TWI249874B - High efficiency multimode microwave transmitter and method thereof - Google Patents

High efficiency multimode microwave transmitter and method thereof Download PDF

Info

Publication number
TWI249874B
TWI249874B TW94120407A TW94120407A TWI249874B TW I249874 B TWI249874 B TW I249874B TW 94120407 A TW94120407 A TW 94120407A TW 94120407 A TW94120407 A TW 94120407A TW I249874 B TWI249874 B TW I249874B
Authority
TW
Taiwan
Prior art keywords
signal
modulator
modulation
class
power amplifier
Prior art date
Application number
TW94120407A
Other languages
Chinese (zh)
Other versions
TW200701547A (en
Inventor
Tzyy-Sheng Horng
Yu-An Chen
Je-Kuan Jau
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW94120407A priority Critical patent/TWI249874B/en
Application granted granted Critical
Publication of TWI249874B publication Critical patent/TWI249874B/en
Priority to US11/455,046 priority patent/US20070018718A1/en
Publication of TW200701547A publication Critical patent/TW200701547A/en

Links

Abstract

The microwave transmitter of the present invention can perform two-terminal dynamic modulation with respect to the voltage supply terminal and the RF input terminal of a RF power amplifier. The microwave transmitter of the present invention comprises a first modulator and a second modulator. The first modulator uses the baseband digital delta-sigma modulation technique to process the envelope signal and outputs this signal to the voltage supply terminal of the RF power amplifier as a supply voltage. The second modulator uses the baseband digital pre-distortion technique to process the IQ-modulated carrier and outputs this signal to the RF input terminal of the RF power amplifier as a RF input signal. Thereby, the RF power amplifier can highly efficiently reconstruct the power-amplified RF modulated carrier without distortion at the RF output terminal. In addition, the baseband digital processing techniques used in the two modulators make the microwave transmitter of the present invention suitable for multi-mode operation.

Description

1249874 4寸H仁/、適&放大低頻之波包訊號i〇3。由於EER發射 機所用之切換式射頻功率放大器1〇6及s類言周制器、105 具有高效率之特性,能有效降低直流功率之消耗,所以相 當適合應用在各種無線通訊手持設備上。 然而,錢前技術’ EER發射機❹類比技術分 ufU虎103與相位調制載波1〇4,最 =二載:皮,其調制準確度不如傳統微波發^ 105 VI ^ 〇 ^ 1〇3 S ^ 墓於访士 ^思/ S MS後’其高頻成份會部分遭到濾除, ===號在具有高頻成分的低電壓區會有失 會使得輸出端之射頻調 = 波107失真的^會。 隹度卫^曰加輸出端射頻調制載 號提出-種^^^ =確^第美四國^專利第6377784 以基頻數位技術實現直角座標至。此-架構是 輸^之1Q訊號精確地轉換成為相對他,能讓 訊號’波包訊號在做數位類比轉換播 波包訊號與相位 術以用來隨波包變動幅 ⑽文=入線性電塵調制器 =電屢。另外,相位訊號=;:力率放大器· 頻率產生器403產生相位調制 五、有相位調制功能的 器404之射頻輸入端。相較於εε 迗入射頻功率放大 制架構採用基頻數位技術精確分離二^機架構’極座標調 所產生之射頻調制载波 與相位,在輸出端 &侍較向的調制準確度。但 1249874 所使用的線性電壓調制器4 有高效率的特性,所以苴 亚不如S類調制器105般具 除此之外,若遇到星機效率通常不及EER發射機。 等之調制訊號,在訊號向、旦I父越特性如QPSK或QAM 度急劇的變化,此時具里九跡通過零點時,相位會有180 頻寬通常不足以產生二率產生器403其 故極座標調制架構目 心劇交化的相位調制載波, 通訊系統上,譬如功適用於無零交越特性的多模 仍無法適用於使用具有兩六共2*5GMEDGE雙模發射機,但 統發射機中,嬖如2Γ 又越特性調制訊號之無線通訊系 在EER發射機架13G-CDMA雙模發射機。 之電壓供應端遇到較女6^/切換式射頻功率放大器106 入端需要輸人較大的相位==1(33電壓時,其射頻輸 能切換在飽和區與截卜F °°制載波ι〇4功率,好讓電晶體 操作於高效率模^。二”換式射頻功率放大器106 號1CB電壓時,輪电壓供應端遇到較小的波包訊 造成切換式射頻位,載波綱功率反而 也會導致射頻輸人端°。 增显與效率皆降低,同時 專利第ό256482號」綠料二1〇7的口口貝。所以,美國發明 度動態調整射頻!; J,EER發射機架構提出視波包幅 效改善脈發射 相/調制載波功率的方法,可以有 構欠缺調制準確声的作效率/但在上述有關咖架 八勺問上,則沒有提供解決的辦法。 【發明内容】 在妗:5盥波發射機所使用的射頻功率放大器t要 7又Η之間做取捨,而採用EER發射機架構的優 8 1249874 點即可同時兼顧高線性度與高效率,但其主要的缺點包括 調制準確度不足、脈衝寬度調制器處理波包訊號容易失 真、固定載波輸入功率會導致動態操作效率下降以及載波 洩漏等問題,然而目前所提出的改善方法都無法完全克服 這些缺點。 因此本發明提供一種創新微波發射機架構,係大幅度 導入基頻數位處理技術,不但可提高訊號調制精確度並且 更谷易適應各種無線通訊系統調制規格而達到多模傳輪之 功能。 、、|1249874 4 inch H Ren /, suitable & amplification of low frequency wave packet signal i〇3. Since the switching RF power amplifiers 1〇6 and s-type peripherals and 105 used in EER transmitters have high efficiency and can effectively reduce DC power consumption, they are suitable for use in various wireless communication handheld devices. However, the pre-money technology 'EER transmitter ❹ analog technology ufU tiger 103 and phase modulation carrier 1 〇 4, most = two load: skin, its modulation accuracy is not as good as the traditional microwave hair ^ 105 VI ^ 〇 ^ 1 〇 3 S ^ After the visit to the visitor ^S / S MS 'the high-frequency components will be partially filtered out, the === number will be lost in the low-voltage region with high-frequency components, making the RF modulation at the output = wave 107 distortion ^ will.隹度卫^曰 plus output RF modulation carrier proposed - kind ^^^ = indeed ^ the fourth country ^ patent section 6377784 to achieve the right angle coordinates to the fundamental frequency digital technology to. This-architecture is a 1Q signal that is accurately converted to be relative to him. It can make the signal 'wave packet signal do digital analog conversion broadcast packet signal and phase technique to change the amplitude with the wave packet (10) text = into the linear electric dust Modulator = electric multiple. In addition, the phase signal =;: the power amplifier / frequency generator 403 generates phase modulation. 5. The RF input terminal of the phase modulation function 404. Compared with εε, the RF power amplification architecture uses the fundamental frequency digital technology to accurately separate the RF modulated carrier and phase generated by the two-plane architecture, and the modulation accuracy at the output end. However, the linear voltage modulator 4 used in 1249874 has high efficiency characteristics, so it is not as good as the S-type modulator 105. In addition, the efficiency of the star machine is usually inferior to that of the EER transmitter. The modulation signal, etc., changes sharply in the signal direction, and the characteristics of the parent, such as QPSK or QAM. At this time, when the nine traces pass through the zero point, the phase has 180 bandwidth, which is usually insufficient to generate the second rate generator 403. The polar modulation modulation architecture is designed to be a phase-modulated carrier. On the communication system, multi-mode for zero-crossover characteristics is still not applicable to the use of two-to-two 2*5GMEDGE dual-mode transmitters, but the transmitter In the case of, for example, 2Γ, the wireless communication of the characteristic modulation signal is in the EER transmitting frame 13G-CDMA dual-mode transmitter. The voltage supply terminal encounters a female 6^/switched RF power amplifier 106. The input terminal needs to input a large phase ==1 (33 voltage, its RF energy can be switched in the saturation region and the truncated F °° carrier. 〇4 power, so that the transistor can operate in high-efficiency mode. When the two-way RF power amplifier 106#1BB voltage, the wheel voltage supply terminal encounters a small wave packet to cause the switching RF bit, carrier power On the contrary, it will also lead to the RF input terminal. The increase and efficiency are reduced. At the same time, the patent No. 256482 "Green material 2〇7" is the mouth of the mouth. Therefore, the US invention dynamically adjusts the RF!; J, EER transmitter architecture The method of improving the pulse transmitting phase/modulating carrier power by the visual wave packet amplitude effect can have the efficiency of constructing the lack of accurate modulation sound. However, in the above-mentioned eight-spoon question about the coffee rack, no solution is provided. In the 妗: 5 盥 wave transmitter used in the RF power amplifier t to make a trade-off between the choice, while the EER transmitter architecture of the excellent 8 1249874 point can take into account both high linearity and high efficiency, but its main Disadvantages include accurate modulation Insufficient, pulse width modulator processing wave packet signal is easy to be distorted, fixed carrier input power may cause dynamic operation efficiency degradation and carrier leakage, etc. However, the proposed improvement method cannot completely overcome these disadvantages. Therefore, the present invention provides an innovative microwave. The transmitter architecture is a large-scale introduction of the fundamental frequency digital processing technology, which not only improves the signal modulation accuracy, but also adapts to the modulation specifications of various wireless communication systems to achieve the function of multi-mode transmission.

本發明之目的在提供一種微波發射機架構,改進習知 EER發射機架構,利用大幅度導入基頻數位處理技術,以 提升客製化積體電路設計的程度。 本發明之目的在提供一種微波發射機架構,改進習知 EER發射機架構,利用基頻數位差異積分調制技術提升波 包訊號的準確度與放大效率,利用預先失真之調制載波 使其具有變動波包特性,而能彈性調整載波輸入功率,藉 以改善動態操作效率以及載波洩漏等問題。 曰 為達到上述目的,本發明微波發射機對射頻功率放大 器的供應電壓端與射頻輸入端施予雙端動態調制,調制方 式可包含波包調制、相位調制與IQ調制,其中供應電屙端 的調制訊號可為波包訊號,預先失真波包訊號或二二包 成份之調制訊號;射頻輸入端的調制訊號可為IQ調制^ 波、預先失真IQ調制載波、相位調制載波、預先失真相位 調制載波、或含有波包成分之相位調制載波。 本發明微波發射機之波包訊號由基頻數位處理器直 產生,處理波包訊號所需之脈衝寬度調制器則改以數 兴積分调制益取代,差異積分調制器不需要三角波汛號 1249874 源,易於整合至基頻數位電路中。 此外’本發明微波發射機·對於射頻功率放大器射頻輪 入端所輸入固定波包=度之相位調制載波則改以預先ϋ 之IQ調制載波取代,讓其固具有變動波包特性而能彈性货 整載波輸入功率,藉以改善動態操作效率以及 犛 問題,但此IQ調制載波由於經過預先失真處理,者鱼勺 訊號相結合後’在射頻功率放大器輸出端 二力率$ 大後之射頻調制載波不會因而產生任何失直現象力羊放 〃根=發明所實現之微波發射機或依本發明教 方匕之播線L讯手持設備,以基 Λ 射機架構之缺點,不同於傳;改進現有EER發 性度互為取捨關在1傳統仏皮發射機之高效率與高線 性’本發明並有兼顧高線性度與高效率之特 操作效率,而 乂強化其輸出射頻調制載波品質盥動能 建到多模傳易適應各種無線通訊系統調制“ 實 施方式】 予以 虽隹然} 明:有本發明較佳實施例之所附圖式 4改在本文中6在此描述之前應瞭解熟悉本行之人士可 此,須瞭解^if之發明’同時獲致本發明之功效。因 /乏之揭示,来桮述對熟悉本行技藝之人士而言為一廣 構。本發明心可=本發日狀結構於不同微波發射機i 士首先4ΐ=不僅限於以下所述之較佳實施例。 7圖。在本d:顯示本發明多模微波發射機架構之 ,處埋略徑:】的車父佳實施例中,發射機架構共有兩路 先失真IQ調制=;路徑為波包訊號處理,另-路徑為預 孔就處理,該兩路徑同時對射頻功率放大哭 1249874 白勺4共應電>1端與射頻輸入端施予雙端動態調制。在波包訊 號;處理路徑上,本發明發射機架構包含:波包產生器5〇1、 差異積分調制器502、切換式放大器503以及低通濾波器 504 ’本發明將輸入之IQ訊號經過波包產生器501產生相 對應之波包訊號,基頻波包訊號可以下列數學式表示:SUMMARY OF THE INVENTION The object of the present invention is to provide a microwave transmitter architecture that improves the conventional EER transmitter architecture and utilizes a substantial introduction of baseband digital processing techniques to enhance the degree of custom integrated circuit design. The object of the present invention is to provide a microwave transmitter architecture, which improves the conventional EER transmitter architecture, and utilizes a fundamental frequency differential integrated modulation technique to improve the accuracy and amplification efficiency of a wave packet signal, and uses a predistorted modulated carrier to have a varying wave. The packet characteristics, and the carrier input power can be flexibly adjusted to improve dynamic operation efficiency and carrier leakage. In order to achieve the above object, the microwave transmitter of the present invention applies double-end dynamic modulation to the supply voltage terminal and the RF input end of the RF power amplifier, and the modulation method may include wave packet modulation, phase modulation and IQ modulation, wherein the modulation of the supply terminal is provided. The signal may be a wave packet signal, a predistortion wave packet signal or a modulated signal of a 22-pack component; the modulation signal at the RF input may be an IQ modulation wave, a pre-distorted IQ modulation carrier, a phase modulation carrier, a pre-distorted phase modulation carrier, or A phase modulated carrier containing a wave packet component. The wave packet signal of the microwave transmitter of the invention is directly generated by the baseband digital processor, and the pulse width modulator required for processing the wave packet signal is replaced by the digital integral modulation, and the differential integral modulator does not need the triangular wave number 1248874 source. Easy to integrate into the baseband digital circuit. In addition, the microwave transmitter of the present invention is replaced with a pre-modulated IQ modulation carrier for the phase modulation carrier of the fixed wave packet input degree of the RF power amplifier RF input terminal, so that it has a variable wave packet characteristic and can be elasticized. The entire carrier input power is used to improve the dynamic operation efficiency and the 牦 problem. However, the IQ modulation carrier is combined with the fish-to-bee signal after the pre-distortion processing, and the RF-modulated carrier at the output of the RF power amplifier is not large. Therefore, any loss of straightness will occur. The microwave transmitter of the invention or the broadcaster L-channel handheld device according to the teachings of the present invention has different shortcomings based on the structure of the transmitter, and is different from the existing one; The EER performance is mutually exclusive. The high efficiency and high linearity of the traditional suede transmitter are combined with the high operational efficiency of high linearity and high efficiency, and the output of the RF modulation carrier quality is enhanced. It is easy to adapt to various wireless communication system modulations by multi-mode transmission. [Embodiment] Although it is clear, there is a modification of the preferred embodiment of the present invention. 6 Before this description, it should be understood that those who are familiar with the Bank can understand the invention of ^if' and at the same time obtain the effect of the invention. Because of the lack of disclosure, the cup is for those who are familiar with the skill of the Bank. The present invention can be used in the present invention. The present invention can be used in different microwave transmitters. First, it is not limited to the preferred embodiment described below. Figure 7 shows the multimode microwave transmitter of the present invention. In the embodiment of the vehicle, the transmitter structure has two channels of first-distortion IQ modulation=; the path is wave packet signal processing, and the other path is pre-hole processing, and the two paths are simultaneously RF power amplification cry 1249874 4 co-electricity 1 end and RF input end double-ended dynamic modulation. In the wave packet signal; processing path, the transmitter architecture of the present invention includes: wave packet generator 5 〇 1, The differential integration modulator 502, the switching amplifier 503, and the low-pass filter 504' of the invention generate the corresponding IQ signal through the wave packet generator 501 to generate a corresponding wave packet signal, and the fundamental frequency wave packet signal can be expressed in the following mathematical formula:

E = yJJ2E = yJJ2

上式(1)中所得的五即為極座標中的振幅大小,亦代表 輸入IQ訊號相對應之波包訊號,其中平方與開平方根之運 算不容易以數位電路直接實現,可參考Ray Andraka在1998 年 2 月 22-24 日於 jPjPGA ’9S. P/oc以叩5· 〇/ i/ze 7998 ACM/SIGDA sixth international symposium on Field programmable gate arrays 的第 191-200 頁所揭露的 CORDIC演算法,係以疊代法逐次逼近所要求得之波包大 小,所得到之數位波包訊號再通過一差異積分調制器5〇2 轉換為二階式汛號,差異積分調制器5〇2之架構可參考第 j圖所不,而差異積分調制器可為類比式差異積分調制 為、類比式脈衝覓度調制器、類比式多級或多階差異積分 調制器、數位式差異積分翻H、數位式脈衝寬度調制器、 數位式多級或多階差異積分調制器。 、該第六圖^所示為-階差異積分調制,輸入訊號乂經 過積分後,由置化器之判斷為超過量化準位則輸出,工,,反 之則為’G’,並將輸出結果負回授至輸人端,此即差分之動 作’其轉移函數可表示如下式: ⑺ 11 7 = ^ + 1249874 在頻域上等同於將訊號能量推往高頻之動作,所得輸出端 之訊號γ為二階式之脈波訊號,可應用於高效率之切換式 放大器503將訊號放大,待其經過低通濾波器504將已被 推往高頻之量化雜訊濾除後,即可獲得為放大後之輸入波 包波形。此一放大波包訊號輸入至射頻功率放大器5〇8之 供應電壓端,使得射頻功率放大器508輸出載波被來自供 應電壓端之變動波包訊號施予振幅調制。The five obtained in the above formula (1) is the amplitude of the polar coordinates, and also represents the wave packet signal corresponding to the input IQ signal. The operation of the square root and the square root cannot be directly realized by the digital circuit. Refer to Ray Andraka in 1998. The CORDIC algorithm disclosed on pages 191-200 of jPjPGA '9S. P/oc 叩5· 7/i/ze 7998 ACM/SIGDA international symposium on Field programmable gate arrays The size of the wave packet required by the iterative method is successively approximated, and the obtained digital wave packet signal is converted into a second-order nickname by a differential integral modulator 5〇2, and the structure of the differential integral modulator 5〇2 can be referred to j is not, and the differential integral modulator can be analog-like differential integral modulation, analog pulse-modulus modulator, analog multi-stage or multi-order differential-integral modulator, digital difference integral flip H, digital pulse width Modulator, digital multi-stage or multi-order differential integration modulator. The sixth figure ^ shows the -order difference integral modulation. After the input signal is integrated, the output is judged to be beyond the quantization level by the setter, and the output is "G", and the result is output. Negative feedback to the input end, this is the action of the difference 'the transfer function can be expressed as follows: (7) 11 7 = ^ + 1249874 is equivalent to the action of pushing the signal energy to the high frequency in the frequency domain, the signal of the output end γ is a second-order pulse wave signal, which can be applied to the high-efficiency switching amplifier 503 to amplify the signal, and after being filtered by the low-pass filter 504 to the high-frequency quantization noise, it can be obtained as The amplified wave packet waveform after amplification. The amplified wave packet signal is input to the supply voltage terminal of the RF power amplifier 5〇8 such that the RF power amplifier 508 output carrier is amplitude modulated by the varying wave packet signal from the supply voltage terminal.

在預先失真IQ調制訊號處理路徑上,本發明發射機架 ,包含:預先失真器505、數位-類比轉換器506以及IQ 調制器507,本發明將輸入之1(^訊號經過數位預先失真器 50=並經由數位-類比轉換器5〇6將預先失真後的扣訊號 ,、欠為相對應之類比訊號,再藉由JQ調制器5〇7產生 〔周制後之載波作為射頻功率放大器508的射頻輸入端訊 =’、此舉是讓輸入之載波因具有變動波包特性而能彈性調 整f波輸入功率,藉以改善動態操作效率以及載波洩漏等 問^1,但此IQ調制载波由於經過預先失真處理,當與波包 =號相結合後,在射頻功率放大器508輸出端重建所得功 卞放大後之射頻调制載波不會因而產生任何失真現象。在 月的不同貫施例中,輸入之1Q訊號亦可先經過預先失 :505 ’其輸出訊號再分別輸入波包產生器501與數位-類比轉換器506。 叙在本發明多模微波發射機架構中,預先失真器505利 位技術來補償發射機輸入與輸出訊號間之非線性關 急、,而主要原因來自於射頻功率放大器5〇8的非線性現 D麵而射頻功率放大器508可為A類、B類、AB類、C類、 ★ /類或F類等放大器電路。預先失真器505的電路 月匕匕s改雙IQ基頻訊號、波包訊號、相位訊號或射頻載 12 1249874 波f幅’用以補償發射機電路所含元件之非線性現象,藉 ^ 4求改吾輸丨端射頻調制載波之_準確度與線性度參 数0In the pre-distorted IQ modulation signal processing path, the transmitting frame of the present invention comprises: a predistorter 505, a digital-to-analog converter 506, and an IQ modulator 507. The present invention inputs an input 1 (the signal passes through the digital predistorter 50). And through the digital-to-analog converter 5〇6, the pre-distorted deduction signal is owed to the corresponding analog signal, and then generated by the JQ modulator 5〇7 [the carrier after the system is used as the radio frequency power amplifier 508 RF input terminal = ', this is to make the input carrier can flexibly adjust the f-wave input power due to the characteristics of the variable wave packet, so as to improve the dynamic operation efficiency and carrier leakage, etc., but the IQ modulation carrier is advanced. Distortion processing, when combined with the wave packet = number, the RF modulated carrier amplified by the power amplifier at the output of the RF power amplifier 508 will not cause any distortion phenomenon. In the different examples of the month, the input 1Q The signal may also be pre-missed: 505 'the output signal is input to the wave packet generator 501 and the digital-to-analog converter 506 respectively. In the multimode microwave transmitter architecture of the present invention, The first distorter 505 is used to compensate for the nonlinearity between the input and output signals of the transmitter, and the main reason comes from the nonlinear D-plane of the RF power amplifier 5〇8 and the RF power amplifier 508 can be Class A, Class B, Class AB, Class C, ★ / Class or Class F amplifier circuits. The circuit of the predistorter 505 is changed to double IQ base frequency signal, wave packet signal, phase signal or RF carrier 12 1249874 wave amplitude 'To compensate for the nonlinear phenomenon of the components contained in the transmitter circuit, to improve the accuracy and linearity parameter of the RF modulation carrier.

第,。圖頭示本發明發射機操作概念之示意圖,發射機 ,别出汛唬振幅對波包振幅變化特性如特性7〇1所示,在 =包振幅時會因輸入端射頻載波訊號線輸出端,而 别出訊號振幅有_固定下限,而在高波包振幅時則與輸 號振巾*呈現線性_。關先失真if能使發射機之輸 Λ號振巾田對預先失真後抑調制訊號產生如特性观之關 ’一、二在低輸出訊號振幅時呈現線性關係、,在高輸出訊號振 ,則促成其飽和而有一时上限。特性702與703剛好 =現出乘法形式之相互補償關係,故當兩路徑訊號會合於 ^員功率放大ϋ 5G8時,可得到輸出訊號振幅對輸入訊號 振幅之完美線性關係,如特性7〇3所示。First, The figure shows a schematic diagram of the operation concept of the transmitter of the present invention. The transmitter, the amplitude of the amplitude of the wave packet is as shown in the characteristic 7〇1, and the output of the RF carrier signal line is input at the amplitude of the packet. The amplitude of the output signal has a _ fixed lower limit, and in the case of a high wave packet amplitude, it is linear with the input horn*. The first distortion can enable the transmitter's transmission nickname vibrating field to produce a characteristic relationship between the pre-distortion and post-modulation signals. One or two exhibit a linear relationship at low output signal amplitude, and at high output signal oscillation, Contributes to its saturation and has a time limit. The characteristics 702 and 703 are just = the mutual compensation relationship of the multiplication mode, so when the two path signals are combined with the power amplification ϋ 5G8, the perfect linear relationship between the amplitude of the output signal and the amplitude of the input signal can be obtained, such as the characteristic 7〇3 Show.

本發明實施例在硬體實現的好處包括所採用波包產生 的501、差異積分調制器5〇2及預先失真器5〇5是以基頻 數位處理方式加以貫現,高效率之切換式放大器⑽3及低 通濾波器504可利用基頻類比訊號處理技術予以實現,而 數位-類比轉換器506則是利用基頻混合訊號處理技術,以 上所有電路可統稱為提升多模操作效率基頻處理器5〇9。 由於現有基頻訊號處理晶片設計其功能可以相當強大,容 易滿足各種操線通訊糸統調制規格,故因此本發明技術適 合應用在多模無線系統。如果將提升多模操作效率基頻處 理器509之功能給禁能(disable),則剩下之IQ調制器5〇7 及射頻功率放大器508,則合組成低效率但具有高線性度 之傳統IQ調制微波發射機架構510,如果將提升多模操$ 效率基頻處理器509之功能給致能(enable),則改良成為兼 13 1249874 具高效率與高線性度之多模微波 波發射機架構可視為本實施例謂= 發機晶ϋ _,進-步朗^議之兩種讀手持設備收 μΪΪ考第顯示實現本發明發射機的轉手持設 日日片之-種方塊圖。根據本發明的教示統 線手持設純發機3巾所制低效率發射機 3廣、The benefits realized by the hardware in the embodiment of the present invention include the 501 generated by the wave packet, the differential integral modulator 5〇2 and the predistorter 5〇5 are realized by the fundamental frequency digital processing method, and the high efficiency switching amplifier is realized. The (10)3 and low-pass filter 504 can be implemented by using a fundamental frequency analog signal processing technique, and the digital-to-analog converter 506 is a fundamental frequency mixed signal processing technique. All of the above circuits can be collectively referred to as an improved multi-mode operation efficiency baseband processor. 5〇9. Since the existing baseband signal processing chip design can be quite powerful and can easily meet various operating communication modulation specifications, the present invention is suitable for use in a multimode wireless system. If the function of the multi-mode operation efficiency baseband processor 509 is disabled, the remaining IQ modulator 5〇7 and the RF power amplifier 508 are combined to form an inefficient but high linearity conventional IQ. Modulating the microwave transmitter architecture 510, if the function of the multi-mode multi-function processor 509 is enabled, it is improved to become a 131249874 multi-mode microwave transmitter architecture with high efficiency and high linearity. It can be regarded as the embodiment of the present invention. The two types of reading handheld devices are shown in the figure, and the two types of reading and receiving devices of the present invention are shown. According to the teachings of the present invention, the low-efficiency transmitter made by the pure hair machine 3 towel is hand-held.

路加以擴充而成為本發明高效率發射機架構。益線 寺设備收發機晶片包括基頻處理器 與射頻功率放大器8G3三部份,射 理-802 端連接天線8G4將訊號發射出去/基於 設計的整合功能,只要將本發明提❹模操作= 頻處理器8〇1中即可大幅提升無: 乎持6又備之發射機效率,並且同時適合多模操作。 請參考第九圖,顯示實現本發明發射機的 備收發機晶片之另—種方塊圖。在不改變傳統無 備收發機晶片902架構下,根據本發明的教示可將提升多 模操作效率基頻處理器5〇9單獨開發成為提升多模操 率基頻處理器晶片901。如第九圖所示,該晶片9〇1可搭 配無線手持設備收發機晶片902運作,俾使無線手持嗖^ 之發射機效率一樣具有在多模操作下可以大幅提升二 點。 根據第五圖所示實施例在硬體實作上,本發明已完成 一 1.9GHZPCS頻段應用於CDMA2000 1X系統,而且=有 功率控制功能之高效率微波發射機,其中基頻數位技術是 以FPGA實現之,其他混合訊號及類比電路是以現有的冗 產品實現之。在發射機整合測試上,以FPGA產生一資料 14 1249874 率為1.2288 M symbols/s之QPSK調制訊號作為基頻輸入 訊號。另外,放大波包訊號之切換式放大器5〇3其直流供 應電壓設定值與發射機輸出功率大小有關,因為越大的輸 出功率需要越大的波包幅度,所以也需要越大的直流供應 電壓值。 第十圖顯示當該直流供應電壓值設定在3.3 V時,適 合發射功率從13 dBm至22 dBm控制範圍情況下之測試結 果。測試參數包括衡量調制準確度所用之錯誤向量幅度 (EVM),衡量線性度所用之鄰近通道功率比例(ACpR),以 • 及衡量發射機效率所用之直流功率轉換成射頻功率之轉換 效率(ConvEff)。第十圖中EVM值約為5.8%,ACPR值約 為48 dBc,皆滿足CDMA2000 lx系統之規範要求,若能 持續調整預先失真器505,則可讓EVM與ACPR值繼續改 善。在所指定的功率控制範圍内ConvEff值接近48%,換 算成功率增加效率(PAE)約45%,表現上皆遠優於現有產品 的發射機效率。 "" 此外,從第十圖中可發現本發明發射機重要的特徵: 即EVM值、ACPR值與ConvEff值幾乎與輸出功率無關, " 而對傳統微波發射機架構這些電性參數卻會與輸出功率呈 現緊密的相關性,而且是EVM值與ACPR值相對於效率 (ConvEff或PAE)是互為取捨關係。故本發明微波發射機的 優點在面對不同操作模態而要求不同輸出功率時,皆能保 持固定的電性參數品質。 % ” 在詳細說明本發明的較佳實施例之後,熟悉該項技術 人士可清楚的暸解,在不脫離下述申請專利範圍與精神下 可進行各種變化與改變,而本發明亦不受限於說明書之 舉實施例的實施方式。 胃 15 1249874 【圖式簡單說明】 第一圖為一波包消除重建(EER)發射機架構之方塊圖。 第二圖為第一圖所示S類調制器架構之方塊圖。 第三圖為經S類調制器並放大後波包訊號之時序圖。 第四圖為習知極座標調制架構之方塊圖。 第五圖為本發明發射機架構之方塊圖。 第六圖為本發明處理波包訊號所需之差異積分調制器 之架構圖。 第七圖為本發明發射機操作概念之示意圖。 第八圖為根據本發明的教示所實施的無線手持設備收 發機晶片之一種方塊圖。 第九圖為根據本發明的教示所實施的無線手持設備收 發機晶片之另一種方塊圖。 第十圖為根據本發明的教示所實施的硬體實作完成對 錯誤向量幅度(EVM)、鄰近通道功率比例(ACPR)以及直流 功率轉換成射頻功率之轉換效率(ConvEff)之測試圖。 【主要元件符號說明】 101…波包偵測器 • 102…限制器 103…波包訊號 104…相位調制載波 105…S類調制器 106…切換式射頻功率放大器 107…射頻調制載波 201…脈衝寬度調制器 202…切換式放大器 203…低通濾波器 16 1249874 401···直角座標至極座標轉換器 402···線性電壓調制器 403···頻率產生器 404···射頻功率放大器 501···波包產生器 502···差異積分調制器 503···切換式放大器 504···低通濾波器 505···預先失真器 506···數位-類比轉換器 507 — IQ調制器 508···射頻功率放大器 509···基頻處理器 510-IQ調制微波發射機架構 701…輸出訊號振幅對波包振幅之特性 702···輸出訊號振幅對預先失真後IQ調制訊號振幅之特 703···輸出訊號振幅對輸入訊號振幅之線性特性 801···基頻處理器 802···射頻處理器 803···射頻功率放大器 804…天線 901···提升多模操作效率基頻處理器晶片 902···手持設備收發機晶片 17 1249874 五、中文發明摘要: 本發明微波發射機對射頻功率放大器的供應電壓端與 射頻輸入端施予雙端動態調制,該微波發射機包含第一調 制器與第二調制器,其中該第一調制器輸出訊號至射頻功 率放大器的供應電壓端,利用基頻數位差異積分調制技術 處理波包δίΐ5虎作為供應電壓,而該弟二調制器輸出訊號至 射頻功率放大器的射頻輸入端,以基頻數位預先失真技術 處理IQ調制載波作為射頻輸入訊號,俾使射頻功率放大器 在射頻輸出端能高效率重建功率放大後之射頻調制載波並 且不會產生失真現象,此外,兩個調制器所採用的基頻數 位處理技術可讓本發明微波發射機適合多模操作。 • 六、英文發明摘要:The road is expanded to form a high efficiency transmitter architecture of the present invention. The Yishangsi equipment transceiver chip consists of a baseband processor and RF power amplifier 8G3, and the 802-terminal antenna 8G4 transmits the signal/design-based integration function, as long as the invention is operated. The frequency processor 8〇1 can be greatly improved without: It is suitable for multi-mode operation. Referring to the ninth figure, there is shown another block diagram of a transceiver chip implementing the transmitter of the present invention. The enhanced multi-mode operation efficiency baseband processor 5〇9 can be separately developed to enhance the multi-mode operation baseband processor chip 901 in accordance with the teachings of the present invention without changing the conventional legacy transceiver chip 902 architecture. As shown in the ninth figure, the chip 910 can be operated with the wireless handset transceiver chip 902, so that the transmitter of the wireless handset can be as efficient as multi-mode operation. According to the embodiment shown in FIG. 5, in the hardware implementation, the present invention has completed a 1.9GHZPCS frequency band applied to the CDMA2000 1X system, and = a high efficiency microwave transmitter with power control function, wherein the fundamental frequency digital technology is an FPGA. In effect, other mixed-signal and analog circuits are implemented with existing redundant products. In the transmitter integration test, the FPGA generates a QPSK modulated signal with a data rate of 12,288,874 symbols of 1.2288 M symbols/s as the base frequency input signal. In addition, the switching amplifier of the amplified wave packet signal 5〇3 has a DC supply voltage setting value related to the output power of the transmitter, because a larger output power requires a larger wave packet amplitude, so a larger DC supply voltage is also required. value. The tenth graph shows the test results for a case where the DC supply voltage is set at 3.3 V, suitable for a transmission range from 13 dBm to 22 dBm. The test parameters include the error vector magnitude (EVM) used to measure the accuracy of the modulation, the adjacent channel power ratio (ACpR) used to measure the linearity, and the conversion efficiency of the DC power used to measure the transmitter's efficiency to RF power (ConvEff). . In the tenth figure, the EVM value is about 5.8% and the ACPR value is about 48 dBc, which meets the specifications of the CDMA2000 lx system. If the predistorter 505 is continuously adjusted, the EVM and ACPR values can be improved. The ConvEff value is close to 48% in the specified power control range, and the conversion success rate increase efficiency (PAE) is about 45%, which is far superior to the transmitter efficiency of existing products. "" In addition, the important features of the transmitter of the present invention can be found from the tenth figure: that is, the EVM value, the ACPR value and the ConvEff value are almost independent of the output power, and the electrical parameters of the conventional microwave transmitter architecture are It will have a close correlation with the output power, and the EVM value and the ACPR value are mutually trade-offs with respect to efficiency (ConvEff or PAE). Therefore, the advantages of the microwave transmitter of the present invention are capable of maintaining a fixed electrical parameter quality when different output powers are required in response to different operating modes. Various changes and modifications can be made without departing from the scope and spirit of the invention, and the present invention is not limited by the following description of the preferred embodiments of the invention. Embodiments of the embodiments of the specification. Stomach 15 1249874 [Simplified illustration] The first figure is a block diagram of a wave packet elimination reconstruction (EER) transmitter architecture. The second figure is a S-type modulator shown in the first figure. The block diagram of the architecture. The third diagram is the timing diagram of the wave packet signal after the S-type modulator is amplified. The fourth figure is the block diagram of the conventional polar modulation architecture. The fifth diagram is a block diagram of the transmitter architecture of the present invention. Figure 6 is a block diagram of the differential integration modulator required to process the wave packet signal of the present invention. The seventh figure is a schematic diagram of the transmitter operation concept of the present invention. The eighth figure is a wireless handheld device transceiver implemented according to the teachings of the present invention. A block diagram of a machine chip. The ninth is another block diagram of a wireless handset transceiver chip implemented in accordance with the teachings of the present invention. The tenth diagram is a teaching station in accordance with the present invention. The hardware implementation of the implementation of the error vector magnitude (EVM), adjacent channel power ratio (ACPR) and conversion of DC power into RF power conversion efficiency (ConvEff) test chart. [Main component symbol description] 101... wave packet detection Detector • 102...limiter 103...wave packet signal 104...phase modulation carrier 105...S class modulator 106...switched RF power amplifier 107...radio frequency modulation carrier 201...pulse width modulator 202...switching amplifier 203...low pass Filter 16 1249874 401···Corner coordinate to polar coordinate converter 402···linear voltage modulator 403···frequency generator 404···RF power amplifier 501···wave packet generator 502···difference integral Modulator 503···Switching amplifier 504··· Low-pass filter 505···Predistorter 506···Digital-to-analog converter 507 — IQ modulator 508···RF power amplifier 509··· Frequency processor 510-IQ modulation microwave transmitter architecture 701... Output signal amplitude vs. wave packet amplitude characteristic 702··· Output signal amplitude to pre-distorted IQ modulation signal amplitude 703···Output Linear characteristic of amplitude versus input signal amplitude 801···Base frequency processor 802···RF processor 803···RF power amplifier 804... Antenna 901···Improve multi-mode operation efficiency Baseband processor chip 902·· Handheld device transceiver chip 17 1249874 V. Abstract: The microwave transmitter of the present invention applies double-end dynamic modulation to the supply voltage terminal and the RF input end of the RF power amplifier, and the microwave transmitter includes a first modulator and a second a modulator, wherein the first modulator outputs a signal to a supply voltage end of the RF power amplifier, and uses a fundamental frequency differential integration modulation technique to process the wave packet δίΐ5 as a supply voltage, and the second modulator outputs a signal to the RF power amplifier The RF input terminal processes the IQ modulation carrier as a radio frequency input signal by using a baseband digital pre-distortion technique, so that the RF power amplifier can efficiently reconstruct the power-amplified RF modulation carrier at the RF output end without distortion, and The fundamental frequency digital processing technology used by the modulators can make the microwave transmitter of the present invention suitable Multimode operation. • Six, English invention summary:

The microwave transmitter of the present invention can perform two-terminal dynamic modulation with respect to the voltage supply terminal and the RF input terminal of a RF power amplifier. The microwave transmitter of the present invention comprises a first modulator and a second modulator. The first modulator uses the baseband digital delta-sigma modulation technique to process the envelope signal and outputs this signal to the voltage supply terminal of the RF power amplifier as a supply voltage. The second modulator uses the baseband digital pre-distortion technique to process the IQ-modulated carrier and outputs this signal to the RF input terminal of the RF power amplifier as a RF input signal. Thereby, the RF power amplifier can highly efficiently reconstruct the power-amplified RF modulated carrier without distortion at the RF output terminal. In addition, the baseband digital processing techniques used in the two modulators make the microwave transmitter of the present invention suitable for multi-mode operation. 1249874 十、申請專利範圍: 1. 一種微波發射機,包含: 一射頻功率放大器,具有一供應電壓端與一射頻輸 入端, 一第一調制器,耦接前述射頻功率放大器的供應電 壓端,前述第一調制器利用基頻數位差異積分調制技術 產生波包訊號提供至前述供應電壓端;以及 一第二調制器,耦接前述射頻功率放大器的射頻輸 入端,前述第二調制器以預先失真處理產生IQ調制載波 提供至前述射頻輸入端。 2. 如申請專利範圍第1項所述之微波發射機,其中前述第 一調制器包含:一差異積分調制器、一切換式放大器以 及一低通濾、波器。 3. 如申請專利範圍第2項所述之微波發射機,其中前述差 異積分調制器接收來自一波包產生器所產生的數位波 包訊號。 4. 如申請專利範圍第3項所述之微波發射機,其中前述波 包產生器可接收一 IQ訊號,或來自一預先失真器所產 生的輸出訊號,而該預先失真器接收一 IQ訊號。 5. 如申請專利範圍第1項所述之微波發射機,進一步包含: 一波包產生器,耦接第一調制器的輸入端,用以產生所 要調制訊號之相對應數位波包訊號。 6. 如申請專利範圍第5項所述之微波發射機,其中前述第 一調制器包含:一差異積分調制器,用以接收該數位波 包訊號並調制為二階式訊號。 7. 如申請專利範圍第6項所述之微波發射機,其中前述第 一調制器包含:一切換式放大器,用以放大該二階式訊 18 1249874 號,而放大的二階式訊號經過一低通濾波器可還原為放 大後之類比波包訊號,以調制前述射頻功率放大器之供 應電壓端。 8. 如申請專利範圍第6項所述之微波發射機,其中前述差 異積分調制器可為類比式差異積分調制器、類比式脈衝 寬度調制器、類比式多級或多階差異積分調制器、數位 式差異積分調制器、數位式脈衝寬度調制器、數位式多 級或多階差異積分調制器。 9. 如申請專利範圍第1項所述之微波發射機,其中前述第 • 二調制器包含··一預先失真器、一數位-類比轉換器以及 一 IQ調制器。 10. 如申請專利範圍第9項所述之微波發射機,其中前述預 先失真器的電路功能包含改變IQ基頻訊號、波包訊號、 ’ 相位訊號或射頻載波振幅,用以補償發射機電路所含元 件之非線性現象,藉以謀求改善輸出端射頻調制載波之 調制準確度與線性度參數。 11. 如申請專利範圍第1項所述之微波發射機,其中前述供 應電壓端接收一低頻之波包訊號。 ® 12.如申請專利範圍第1項所述之微波發射機,其中前述射 頻輸入端接收一具有變動波包之相位調制載波。 13. 如申請專利範圍第1項所述之微波發射機,其中前述射 頻功率放大器可為A類、B類、AB類、C類、D類、E 類或F類等放大器電路。 14. 一種射頻功率放大器的雙端調制方法,使用於一微波發 射機,包含以下步驟: 以基頻數位差異積分調制技術產生波包訊號調制前 述射頻功率放大器的供應電壓端;以及 19The microwave transmitter of the present invention can perform two-terminal dynamic modulation with respect to the voltage supply terminal and the RF input terminal of a RF power amplifier. The microwave transmitter of the present invention includes a first modulator and a second modulator. The second module uses the baseband digital pre-distortion technique to process the IQ- Modulated carrier and outputs this signal to the RF input terminal of the RF power amplifier as a RF input signal., RF power amplifier can highly efficiently reconstruct the power-amplified RF modulated carrier without distortion at the RF output terminal. In addition, The baseband digital processing techniques used in the two modulators make the microwave transmitter of the present inventi 1249874 X. Patent application scope: 1. A microwave transmitter comprising: a radio frequency power amplifier having a supply voltage terminal and a radio frequency input terminal, a first modulator coupled to the radio frequency a supply voltage terminal of the power amplifier, the first modulator uses a fundamental frequency differential integration modulation technique to generate a wave packet signal to be supplied to the supply voltage terminal; and a second modulator coupled to the RF input end of the RF power amplifier, The second modulator provides an IQ modulated carrier with pre-distortion processing to the aforementioned radio frequency input. 2. The microwave transmitter of claim 1, wherein the first modulator comprises: a differential integral modulator, a switched amplifier, and a low pass filter. 3. The microwave transmitter of claim 2, wherein the differential integration modulator receives a digital packet signal generated by a wave packet generator. 4. The microwave transmitter of claim 3, wherein the packet generator is capable of receiving an IQ signal or an output signal from a predistorter, and the predistorter receives an IQ signal. 5. The microwave transmitter of claim 1, further comprising: a wave packet generator coupled to the input of the first modulator for generating a corresponding digital wave packet signal of the desired modulated signal. 6. The microwave transmitter of claim 5, wherein the first modulator comprises: a differential integration modulator for receiving the digital packet signal and modulating it into a second order signal. 7. The microwave transmitter of claim 6, wherein the first modulator comprises: a switching amplifier for amplifying the second-order signal 18 1249874, and the amplified second-order signal passes through a low pass The filter can be restored to an amplified analog wave packet signal to modulate the supply voltage terminal of the aforementioned RF power amplifier. 8. The microwave transmitter according to claim 6, wherein the differential integrated modulator may be an analog differential integrated modulator, an analog pulse width modulator, an analog multi-stage or multi-order differential integral modulator, Digital differential integration modulator, digital pulse width modulator, digital multi-stage or multi-order differential integration modulator. 9. The microwave transmitter of claim 1, wherein the second modulator comprises a predistorter, a digital to analog converter, and an IQ modulator. 10. The microwave transmitter of claim 9, wherein the circuit function of the predistorter comprises changing an IQ fundamental signal, a wave packet signal, a 'phase signal or an RF carrier amplitude to compensate for a transmitter circuit. Including nonlinear phenomena of components, in order to improve the modulation accuracy and linearity parameters of the RF modulated carrier at the output. 11. The microwave transmitter of claim 1, wherein the supply voltage terminal receives a low frequency wave packet signal. The microwave transmitter of claim 1, wherein the RF input receives a phase modulated carrier having a varying wave packet. 13. The microwave transmitter of claim 1, wherein the RF power amplifier is an amplifier circuit of Class A, Class B, Class AB, Class C, Class D, Class E or Class F. 14. A dual-end modulation method for an RF power amplifier for use in a microwave transmitter, comprising the steps of: generating a wave packet signal modulation supply voltage terminal of the RF power amplifier by a fundamental frequency differential integration modulation technique; and

Claims (1)

1249874 以預先失真處理產生1Q調制载波調制前述射頻功率 放大器的射頻輸入端。 15 ·如申請專利範圍第14項所述之射頻功率放大器的雙端 調制方法,進一步包含:以數位差異積分調制器處理所 要調制訊號之相對應波包訊號。1249874 A 1Q modulated carrier is generated by predistortion processing to modulate the RF input of the aforementioned RF power amplifier. The double-end modulation method of the radio frequency power amplifier according to claim 14, further comprising: processing the corresponding wave packet signal of the desired modulated signal by the digital difference integral modulator. 16·如申請專利範圍第14項所述之射頻功率放大器的雙端 調制方法,進一步包含:以預先失真器配合數位-類=轉 換器以及IQ調制器產生具有相位與波包調制之驅動訊 銳’並提供該驅動訊號至前述射頻功率放大器的射頻輸 入端。 口口 17 種微波發射機,包含: :第一調制器,接收所要調制訊號之波包訊號並調 |為一^式訊號,以產生所要調制訊號之低頻波包訊號; 第一调制态,接收所要調制訊號,以預先失真處 產生具有變動波包特性之相位調制栽波;以及 二射頻功率放大器,接收所要調制訊號之低頻波包 \彳為忒射頻功率放大器的供應電壓,且接收具有變 2包特性之相位調制載波作為該射頻功率放大器的射 〜’以產生放大後之射頻調制訊號。 〜17項所述之微波發射機,其中前述第 19及==:器:差異積分調制器、-切換式⑽ 種ϊ寬产;制」益可為類比式差異積分調制器、類比式脈 二 =比式多級或多階差異積分調制器、數 多級或多^異。=調:式脈衝寬度調制器、數位式 20 1249874 20. 如申請專利範圍第17項所述之微波發射機,進一步包 含:一波包產生器,用以產生所要調制訊號之相對應數 位波包訊號,並提供該數位波包訊號至前述第一調制器。 21. 如申請專利範圍第17項所述之微波發射機,其中前述第 二調制器包含:一預先失真器、一數位-類比轉換器以及 一 IQ調制器。 22. 如申請專利範圍第21項所述之微波發射機,其中前述 預先失真器的電路功能包含改變IQ基頻訊號、波包訊 號、相位訊號或射頻載波振幅,用以補償發射機電路所 藝 含元件之非線性現象,藉以謀求改善輸出端射頻調制載 波之調制準確度與線性度參數。 . 23.如申請專利範圍第17項所述之微波發射機,其中前述射 頻功率放大器可為A類、B類、AB類、C類、D類、E ' 類或F類等放大器電路。 24. —種提升多模操作效率之基頻處理器,使用於一手持設 備之微波發射機,包含: 一波包產生器,用以產生所要調制訊號之相對應數 位波包訊號; ® —差異積分調制器,接收數位波包訊號並調制為二 階式訊號; 一切換式放大器,用以放大該二階式訊號; 一低通濾波器,接收放大的二階式訊號以還原放大 後之類比波包訊號;以及 一預先失真器,用以補償該微波發射機的輸入與輸 出訊號間之非線性關係,藉以改善調制準確度與線性度 參數。 25. 如申請專利範圍第24項所述之基頻處理器,其中前述差 21 Ϊ249874 寬=?器可為類比式差異積分調制器、類比式脈衝 式^制為、類比式多級或多階差異積分調制器 級或;:ί分調制器、數位式脈衝寬度調制器、數位式多 26如J自I異積分調制11。 式 先,圍第24項所述之基頻處理器,其中前述預 相的電路功能包含改變IQ基頻訊號、波頁 件之頻載波振幅,用以補償發射機電路所^元 求改善輸出端射頻調制栽= 凊專利範圍第24項所述之基頻 =申:眚專利範圍第24項所述之基頻處理器, 梦轆=_類比轉換11,用以將前述預先失真器的輪= 29f轉換為對應之類比訊號。 輪出訊 •如申請專利範圍第24項所述之基頻處理器,i 以現差異積分調制器及預先失真器以基‘:處皮 3〇·,申請專利範圍第24項所述之基頻處理器, 現式放大器及低通濾波器以基頻類比訊號處理$術$ :-=:2範圍第28項所述之基頻處理器,其中前述數 32 —硝比轉換器以基頻混合訊號處理技術實現。 種無線手持設備收發機晶片,包括一基頻處 包^處理器與-射頻功率放大器,其中前述基頻^理; —波包產生器,用以產生所要調制訊號之相對應數 22 1249874 位波包訊號; 階式訊號Γ和、刀调制為’接收數位波包訊號並調制為二 =3以:用以放大該二階式訊號; 後之類比波包訊號,且該階式訊號以還原放大 功率放大器;以及 &quot;頒比波包訊號提供給前述射頻 出訊號間之非線性關:以補^錢波發射機的輸入與輸 m32項料之無料狀狀發機晶 ,其中刖述基頻處理器的差異積 差異積分調制器、類比•衝可為類比式 式脈衝寬度調制器、數位式多、f为調制器、數位 34·如申諳β式級或多階差異積分調制器。 片,其中?所述之無線手持設備收發機晶 改變的預先失真器的電路功能包含 35. = 主載波之調制準確度Λ性度 片申進月專利乾圍第32項所述之無線手持設備收發機晶 真數㈣貞比轉換器,用以將前述預先失 36. 如;1輪出訊號轉換為對應之類比訊號。 片,其&quot;^!J、f、圍第32„項所述之無線手持設備收發機晶 37器以基頻數位處理技術實現,積刀_$及預先失真 •片如申^^範_ 32項所叙無線顿設備收發機晶 、中兩述⑽式放大器及低通濾波器以基頻類比訊 1249874 號處理技術實現。 38. 如申請專利範圍第35項所述之無線手持設備收發機晶 片,其中前述數位-類比轉換器以基頻混合訊號處理技術 實現。 39. 如申請專利範圍第35項所述之無線手持設備收發機晶 片,其中前述射頻功率放大器可為A類、B類、AB類、 C類、D類、E類或F類等放大器電路。 40. 如申請專利範圍第35或39項所述之無線手持設備收發 機晶片,其中衡量調制準確度所用之錯誤向量幅度 B (EVM),衡量線性度所用之鄰近通道功率比例(ACPR), 以及衡量發射機效率所用之直流功率轉換成射頻功率之 • 轉換效率(ConvEff)大體上與前述射頻功率放大器的輸出 . 功率無關。16. The dual-end modulation method of the radio frequency power amplifier according to claim 14, further comprising: generating a phase- and wave-packet-modulated driving signal sharp with a predistorter coupled with a digital-class= converter and an IQ modulator 'And provide the drive signal to the RF input of the aforementioned RF power amplifier. The port 17 kinds of microwave transmitters include: a first modulator that receives a wave packet signal of a signal to be modulated and adjusts it to a type of signal to generate a low frequency wave packet signal of a desired modulated signal; a first modulation state, receiving The signal to be modulated is to generate a phase modulated carrier having a variable wave packet characteristic in a predistortion; and the second RF power amplifier receives a low frequency wave packet of the desired modulated signal, and is a supply voltage of the RF power amplifier, and the receiving has a variation of 2 The phase modulated carrier of the packet characteristic acts as a radio frequency modulation of the RF power amplifier to generate an amplified RF modulated signal. The microwave transmitter described in item ~17, wherein the aforementioned 19th and ==: means: differential integral modulator, - switching type (10) type wide product; system "yi" is an analog type differential integral modulator, analog type pulse 2 = Multi-level or multi-order differential-integral modulators, multiple levels or multiples. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; a signal and providing the digital wave packet signal to the first modulator. 21. The microwave transmitter of claim 17, wherein the second modulator comprises: a predistorter, a digital to analog converter, and an IQ modulator. 22. The microwave transmitter of claim 21, wherein the circuit function of the predistorter includes changing an IQ fundamental signal, a wave packet signal, a phase signal, or a radio frequency carrier amplitude to compensate for a transmitter circuit. Including nonlinear phenomena of components, in order to improve the modulation accuracy and linearity parameters of the RF modulated carrier at the output. 23. The microwave transmitter of claim 17, wherein the RF power amplifier is an amplifier circuit of Class A, Class B, Class AB, Class C, Class D, Class E or Class F. 24. A baseband processor for improving multi-mode operation efficiency, a microwave transmitter for use in a handheld device, comprising: a wave packet generator for generating a corresponding digital wave packet signal of a desired modulated signal; The integral modulator receives the digital wave packet signal and modulates it into a second-order signal; a switching amplifier for amplifying the second-order signal; and a low-pass filter for receiving the amplified second-order signal to restore the amplified analog wave packet signal And a predistorter to compensate for the nonlinear relationship between the input and output signals of the microwave transmitter, thereby improving modulation accuracy and linearity parameters. 25. The baseband processor according to claim 24, wherein the aforementioned difference 21 Ϊ 249 874 Width = ? can be an analog type differential integral modulator, analog type pulse type, analog type multi-stage or multi-stage The differential integration modulator stage or;: ί sub-modulator, digital pulse width modulator, digital multi-26 such as J self-integral integration modulation 11. First, the baseband processor according to Item 24, wherein the pre-phase circuit function comprises changing the frequency carrier amplitude of the IQ fundamental frequency signal and the wave page member to compensate the transmitter circuit for improving the output end. RF modulation plant = 基 patent range: the fundamental frequency described in item 24 = Shen: 眚 patent range, the fundamental frequency processor described in item 24, Nightmare = _ analog conversion 11, used to turn the aforementioned predistorter wheel = 29f is converted to the corresponding analog signal. Round-trip communication • If the baseband processor described in Patent Application No. 24, i is based on the current difference-integral modulator and pre-distorter, the base is as follows: The frequency processor, the current amplifier and the low-pass filter are processed by the fundamental frequency analog signal. The fundamental frequency processor described in item 28 of the range of 28: wherein the aforementioned number 32 is the ratio of the converter to the fundamental frequency. Mixed signal processing technology is implemented. A wireless handheld device transceiver chip includes a baseband packet processor and a radio frequency power amplifier, wherein the baseband signal is generated by a wave packet generator for generating a corresponding number of the desired modulated signals 22 1249874 bit wave The signal signal; the step signal Γ and the knife modulation are 'received digital wave packet signal and modulated to two=3 to: amplify the second-order signal; the analog wave packet signal, and the step signal to restore the amplification power The amplifier and the "quote" wave packet signal are provided to the nonlinear non-linear relationship between the RF signals: the input and the input of the m-wave transmitter are replaced by the unloaded crystal, and the fundamental frequency processing is described. The difference product of the difference is that the integral modulator, the analog/shoot can be an analog-type pulse width modulator, the digital type is more, the f is the modulator, and the digit 34 is such as a β-stage or a multi-order differential-integral modulator. The circuit function of the predistorter of the wireless handheld device transceiver crystal change comprises: 35. = modulation accuracy of the primary carrier, the wireless handheld device described in the 32nd patent The transceiver crystal real number (four) turns ratio converter is used to convert the aforementioned pre-missing 36. If; 1 round-out signal is converted into a corresponding analog signal. The film, its &quot;^!J, f, the 32nd „the wireless handheld device transceiver crystal 37 device is implemented by the fundamental frequency digital processing technology, the accumulation knife _$ and pre-distortion • film such as Shen ^ ^ Fan _ The 32 radio transceivers, the two (10) amplifiers and the low-pass filter are implemented by the fundamental frequency analog signal 1248874. 38. The wireless handheld transceiver as described in claim 35 The chip, wherein the aforementioned digital-to-analog converter is implemented by a baseband mixed-signal processing technology. The wireless handheld transceiver chip of claim 35, wherein the aforementioned RF power amplifier can be Class A, Class B, An amplifier circuit of class AB, class C, class D, class E or class F. 40. A wireless handset transceiver chip as described in claim 35 or 39, wherein the error vector magnitude B used to measure modulation accuracy is (EVM), the adjacent channel power ratio (ACPR) used to measure linearity, and the conversion of DC power used to measure transmitter efficiency to RF power. • Conversion efficiency (ConvEff) is substantially the same as the aforementioned RF power amplifier. Output. Power independent. 24 103124987424 1031249874 102 106 第一圖 201 202 203 脈衝寬度 切換式 低通濾波器 調制為 放大器 第二圖 1249874102 106 First Figure 201 202 203 Pulse Width Switching Low Pass Filter Modulation to Amplifier Second Figure 1249874 低電壓區 時 間第三圖 401Low voltage zone time third picture 401 402402 第四圖Fourth picture
TW94120407A 2005-06-20 2005-06-20 High efficiency multimode microwave transmitter and method thereof TWI249874B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW94120407A TWI249874B (en) 2005-06-20 2005-06-20 High efficiency multimode microwave transmitter and method thereof
US11/455,046 US20070018718A1 (en) 2005-06-20 2006-06-19 Microwave transmitter and the method for increasing envelope bandwidth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94120407A TWI249874B (en) 2005-06-20 2005-06-20 High efficiency multimode microwave transmitter and method thereof

Publications (2)

Publication Number Publication Date
TWI249874B true TWI249874B (en) 2006-02-21
TW200701547A TW200701547A (en) 2007-01-01

Family

ID=37430237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94120407A TWI249874B (en) 2005-06-20 2005-06-20 High efficiency multimode microwave transmitter and method thereof

Country Status (1)

Country Link
TW (1) TWI249874B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462000A (en) * 2020-04-27 2022-12-09 阿尔马兹-安泰航空航天防御股份公司 Radio transmitting device based on radar station microwave equipment
CN115462000B (en) * 2020-04-27 2024-04-12 阿尔马兹-安泰航空航天防御股份公司 Radio transmitting device based on radar station microwave equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462000A (en) * 2020-04-27 2022-12-09 阿尔马兹-安泰航空航天防御股份公司 Radio transmitting device based on radar station microwave equipment
CN115462000B (en) * 2020-04-27 2024-04-12 阿尔马兹-安泰航空航天防御股份公司 Radio transmitting device based on radar station microwave equipment

Also Published As

Publication number Publication date
TW200701547A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
TWI248252B (en) High-efficiency power modulators
Godoy et al. A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS
Reynaert et al. A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE
US20070018718A1 (en) Microwave transmitter and the method for increasing envelope bandwidth
US5420536A (en) Linearized power amplifier
US6404823B1 (en) Envelope feedforward technique with power control for efficient linear RF power amplification
US7071774B2 (en) Composite amplifier
US8736365B2 (en) Broadband linearization module and method
US10382073B2 (en) Analog RF pre-distorter and non-linear splitter
US8145148B2 (en) Transmitter and communication apparatus
Collados et al. A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer
Wu et al. A 45-GHz Si/SiGe 256-QAM transmitter with digital predistortion
Kheirkhahi et al. RF power amplifier efficiency enhancement by envelope injection and termination for mobile terminal applications
Li et al. High average-efficiency multimode RF transmitter using a hybrid quadrature polar modulator
TWI249874B (en) High efficiency multimode microwave transmitter and method thereof
Chen et al. High-gain and high-efficiency EER/polar transmitters using injection-locked oscillators
CN101087147A (en) Transmitter and its base frequency processor and RF power amplifier modulating method
TWI311878B (en) Transmitter and baseband processor and modulation method of rf power amplifier thereof
TWI388168B (en) Hybrid quadrature polar modulated transmitter and digital predistorter used for the same
KR100845661B1 (en) Linearizer having inter-modulation distorter
Jau et al. Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme
Mohsina et al. Switched mode power amplifiers: A brief review and comparative study
Hallberg Frequency reconfigurable and linear power amplifiers based on doherty and varactor load modulation techniques
US20230231524A1 (en) System, method, and outphasing power amplifier having vector generator and iq modulators
Seegerer et al. EDGE transmitter with commercial GSM power amplifier using polar modulation with memory predistortion

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees