS之間的旋轉角度th 〇為清楚起見,r將以 GWCS_ESCS_r_offset 表示,而 th 另等以 GWCS_ESCS__th_ offset表示。 接著便會判斷該晶圓W是否位於該特定的可接受的位置 範圍内(也就是,將GWCS_ESCS_r__offset與一預設臨界值 作比較)。舉例來說,該可接受的偏移可能係在0.5 mm内 。如果該晶圓不在該特定限制内的話,便可能使用該晶圓 支撐物移動該晶圓以便重新定位其中心。接著便會對該新 位置重複進行該量測步驟。此循環可不斷地重複進行直到 該晶圓W位於該特定的位置範圍内為止。 如果該晶圓有個凹口 N的話,那麼便可能會決定在該邊 緣感測器座標系統ESCS中該凹口的方向(下面將作更進一 步說明)。不過,亦可能在該前置對齊之前便先決定該凹 口方向。在該邊緣感測器座標系統内的凹口方向, GWCS—ESCS—theta,所指的係在結合該 GWCS_ESCS—th_ offset之後的於該幾何晶圓座標系統GWCS内所發現到的該 凹口方向。 通常要在該標記感測器座標系統中取得該些方向非常方 便。該些角度可以下面的方式轉換: GWCS 一 MSCS_theta=GWCS—ESCS_theta+(C6+C60ffset) -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) A7 B7 1250556 五、發明説明(17 ) GWCS_MSCS—th—offset=GWCS—ESCS_th 一 offset+(C6+C6〇ffset) 請注意,因為該標記座標系統與該邊緣感測器座標系統的 原點重疊,所以: GWCS_MSCS丄offset=GWCS_ESCS丄offset 為明確地指出該晶圓W中該些特徵的位置及方向(標記 感測座標糸統)’可以將該幾何晶圓座標糸統及該晶圓 座標系統之間的差異,即WCS_GWCS__offset向量,加入角 度GWCS_MSCS—th—offset處的標記座標系統中該晶圓幾何 中心的向量位置中,其係GWCS_MSCS_r_offset的長度向 量° 圖6所示的係決定該幾何晶圓座標系統及該邊緣感測器 座標系統之間的向量偏移所需要的步驟。第一個步驟係預 測該晶圓邊緣中每個量測點之晶圓邊緣曲率半徑。這可利 用任一側的點並找出最適合該三個點的圓加以計算。接著 ,將曲率半徑值與預設臨界值比較之後便可將該些量測點 歸類成“直線”,“圓形”或“其它”。在此階段中,未被歸類 成“直線”的點都會被剔除。 接著,該邊緣感測器座標系統ESCS會被分割成四個象 限,並且對每個象限中的量測點進行比較。假設該晶圓的 偏移程度不超過該晶圓寬度的一個象限,即不超過單一象 限的大小,那麼每個象限便都會含有該晶圓的其中一個角 落。因此,可以將每個象限中具最大半徑值的量測點視為 “角落點”。當確認四個“角落”之後,在相鄰角落之間的其 餘的量測點將其構成一條直線之後便可視為該晶圓的其中 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 18 1250556 五、發明説明 個邊緣。該些量測點可轉換 ESCS内的笛+ &amp; + 、成以邊緣感測器座標系統 決定每條二接著便可使用標準的最小平方法 、疋母條邊緣線的最適線y=AX+b。 中的點盥兮JL ^ % 接者便對母條邊緣線 二間的距離變異進行分析。任何超過該 除的點:!的點都必須剔除。如果在此步驟中被剔 =點=臨界值的話’舉例來說該臨界值可假設成如果 除點:Γ:除?話,那麼便必須重複該程序直到沒有剔 &amp;觀點,當在此步驟中被剔^的點數低於該 界值時便可決定出“角落,,的位置。 田依照此種方式找出四條邊緣線之後,便可將該些直線 進行外插運算,而符合條件的四個點(其係最接近原點的 ••占即略去4乎呈平行直線交又的遠端交叉點)便界定出 該曰曰圓w的角’洛。請注意,如果該晶圓有凹口的話,那麼 ,在該凹口角落處所找到的角落將會位於沒有凹口時所找 的角落的地方。 。或者,所使用的角落可能係在後續用以尋找該邊緣線的 程序中於每個象限内最大半徑處所找到的“角落”。在此情 形中,便不一定要找出所有四個角落。如果其中有一個角 落無法確認的話,可以從其它角落的位置進行推論。 接著,可使用該四個角落尋找該邊緣感測器座標系統 ESCS與該幾何晶圓座標系統(;}々(:3之間的偏移向量。該些 角落位置的平均值便係該晶圓的幾何中心(其係該幾何晶 圓座標系統的原點)。所以,便可定義r,如上述亦稱為 GWCS一ESCSj一offset。連接該些角落的每條直線的方向 -21 - 本紙張尺度適财國@家標準(CNS) A4規格(21GX297公爱) 五、發明説明(19 # Γ Γ句值為th+45,其令th係該Escs與該gwcs·^間的 疋轉角度,如上述亦稱為GWCS 一 ESCS—th一offset。 正方形晶圓可能限於在該四個角落中其中一個角落上僅 有彳㈤ 戶斤以,假設該晶圓限於欲曝光的晶圓側具有 :::向的話,那麼藉由判斷該凹口位於哪個角落便可非 *間早地決定出正方形晶圓的凹口方向。曲率半徑值,直 可能係在前面的步驟中便已經決^或此時才決定m 判斷所找到的角落是否具有凹口。可針對凹口的大小設定 其臨界值以避免因為角落遭職壞而找到不正確的假凹口。 凹,測可能會在該前置對齊器決定出該晶圓的位置 及方向^後才進行。或者’其可能會在前置對齊之前的步 驟中進行在此fl形中,會對該晶圓進行快速掃描以便決 定該凹口的位置。接著便會進行精確的晶圓中心定位以及 決定位置與方向。 在某些具體實施例中’使用的係無凹口的前置定位晶圓 ’可以保留該晶圓的原點方向,而且不必執行凹 步驟。 、 上述的方法係針對具四個侧邊及四個角落(其中一個可 能會經過凹口切除處理)的基板,即其係正方形或矩形的 基板。不㉟’可以發現到本方法經過調整之後 ,舉例來說,不同數量的“角落點 a 適線便可使用於其它的多邊形中。 8所有點的5 雖然上面已經對本發明特定的具體實施例加以說明,不 過,可以發現到本發明的實際應用可能超出所述的部分。 -22-A7 B7 1250556 V. INSTRUCTIONS (16) The measuring points are characterized by the columnar coordinates in the edge sensor coordinate system. From these values, the relationship between the edge sensor coordinate system and the geometric wafer coordinate system, or "offset vector" (see below) can be determined. As shown in Figure 5, the relationship is characterized by two The distance r between the origins of the coordinate systems, and the angle of rotation th between the ESCS and the GWCS, for clarity, r will be represented by GWCS_ESCS_r_offset, and th will be represented by GWCS_ESCS__th_offset. Whether the circle W is within this particular acceptable range of positions (ie, comparing GWCS_ESCS_r__offset to a predetermined threshold). For example, the acceptable offset may be within 0.5 mm. If the wafer Without being within this particular limit, it is possible to use the wafer support to move the wafer to reposition its center. The measurement step is then repeated for the new location. This cycle can be repeated until the wafer is repeated. W is within the specified range of positions. If the wafer has a notch N, then the direction of the notch in the edge sensor coordinate system ESCS may be determined ( This will be explained further below. However, it is also possible to determine the direction of the notch before the pre-alignment. The direction of the notch in the edge sensor coordinate system, GWCS-ESCS-theta, refers to the system The direction of the notch found in the geometric wafer coordinate system GWCS after combining the GWCS_ESCS_th_offset. It is generally convenient to obtain the directions in the marker sensor coordinate system. Mode conversion: GWCS-MSCS_theta=GWCS-ESCS_theta+(C6+C60ffset) -19- This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) A7 B7 1250556 V. Invention description (17) GWCS_MSCS—th— Offset=GWCS—ESCS_th an offset+(C6+C6〇ffset) Note that because the marker coordinate system overlaps the origin of the edge sensor coordinate system, GWCS_MSCS丄offset=GWCS_ESCS丄offset is to explicitly indicate the crystal The position and orientation of the features in the circle W (marked sensing coordinate system) can be the difference between the geometric wafer coordinate system and the wafer coordinate system, ie WCS_GWCS__off Set vector, added to the vector position of the geometric center of the wafer in the marker coordinate system at the angle GWCS_MSCS_th_offset, which is the length vector of GWCS_MSCS_r_offset. The system shown in Figure 6 determines the geometric wafer coordinate system and the edge sense. The steps required for the vector offset between the coordinate systems of the detector. The first step is to predict the radius of curvature of the wafer edge for each measurement point in the edge of the wafer. This can be calculated using the points on either side and finding the circle that best fits the three points. Then, by comparing the curvature radius value with the preset threshold value, the measurement points can be classified into "straight line", "circle" or "other". In this phase, points that are not classified as "straight lines" are rejected. Next, the edge sensor coordinate system ESCS is split into four quadrants and the measured points in each quadrant are compared. Assuming that the offset of the wafer does not exceed a quadrant of the width of the wafer, i.e., does not exceed a single quadrant, each quadrant will contain one of the corners of the wafer. Therefore, the measurement point with the largest radius value in each quadrant can be regarded as a "corner point". After confirming the four "corners", the remaining measurement points between adjacent corners will be regarded as a straight line and then the -20- paper size of the wafer can be regarded as the Chinese National Standard (CNS) A4 specification ( 210 X 297 mm) 18 1250556 V. The invention describes the edge. These measurement points can be converted into flute + &amp; + in the ESCS, determined by the edge sensor coordinate system, and the standard minimum line method can be used for each of the two, and the optimal line of the edge line of the mother bar is y=AX+ b. In the point 盥兮JL ^ %, the distance variation between the two edges of the mother strip is analyzed. Any point beyond that except:! The points must be removed. If it is ticking = point = critical value in this step, for example, the critical value can be assumed to be if the point is removed: Γ: divide? Then, the program must be repeated until there is no tick &amp; viewpoint, when the number of points that are ticked in this step is lower than the limit value, the position of "corner," can be determined. After the four edge lines, the straight lines can be extrapolated, and the four points that meet the condition (the closest to the origin are the 4th parallel intersections that are parallel lines) The angle 'Lo" of the circle w is defined. Please note that if the wafer has a notch, then the corner found at the corner of the notch will be located in the corner where the notch was found. Alternatively, the corners used may be the "corners" found in the maximum radius within each quadrant in the subsequent program for finding the edge line. In this case, it is not necessary to find all four corners. If one of the corners cannot be confirmed, it can be inferred from the position of the other corners. Then, the four corners can be used to find the edge sensor coordinate system ESCS and the geometric wafer coordinate system (;}々(:3 Offset The average of the corner locations is the geometric center of the wafer (which is the origin of the geometric wafer coordinate system). Therefore, r can be defined, as also referred to above as GWCS-ESCSj-offset. The direction of each line of the corners - 21 - The paper size is suitable for the country @家标准(CNS) A4 specification (21GX297 public) 5. The invention description (19 # Γ Γ sentence value is th+45, which makes th The angle of rotation between the Escs and the gwcs·^ is also referred to as GWCS-ESCS-th-offset as described above. The square wafer may be limited to only one (5) of the four corners. Assuming that the wafer is limited to the side of the wafer to be exposed with a ::: direction, then by judging which corner the notch is located, the direction of the notch of the square wafer can be determined early. It may be decided in the previous step or it is decided at this time to determine whether the found corner has a notch. The threshold can be set for the size of the notch to avoid finding an incorrect false because the corner is damaged. Notch. Concave, the measurement may be determined in the front aligner After the position and orientation of the wafer is taken out, or 'it may be performed in the step before the pre-alignment, the wafer will be quickly scanned to determine the position of the notch. Then Accurate wafer center positioning and position and orientation are determined. In some embodiments, 'the use of a non-notched pre-positioning wafer' can preserve the origin of the wafer without having to perform a concave Steps: The above method is for a substrate having four sides and four corners (one of which may be subjected to a notch removal process), that is, a square or rectangular substrate. The method may be adjusted after 35' After that, for example, a different number of "corner points a" can be used in other polygons. 8 All points 5 Although specific embodiments of the invention have been described above, it will be appreciated that the actual application of the invention may be beyond the scope. -twenty two-

本紙張尺度適财S S家標準(CNS) A4規格(210X297公S 1250556 A7 B7 五、發明説明(21 RA 軸線 MSCS 標記感測器座標系統 ESCS 邊緣感測器座標系統 GWCS 幾何晶圓座標系統 N 凹口 Q1 第一象限 Q2 第二象限 Q3 第三象限 Q4 第四象限This paper scale is suitable for the SS standard (CNS) A4 specification (210X297 public S 1250556 A7 B7 V. Invention description (21 RA axis MSCS mark sensor coordinate system ESCS edge sensor coordinate system GWCS geometric wafer coordinate system N concave Port Q1 first quadrant Q2 second quadrant Q3 third quadrant Q4 fourth quadrant

裝 訂 -24-本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Binding -24-This paper scale applies to China National Standard (CNS) A4 specification (210 X 297 mm)

Claims (1)

8 8ft A BCD 5含祕116147號專利申請義 中文申請專利範圍替換木衫3萆3月) 六、申請專利範圍 1. 一種微影投射裝置,包括: -一用以提供照射投射光束的照射系統; 一用以支撐圖樣裝置的支撐結構,該圖樣裝置係用以 根據所需要的圖樣設計該投射光束的圖樣; -一用以固定一基板的基板平檯; -一用以將該圖樣光束投射在該基板的目標部份的投射 系統; 其特徵為該基板進一步包括一前置對齊單元用以決定 在该刖置對齊單元内該基板的位置及方向,其包括: -沿著貫質垂直於該基板平面的旋轉軸旋轉該基板的裝 置; -一非接觸式邊緣感測器,其係用以在該基板的一旋轉 角度乾圍處’沿者平行於該基板平面的量測轴決定 與遠基板邊緣旋轉軸之間的距離; -用以利用與由所決定的距離及對應角度所界定出來的 母個邊緣相關聯的點決定該基板至少兩個主邊緣的 最適線之裝置;及 -用以利用該決定的最適線決定該前置對齊單元内該基 板的位置與方向的裝置,並且該前置對齊單元可調 整用以決定多邊形,平面基板的位置與方向。 2. 如申請專利範圍第1項之微影投射裝置,其中該用以決 定該基板的位置及方向的裝置會從其中兩條最適線的交 叉點決定該基板至少一個角落的位置。 3·如申請專利範圍第1或2項之微影投射裝置,其中該用以 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐)8 8ft A BCD 5 contains secret 116147 patent application meaning Chinese application patent range replacement wood shirt 3萆3) 6. Patent application scope 1. A lithography projection device, comprising: - an illumination system for providing illumination of a projection beam a support structure for supporting the pattern device, the pattern device is configured to design a pattern of the projected beam according to a desired pattern; - a substrate platform for fixing a substrate; - a projection beam for the pattern a projection system at a target portion of the substrate; wherein the substrate further comprises a front alignment unit for determining a position and a direction of the substrate in the alignment unit, comprising: - perpendicular to the permeation a device for rotating the substrate by the rotation axis of the substrate plane; a non-contact edge sensor for determining the axis of the substrate parallel to the plane of the substrate at a rotation angle of the substrate a distance between the axes of rotation of the distal edge of the substrate; - for determining at least two of the substrates by using points associated with the parent edges defined by the determined distance and the corresponding angle Means for selecting the optimum line of the main edge; and - means for determining the position and orientation of the substrate in the pre-aligned unit by using the optimum line of the decision, and the pre-alignment unit is adjustable to determine the polygon, the planar substrate Location and direction. 2. The lithographic projection apparatus of claim 1, wherein the means for determining the position and orientation of the substrate determines the position of at least one corner of the substrate from the intersection of the two optimum lines. 3. For the lithographic projection apparatus of claim 1 or 2, the paper size applies to the Chinese National Standard (CNS) A4 specification (210 x 297 mm). 決定最適線的裝置包括: 1由尋找最適合每一點及任一邊上之每一相鄰點的圓 以預測由已經決定之距離及角度所界定之每個點之 基板邊緣的曲率半徑的裝置; -利用该曲率預測半徑決定哪個點與該基板的角落相關 聯的裝置;及 用以决疋在被決定為與角落相關聯的相鄰點之間的點 的最適線的裝置。 4·如申請專利範圍第1或2項之微影投射裝置,其中該用以 方疋轉該基板的裝置會旋轉該基板360。;而該非接觸式邊 緣感測器會在此旋轉期間以預設的次數決定該基板 與該旋轉軸之間的距離。 V 5.如申請專利範圍第1或2項之微影投射裝置,其進一步包 括輸送裝置,用以將該基板從該前置對齊單元輸送至 該基板平檯;其中該輸送裝置會使用該用以決定該基板 的位置及方向的裝置的結構將該基板放置在該基板平擾 上與預δ又位置距離一預設範圍内並且與該預設位置具 有一已知的移動與旋轉偏移。 6·如申請專利範圍第1或2項之微影投射裝置,其中該非接 觸式邊緣感測器係為一光學邊緣感測器。 7.種半導體元件製造方法,其包括的步驟如下: -提供一至少部份被一感光材料層覆蓋的基板; -利用照射系統提供一種照射投射光束; -利用圖樣裝置提供一於其切面具有圖樣的投射光束; 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公爱·)The means for determining the optimum line comprises: 1 means for finding the radius of curvature of the substrate edge of each point defined by the determined distance and angle by finding a circle that best fits each point and each adjacent point on either side; Means for determining which point is associated with the corner of the substrate using the curvature prediction radius; and means for deciding the optimum line of the point between the adjacent points determined to be associated with the corner. 4. The lithographic projection apparatus of claim 1 or 2, wherein the means for rotating the substrate rotates the substrate 360. And the non-contact edge sensor determines the distance between the substrate and the rotating shaft by a preset number of times during the rotation. The lithographic projection apparatus of claim 1 or 2, further comprising a conveying device for conveying the substrate from the front alignment unit to the substrate platform; wherein the conveying device uses the same The structure of the device for determining the position and orientation of the substrate is placed on the substrate to be disturbed by a pre-δ positional distance within a predetermined range and has a known movement and rotational offset from the predetermined position. 6. The lithographic projection apparatus of claim 1 or 2, wherein the non-contact edge sensor is an optical edge sensor. 7. A method of fabricating a semiconductor device, comprising the steps of: - providing a substrate at least partially covered by a layer of photosensitive material; - providing an illumination projection beam by means of an illumination system; - providing a pattern on the slice thereof by means of a patterning device Projection beam; This paper scale applies to China National Standard (CNS) Α4 specification (210X297 public love) 1250556 A B c D ----——_ 六、申請專利範圍 -將該經過圖樣處理後 的目標部份;叙…射先束投射在該感光材料層 其特徵為在將該經過圖樣處理後之照射光束投射在該 基板上之前先利用下面的式 叫旧刀八决疋刖置對齊皁元内的基 板位置與方向: 〜著實貝垂直於該基板平面的旋轉軸旋轉該基板,· -使用一非接觸式邊緣感測器用以在該基板的複數個旋 轉角度處,沿著平行於該基板平面的量測軸決定與 該基板逄緣旋轉軸之間的距離; -利用與所決定的距離及對應角度所界定出來的每個邊 緣相關聯的點決定該基板至少兩個主邊緣的最適線 :及 -利用該決定的最適線決定該前置對齊單元内該基板的 位置與方向; 並且該前置對齊單元可調整用以決定多邊形,平面基板 的位置與方向。 8· —種根據以下方法製造而成的半導體元件。 -提供一至少部份被一感光材料層覆蓋的基板; -利用照射系統提供一種照射投射光束; -利用圖樣裝置提供一於其切面具有圖樣的投射光束; -將該經過圖樣處理後之照射光束投射在該感光材料層 的目標部份; 其特徵為在將該經過圖樣處理後之照射光束投射在該 基板上之前先利用下面的方式決定前置對齊單元内的基 3- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 8 8 8 8 A B c D 1250556 、申請專利範圍 板位置與方向: -沿著實質垂直於該基板平面的旋轉軸旋轉該基板; -使用一非接觸式邊緣感測器用以在該基板的複數個旋 轉角度處,沿著平行於該基板平面的量測軸決定與 該基板邊緣旋轉軸之間的距離; -利用與所決定的距離及對應角度所界定出來的每個邊 緣相關聯的點決定該基板至少兩個主邊緣的最適線 :及 -利用該決定的最適線決定該前置對齊單元内該基板的 位置與方向; 並且該前置對齊單元可調整用以決定多邊形,平面基板 的位置與方向。 9. 一種電腦可讀取記錄媒體,包含用以操作該微影投射裝 置的電腦程式,該電腦程式包括編碼裝置,用以指導該 裝置執行下面的步驟: -計算前置對齊單元内基板的位置及方向;及 -使用所計算出來的該基板的位置及方向控制一輸送裝 置用以將該基板放置在一基板平檯上位於預設的位 置及方向的範圍内,並且具有已知的偏移; 其特徵為該用以計算該前置對齊單元内該基板的位置及 方向的編碼裝置包括編碼裝置用以執行下面的步驟: -從一非接觸式邊緣感測器接收第一複數個資料元素, 每個貧料元素都相當於該基板邊緣與該前置對齊單 元旋轉軸的距離; -4 8 8 8 8 A B c D 1250556 六、申請專利範圍 -接收第二複數個資料元素,每個資料元素都相當於該 基板相對於與該第一複數個資料元素中其中一個相 關聯的前置對齊單元旋轉軸的旋轉角度; -從與每個邊緣相關聯的第一及第二資料元素中計算該 基板至少兩個主邊緣的最適線;及 -從該最適線計算該前置對齊單元内該基板的位置及方 向; 並且該前置對齊單元可調整甩以決定多邊形,平面基板 的位置與方向。 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1250556 AB c D ----——_ Sixth, the scope of application for patents - the target part after the processing of the pattern; the first shot is projected onto the layer of photosensitive material, which is characterized by the processing of the pattern Before the illumination beam is projected on the substrate, the position and direction of the substrate in the soap element are aligned by using the following formula: ~ The solid axis rotates the substrate perpendicular to the rotation axis of the substrate plane, and - uses one The non-contact edge sensor is configured to determine a distance from the axis of rotation of the substrate along a measuring axis parallel to the plane of the substrate at a plurality of rotation angles of the substrate; - utilizing the determined distance and The point associated with each edge defined by the corresponding angle determines an optimum line of the at least two main edges of the substrate: and - determining the position and direction of the substrate in the pre-aligned unit by using the determined optimal line; and the front The alignment unit can be adjusted to determine the position and orientation of the polygon, the planar substrate. 8. A semiconductor element manufactured by the following method. Providing a substrate at least partially covered by a layer of photosensitive material; - providing an illumination projection beam by means of an illumination system; - providing a projection beam having a pattern on its slice using a patterning device; - irradiating the patterned illumination beam Projecting on the target portion of the photosensitive material layer; characterized in that the substrate in the front alignment unit is determined by the following method before the patterned irradiation beam is projected onto the substrate. National Standard (CNS) A4 size (210X 297 mm) 8 8 8 8 AB c D 1250556, patent application range board position and direction: - rotate the substrate along a rotation axis substantially perpendicular to the plane of the substrate; - use a non The contact edge sensor is configured to determine a distance from the axis of rotation of the substrate edge along a measuring axis parallel to the plane of the substrate at a plurality of rotation angles of the substrate; - utilizing the determined distance and the corresponding angle The defined points associated with each edge determine the optimal line of at least two major edges of the substrate: and - the optimal line using the decision Position and direction of the substrate in the pre-alignment unit; and adjust the pre-alignment unit for determining the position and orientation of the polygon, the plane of the substrate. 9. A computer readable recording medium comprising a computer program for operating the lithography projection apparatus, the computer program comprising encoding means for directing the apparatus to perform the following steps: - calculating the position of the substrate in the front alignment unit And direction; and - using the calculated position and orientation of the substrate to control a transport device for placing the substrate on a substrate platform within a predetermined range of positions and directions, and having a known offset The encoding device for calculating the position and orientation of the substrate in the pre-aligned unit includes an encoding device for performing the following steps: - receiving the first plurality of data elements from a non-contact edge sensor , each of the lean elements is equivalent to the distance between the edge of the substrate and the axis of rotation of the front alignment unit; -4 8 8 8 8 AB c D 1250556 6. Patent application scope - receiving the second plurality of data elements, each data The elements are each equivalent to a rotation angle of the substrate relative to a rotation axis of the front alignment unit associated with one of the first plurality of data elements; Calculating an optimum line of at least two main edges of the substrate in each of the first and second data elements associated with each edge; and calculating a position and a direction of the substrate in the pre-aligned unit from the optimum line; and the front The alignment unit can be adjusted to determine the position and orientation of the polygon, the planar substrate. This paper scale applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm)
TW091116147A 2001-07-20 2002-07-19 Lithographic apparatus, device manufacturing method, and device manufactured thereby TWI250556B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01306260 2001-07-20

Publications (1)

Publication Number Publication Date
TWI250556B true TWI250556B (en) 2006-03-01

Family

ID=8182130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091116147A TWI250556B (en) 2001-07-20 2002-07-19 Lithographic apparatus, device manufacturing method, and device manufactured thereby

Country Status (4)

Country Link
US (1) US6795164B2 (en)
JP (1) JP4138400B2 (en)
KR (1) KR100585470B1 (en)
TW (1) TWI250556B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768976A (en) * 2011-05-05 2012-11-07 上海微电子装备有限公司 Prealignment device and method for substrate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064730B2 (en) * 2003-09-22 2011-11-22 Asml Netherlands B.V. Device manufacturing method, orientation determination method and lithographic apparatus
US7756660B2 (en) * 2004-12-28 2010-07-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL1036033A1 (en) * 2007-10-10 2009-04-15 Asml Netherlands Bv Method of transferring a substrate, transfer system and lithographic projection apparatus.
US8149387B2 (en) * 2007-10-10 2012-04-03 Asml Netherlands B.V. Method of placing a substrate, method of transferring a substrate, support system and lithographic projection apparatus
NL1036025A1 (en) * 2007-10-10 2009-04-15 Asml Netherlands Bv Method of transferring a substrate, transfer system and lithographic projection apparatus.
US8154709B2 (en) * 2007-10-10 2012-04-10 Asml Netherlands B.V. Method of placing a substrate, method of transferring a substrate, support system and lithographic projection apparatus
JP6255152B2 (en) * 2012-07-24 2017-12-27 株式会社日立ハイテクノロジーズ Inspection device
US9886029B2 (en) * 2013-12-02 2018-02-06 Daihen Corporation Workpiece processing apparatus and workpiece transfer system
US9958673B2 (en) * 2014-07-29 2018-05-01 Nanometrics Incorporated Protected lens cover plate for an optical metrology device
JP6590599B2 (en) * 2014-11-28 2019-10-16 キヤノン株式会社 Position determining apparatus, position determining method, lithographic apparatus, and article manufacturing method
US9841299B2 (en) 2014-11-28 2017-12-12 Canon Kabushiki Kaisha Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
JP6719246B2 (en) * 2016-03-25 2020-07-08 キヤノン株式会社 Measuring method, measuring apparatus, lithographic apparatus, and article manufacturing method
CN110488751B (en) * 2018-08-29 2022-08-19 中山大学 Graphite tray visual positioning system of automatic process line

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457664A (en) * 1982-03-22 1984-07-03 Ade Corporation Wafer alignment station
JP2840801B2 (en) * 1992-12-01 1998-12-24 セイコーインスツルメンツ株式会社 Automatic setting method of coordinate conversion coefficient
US5497007A (en) * 1995-01-27 1996-03-05 Applied Materials, Inc. Method for automatically establishing a wafer coordinate system
US5825913A (en) * 1995-07-18 1998-10-20 Cognex Corporation System for finding the orientation of a wafer
JP3140349B2 (en) 1995-09-26 2001-03-05 日立電子エンジニアリング株式会社 Positioning device for rectangular substrates
JPH09152569A (en) 1995-11-28 1997-06-10 Hitachi Electron Eng Co Ltd Positioning device for rectangular substrate
US6195619B1 (en) * 1999-07-28 2001-02-27 Brooks Automation, Inc. System for aligning rectangular wafers
US6629053B1 (en) * 1999-11-22 2003-09-30 Lam Research Corporation Method and apparatus for determining substrate offset using optimization techniques
US6842538B2 (en) * 2001-03-23 2005-01-11 Shih-Jong J. Lee Automatic detection of alignment or registration marks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768976A (en) * 2011-05-05 2012-11-07 上海微电子装备有限公司 Prealignment device and method for substrate
CN102768976B (en) * 2011-05-05 2015-11-25 上海微电子装备有限公司 A kind of substrate prealignment device and method

Also Published As

Publication number Publication date
US6795164B2 (en) 2004-09-21
JP4138400B2 (en) 2008-08-27
KR100585470B1 (en) 2006-06-02
US20030025891A1 (en) 2003-02-06
JP2003152053A (en) 2003-05-23
KR20030009218A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
US7482611B2 (en) Lithographic apparatus and device manufacturing method
TWI357096B (en) Lithographic apparatus and method
TWI250556B (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7355675B2 (en) Method for measuring information about a substrate, and a substrate for use in a lithographic apparatus
US20070081138A1 (en) Lithographic projection apparatus, device manufacturing methods and mask for use in a device manufacturing method
JP6347849B2 (en) Sensor system, substrate handling system, and lithographic apparatus
JP2001289735A (en) Method for measuring aberration in optical image forming system
JP2007266601A (en) Lithography device using overlay measurement and method for manufacturing the same
TWI326016B (en) Focus determination method, device manufacturing method, and mask
JP4774335B2 (en) Lithographic apparatus, preliminary alignment method, device manufacturing method, and preliminary alignment device
JP2004134755A (en) Substrate holder and device manufacturing method
JP4058405B2 (en) Device manufacturing method and device manufactured by this method
JP2005252281A (en) Lithography apparatus for obtaining imaging on surface side or rear surface side of substrate, substrate identification method, device manufacturing method, substrate, and computer program
TW200428160A (en) Transfer apparatus for transferring an object and method of use thereof and lithographic projection apparatus comprising such a transfer apparatus
US20050140951A1 (en) Lithographic apparatus
NL1036058A1 (en) Lithographic apparatus and method.
JP4522762B2 (en) Method and apparatus for positioning a substrate on a substrate table
US7453063B2 (en) Calibration substrate and method for calibrating a lithographic apparatus
JP4922270B2 (en) Substrate carrier and lithographic apparatus
JP4410171B2 (en) Alignment apparatus, alignment method, and lithography apparatus
TWI285794B (en) Device and method for manipulation and routing of a metrology beam
JP2008160107A (en) Method and equipment for inspection, lithographic apparatus, lithographic processing cell, and device manufacturing method
JP2009135443A (en) Method of transferring substrate, transfer system and lithographic projection apparatus
EP1278103A1 (en) Lithographic apparatus
TW202132899A (en) Substrate, patterning device and lithographic apparatuses

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees