TWI248429B - A microwave dielectric with a low sintering temperature - Google Patents

A microwave dielectric with a low sintering temperature Download PDF

Info

Publication number
TWI248429B
TWI248429B TW93125982A TW93125982A TWI248429B TW I248429 B TWI248429 B TW I248429B TW 93125982 A TW93125982 A TW 93125982A TW 93125982 A TW93125982 A TW 93125982A TW I248429 B TWI248429 B TW I248429B
Authority
TW
Taiwan
Prior art keywords
microwave dielectric
low
glass substrate
cuo
glass
Prior art date
Application number
TW93125982A
Other languages
Chinese (zh)
Other versions
TW200607784A (en
Inventor
Sea-Fue Wang
Yuh-Ruey Wang
Jung-Kai Wen
Original Assignee
Nat Taipei Uniuersity Of Techn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Taipei Uniuersity Of Techn filed Critical Nat Taipei Uniuersity Of Techn
Priority to TW93125982A priority Critical patent/TWI248429B/en
Application granted granted Critical
Publication of TWI248429B publication Critical patent/TWI248429B/en
Publication of TW200607784A publication Critical patent/TW200607784A/en

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

This invention is regarding a microwave dielectric with a low sintering temperature. It consists of a host material, n(Zrx, Sny)TizO4.(1-n)MO (x+y+z=2; n=0.7 to 1; and M is alkali earth metals), and a glass additives. The sintering temperature of (Zr0.8Sn0.2)TiO4 dielectric was lowered to 1000 DEG C through the addition of glass additives and the use of powders with fine particle size. The low melting glass are ZnO-B2O3-SiO2-Li2O-La2O3-CuO (ZBSLLC) as well as BaO-K2O-B2O3-SiO2-Li2O-CuO (BKBSLC).

Description

1248429 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種低溫燒結微波介電陶瓷,特別是一種於 (Zr0.8Sn0.2)TiO4 或(Zr,Sn,Ma)(Ti,Mb)04 基材中添加低熔點玻璃 及粉末之細微化,來降低燒結溫度之低溫燒結微波介電陶瓷。 【先前技術】 近年來,電子元件之發展趨勢朝向小型化、晶片化、多功 能化及高容量化,使得材料在最小的體積内及最低的成本下必 須發揮最大的效能。因此被動元件也需跟著小型化,以提高配 裝密度,並使其相對功能增多以提高品質。隨著無線通訊市場 及數據傳輸的大量增加,微波元件的需求量亦大增,微波材料 的開發也備受重視,微波介電材料除了需具有優良的頻率選擇 性及穩定的頻率外,同時需配合市場的元件體積小型化及多功 能的趨勢。在眾多的微波材料中,因(Zr0.8Sn0.2)TiO4陶瓷材料, 具有良好的微波特性,譬如擁有高的介電常數(dielectric constant,εΓ)、高的品質因子(quality factor,Q)、趨近於零的 共振頻率溫度係數(temperature coefficient,r f),這些特性非 常適合應用在高頻的微波共振器上,作為濾波器使用;亦可應 用在多層結構的電子元件,如低溫共燒陶兗模組。一般陶竟材 料須與低熔點的電極材料共燒,形成一個模組化元件,但是陶 瓷材料都具有相當高的燒結溫度(1300°C以上),因而局限了使 1248429 用電極材料的種類,所以,若能降低陶瓷材料的燒結溫度,對 高頻微波材料模組化的開發研究將是新世代的趨勢。降低材料 的燒結溫度是首要的目標,而降低燒結溫度的方法不外乎三 種:一是添加低熔點玻璃,利用液相燒結來降低燒結溫度;二 是利用化學法合成極細微的粉末,增加表面積以降低燒結溫 度;三是開發新的可低溫燒結材料。以化學法製備粉末,雖然 可以精確控制粉末的粒徑及組成,但至今無法大量生產,以致 成本高居不下,而新材料開發又極費時,所以目前最常用的方 法就是添加低熔點玻璃。此外,若能使(ZrG 8SnG 2)Ti〇4陶瓷之 燒結溫度降至1000X:以下,將其應用在低溫共燒陶瓷模組上 時,便能與一些低熔點及高導電度的電極共燒,不但可以降低 成本、減少元件體積,亦能提高效能。 (Zr,Sn)Ti〇4為一良好之介電材料,1981年,Wolfram等人 於 Material Research Bulletin,第 16期,第 1455-1459頁中從其組 成的相圖中發現若依一定比例的組成下(x+y+z=2),ZST會 有單相產生,並具有Tf〜0的介電特性,如圖一。且其結構類似 於ZrTi〇4之結構,為斜方晶系(orthorhombic)之a —Pb〇2結 構。同時Wolfram等人也指出Sn的置換,會導致晶格常數產生 不規則的變化,但因為平均離子半徑發生改變,所以晶格常數 並不會隨著Sn含量的增加而發生改變,因此晶格常數產生不規 則的變化是由於斜方晶系晶格扭曲(b/a ratio )的增加所造成 1248429 的。此單相區域内可作為一良好的微波介 電陶瓷區,其晶格常 數sr Tf及Q均可藉由Zr、Sn和丁^之間的比例而決定。且在 單相區中Q值會隨著Zr被Sn的置換量提高而增加,卻會 Ik著Τι被Sn的置換量提高而快速下降。當2〇m〇i% &被1248429 IX. Description of the Invention: [Technical Field] The present invention relates to a low-temperature sintering microwave dielectric ceramic, in particular to (Zr0.8Sn0.2)TiO4 or (Zr,Sn,Ma)(Ti,Mb) 04 Low-melting glass microwaves and powders are added to the substrate to reduce the sintering temperature of low-temperature sintered microwave dielectric ceramics. [Prior Art] In recent years, the development trend of electronic components has been toward miniaturization, wafer formation, versatility, and high capacity, so that materials must exhibit maximum efficiency in a minimum volume and at a minimum cost. Therefore, passive components also need to be miniaturized to increase the packing density and increase its relative function to improve quality. With the large increase in the wireless communication market and data transmission, the demand for microwave components has also increased greatly. The development of microwave materials has also received much attention. In addition to the excellent frequency selectivity and stable frequency, microwave dielectric materials are required. Cooperate with the trend of miniaturization and multi-functionality of components in the market. Among many microwave materials, due to the (Zr0.8Sn0.2)TiO4 ceramic material, it has good microwave characteristics, such as high dielectric constant (εΓ), high quality factor (Q), Temperature coefficient (rf) close to zero, these characteristics are very suitable for use in high frequency microwave resonators, as a filter; can also be applied to multilayer electronic components, such as low temperature co-fired ceramics兖 module. Generally, ceramic materials must be co-fired with low-melting electrode materials to form a modular component, but ceramic materials have a relatively high sintering temperature (above 1300 ° C), thus limiting the type of electrode material used for 1248429, so If the sintering temperature of ceramic materials can be lowered, the development of modularization of high-frequency microwave materials will be the trend of the new generation. Reducing the sintering temperature of the material is the primary goal, and there are three ways to reduce the sintering temperature: one is to add low-melting glass, to use liquid phase sintering to reduce the sintering temperature; the other is to use chemical method to synthesize very fine powder and increase surface area. To reduce the sintering temperature; the third is to develop new low-temperature sintered materials. The preparation of powder by chemical method, although it is possible to precisely control the particle size and composition of the powder, has not been mass-produced so far, so that the cost is high, and the development of new materials is extremely time consuming, so the most common method at present is to add a low-melting glass. In addition, if the sintering temperature of (ZrG 8SnG 2)Ti〇4 ceramic can be reduced to 1000X: or less, when it is applied to a low-temperature co-fired ceramic module, it can be co-fired with some low-melting and high-conductivity electrodes. Not only can it reduce costs, reduce component size, but also improve performance. (Zr, Sn) Ti〇4 is a good dielectric material. In 1981, Wolfram et al., Material Research Bulletin, No. 16, pp. 1455-1459, was found from a phase diagram of its composition. Under the composition (x+y+z=2), ZST will have a single phase and have a dielectric property of Tf~0, as shown in Figure 1. And its structure is similar to the structure of ZrTi〇4, which is the a-Pb〇2 structure of orthorhombic. At the same time, Wolfram et al. pointed out that the substitution of Sn will cause irregular changes in the lattice constant, but because the average ionic radius changes, the lattice constant does not change with the increase of Sn content, so the lattice constant The irregular change is caused by an increase in the orthorhombic lattice distortion (b/a ratio) of 1248429. The single-phase region can serve as a good microwave dielectric ceramic region, and the lattice constants sr Tf and Q can be determined by the ratio between Zr, Sn and butyl. Moreover, in the single-phase region, the Q value increases as Zr is increased by the amount of substitution of Sn, but the Ik is rapidly decreased by the amount of replacement of Sn. When 2〇m〇i% &

Sn置換時’具有最佳的Q值,近年來已被廣泛的應用做為介電 共振器的材料。 (Zr,Sn)Ti〇4陶瓷的微波介電特性主要受到原始粉末配方、燒 結添加物和顯微結構的影響。發現利用一般的固態燒結,若無 添加燒結助劑,在低溫很難燒成高緻密度(Zr,Sn)Ti〇4陶瓷,大 約只有80%的理論密度。因此近年來許多研究開始探討燒結添 加物對(Zr,Sn)Ti〇4陶瓷之微波介電特性的影響,如Zn〇、Ni〇、 FeW3、LaW3 ' V2〇5和CuO等。研究指出這些燒結添加物的添 加會在晶粒間形成液相,藉由液相的潤濕效應來提高緻密度。 1984年Wakino專人於journai 〇f American Ceramic Society,第 67卷第4期,第278-281頁中提出發表添加Fe2〇3和Ni〇對 (Zr,Sn)Ti〇4陶瓷之微波介電特性的影響。研究指出,Fe2〇3的添 加會降低大大地降低ZST的Q值(例添加〇.5wt%的Fe203,Q«400 (7GHz)),這是因為會形成反尖晶石結構的晶界相所致,而添 加NiO能有效的改善q值(例添加〇5wt〇/c^Fe2〇3和〇.5wt〇/(^ NiO,Qe5300 ( 7GHz))。 1994年Kudesia等人在 Journal of American Ceramic Society, 1248429 第77卷第12期,第3215-3220頁中提出發表添加La203和ZnO對 (Zr〇.8Sn().2)Ti04陶瓷之微結構和微波介電特性的影響。研究指出 添加微量的La203和ZnO (總含量達〇·3 wt%)能有效提高ZST 的緻密度且不會影響其。但當添加物總含量超過〇.15wt% 時,Q值則會明顯的下降。研究結果顯示添加〇·〇5 wt%La203 和(U wt%ZnO能獲得較佳的介電特性;εΑ37·6、Q值為12800 (4.2GHz)、τΓ為-2.9ppm/〇C。 2000年Kim等人在 Journal of American Ceramic Society,第 83卷第4期,第1010-1012頁中發表添加不同鹼金屬氧化物對 (Zr,Sn)Ti04陶瓷之燒結特性和微波介電特性的影響。研究發現 添加1 mol%的MgO、CaO、SrO、BaO等金屬氧化物能有效的 提高ZST的緻密度且不會影響其匕和”,但燒結溫度仍高達1400 °C左右。這些鹼土金屬氧化物對ZST緻密化的效應為:MgO< CaO< SrO< BaO。其中添加MgO會使Q值大幅的下降。 2002 年 Zhang 等人於 Ceramics International,第 28 期,第 407-411頁中發表添加La203/BaO進行(Zr〇.8Sti〇.2)Ti〇4陶瓷的低 溫燒結和介電特性研究。結果顯示添加1 wt%La203/Ba0在1350 °C燒節時可達到95%TD,若添加量高於15 wt%時,燒結溫度 可降至1250°C。其介電特性主要受燒結添加物添加量的影響, 當添加量由〇.5wt%增加至2.0 wt%時,Sr隨著密度的增加而增 加;〜則由1.3??111/。〇上升至18.3??111/。(:;(5岬一開始隨著添加 1248429 量的增加而增加,在添加量為Iwt%時達到最大值,之後則隨著 添加量的增加而下降。研究最後指出’ ZST添加1 wt%La2〇3/BaO 於1350°C燒結,持溫4小時,具有最佳的介電特性:sr=38 ; = 5.6ppm/〇C ; Q*f = 11575 ( 1.8GHz)。 2000 年 Chen 等人於 Material Research Bulletin,第 35 期, 第2101-2108頁中提出利用水熱法不添加燒結添加物合成ZST 粉末,且具有三項優點:(1)反應發生在適宜的條件下(2) 粒徑分佈窄(3 )可能具有其他合成法沒有的特性。其將 (Zr〇.8Sn〇.2)Ti04試片在氧氣中於1200°C燒結持溫24小時,然 後於760°C進行退火持溫2小時,具有sr=44.1 ; q值= 2810 (8.6GHz)的介電特性。 習用如美國專利4785375號,係提出一種絕緣陶瓷及其於 製造上之用途,其包含35〜55 mole% Zr02、30〜50 mole % Ti02、5〜22.5 mole % Sn〇2、0.5〜10 mole % ZnO 及 〇 3〜2.5 mole %CuO。其燒結溫度可降至1350°C以下,並具有約為25〜40, Q值約為9000(4GHz)的介電特性。 美國專利6472074號,係為一種絕緣陶瓷其本體部分包含 38〜58wt%Zr02、22〜43wt%Ti02&9〜26wt%Sn02、7wt %NiO、7wt % CuO,所添加的玻璃材質含3〜20wto/〇 B或Si之 鹼金屬或驗土金屬氧化物、氧化鋅,AhO3、B2〇3、si〇2等。 其燒結溫度為860°C〜1000°C,並具有ε,約為20〜35,Q約為 1248429 1000〜3500,Tf約為-15〜4ppm/°c的介電特性。 美國專利5872071號,則提出一種絕緣陶瓷及其製造方 法,其包含 0.1-50wt% BaCu〇2—CuO 及 50-99.9wt% Zr〇2— Sn02—Ti02,其燒結溫度可降至l〇〇〇°C,相對密度可達到95% 以上,sr約為35〜38, Q約為2800〜5000(7GHz)。 1994 年 Takada 等人曾在 Journal of American Ceramic Society,第77卷第9期,第2485-2488頁中發表過玻璃添加對 (Zr〇.8Sn().2)Ti04微波材料低溫燒結與微波性質的影響。所使用的 玻璃系統包括B203、Si02、Zn0-B203、B203-Si02、Al203-Si02、 含鉛的玻璃系統及含鹼金屬或鹼土金屬的玻璃系統,燒結範圍 從900°C〜1200°C。當添加5wt% Si02時,在1200°C燒結具有最佳 的Q值:Q= 2700(9GHz)。若添加Zn0-B203-Si02玻璃,在相同 燒結溫度下,比純的(ZrG.8Sn().2)Ti04具有>20%的緻密度。研究 發現當ZST添加這些玻璃系統在ll〇〇°c進行燒結時,其理論密 度均低於70%,而sr*Q*f分別低於20和25000。以上結果顯示 添加玻璃後之(Zro.sSno.JTiC^微波陶瓷,雖能降低燒結溫度,但 其緻密度和微波介電性質卻會明顯的降低。 2000年Huang等人於Material Research Bulletin,第 35期,第 1881-1888頁中指出添加微量的ZnO(lwt%)和CuO(0.5〜2 wt%),藉由液相燒結效應(在l〇70°C形成CuO-Cu20-Ti02的共 熔)能有效降低(ZrG.8Sn〇.2)Ti04微波陶瓷的燒結溫度並提高緻密 1248429 度’且不會有二次相產生。當添加1 wt%ZnO和1 wt%CuO在1220 °C燒結時,緻密度可達到理論密度96%以上,並具有不錯的介 電特性;εΓ、Q*f 和Tf分別為 38、50000(7GHz)和 3 ppm/°C。 同年 Jean等人在 Journal of American Ceramic Society,第 83 卷第6期,第1417-1422頁中發表BaCu02+CuO(BCC)對 (ZrG.8Sn().2)Ti04陶瓷材料之緻密度及介電特性的影響。此研究利 用BCC在926°C時會形成共熔且和ZST間具有良好的潤濕效應 來有效降低ZST的燒結溫度。結果顯示當ZST添加微量的 BCC(2.5〜5wt%)時,燒結溫度可降至l〇〇〇°C,相對密度可達到 95%以上,εΓ約為35〜38,Q約為2800〜5000(7GHz)。但隨著BCC 含量的增加,緻密化速率開始減緩並會有二次相的產生,這是 因為添加量增加導致結晶化速率加快所導致。 2001 年Huang專人於 The Japan Society of Applied Physics, 第40期,第698-702頁中發表添加V205對(Zi*〇.8Sn〇.2)Ti04陶瓷之 微結構和微波介電特性的影響。V205 (熔點650°C )為一種液 相助熔劑,能有效降低ZST的燒結溫度。研究結果顯示添加微 量的ZnO(lwt%)和V205 (lwt%)在1300°C燒結時,可達到96%理 論密度,8^遺著密度的增加而增加,在1300°C時達到最大值。 添加V2〇5對Tf並不會有很大的影響但卻能提高Q*f ,當添加} wt% V2〇5,燒結溫度為1300°C時,具有最佳的介電特性;心 〜37.3、Q值為 51500 ( 7GHz )、Tf為-2· lppm/°C。 11 1248429 同年Huang等人於Materials Chemistry and Physics,第 71 期, 第17-22頁中對不同添加物(Bi203、V205和 CuO )對 (Zr,Sn)Ti〇4陶瓷之微結構和微波介電特性的影響進行研究,研 究結果發現這些添加物可使ZST的燒結溫度降至i30〇t〜14〇() °C,且不會影響;分別為εΓ 36〜38,TA<±3ppm/cc。但 Q*f卻會受到添加物的種類和添加量的影響。 為了應用在低溫共燒陶究(LTCC)元件及積層陶莞(Mlc) 製程,除降低ZST陶瓷的燒結溫度之外,並要維持好的微波 介電特性。然而,上列技術仍未能達到此要求,其缺點如下· i•降低ZST陶瓷的燒結溫度與維持好的微波介電特性兩項要 求不能同時兼顧,為維持良好微波介電特性,則無法有*文 降低燒結溫度;若要降低燒結溫度,則未能保持原有的s 亦未能達到$ ±30ppm/°C,Q*f > 5000之良好介電特f生 2.因燒結溫度仍高(>1000°C),不適合與熔點較低且較廉代 金屬電極共燒,以降低成本。 3·文獻所載之技術尚未摒除添加重金屬成分之方气 _ Pb、Cd、Bi等元素,不符環保材料之要求。 【發明内容】 本發明之目的在於提供一種低溫燒結微波介電陶瓷,其可 有效降低燒結溫度,並增加材料緻密性且為一環保材料 可達成上述發明目的之一種低溫燒結微波介電陶瓷,其本 12 1248429 體基材為 n (Zrx,Sny) Tiz04-(l-n)M0 ;其中,x+y+z=2 ; η 為 0. 7〜1 ; Μ為鹼土金屬、過渡元素或稀土元素,較佳者為 (Zi*G.8Sn〇.2)Ti04(ZST)。係將混合後的ZST粉末於1150°C下煆 燒(calcination),即可形成(Zr〇.8Sn〇.2)Ti〇4單相粉末。並以此為 陶瓷體之本體材料,添加低熔點玻璃,如鋇鉀硼矽鋰銅系玻璃 或鋅硼矽鋰鑭銅系玻璃等,來降低降低(ZrG.8Sn().2)Ti04微波介 電陶的溫燒結溫度至l〇〇〇°C,並可維持好的介電特性;如將 粉末細微化處理控制粉體粒徑,可將(ZrG.8Sn().2)Ti04微波介電 陶的溫燒結溫度降低至950°C,並可維持好的介電特性,以滿 足低溫共燒陶瓷(LTCC)製程之需求。 【實施方式】 本發明之實施方式分為兩部分,一是本體基材部分,經煆 燒後可以合成(Zro.sSno.DTiC^相;另一是玻璃基材部分,發現 鋇鉀硼矽鋰銅系玻璃、鋅硼矽鋰鑭銅系玻璃,對於 (ZrG.8Sn().2)Ti04微波介電陶瓷之緻密化及介電特性,具有相當 佳之影響。 (一)本體基材(host material,Η·Μ·)部份: 1. (Zf〇.8Sn〇.2)Ti04陶瓷體基材的製程: 將起始粉末Zr02、Sn02及Ti02依莫耳比40 : 10 : 50之 比例,置入PVC桶中,加入锆球在去離子水中進行球磨混和 24小時,混合完成後於80°C烘箱中進行乾燥,烘乾後之粉末 13 1248429 以1(rC/min升溫,於出代持溫6小時的條件下進行假燒。 瑕燒完成後,進行球磨24小時及乾燥的步驟,取出乾燥^粉 末,即為H.T A。 圖二為將混合後的(Zr0.8Sn〇.2)Ti〇4 (^粉末以ii5〇〇c煆 燒6小時,成型後分另145(rc〜165(rc^M^、_ XRD圖,如圖所示皆為單-的ZST相,並無二次相的產生。 圖三為(Zr〇.8Sn0.2)TiO道結密度與燒結溫料關係圖,如 圖所示,密度隨著溫度增加而增加,並在165〇<t達到最大值 (4.8g/cm3),約為96%的理論密度。 圖四為ZST之sr及Qxf值與燒結溫度的關係圖,在介電 常數方面,與圖三之密度對燒結溫度的關係有相同的趨勢,皆 隨燒結溫度增加而增加,且在l65(rc時達到最大值,這是因 為猎度越兩表示孔度(er=l)越少。當燒結溫度由升 四至1650(:時,81*由20.3提高至36.3。在(^*[方面,最大值 為48857,其燒結溫度為1650°C。 圖五為ZST之與燒結溫度的關係圖,由於Tf與材料的 組成、所生成的二次相及組織有關,而實驗中並沒有二次相的 產生,因此Tf僅與材料組成及組織有關,由於(Zr〇 sSn〇 2)Ti〇4 本身具有趨近於零的,因此”並不會隨溫度有太大的變化。 隨著溫度的增加,(Zr〇.8Sn〇.2)Ti04的T;f由_15變成_19 ppm/°c。 本發明所適用之本體基材,其主要成分可以下式表示之: 1248429 n (Zrx,Sny) Tiz04-(l-n)M0 ;其中,x+y+z=2 ; η 為 0.7〜1 ; Μ可為鹼土金屬、過渡元素或稀土元素。較佳範圍X為0.6〜1.1; y 為 0.4〜1.1 ; ζ 為 0〜0.6。 表一為(Zf〇.8Sn〇.2)Ti04之物理及介電特性分析。 表一 本體 (H.M.) 燒結溫度 (°C) 體密度 (g/cm3) 介電常數 Q*f值 Tf (ppmic) 粒徑 C/^m) (Zr〇.8Sn〇2) Ti〇4 1450 3.57 20.3 20907 -1.5 0.55 1550 4.49 29.8 36181 -1.4 1625 4.78 36.3 43264 -1.5 1650 4.79 36.1 48857 -1.9 (二)添加玻璃基材: 本實施例所用之玻璃配比如表二,選取高純度之BaC03、 B2O3、Si〇2、ZnO、CuO、La2〇3、Li2C〇3、K2CO3 末各^^所 需的配比稱重,各玻璃系統先以研蛛混合1小時,加入10 wt°/〇 玻璃成分於(ZrG.8Sn().2)Ti04陶瓷粉末中,置入PVC罐並加锆球 於酒精中進行4小時混合。混合後的漿料以80°C烘乾,添加2 % PVA混合造粒,過60mesh篩,以單軸成型機於lT/cm2下, 實壓0.5分鐘,製成試片9.2x2mm,將試片於550°C,持溫3 小時,將PVA及雜質除去。分別由1000°C、1050°C及ll〇〇°C 等三個溫度,昇溫速率5°C/min、持溫2小時後樣品之緻密性 檢測、相鑑定、顯微結構觀察以及微波介電性質之量測。 15 1248429 表二 玻璃成分(Wt%) 玻璃 B2O3 S1O2 La2〇3 ZnO BaC〇3 Li2C03 K2CO3 CuO Glass 1 BKBSLC 25 16.7 - - 16.7 12.5 12.5 16.6 Glass 2 BKBSLC 23 15.5 - - 15.5 11.5 11.5 23 Glass 3 ZBSLLC 25 8.3 8.3 25 - 16.7 16.7 Glass 4 ZBSLLC 16.7 8.3 16.7 25 - 16.7 16.6 分別添加10 wt%不同配比的鋇鉀硼矽鋰銅系玻璃和鋅硼 矽鋰鑭銅系玻璃進行低溫燒結。圖六為添加10 wt%玻璃進行 燒結2小時後之XRD圖,顯示皆為單一的ZST相,證明添加 10 wt%玻璃並不會產生二次相。 圖七為(ZrG.8Sn().2)Ti〇4添加1 〇 wt%玻璃之燒結密度與燒 結溫度的關係圖。如圖所示,添加玻璃能有效的降低燒結溫 度,於燒結溫度iioo°c時達到最大值,其中以添加Glass3玻璃 具有最佳的緻密性,於1〇50。(:時就可達到約95%的理論密度。 圖八為(Zr〇.8Sn〇.2)Ti〇4添加1〇 wt〇/❶玻璃之介電特性與燒 結溫度的關係圖。如圖所示,er和密度成正比,密度越高& 越大,因此以添加Glass3玻璃具有最佳的,在1〇5〇〇c時即可 達到30以上,並於1 lOOt達到最大值。 圖九為(Zr〇.8Sn〇.2)Ti〇4添加wt〇/〇玻璃之與燒結溫度 的關係圖。以添加Glassl玻螭具有最佳的Q*f,於1〇5(rc達到 最大值:22366 ( 10GHz)。 圖十為(Zr〇.8Sn〇.2)Ti〇4添加1〇 wt%玻璃之與燒結溫度 1248429 的關係圖。因為添加玻璃並沒有二次相的產生’所以對τ f並沒 有太大的影響,其值大約都在± 10 ppm/°c之間。表三為 (ZrG.8Sn().2)Ti04添加玻璃後形成的陶瓷之物理及介電特性分 析0 表三 燒結溫度 體密度 介電常 Q*f Tf 粒徑 配方 ΓΟ (g/cm3) 數 值 (ppn/C) (μηι) 1000 3.99 21.5 8482 3.2 H.M.+Glass3 1050 4.75 30.6 10799 -7.0 2.0 1100 4.77 31.7 2456 -11.3 1000 3.4 16.4 3163 4.8 H.M.K}lass4 1050 4.04 24.7 1652 -5.1 2.0 1100 4.73 31.2 1408 -9.6 1000 4.51 28.1 1997 -12.4 H.M.+Glass 1 1050 4.73 30.5 22366 1.7 3.2 1100 4.63 29.4 6145 2.4 (三)粉末之細微化: (ZrG.8Sn().2)Ti04陶瓷粉末的本體材料煆燒完成後,加入 總量為1 Owt%之玻璃,再以行星式球磨機加入3mm之錯珠球 磨12小時,混合後的漿料以80°C烘乾,取樣作粉末特性分析; 添加2wt% PVA混合造粒,過60mesh篩,以單軸成型機於 lT/cm2下,實壓0.5分鐘,製成試片9.2x2mm,將試片於550 °C,持溫3小時,將PVA及雜質除去。分別由950°C、l〇〇〇°C 及1050°C等三個溫度,昇溫速率5°C/min、持溫2小時,燒結 17 1248429 後樣品之緻密性檢測、相鑑定以及微波介電性質之量測。 將添加10 wt%不同配比的鋇鉀硼矽鋰銅系玻璃和鋅硼矽 鋰鑭銅系玻璃進行,使其粒徑降至l//m以下,增加粉末的燒 結特性,然後進行低溫燒結。 圖十一(Zr〇.8Sn〇.2) Ti04添加不同玻璃進行粉末細微化後 之燒結密度與燒結溫度的關係圖。藉由降低粒徑更能有效降低 燒結溫度並提高緻密度。添加10 wt°/〇不同配比的鋇鉀硼矽鋰 銅系玻璃和鋅硼矽鋰鑭銅系玻璃在l〇〇〇°C燒結2h皆可獲得> 95%的理論密度,並於105(TC達到最大值。 圖十二(Zr〇.8Sn〇.2) Ti04添加不同玻璃進行粉末細微化後 之sr與燒結溫度的關係圖。如同圖八所示,但81在1000°C即 可達到30以上,比未粉末細微化所需的溫度降了 50°C。 圖十三(Zr〇.8Sn〇.2) Ti04添加不同玻璃進行粉末細微化後 之Q*f與燒結溫度的關係圖。其中以添加Glass3玻璃具有最佳 的 Q*f,可達 9000 ( 10GHz)以上。 圖十四(Zr〇.8Sn〇.2) Ti04添加不同玻璃進行粉末細微化後 之Tf與燒結溫度的關係圖。如同圖十所示,因為並沒有二次相 的產生,所以對並沒有太大的影響,其值大約都在± 10 ppm/ °C之間。 表四為(ZrG.8Sn().2)Ti04添加玻璃進行粉末細微化後形成的 陶瓷之物理及介電特性分析。 18 1248429 表四 配方 燒結温度 (°C) 體密度 (g/cm3) 介電常 數 Q氺f值 Tf (ppm/°C) 粒徑 (μηι) 950 3.89 20.7 9920 9.5 H.M.+Glass 3 1000 4.84 30.5 9614 -4.9 0.8 1050 4.96 31.7 7914 -9.4 950 3.9 21.9 2037 8.1 H.M.+Glass 1 1000 4.68 28.8 4201 -1.3 0.7 1050 4.88 31.8 2956 3.1 950 4.4 26.8 1781 -9.0 H.M.+Glass 2 1000 4.8 30.4 1374 -3.9 0.9 1050 4.81 30.7 4213 -2.3 本發明之優點列舉如下: 1.能有效降低ZST微波介電陶瓷之燒結溫度至1000°c以下, 並能同時保持原有的sr,達到i:f S ±30ppm/°C,Q*f> 5000 之良好微波介電特性。 2 ·適合與溶點較低且較廉價之金屬電極共燒,增加金屬電極 中低熔點金屬含量,應用於濾波器、共振器及電容器等含 金屬電極元件之製造上,可降低成本。 3.不含鉛、鎘及鉍等重金屬,符合環保材料之要求。 上列詳細說明乃針對本發明之可行實施例進行具體說 明,惟該實施例並非用以限制本創作之專利範圍,凡未脫離本 創作技藝精神所為之等效實施或變更,均應包含於本案之專利 範圍中。 19 1248429 綜上所述,本案不僅於技術思想上確屬創新,由於具備上 述之特性及優點,顯然符合新穎性及進步性之法定創作專利要 件,爰依法提出申請,懇請貴局核准本件創作專利申請案, 以勵創作,至感德便。 【圖式簡單說明】 圖一為 ZrxTiySnz〇4 (x+y+z=2)相圖; 圖二為ZST以不同溫度燒結之XRD圖; 圖三為ZST於1450〜165(TC燒結後之燒結密度與燒結溫度 的關係圖, 圖四為ZST之sr&Q*f與燒結溫度的關係圖; 圖五為ZST之。與燒結溫度的關係圖; 圖六為ZST添加10 wt%玻璃進行燒結2小時後之XRD 圖; 圖七為ZST添加10 wt%玻璃之燒結密度與燒結溫度的關 係圖; 圖八為ZST添加10 wt°/〇玻璃之介電特性與燒結溫度的關 係圖; 圖九為ZST4添加10 wt%玻璃之Q*f與燒結溫度的關係 圖; 圖十為ZST添加10 wt%玻璃之〜與燒結溫度的關係圖; 圖十一 ZST添加不同玻璃進行粉末細微化後之燒結密度 20 1248429 與燒結溫度的關係圖; 圖十二ZST添加不同玻璃進行粉末細微化後之sr與燒結 溫度的關係圖; 圖十三ZST添加不同玻璃進行粉末細微化後之Q*f與燒 結溫度的關係圖; 圖十四ZST添加不同玻璃進行粉末細微化後之i:f與燒結 溫度的關係圖。 21The Sn has the best Q value and has been widely used as a material for dielectric resonators in recent years. The microwave dielectric properties of (Zr, Sn) Ti〇4 ceramics are mainly affected by the original powder formulation, sintering additives and microstructure. It has been found that with the use of general solid state sintering, it is difficult to fire high-density (Zr, Sn) Ti〇4 ceramics at a low temperature without adding a sintering aid, which is about 80% theoretical density. Therefore, in recent years, many studies have begun to investigate the effects of sintering additives on the microwave dielectric properties of (Zr, Sn) Ti〇4 ceramics, such as Zn〇, Ni〇, FeW3, LaW3 'V2〇5 and CuO. Studies have shown that the addition of these sintering additives forms a liquid phase between the grains, which increases the density by the wetting effect of the liquid phase. In 1984, Wakino, in Journai 〇f American Ceramic Society, Vol. 67, No. 4, pp. 278-281, proposed the microwave dielectric properties of (Zr, Sn) Ti〇4 ceramics added with Fe2〇3 and Ni〇. influences. Studies have shown that the addition of Fe2〇3 will greatly reduce the Q value of ZST (for example, adding 55 wt% of Fe203, Q«400 (7 GHz)), because the grain boundary phase of the anti-spinel structure will be formed. Therefore, the addition of NiO can effectively improve the q value (for example, adding 〇5wt〇/c^Fe2〇3 and 〇.5wt〇/(^ NiO, Qe5300 (7GHz)). 1994 Kudesia et al. in the Journal of American Ceramic Society , 1248429, Vol. 77, No. 12, pp. 3215-3220, proposes the effect of adding La203 and ZnO on the microstructure and microwave dielectric properties of (Zr〇.8Sn().2) Ti04 ceramics. La203 and ZnO (total content up to 3 wt%) can effectively increase the density of ZST without affecting it. However, when the total content of the additive exceeds 〇.15wt%, the Q value will decrease significantly. Adding 〇·〇5 wt%La203 and (U wt%ZnO can obtain better dielectric properties; εΑ37·6, Q value is 12800 (4.2 GHz), τΓ is -2.9ppm/〇C. Kim et al. 2000) Sintering characteristics of (Zr, Sn) Ti04 ceramics with different alkali metal oxides added in Journal of American Ceramic Society, Vol. 83, No. 4, pp. 1010-1012 The effect of microwave dielectric properties. It was found that the addition of 1 mol% of metal oxides such as MgO, CaO, SrO, and BaO can effectively increase the density of ZST without affecting the enthalpy, but the sintering temperature is still as high as 1400 °C. The effect of these alkaline earth metal oxides on ZST densification is: MgO < CaO < SrO < BaO. The addition of MgO will greatly reduce the Q value. 2002, Zhang et al., Ceramics International, No. 28, No. 407- On page 411, the low-temperature sintering and dielectric properties of Ti〇4 ceramics (Zr〇.8Sti〇.2) were investigated by adding La203/BaO. The results show that the addition of 1 wt% La203/Ba0 can reach 95 at 1350 °C. %TD, if the addition amount is higher than 15 wt%, the sintering temperature can be lowered to 1250 ° C. The dielectric properties are mainly affected by the addition amount of the sintering additive, when the addition amount is increased from 〇.5 wt% to 2.0 wt%. , Sr increases with the increase of density; ~ increases from 1.3??111/.〇 to 18.3??111/. (:; (5岬 starts to increase with the increase of the amount of 1248429, the amount added is The maximum value is reached at Iwt%, and then decreases as the amount of addition increases. The study finally pointed out that 'ZST added 1 wt% La2〇3/BaO sintered at 1350 °C, holding temperature for 4 hours, has the best dielectric properties: sr=38; = 5.6ppm/〇C; Q*f = 11575 ( 1.8GHz). In 2000, Chen et al., Material Research Bulletin, No. 35, pp. 2101-2108, proposed the use of hydrothermal method to synthesize ZST powder without adding sintering additives, and has three advantages: (1) the reaction occurs under suitable conditions. (2) The narrow particle size distribution (3) may have characteristics not found in other synthetic methods. The (Zr〇.8Sn〇.2) Ti04 test piece was sintered in oxygen at 1200 ° C for 24 hours, and then annealed at 760 ° C for 2 hours, with sr = 44.1; q = 2810 (8.6) Dielectric properties of GHz). For example, U.S. Patent No. 4,785,375, the disclosure of which is incorporated herein by reference in its entirety in its entirety, the utility of the utility of the utility of the utility of the utility of the utility of the utility of the present invention for the manufacture of an insulating ceramic comprising 35~55 mole% Zr02, 30~50 mole % Ti02, 5~22.5 mole % Sn〇2, 0.5~10 mole % ZnO and 〇3~2.5 mole %CuO. The sintering temperature can be lowered to below 1350 ° C and has a dielectric property of about 25 to 40 and a Q value of about 9000 (4 GHz). U.S. Patent No. 6,472,074 is an insulating ceramic having a body portion comprising 38 to 58 wt% ZrO 2, 22 to 43 wt% Ti02 & 9 to 26 wt% Sn02, 7 wt% NiO, 7 wt% CuO, and the added glass material comprises 3 to 20 wto/ Alkali metal or soil metal oxide of bismuth B or Si, zinc oxide, AhO3, B2〇3, si〇2, and the like. The sintering temperature is 860 ° C to 1000 ° C and has a dielectric property of ε, about 20 to 35, Q of about 1248429 1000 to 3500, and a Tf of about -15 to 4 ppm/°c. U.S. Patent No. 5,871,071 proposes an insulating ceramic and a method for producing the same, which comprises 0.1-50 wt% BaCu〇2-CuO and 50-99.9 wt% Zr〇2-Sn02-Ti02, and the sintering temperature can be lowered to l〇〇〇. °C, the relative density can reach more than 95%, sr is about 35~38, and Q is about 2800~5000 (7GHz). In 1994, Takada et al. published in the Journal of American Ceramic Society, Vol. 77, No. 9, pp. 2485-2488, the low-temperature sintering and microwave properties of glass-added (Zr〇.8Sn().2) Ti04 microwave materials. influences. The glass system used includes B203, SiO2, Zn0-B203, B203-SiO2, Al203-SiO2, a lead-containing glass system, and a glass system containing an alkali metal or an alkaline earth metal, and the sintering range is from 900 ° C to 1200 ° C. When 5 wt% SiO 2 was added, sintering at 1200 ° C had the best Q value: Q = 2700 (9 GHz). If Zn0-B203-SiO2 glass is added, it has a density of > 20% than pure (ZrG.8Sn().2) Ti04 at the same sintering temperature. It was found that when ZST added these glass systems for sintering at ll 〇〇 °c, the theoretical density was less than 70%, and sr*Q*f was lower than 20 and 25000, respectively. The above results show that after adding glass (Zro.sSno.JTiC^ microwave ceramics, although the sintering temperature can be lowered, the density and microwave dielectric properties are significantly reduced. 2000 Huang et al. in Material Research Bulletin, 35 , pp. 1881-1888 states that trace amounts of ZnO (1 wt%) and CuO (0.5 to 2 wt%) are added by liquid phase sintering effect (co-melting of CuO-Cu20-Ti02 at l〇70 °C) It can effectively reduce the sintering temperature of (ZrG.8Sn〇.2) Ti04 microwave ceramic and increase the density of 1248429 degrees' without secondary phase generation. When adding 1 wt% ZnO and 1 wt% CuO at 1220 °C, The density can reach more than 96% of theoretical density and has good dielectric properties; εΓ, Q*f and Tf are 38, 50000 (7GHz) and 3 ppm/°C respectively. In the same year, Jean et al. in Journal of American Ceramic Society , Vol. 83, No. 6, pp. 1417-1422, discloses the effect of BaCu02+CuO(BCC) on the density and dielectric properties of (ZrG.8Sn().2) Ti04 ceramic materials. This study uses BCC at 926. At °C, eutectic is formed and has a good wetting effect with ZST to effectively reduce the sintering temperature of ZST. The results show that when ZST Tim When the amount of BCC (2.5~5wt%) is small, the sintering temperature can be reduced to l〇〇〇°C, the relative density can reach above 95%, εΓ is about 35~38, and Q is about 2800~5000 (7GHz). As the content of BCC increases, the densification rate begins to slow down and there is a secondary phase, which is caused by an increase in the amount of addition, which leads to an increase in the rate of crystallization. In 2001, Huang specializes in The Japan Society of Applied Physics, No. 40, The effects of adding V205 on the microstructure and microwave dielectric properties of TiZ ceramics (Zi*〇.8Sn〇.2) are disclosed in pages 698-702. V205 (melting point 650 °C) is a liquid phase flux that can effectively reduce The sintering temperature of ZST. The results show that the addition of trace amounts of ZnO (1wt%) and V205 (lwt%) can reach 96% theoretical density when sintered at 1300 °C, and increase the density of 8^ legacy, at 1300 °C. The maximum value is reached. Adding V2〇5 does not have a great effect on Tf but can improve Q*f. When adding {wt% V2〇5, the sintering temperature is 1300 °C, the best dielectric Characteristics; heart ~ 37.3, Q value 51500 (7 GHz), Tf -2 · lppm / °C. 11 1248429 The same year, Huang et al., Materials Chemistry and Physics, 71, pp. 17-22, Microstructure and Microwave Dielectric of (Zr, Sn) Ti〇4 Ceramics with Different Additives (Bi203, V205 and CuO) The effects of the characteristics were studied. The results show that these additives can reduce the sintering temperature of ZST to i30〇t~14〇() °C without affecting; εΓ 36~38, TA<±3ppm/cc, respectively. However, Q*f is affected by the type and amount of additives added. In order to apply the low temperature co-fired ceramic (LTCC) component and the laminated ceramic (Mlc) process, in addition to reducing the sintering temperature of the ZST ceramic, it is necessary to maintain good microwave dielectric properties. However, the above listed technologies still fail to meet this requirement. The disadvantages are as follows: i•Reducing the sintering temperature of ZST ceramics and maintaining good microwave dielectric properties cannot be considered at the same time. In order to maintain good microwave dielectric properties, there is no way to * The text reduces the sintering temperature; if the sintering temperature is to be lowered, the original s cannot be maintained and the temperature is not up to $±30ppm/°C, Q*f > 5000 is good dielectric special. 2. Due to the sintering temperature High (> 1000 ° C), not suitable for co-firing with lower melting point and cheaper metal electrodes to reduce cost. 3. The technology contained in the literature has not removed the elements of adding heavy metal components _ Pb, Cd, Bi and other elements, which do not meet the requirements of environmentally friendly materials. SUMMARY OF THE INVENTION An object of the present invention is to provide a low-temperature sintering microwave dielectric ceramic which can effectively reduce the sintering temperature and increase the compactness of the material, and is an environmentally friendly material which can achieve the above object of the invention. The 12 1248429 bulk substrate is n (Zrx, Sny) Tiz04-(ln)M0; wherein x+y+z=2; η is 0. 7~1; Μ is an alkaline earth metal, a transition element or a rare earth element, The best is (Zi*G.8Sn〇.2) Ti04 (ZST). The mixed ZST powder was calcined at 1150 ° C to form a (Zr 〇 8 Sn 〇 2) Ti 〇 4 single phase powder. In order to reduce the reduction (ZrG.8Sn().2) Ti04 microwave dielectric, the low-melting glass, such as lanthanum-potassium-boron-niobium-copper-copper glass or zinc-boron-bismuth lithium-copper-based glass, is added as the bulk material of the ceramic body. The temperature of the electric ceramics is up to l〇〇〇°C, and the dielectric properties can be maintained. If the powder is finely treated to control the particle size, the (ZrG.8Sn().2) Ti04 microwave dielectric can be used. The temperature of the ceramic is reduced to 950 ° C, and can maintain good dielectric properties to meet the needs of low temperature co-fired ceramic (LTCC) process. [Embodiment] The embodiment of the present invention is divided into two parts. One is a part of a body substrate, which can be synthesized after being calcined (Zro.sSno.DTiC^ phase; the other is a glass substrate portion, and bismuth potassium borosilicate is found. Copper-based glass, zinc-boron-bismuth lithium-niobium-based glass, has a good influence on the densification and dielectric properties of (ZrG.8Sn().2) Ti04 microwave dielectric ceramics. (1) Host material , Η·Μ·) Part: 1. (Zf〇.8Sn〇.2) Process of Ti04 ceramic substrate: The ratio of starting powder Zr02, Sn02 and Ti02 to Emerson ratio of 40:10:50 is set. Into the PVC bucket, add zirconium ball in ball milled water for ball milling for 24 hours, after mixing, dry in 80 ° C oven, dry powder 13 1248429 to 1 (rC / min temperature, in the generation of temperature After the completion of the simmering, the ball was ground for 24 hours and dried, and the dried powder was taken out, which was HT A. Figure 2 shows the mixed (Zr0.8Sn 〇.2) Ti 〇 4 (^ powder is ii5〇〇c煆 burned for 6 hours, after molding, it is divided into another 145 (rc~165 (rc^M^, _ XRD pattern, as shown in the figure, is a single-ZST phase, There is no secondary phase. Figure 3 is the relationship between (Zr〇.8Sn0.2) TiO junction density and sintering temperature. As shown in the figure, the density increases with temperature and is 165 〇 <t The maximum value (4.8g/cm3) is reached, which is about 96% of the theoretical density. Figure 4 is the relationship between the Sr and Qxf values of ZST and the sintering temperature. In terms of dielectric constant, the relationship between the density of Figure 3 and the sintering temperature. The same trend, which increases with increasing sintering temperature, and reaches a maximum at l65 (rc), because the second degree of hunting indicates less porosity (er = l). When the sintering temperature is increased by four to 1650 (: When 81* is increased from 20.3 to 36.3. In (^*[ aspect, the maximum value is 48857, and its sintering temperature is 1650 ° C. Figure 5 is the relationship between ZST and sintering temperature, due to Tf and material composition, The generated secondary phase is related to the structure, and there is no secondary phase in the experiment. Therefore, Tf is only related to the material composition and structure. Since (Zr〇sSn〇2) Ti〇4 itself has a value close to zero, "It does not change much with temperature. With the increase of temperature, (Zr〇.8Sn〇.2) T of Ti04; f changes from _15 _19 ppm/°c. The main component of the substrate to which the present invention is applied may be represented by the following formula: 1248429 n (Zrx, Sny) Tiz04-(ln)M0; wherein x+y+z=2; η is 0.7~1 ; Μ may be an alkaline earth metal, a transition element or a rare earth element. The preferred range X is 0.6 to 1.1; y is 0.4 to 1.1; ζ is 0 to 0.6. Table 1 shows the physical and dielectric properties of (Zf〇.8Sn〇.2) Ti04. Table 1 Body (HM) Sintering Temperature (°C) Bulk Density (g/cm3) Dielectric Constant Q*f Value Tf (ppmic) Particle Size C/^m) (Zr〇.8Sn〇2) Ti〇4 1450 3.57 20.3 20907 -1.5 0.55 1550 4.49 29.8 36181 -1.4 1625 4.78 36.3 43264 -1.5 1650 4.79 36.1 48857 -1.9 (2) Adding glass substrate: The glass used in this example is as shown in Table 2, and high purity BaC03, B2O3, The ratios of Si〇2, ZnO, CuO, La2〇3, Li2C〇3, and K2CO3 were weighed. The glass systems were first mixed with a spider for 1 hour, and 10 wt/〇 glass was added. ZrG.8Sn().2) Ti04 ceramic powder was placed in a PVC can and mixed with zirconium balls in alcohol for 4 hours. The mixed slurry was dried at 80 ° C, mixed with 2% PVA, granulated, passed through a 60 mesh sieve, and subjected to a single-axis molding machine at lT/cm 2 for 0.5 minute to prepare a test piece of 9.2 x 2 mm. The PVA and impurities were removed at 550 ° C for 3 hours. Density detection, phase identification, microstructure observation and microwave dielectric of samples at 1000 °C, 1050 °C and ll〇〇°C, respectively, at a heating rate of 5 °C/min and holding for 2 hours The measurement of the nature. 15 1248429 Table 2 Glass composition (Wt%) Glass B2O3 S1O2 La2〇3 ZnO BaC〇3 Li2C03 K2CO3 CuO Glass 1 BKBSLC 25 16.7 - - 16.7 12.5 12.5 16.6 Glass 2 BKBSLC 23 15.5 - - 15.5 11.5 11.5 23 Glass 3 ZBSLLC 25 8.3 8.3 25 - 16.7 16.7 Glass 4 ZBSLLC 16.7 8.3 16.7 25 - 16.7 16.6 Add 10 wt% of different ratios of bismuth potassium boron bismuth lithium copper glass and zinc borofluoride lithium bismuth copper glass for low temperature sintering. Figure 6 is an XRD pattern after sintering for 2 hours with the addition of 10 wt% glass, showing a single ZST phase, demonstrating that the addition of 10 wt% glass does not produce a secondary phase. Figure 7 is a graph showing the relationship between the sintered density and the sintering temperature of (ZrG.8Sn().2) Ti〇4 added 1 〇 wt% glass. As shown in the figure, the addition of glass can effectively reduce the sintering temperature and reach a maximum at the sintering temperature of iioo °c, with the addition of Glass3 glass having the best compactness at 1〇50. (: The theoretical density of about 95% can be achieved. Figure 8 is a graph of the dielectric properties of Ti〇4 added 1〇wt〇/❶ glass and sintering temperature. It is shown that er is proportional to the density, and the higher the density & the larger, so the addition of Glass3 glass is optimal, reaching more than 30 at 1〇5〇〇c and reaching a maximum at 1 lOOt. For (Zr〇.8Sn〇.2) Ti〇4, the relationship between the wt〇/〇 glass and the sintering temperature is added. The addition of Glassl glass has the best Q*f at 1〇5 (rc reaches the maximum value: 22366 (10GHz). Figure 10 is (Zr〇.8Sn〇.2) Ti〇4 added 1〇wt% glass and the sintering temperature of 1248429. Because the addition of glass does not produce secondary phase 'so τ f It does not have much influence, and its value is about ± 10 ppm/°c. Table 3 shows the physical and dielectric properties of ceramics formed by adding ZZ(8Sn().2) Ti04. Table 3 Sintering temperature bulk density dielectric constant Q*f Tf particle size formulation ΓΟ (g/cm3) value (ppn/C) (μηι) 1000 3.99 21.5 8482 3.2 HM+Glass3 1050 4.75 30.6 10799 -7.0 2.0 1100 4.77 31.7 2456 -11.3 1000 3.4 16.4 3163 4.8 HMK}lass4 1050 4.04 24.7 1652 -5.1 2.0 1100 4.73 31.2 1408 -9.6 1000 4.51 28.1 1997 -12.4 HM+Glass 1 1050 4.73 30.5 22366 1.7 3.2 1100 4.63 29.4 6145 2.4 (3) Fineness of the powder: (ZrG.8Sn().2) The bulk material of the Ti04 ceramic powder is calcined, and a total amount of 10% by weight of glass is added, and then a 3 mm bead ball mill is added in a planetary ball mill for 12 hours. The post slurry was dried at 80 ° C, and sampled for powder characteristics analysis; 2 wt% PVA was mixed and granulated, passed through a 60 mesh sieve, and subjected to a single-axis molding machine at lT/cm 2 for 0.5 minute to prepare a test piece 9.2. X2mm, the test piece was held at 550 °C for 3 hours, and the PVA and impurities were removed. The temperature was 950 °C, l〇〇〇 °C and 1050 °C, respectively, and the heating rate was 5 °C/min. The densification test, phase identification and measurement of microwave dielectric properties of the samples after sintering 17 1248429 were carried out for 2 hours. 10 wt% of different ratios of lanthanum potassium boron lanthanum lithium copper glass and zinc boron lanthanum lithium lanthanum copper glass are added to reduce the particle size to below l//m, increase the sintering characteristics of the powder, and then perform low temperature sintering. . Fig. XI (Zr〇.8Sn〇.2) A graph showing the relationship between the sintered density and the sintering temperature after Ti04 is added with different glasses for powder finening. By lowering the particle size, the sintering temperature can be effectively lowered and the density can be increased. Adding 10 wt ° / 〇 different ratios of lanthanum potassium boron lanthanum lithium copper glass and zinc boron lanthanum lithium lanthanum copper glass can be obtained by sintering at 1 ° C for 2 h > 95% theoretical density, and at 105 (TC reaches the maximum value. Fig. 12 (Zr〇.8Sn〇.2) The relationship between sr and sintering temperature after Ti04 is added with different glasses for powder miniaturization. As shown in Figure 8, but 81 at 1000 °C When it reaches 30 or more, the temperature required for the fineness of the powder is reduced by 50 ° C. Figure 13 (Zr〇.8Sn〇.2) The relationship between the Q*f and the sintering temperature after the powder is refined by adding different glasses of Ti04 The addition of Glass3 glass has the best Q*f, up to 9000 (10 GHz). Figure 14 (Zr〇.8Sn〇.2) The relationship between Tf and sintering temperature after Ti04 is added with different glass for powder miniaturization Fig. As shown in Fig. 10, since there is no secondary phase, there is not much influence on the sum, and the value is about ± 10 ppm / ° C. Table 4 is (ZrG.8Sn(). 2) Physical and dielectric properties of ceramics formed by adding glass to Ti04 for powder finening. 18 1248429 Table 4 Formulation sintering temperature (°C Bulk density (g/cm3) Dielectric constant Q氺f value Tf (ppm/°C) Particle size (μηι) 950 3.89 20.7 9920 9.5 HM+Glass 3 1000 4.84 30.5 9614 -4.9 0.8 1050 4.96 31.7 7914 -9.4 950 3.9 21.9 2037 8.1 HM+Glass 1 1000 4.68 28.8 4201 -1.3 0.7 1050 4.88 31.8 2956 3.1 950 4.4 26.8 1781 -9.0 HM+Glass 2 1000 4.8 30.4 1374 -3.9 0.9 1050 4.81 30.7 4213 -2.3 The advantages of the invention are listed below: 1. It can effectively reduce the sintering temperature of ZST microwave dielectric ceramic to below 1000 °c, and can maintain the original sr at the same time, achieving good microwave dielectric properties of i:f S ±30ppm/°C, Q*f> 5000 2 · Suitable for co-firing with metal electrodes with lower melting point and cheaper, increasing the content of low melting point metal in metal electrode, and applied to the manufacture of metal-containing electrode components such as filters, resonators and capacitors, which can reduce the cost. Containing heavy metals such as lead, cadmium and tellurium, in accordance with the requirements of environmentally friendly materials. The above detailed description is specific to the possible embodiments of the present invention, but the embodiment is not intended to limit the scope of the patent of the present invention. Benchuang Equivalent implementation or modification of the artistic spirit shall be included in the scope of the patent in this case. 19 1248429 In summary, this case is not only innovative in terms of technical thinking. Due to the above-mentioned characteristics and advantages, it is clear that it meets the statutory creation patent requirements of novelty and progressiveness, and applies for it according to law. You are requested to approve the creation of this patent. The application case, to encourage creation, to the sense of virtue. [Simple diagram of the figure] Figure 1 is the phase diagram of ZrxTiySnz〇4 (x+y+z=2); Figure 2 is the XRD pattern of ZST sintered at different temperatures; Figure 3 is the sintering of ZST at 1450~165 (sintered after TC sintering) The relationship between density and sintering temperature, Figure 4 is the relationship between ZST's sr & Q*f and sintering temperature; Figure 5 is the relationship between ZST and sintering temperature; Figure 6 is ZST adding 10 wt% glass for sintering 2 XRD pattern after hours; Figure 7 is a graph showing the relationship between the sintering density of 10 wt% glass and the sintering temperature of ZST; Figure 8 is the relationship between the dielectric properties of ZST added 10 wt°/〇 glass and sintering temperature; ZST4 added 10 wt% glass Q*f and sintering temperature relationship; Figure 10 is ZST added 10 wt% glass ~ and sintering temperature relationship; Figure XI ZST added different glass for powder finening after sintering density 20 1248429 Relationship with sintering temperature; Figure 12: ZST added different glasses for powder refinement after sr and sintering temperature; Figure 13 ZST added different glass for powder quenching Q*f and sintering temperature Diagram; Figure 14 ZST adds different glass for powder After the finer i: graph 21 f and sintering temperature.

Claims (1)

1248429 十、申請專利範圍: 1. 一種低溫燒結微波介電陶瓷,其包含: 一本體基材,主要係為 n( Zrx,Sny ) Tiz〇4_(l-n)MO ; 其中,x+y+z=2,x 為 0·6〜1·1,y 為 0.4〜1.1,z 為 0〜0·6 ; η 為0.7〜1 ; Μ為驗土金屬、過渡元素或稀土元素;其特徵在 於,1248429 X. Patent application scope: 1. A low-temperature sintering microwave dielectric ceramic comprising: a body substrate, mainly n(Zrx, Sny) Tiz〇4_(ln)MO; wherein x+y+z= 2, x is 0·6~1·1, y is 0.4~1.1, z is 0~0·6; η is 0.7~1; Μ is a soil test metal, transition element or rare earth element; 於該本體基材中添加一玻璃基材,該玻璃基材之比例佔本 體基材與玻璃基材總量的1〜50wt%,包含15〜30wt%B2O3、 5〜30 wt% Si02、5〜30 wt% La203、0〜30 wt% ZnO、0〜30 wt% BaC03、0〜20 wt% Li2C03、0〜20 wt% K2C03 及 0〜25 wt% CuO。 2·如申請專利範圍第1項所述之一種低溫燒結微波介電陶 竟,其中該玻璃基材包含15〜30wt% B2〇3、5〜20 wt% Si02、 5〜20 wt% La2〇3、20〜30 wt% ZnO、10〜20 wt% BaC03、10〜20 wt% Li2C03、5〜20 wt% K2C03 及 15〜25 wt% CuO。 3·如申請專利範圍第1項所述之一種低溫燒結微波介電陶 瓷,其中該玻璃基材包含15〜26wt% B2〇3、8〜17 wt% Si02、 8〜17 wt% La2〇3、25 wt% ZnO、15〜17 wt% BaC03、10〜17 wt0/〇Li2C03、11 〜13 wt% K2C03 及 15〜25 wt% CuO。 4·如申請專利範圍第1項所述之一種低溫燒結微波介電陶 瓷,其中該玻璃基材為鋇鉀硼矽鋰銅系,其包含22〜26wt°/〇 22 1248429 B2〇3、15〜17 wt% Si02、15〜17 wt% BaC03、11 〜13 -wt°/〇Li2C03、11 〜13 wt% K2C03 及 15〜24 wt% CuO。 5·如申請專利範圍第4項所述之一種低溫燒結微波介電陶 瓷,其中該玻璃基材為鋇鉀硼矽鋰銅系,其包含25wt% B2〇3、16·7 wt% Si02、16_7 wt% BaC03、12·5 wt%Li2C03、 , 12.5 wt% K2CO3 及 16.6 wt% CuO 〇 6·如申請專利範圍第4項所述之一種低溫燒結微波介電陶 • 瓷5其中該玻璃基材為鋇鉀硼矽鋰銅系,其包含23 wt% B2〇3、15.5 wt% Si02、15·5 wt% BaC03、11.5 wt%Li2C03、 11.5 wt% K2CO3 及 23 wt% CuO 0 7·如申請專利範圍第1項所述之一種低溫燒結微波介電陶 瓷,其中該玻璃基材之比例佔本體基材與玻璃基材總量的 10wt% 〇 8·如申請專利範圍第1項所述之一種低溫燒結微波介電陶 ® 瓷,其中該玻璃基材為辞硼矽鋰鑭銅系,其包含15〜26wt% B2O3、8〜9 wt% Si02、8〜17 wt% La203、25 wt% ZnO、16〜17 wt0/〇Li2C03 及 15〜17 wt°/〇 CuO。 9·如申請專利範圍第8項所述之一種低溫燒結微波介電陶 瓷,其中該玻璃基材為辞硼矽鋰鑭銅系,其包含25wt% B2O3、8·3 wt〇/〇 Si〇2、8·3 wt% La2〇3、25 wt% ΖηΟ、16·7 wt%Li2C03 及 16.7 wt% CuO。 23 1248429 10.如申請專利範圍第8項所述之一種低溫燒結微波介電陶 瓷,其中該玻璃基材為鋅硼矽鋰鑭銅系,其包含16.7wt% B2O3、8.3 wt% Si〇2、16.7 wt% La2〇3、25 wt% ΖηΟ、16·7 wt%Li2C03 及 16.6 wt% CuO。Adding a glass substrate to the bulk substrate, the proportion of the glass substrate is 1 to 50 wt% of the total amount of the bulk substrate and the glass substrate, and comprises 15 to 30 wt% of B2O3, 5 to 30 wt% of Si02, 5~ 30 wt% La203, 0 to 30 wt% ZnO, 0 to 30 wt% BaC03, 0 to 20 wt% Li2C03, 0 to 20 wt% K2C03 and 0 to 25 wt% CuO. 2. A low-temperature sintering microwave dielectric ceramic according to claim 1, wherein the glass substrate comprises 15 to 30 wt% B2〇3, 5 to 20 wt% SiO 2 , 5 to 20 wt% La 2 〇 3 20~30 wt% ZnO, 10~20 wt% BaC03, 10~20 wt% Li2C03, 5~20 wt% K2C03 and 15~25 wt% CuO. 3. A low-temperature sintered microwave dielectric ceramic according to claim 1, wherein the glass substrate comprises 15 to 26 wt% B2〇3, 8 to 17 wt% Si02, 8 to 17 wt% La2〇3, 25 wt% ZnO, 15 to 17 wt% BaC03, 10 to 17 wt0/〇Li2C03, 11 to 13 wt% K2C03 and 15 to 25 wt% CuO. 4. A low-temperature sintered microwave dielectric ceramic according to claim 1, wherein the glass substrate is a lanthanum potassium boron lanthanum lithium copper system comprising 22 to 26 wt ° / 〇 22 1248429 B2 〇 3, 15~ 17 wt% Si02, 15 to 17 wt% BaC03, 11 to 13 -wt ° / 〇 Li 2 C03, 11 〜 13 wt% K2C03 and 15 to 24 wt% CuO. 5. A low-temperature sintered microwave dielectric ceramic according to claim 4, wherein the glass substrate is a lanthanum potassium boron lanthanum lithium copper system comprising 25 wt% B2〇3, 16·7 wt% Si02, 16_7 Wt% BaC03, 12·5 wt% Li2C03, 12.5 wt% K2CO3 and 16.6 wt% CuO 〇6. A low-temperature sintering microwave dielectric ceramics according to claim 4, wherein the glass substrate is钡 Potassium borosilicate lithium copper system comprising 23 wt% B2 〇 3, 15.5 wt% SiO 2 , 15 · 5 wt % BaC03, 11.5 wt % Li 2 C03, 11.5 wt % K 2 CO 3 and 23 wt % CuO 0 7 · as claimed The low-temperature sintering microwave dielectric ceramic according to Item 1, wherein the proportion of the glass substrate accounts for 10% by weight of the total amount of the bulk substrate and the glass substrate. ·8. A low-temperature sintering as described in claim 1 Microwave dielectric ceramics, wherein the glass substrate is a boron lanthanum lithium lanthanum copper system comprising 15 to 26 wt% B2O3, 8 to 9 wt% SiO 2 , 8 to 17 wt% La 203, 25 wt % ZnO, 16 〜 17 wt0 / 〇 Li2C03 and 15 ~ 17 wt ° / 〇 CuO. 9. A low-temperature sintered microwave dielectric ceramic according to claim 8, wherein the glass substrate is a boron lanthanum lithium lanthanum copper system comprising 25 wt% B2O3, 8·3 wt〇/〇Si〇2 8.3 wt% La2〇3, 25 wt% ΖηΟ, 16·7 wt% Li2C03 and 16.7 wt% CuO. A low-temperature sintered microwave dielectric ceramic according to claim 8, wherein the glass substrate is a zinc boron lanthanum lithium beryllium copper system comprising 16.7 wt% B2O3, 8.3 wt% Si〇2 16.7 wt% La2〇3, 25 wt% ΖηΟ, 16·7 wt% Li2C03 and 16.6 wt% CuO.
TW93125982A 2004-08-30 2004-08-30 A microwave dielectric with a low sintering temperature TWI248429B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93125982A TWI248429B (en) 2004-08-30 2004-08-30 A microwave dielectric with a low sintering temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93125982A TWI248429B (en) 2004-08-30 2004-08-30 A microwave dielectric with a low sintering temperature

Publications (2)

Publication Number Publication Date
TWI248429B true TWI248429B (en) 2006-02-01
TW200607784A TW200607784A (en) 2006-03-01

Family

ID=37429115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93125982A TWI248429B (en) 2004-08-30 2004-08-30 A microwave dielectric with a low sintering temperature

Country Status (1)

Country Link
TW (1) TWI248429B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690651A (en) * 2012-06-05 2012-09-26 东华大学 Method for preparing Zn2TiO4:Eu3+ fluorescent powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690651A (en) * 2012-06-05 2012-09-26 东华大学 Method for preparing Zn2TiO4:Eu3+ fluorescent powder

Also Published As

Publication number Publication date
TW200607784A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
CN106187141B (en) A kind of CBS system LTCC material and preparation method thereof
CN101318815B (en) Bismuth-based molybdenum-based microwave dielectric ceramic material sintered at ultra low temperature and manufacture of the same
CN101786875B (en) Microwave medium ceramic material with low-temperature sintering spinel structure and preparation method thereof
Liu et al. A novel Li2TiO3–Li2CeO3 ceramic composite with excellent microwave dielectric properties for low-temperature cofired ceramic applications
CN100575301C (en) A kind of low sintering composite microwave medium ceramic in series of lithium, niobium and titanium and preparation method thereof
JP2020526467A (en) Boroaluminosilicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and its manufacturing method
CN108358632B (en) Ultralow-temperature sintered high-Q x f-value microwave dielectric material and preparation method thereof
CN102674829B (en) Low-temperature co-fired Li2MgTi3O8 microwave dielectric ceramic material and preparation method thereof
CN101362647A (en) Low temperature sintering lithium-base microwave dielectric ceramic material and preparation thereof
CN104230329A (en) Low-temperature sintered microwave ceramic material and preparation method thereof
CN102153341A (en) Medium dielectric constant low-temperature co-fired ceramic material and preparation method thereof
CN101913859A (en) Li2Zn3Ti4O12 microwave dielectric ceramic material and low temperature sintering method thereof
CN109650871A (en) A kind of ZnAl2O4Ceramic systems material and preparation method thereof
Gui et al. Synthesis of low temperature firing scheelite-type BaWO4 microwave dielectric ceramics with high performances
Zuo et al. A new series of low-temperature cofirable Li3Ba2La3 (1-x) Y3x (MoO4) 8 microwave dielectric ceramics
JP2024520706A (en) Low-dielectric constant wollastonite-based low-temperature co-fired ceramic material and its manufacturing method
CN101913858B (en) Li2O-ZnO-TiO2 microwave medium ceramic material and preparation method thereof
Wang et al. Effects of Li 2 O–B 2 O 3–SiO 2–CaO–Al 2 O 3 glass addition on the sintering behavior and microwave dielectric properties of Li 3 Mg 2 NbO 6 ceramics
CN103951425B (en) A kind of temperature-stable scheelite-type structure microwave-medium ceramics and preparation method thereof
Gao et al. High-performance microwave dielectric glass-ceramic with fine secondary structure for ULTCC application
CN105174944A (en) Ultra-wide-temperature high-stability lead-free capacitor ceramic dielectric material and preparation method thereof
CN104016670B (en) A kind of low-temperature sintering temperature-stabilized microwave medium ceramic material and preparation method thereof
CN104387057B (en) A kind of temperature-stable titanio spinelle microwave-medium ceramics and low temperature preparation method thereof
US7928030B2 (en) Microwave dielectric ceramics and method for manufacturing the same
CN107721421A (en) A kind of Zn Nb Ti systems LTCC materials and preparation method thereof