TWI247235B - Position determination and motion tracking - Google Patents

Position determination and motion tracking Download PDF

Info

Publication number
TWI247235B
TWI247235B TW93121594A TW93121594A TWI247235B TW I247235 B TWI247235 B TW I247235B TW 93121594 A TW93121594 A TW 93121594A TW 93121594 A TW93121594 A TW 93121594A TW I247235 B TWI247235 B TW I247235B
Authority
TW
Taiwan
Prior art keywords
distance
search
determining
angle
operable
Prior art date
Application number
TW93121594A
Other languages
Chinese (zh)
Other versions
TW200525412A (en
Inventor
Tong Xie
Marshall T Depue
Douglas M Baney
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/758,981 external-priority patent/US7078672B2/en
Priority claimed from US10/759,646 external-priority patent/US7184022B2/en
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of TW200525412A publication Critical patent/TW200525412A/en
Application granted granted Critical
Publication of TWI247235B publication Critical patent/TWI247235B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Systems and methods for position determination and motion tracking for use in a processor based system (301). Embodiments may incorporate a redirector (130) that moves in at least one direction (133) about a fixed point (132), an object (101) operable to reflect a search beam (131) as a location beam (141), logic (160) operable to determine at least one angle of position (103) for the object from the orientation of the redirector, and logic (160) operable to determine a distance (104) of the object from a fixed point (132).

Description

1247235 九、發明說明: I:發明戶斤屬之技術領域3 相關申請之交互參考 本申請係相關於標題為“使用干涉技術於光學追蹤目 5 標之方法與系統”之美國專利申請序號10/758981案之待決 檔案,其代理人編號為10030168-1,其揭示配合此處參考。 技術領域 本發明係針對位置判定和動作追蹤領域,且更明確地 說係關於用以輸入至處理器為主系統的航程。 10 【A'T 】 發明背景 目前電腦輸入裝置,例如,滚球滑鼠、光學滑鼠以及 其他指示裝置經由表面至滑鼠之相對動作而追蹤它們的位 置。當一般的滾球滑鼠移動越過一表面時,内部球轉動且 15 驅動一組計數X方向步驟數和Y方向步驟數之光學編碼 器。電腦使用這資訊以判定於各座標中游標應該相對於其 先前位置移動多遠。一般的光學滑鼠使用攝影機以捕獲表 面的連續影像,且比較這些影像以計算滑鼠已相對於先前 的位置移動多遠。滚球滑鼠和光學滑鼠因此判定相對之移 20 動,並且不使用固定的參考框。 【發明内容】 發明概要 依據本發明,可判定相對於一參考點之物件位置。經 由物件位置的重複判定,可追蹤在參考框内之物件動作。 1247235 依據本毛明,光束可掃射相關之參考點且遍及對應至 搜尋區域之被定義的弧形區域。—物件,當適當地配置時, 當被置於搜尋區域之内時將反射這光束。在反射時之光束 角度被使用作為在參考框内之物件的位置座標。該被反射 5的光束被指引至檢測器,其與控制光束組合以形成一種干 涉圖型。經由干涉技術,自參考點之物件距離由該干涉圖 型中被計算出並且被使用作為在參考框内之物件的第二位 f座异之轉與在反射_之光束肖度組合以定 10 件相對於*考點之二維的位置。物件動作利用重複地 1疋物件位置而被追蹤。 佤像奉發明 ^ 一反射器,例如,制動反射器,可被固 ㈣物件上、導致光束沿著其人射通道而反射回去。寬頻 15 :杜源也可μ破制以纽光束並且彻朝於低同調干 精確地判定自參考點之物件距離。依據本 和方法可提供處理器為主系統中的輸入I置 哗八間單說明 依據本發日㈣於判定位置之實施例的分解圖 依據本發明實施例之位置糾和㈣追 第3圖是展示依據本發明被配 之位軸動作的實施例之圖形;以:爲裝置 ^嶋她依據她細之編統 L實施冷式】 20 1247235 李父佳實施例之詳細說明 相對動作追縱系统—般無法定位一組物件位置,並且 僅判疋相對於開始點之移動。使用參考框之系統 能夠判定相對於一參考點之物件位置的優點,並且^果 物件位置被重複地判 疋’則物件之進一步動作可準確地袖 追蹤。於應用上,例 破 提供超越傳統相對動补+、 勒作 跡球滑鼠從表面被提昇、 果執 汁’而被移動至新的位置,並且接荽 返回至該表面,判定相 筏者 10 15 20 ,θ 邳對動作之系統將不能夠追蹤這移動。 但疋,經由位置判定、占 、 追蹤移動之系統,將能夠追蹤這移動。 為了相對於一固定 疋原”、、占’於空間中定位一組物件,复 各空間維度之座標應Η /、 ^亥疋已知。為了於二維空間中定位一 、、且物件,例如,—如 又兩、、且座標被使用。於一種合宜的二維 座糸統之極座標φ ” T,一組物件位置可使用 之物件距離作為位晋“ u疋原點 座軚以及使用連接該物件和原點之線 相對於-預定0。方位 被定義於二維空間φ度作心—位置座標’而完全地 ffl ο 。對於二維系統,一般三組座標被使 於石且的三維座標系統之球形座標系統中,一 位置可被說明,复 、’ ”吏用離一固定原點之物件距離作為第一 座標,連接該物件$ ϋ原點之線相對於第一 〇。方位構成之角 度(例如,方位角)你 為弟二座標,並且該線與第二〇。方位 ^又(例如,高度)作為第三座標。 二回*本發明之配置而判定位置並且被使用以 判疋於二維空間由 物件101的位置之系統的分解圖。於第 1247235 1圖之系統操作中,光源110沿著光源通道投射光源光束 lu ’亚且校準器112校準光源光束111。於第1圖實施例中, 光源110;!:產生1頻發射光束的電磁發射之寬頻或者低同 调源。實施例並不限定於寬頻或者低同調發射,但是可使 5用任何同調程度之電磁發射。沿著⑴圖之光源通道被配置 的疋光束分割器120。於第1圖實施例中,光束分割器12〇是 一組部份地反射表面,其可分割光源光束lu成為搜尋光束 131及控制光束121。實施例並不限定於以第1圖所展示方式 定位之反射表面,但是卻可使用極化光束分割器、棱鏡、 10或者可能適當地分割光源光束111之其他光學元件。於展示 之實施例中,控制光束121被光束分割器12〇引導朝向反射 器122,其使控制光束改向沿著檢測器通道15ι而進入檢測 器150。該部分地反射光束分割器120通過搜尋光束131而允 許它前進到改向器1。於第1圖展示之實施例中,改向器 15 130是被裝設在樞紐點132上之反射表面。實施例並不限定 於設在極紐點上之反射表面,但疋,可以包含一組棱鏡, 一組折射裝置或者移動、轉動、掃射、或者能夠經由搜尋 區域而不同樣地移動搜尋光束131之任何其他裝置。 如第1圖進一步地展示,改向器130經由弧形133移動 20 (藉由步進馬達、磁控制或者任何其他適當的裝置)導致搜尋 光束131被掃攝經由所有搜寻區域140。如果物件101被置放 於搜尋區域I40中,則搜尋光束131將在改向器130移動時打 擊到物件之一些點上。於第1圖之實施例中,制動反射器102 被固定在物件ι〇ι。制動反射為具有沿著入射通道反射入射 1247235 光束回原處之能力。如果物件101具有制動反射表面102, 例如,利用麵制動反射帶侧向地被蚊,則搜尋光束131 將撞擊物件101並且沿著人射通道被反肺原處作為位置 光束Μ卜位置光束Ml接著前進収向器丨継且再次地利 5用搜哥光束131被指引而沿著才目同通道進行移動,但是在相 對之方向移動。位置光束M1接著前進到光束分割器m並 且藉由光束分割器120沿著檢測器通道151被反射。因此, 當改向器130是在角度103時,位置光束141和控制光束i2i 皆沿著檢測器通道151而到達檢測器。 1〇 第1圖,同時也包含邏輯160以判定物件ιοί之位置角 度。當系統檢測位置光束141之存在時,系統將注意到,改 向器130角度可被使用以判定物件是在相對於系統之何 處。如果當光束131是對著改向器130入射而其表面是垂直 於光束131通道時改向器130被定義為〇◦,則物件101方向可 15被判定。當改向器130是在角度103時,系統將產生位置光 束141。如果角度1〇3對應至30。,則位置光束141之產生表 示物件沿著30。線置放。 為判定二維空間之物件位置,兩組位置座標應該是已 知的。於第1圖實施例中,位置光束141和控制光束121被使 20用以使用干涉技術而判定距離1〇4並且使用從一參考點之 物件101距離作為第二位置座標。位置光束141和控制光束 是對著檢測器150入射。當被組合時,光束將建設性地 和破壞性地干涉而導致在檢測器150被量測之亮和暗的干 涉頻帶。那些干涉頻帶具有一對比-亮者是多亮,或者暗者 ^47235 多日^^ 不s、&quot;'亚且這對比是位置光束141和控制光束121行進的 L道長度之直接函數。第丨圖之實施例使用一種寬頻或 者低同調光源以產生一組被分割之寬頻光源光束U1。在檢 測器被觀察且藉由被重新組合光束被產生之干涉頻帶之對 5比,被使用以計算控制光束121和位置/搜尋光束丨31、141 之通道長度差量。當從分割器12〇至改向器13〇的已知距離 被移除吋,距離140保持著。藉由分析該對比函數,第工圖 之系統因此判定距離1〇4。這距離判定方法被稱為低同調干 涉技術,並且將進一步地被說明於配合此處參考之光學文 10章13,186(1988)的“低同調干涉技術,,中,其是由 A.F.Fercher,等人所發表。 依據本發明之一實施例,使用低同調干涉技術以判定 距離104。依據本發明的其他實施例可以包含,但是並不為 限定,依據多數個離散波長之干涉技術量測或者依據單一 15波長光源之干涉技術量測。被使用之方法應該適當地四配 於光源110。例如,如果光源110是雷射,單一波長干涉技蚀_ 之方法可以被採用。如果發射三組波長之_光源被使用, 則三組波長干涉技術方法可以被使用。 第1圖展示且說明當置放一組物件於二維空間時之二 20 施例。但是,依據本發明之實施例也可置放物件於二維* 間中。如第1圖展示之配置,改向器130可容易地適用於經 由正交地被配置且各具有0。方位之兩弧形區之掃攝搜芦光 束131。當物件被置放且位置光束被產生時,系統可接著指 明相對於它們分別的〇°方位之各弧形區中的改向哭角 1247235 度。從改向器130所被量測之兩組角度與距離1〇4 一起組合 提供球形座標系統之三組位置座標。另外地,如果校準器 是圓柱形鏡片或者其他光學裝置,而以垂直於傳輸之一 方向延長光源光束111,校準器112可以被使用以提供第二 5位置角度。如果物件被提昇而離開表面,則此延長提供檢 測物件101之能力。第二位置角度接著可使用例如此處說明 之干涉技術方法而被判定。 為了判定相對於一固定參考點之物件位置,依據本發 明之實施例可以使用第2圖展示之一般化方法2〇〇。於步驟 10 201中,固定參考點和對應於0。角度之方位被建立。二維系 統可以使用極座標且可使用固定參考點作為量測距離之原 點,並且可使用該〇。方位作為量測角度之基準。三維系統 可以使用球形座標設定固定參考點作為量測距離之原點, 使用該0。方位作為量測第一角度之基準,並且使用另一〇。 15方位作為量測正交於第一角度之第二角度的基準。於步驟 2〇2中,光源光束被分割或者被分離為一組控制光束以及一 j位置光束。該控制光束接著利用固定通道被發出至檢測 為’而搜尋光束循著-分離通道至該固定參考點。於步驟 203中’續尋光束在該參考點附近被掃攝且經由從第一〇。 方位被ϊ測之弧形區。如果系統是判定於三維空間之位 置,則搜尋光束可被掃攝經由從另一〇。方位被量測之第二 彡化區(正父於第一弧形區)。於步驟2〇4中,在這狐形區之 ^組適當地被設計之物件沿著其人射通道反射回該搜 +光束。4適當地被設計之物件是任何被配置之物件,因 11 1247235 此其將沿著其入射通道而反射回該搜尋光束。一種方法固 定-制動反射器,-能夠沿著入射通道反射回入射光之棱 鏡式形狀’至一物件表面。被固定於制動反射器之物件可 沿著其入射通道而反射回搜尋光束(例如,第旧之光束 5 131)。實施例並不限定於制動反射器之使用,但是可以容 易地適用於能夠沿著入射通道反射回搜尋光束之任何配置 的使用。於步獅5巾,這被反㈣光束被導致與控制光束 重新組合,並且相對於固定參考點之物件距離,從兩組光 束之干涉圖型被判定。於步驟206中,相對於該〇。方位之搜 10尋光束角度被判定。當被組合時,距離1〇4和角度(0)1〇3 定義物件101二維空間之位置。 依據本發明之實施例可以被使用以判定位置且或者追 蹤滑鼠、描畫針或者任何其他的電腦輸入裝置之動作。進 一步地,依據本發明之實施例可使用任何物件以輸入供用 15於電腦之位置,只要該物件可適用於反射搜尋光束作為位 置光束。 第3圖是展示被配置以判定電腦輸入裝置位置和追蹤 動作之實施例。電腦系統3〇〇之範例適用於使用電腦輸入系 統301。系統301允許使用者操作描晝針302且使用圖形使用 20者界面應用309而提供位置資訊至電腦系統300。寬頻的光 源303產生利用分割器304被分割之光束。控制光束接著指 向檢測器305,且搜尋光束被指引朝向改向器3〇6。改向器 3 06抑攝搜哥光束越過作用區域(例如,桌面或者其他的區 域)。當搜尋光束打擊到描晝針302時,制動反射器3〇7沿著 12 1247235 入射通道反射回搜尋光束作為位置光束。該位置光束接著 利用系統301被改方向以在檢測器3〇5與控制光束組合。藉 由相似於上述之方法,系統接著計算相對於固定點之描晝 針302位置。搜尋光束之重複地掃攝導致描晝針302位置被 5重複地判定。藉由儲存該連續的位置判定於記憶體中,系 統300通常可追蹤描畫針3〇2動作。以此方式被配置之實施 例可提供滑鼠、描晝針或者其他電腦輸入應用較優於傳統 相對動作之應用。 依據本發明之各種實施例允許追蹤在任何區域上動作 10之旎力並且提供有用於許多應用之特定位置資訊。例如, 第3圖之描晝針3〇2可被使用以指示映圖308上之位置,轉達 這資Λ至電腦系統3〇〇。描晝針3〇2可被使用以追蹤映圖308 上之物件,並且系統3〇1將提供它們的位置。當利用光源3〇3 被放射之發射同調長度被使用以定義航程區域(例如第1圖 15之搜尋區域)時,系統3〇1同時也可適用於限制描晝針3〇2位 置於固定範圍内。 同調長度藉由下列方程式被判定: 發射850nm之光線且具有.01nm之線寬度的光源3〇3,將導 20致同调長度為以及邊長大約為5.1 cm之正方形搜尋區 域。此系統301可限制描畫針3〇2在適當的地理區域之内(例 如,第1圖之區域140)的檢測。這避免因跨越空間追蹤描畫 針或者追蹤在搜尋區域之外但是仍然於搜尋光束通道中的 13 1247235 反射物件之電力及其他資源的浪費。 當經由電腦可執行的指令被製作時,本發明實施例之 各種元件在本質上是定義此各種元件之操作的軟體數碼。 d亥可執彳于令或者軟體數碼可以由可讀取媒體(例如,硬碟 5 驅動媒體、光學媒體、EPROM、EEPROM、卡帶媒體、卡 匡媒體、快閃記憶體、ROM、記憶條、及/或其類似者)被 付到或者經由資料信號從通訊媒體(例如,網際網路)被通 訊。事實上,可讀取媒體可包含任何可儲存或者轉送資訊 之媒體。 ‘ 10 第4圖展示適用於依據本發明實施例之電腦系統4〇〇的 範例。中央處理單元(CPU)401被耦合至系統匯流排4〇2。 CPU 401可以是任何一般用途之CPU,例如,英代爾公司之 PENTIUM®4處理器。但是,本發明不限制於cpu401之結 構’只要CPU 401支援如此處說明之發明操作。CPU 401可 15 以執行依據本發明實施例之各種邏輯指令。 電腦系統400可以包含隨機存取記憶體(raM)403,其 可以是SRAM、DRAM、SDRAM或者其類似者。電腦系統 400也可以包含唯讀記憶體(r〇m)404,其可以是prom、 EPROM、EEPROM或者其類似者。RAM 403和 ROM 404保 2〇 持使用者和系統資料以及程式,如本技術所習知。 電腦系統400也可以包含輸入/輸出(1/〇)轉接器4〇5、通 訊轉接器411、使用者界面轉接器408以及顯示轉接器409。 於某些實施例中,I/O轉接器405、使用者界面轉接器408、 及/或通訊轉接器411可以引動使用者與電腦系統4〇〇互 14 1247235 動,以便輸入相關於開關(例如,滑鼠按紐)之資訊。通訊轉 接态411也可以提供通訊至網路412。 I/O轉接器405可以連接儲存裝置4〇6,例如一組或者多 組硬碟驅動器、小型碟片(CD)驅動器、軟碟驅動器,卡帶 5驅動器等等,至電腦系統400。當RAM 403是不足以供用於 相關於追蹤物件動作之儲存資料的記憶體需要時,該等儲 存裝置可以被採用。使用者界面轉接器4〇8耦合使用者輸入 裝置至電腦系統4〇〇,該使用者輸入裝置例如是鍵盤413、 位置判定系統407(例如,第1圖展示之系統實施例)、以及麥 10克風4丨4及/或輸出裝置(例如,擴音機415)。顯示轉接器409 利用CPU 401被驅動以控制顯示裝置41〇上之顯示,而顯 示,例如,本發明實施例之使用者界面。 本發明不限定於系統4〇〇之結構。例如,任何適當的處 理器為主之裝置可以被採用,其非限制性地包含個人電 15腦、膝上型輕便電腦、電腦工作站以及多處理器伺服器。 而且,依據本發明之實施例可以被製作於應用特定積體電 路(ASIC)或者非常大型積體(VLSI)電路上。 【圖式簡單說明】 第1圖是依據本發明用於判定位置之實施例的分解圖; 20 第2圖是展示依據本發明實施例之位置判定和動作追 蹤方法的流程圖; 第3圖是展示依據本發明被配置以判定電腦輸入裝置 之位置和追蹤動作的實施例之圖形;以及 第4圖展示適用於依據本發明實施例之電腦系統的範例。 15 1247235 【主要元件符號說明】 101···物件 102···制動反射器 103…角度 104···距離 110···光源 111…光源光束 112···校準器 120···分割器 12卜··控制光束 122···反射器 130···改向器 13卜··搜尋光束 132···樞紐點 13 3…5瓜形 140···搜尋區域 141…位置光束 150···檢測器 15卜··檢測器通道 160…邏輯 300…系統 301…系統 302···描畫針 3 0 3…光源 304···分割器 305···檢測器 306···改向器 307···制動反射器 308…映圖 309···圖形使用者界面應 400···電腦系統 401···中央處理單元(CPU) 402···系統匯流排 403…隨機存取記憶體(RAM) 404···唯讀記憶體(ROM) 405···Ι/Ο轉接器 406···儲存裝置 407···位置判定系統 408···使用者界面轉接器 409···顯示轉接器 410···顯示裝置 411···通訊轉接器 412···網路 413···鍵盤 414···麥克風 415…擴音機 16</ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The pending file of 758,981, whose agent number is 10030168-1, is disclosed in conjunction with this reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to the field of position determination and motion tracking, and more specifically to a range for input to a processor-based system. 10 [A'T] BACKGROUND OF THE INVENTION Computer input devices, such as ball squirrels, optical mice, and other pointing devices, track their position via surface to mouse relative motion. When a typical ball mouse moves over a surface, the inner ball rotates and 15 drives a set of optical encoders that count the number of steps in the X direction and the number of steps in the Y direction. The computer uses this information to determine how far the cursor should move relative to its previous position in each coordinate. A typical optical mouse uses a camera to capture successive images of the surface and compares the images to calculate how far the mouse has moved relative to the previous position. The ball mouse and the optical mouse therefore determine the relative movement and do not use a fixed reference frame. SUMMARY OF THE INVENTION According to the present invention, the position of an object relative to a reference point can be determined. The object motion in the reference frame can be tracked by repeated determination of the position of the object. 1247235 According to the present invention, the beam can sweep the associated reference point and extend over the defined arcuate area corresponding to the search area. - The object, when properly configured, will reflect this beam when placed within the search area. The beam angle at the time of reflection is used as the position coordinate of the object within the reference frame. The reflected light beam is directed to a detector that combines with the control beam to form an interference pattern. Through the interference technique, the object distance from the reference point is calculated from the interference pattern and used as the second position of the object in the reference frame, and the beam is combined with the beam in the reflection_ The position of the piece relative to the two-dimensional position of the test site. The object action is tracked using the position of the object repeatedly. The image is invented. A reflector, such as a brake reflector, can be placed on a solid object to cause the beam to be reflected back along its human channel. Broadband 15: Duyuan can also break the beam and thoroughly determine the distance from the reference point. According to the method and the method, the processor can be provided as an input I in the main system. The eight-segment description of the embodiment according to the present invention (four) is determined according to the embodiment of the present invention. A graphic representation of an embodiment of a bit axis action in accordance with the present invention is shown; in order to: device 嶋 she implements a cold type according to her fine structure L 20 1247235 Li Jiajia embodiment details the relative action tracking system - It is generally impossible to locate a group of objects and only determine the movement relative to the starting point. The system using the reference frame is able to determine the advantage of the position of the object relative to a reference point, and the position of the object is repeatedly judged&apos; then the further action of the object can be accurately tracked. In application, the example provides a transcendence of the traditional relative movement +, the stroke of the mouse is lifted from the surface, and the juice is moved to a new position, and the connection is returned to the surface to determine the opponent 10 15 20 , θ 邳 The system of actions will not be able to track this movement. However, the system will be able to track this movement via the system of position determination, occupancy, and tracking movement. In order to locate a group of objects in a space relative to a fixed 疋 、 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , if two, and the coordinates are used. In a suitable two-dimensional coordinate system, the coordinates φ ” T, the object distance of a group of objects can be used as the position of the “U疋 origin seat and use connection” The line of the object and the origin is relative to - predetermined 0. The orientation is defined in the two-dimensional space φ degrees as the heart-position coordinate 'and completely ffl ο. For the two-dimensional system, generally three sets of coordinates are made to the three-dimensional coordinates of the stone In the spherical coordinate system of the system, a position can be described, and the distance of the object from a fixed origin is used as the first coordinate, and the line connecting the origin of the object is relative to the first one. The angle of the azimuth (for example, azimuth) is the second coordinate of the brother, and the line is the second one. The orientation ^ is again (for example, height) as the third coordinate. Two times * The configuration of the present invention determines the position and is used to determine an exploded view of the system of the position of the object 101 in the two-dimensional space. In the system operation of Figure 1247235, light source 110 projects a source beam lu' along the source channel and calibrator 112 calibrates source beam 111. In the embodiment of Fig. 1, the light source 110;!: produces a broadband or low coherent source of electromagnetic emission of a 1-frequency transmitted beam. Embodiments are not limited to broadband or low coherent emissions, but can be used with any level of electromagnetic emissions. The pupil beam splitter 120 is disposed along the light source channel of the (1) diagram. In the first embodiment, the beam splitter 12A is a set of partially reflective surfaces that divide the source beam lu into a search beam 131 and a control beam 121. Embodiments are not limited to reflective surfaces positioned in the manner shown in Figure 1, but polarized beam splitters, prisms, 10 or other optical components that may suitably split source beam 111 may be used. In the illustrated embodiment, the control beam 121 is directed by the beam splitter 12A toward the reflector 122, which redirects the control beam along the detector channel 15i into the detector 150. The partially reflected beam splitter 120 allows it to advance to the redirector 1 by searching for the beam 131. In the embodiment shown in FIG. 1, the redirector 15 130 is a reflective surface that is mounted on the pivot point 132. The embodiment is not limited to the reflective surface provided on the pole point, but may comprise a set of prisms, a set of refractive means either moving, rotating, sweeping, or capable of moving the search beam 131 via the search area without similarly Any other device. As further shown in FIG. 1, redirector 130 moves 20 (by stepper motor, magnetic control, or any other suitable means) via arc 133 to cause search beam 131 to be scanned through all of search zones 140. If the object 101 is placed in the search area I40, the search beam 131 will strike some point on the object as the redirector 130 moves. In the embodiment of Fig. 1, the brake reflector 102 is fixed to the object ι〇ι. The brake reflection is the ability to reflect the incident 1247235 beam back along the incident channel. If the object 101 has a brake reflecting surface 102, for example, using a surface braking reflection belt to laterally be mosquitoes, the search beam 131 will strike the object 101 and be displaced along the human channel as a position beam to position the position beam Ml. The forward retractor is again deflected by the Sogou beam 131 and moved along the same channel, but in the opposite direction. The position beam M1 then proceeds to the beam splitter m and is reflected by the beam splitter 120 along the detector channel 151. Thus, when the redirector 130 is at the angle 103, both the position beam 141 and the control beam i2i travel along the detector channel 151 to the detector. 1〇 Figure 1, also contains logic 160 to determine the position angle of the object ιοί. When the system detects the presence of the position beam 141, the system will notice that the angle of the redirector 130 can be used to determine where the object is relative to the system. If the redirector 130 is defined as 〇◦ when the beam 131 is incident on the redirector 130 and its surface is perpendicular to the beam 131, the object 101 direction can be determined. When the redirector 130 is at the angle 103, the system will produce a position beam 141. If the angle 1〇3 corresponds to 30. The generation of the position beam 141 indicates that the object is along 30. Line placement. To determine the position of an object in a two-dimensional space, the two sets of position coordinates should be known. In the embodiment of Fig. 1, the position beam 141 and the control beam 121 are used to determine the distance 1 〇 4 using the interference technique and the distance from the object 101 from a reference point as the second position coordinate. The position beam 141 and the control beam are incident on the detector 150. When combined, the beam will interfere constructively and destructively with the light and dark interference bands that are measured at detector 150. Those interference bands have a contrast-brightness, or darker ^47235 multi-day ^^ no s, &quot;' and this contrast is a direct function of the length of the L-path traveled by the position beam 141 and the control beam 121. The embodiment of the first diagram uses a broadband or low coherent source to produce a set of split broadband source beams U1. The ratio of the interference length of the interference band which is observed by the detector and generated by the recombined beam is used to calculate the channel length difference between the control beam 121 and the position/search beam 丨 31, 141. When the known distance from the divider 12 to the redirector 13 is removed, the distance 140 remains. By analyzing the contrast function, the system of the map thus determines the distance 1〇4. This distance determination method is referred to as a low coherence interference technique and will be further described in the "Low Coherence Interference Technique," which is referred to by AFFercher, in conjunction with the optical text of Chapter 10, 13, 186 (1988). According to an embodiment of the invention, a low coherence interference technique is used to determine the distance 104. Other embodiments in accordance with the invention may include, but are not limited to, measurement based on interference techniques of a plurality of discrete wavelengths or According to the interference technique measurement of a single 15-wavelength source, the method used should be appropriately matched to the light source 110. For example, if the source 110 is a laser, a single-wavelength interference technique can be employed. If three sets of wavelengths are emitted The three sets of wavelength interference techniques can be used. Figure 1 shows and illustrates a second embodiment when placing a set of objects in a two-dimensional space. However, embodiments in accordance with the invention may also be used. The objects are placed in a two-dimensional*. As shown in Figure 1, the redirector 130 can be readily adapted to be configured via two arcuate regions that are orthogonally configured and each having a 0. orientation. The sweeping search beam 131. When the object is placed and the position beam is generated, the system can then indicate the redirection angle of 1247235 degrees in each of the arcuate regions relative to their respective 〇° orientations. The two sets of angles measured by 130 are combined with the distance 1〇4 to provide three sets of position coordinates of the spherical coordinate system. Alternatively, if the aligner is a cylindrical lens or other optical device, it is extended perpendicular to one of the transmission directions. The source beam 111, calibrator 112, can be used to provide a second 5 position angle. This extension provides the ability to detect the object 101 if the item is lifted off the surface. The second position angle can then be used, for example, the interference technique described herein. In order to determine the position of the object relative to a fixed reference point, the embodiment of the present invention may use the generalization method shown in Figure 2. In step 10201, the reference point is fixed and corresponds to 0. The orientation of the angle is established. The two-dimensional system can use the polar coordinates and can use the fixed reference point as the origin of the measurement distance, and can use the 〇. The bit is used as the reference for the measurement angle. The three-dimensional system can use the spherical coordinate to set the fixed reference point as the origin of the measurement distance, using the 0. The orientation is used as the reference for measuring the first angle, and another 〇 is used. Measuring a reference orthogonal to the second angle of the first angle. In step 2〇2, the source beam is split or separated into a set of control beams and a j-position beam. The control beam is then emitted to the detection using a fixed channel. The search beam follows the separation channel to the fixed reference point. In step 203, the 'continued search beam is scanned near the reference point and passes through the arc from the first frame. The orientation is speculated. If it is determined at the position of the three-dimensional space, the search beam can be scanned by the second deuterated region (the normal parent in the first arc region) measured from the other 〇. In step 2〇4, the appropriately designed object in the fox region is reflected back along its human channel to the search beam. 4 A suitably designed object is any configured object, as it will reflect back to the search beam along its entrance path. One method fixes the brake reflector, which can be reflected back along the incident path to the prismatic shape of the incident light to the surface of an object. The object that is fixed to the brake reflector can be reflected back along its entrance path to the search beam (e.g., the old beam 5 131). Embodiments are not limited to the use of a brake reflector, but can be readily adapted for use with any configuration that can be reflected back along the entrance channel to the search beam. In the rifle 5, this is caused by the inverse (four) beam being recombined with the control beam, and the object distance from the fixed reference point is determined from the interference pattern of the two beams. In step 206, relative to the 〇. Search for azimuth 10 The beam angle is determined. When combined, the distance 1〇4 and the angle (0)1〇3 define the position of the two-dimensional space of the object 101. Embodiments in accordance with the present invention may be used to determine position and to track the action of a mouse, a draw pin or any other computer input device. Further, any object may be used in accordance with embodiments of the present invention to input the location of the computer 15 as long as the object is adapted to reflect the search beam as a position beam. Figure 3 is a diagram showing an embodiment configured to determine computer input device position and tracking actions. The computer system example is suitable for use with the computer input system 301. System 301 allows a user to manipulate the tracing needle 302 and use the graphical user interface application 309 to provide location information to the computer system 300. The broadband light source 303 generates a light beam that is split by the divider 304. The control beam is then directed toward detector 305 and the search beam is directed toward redirector 3〇6. The redirector 3 06 suppresses the search beam from crossing the active area (for example, the desktop or other area). When the search beam strikes the tracer 302, the brake reflector 3〇7 is reflected back along the 12 1247235 incident channel as the position beam. The position beam is then redirected by system 301 to combine with the control beam at detector 3〇5. By a method similar to that described above, the system then calculates the position of the tracer 302 relative to the fixed point. Repeated scanning of the search beam causes the position of the tracer 302 to be repeatedly determined. By storing the continuous position in the memory, the system 300 can generally track the action of the drawing pin 3〇2. Embodiments configured in this manner can provide applications where the mouse, tracing needle, or other computer input application is superior to conventional relative motion. Various embodiments in accordance with the present invention allow tracking of the forces of action 10 on any area and provide specific location information for many applications. For example, the tracer 3〇2 of Figure 3 can be used to indicate the location on the map 308, which is transferred to the computer system 3〇〇. Trace pins 3〇2 can be used to track objects on map 308, and system 3〇1 will provide their location. When the emission coherence length of the emitted light source 3〇3 is used to define a range region (for example, the search region of FIG. 15), the system 3〇1 can also be applied to limit the position of the tracer 3〇2 to a fixed range. Inside. The coherence length is determined by the following equation: A light source 3〇3 that emits light of 850 nm and has a line width of .01 nm, will have a homology length and a square search area with a side length of about 5.1 cm. This system 301 can limit the detection of the drawing pin 3〇2 within a suitable geographic area (e.g., area 140 of Figure 1). This avoids wasting the power and other resources of the 13 1247235 reflective object that is traced across the space or traced beyond the search area but still in the search beam path. When the instructions executable via a computer are made, the various elements of the embodiments of the present invention are essentially software numbers that define the operation of such various elements. The dH can be used for readable media (for example, hard disk 5 drive media, optical media, EPROM, EEPROM, cassette media, cassette media, flash memory, ROM, memory stick, and / or the like) is paid or communicated via a data signal from a communication medium (eg, the Internet). In fact, the readable medium can contain any medium that can store or transfer information. ‘10 Figure 4 shows an example of a computer system 4〇〇 suitable for use in accordance with an embodiment of the present invention. A central processing unit (CPU) 401 is coupled to the system bus bar 4〇2. The CPU 401 can be any general purpose CPU, such as the Intel Corporation PENTIUM® 4 processor. However, the present invention is not limited to the structure of cpu 401 as long as the CPU 401 supports the inventive operation as explained herein. The CPU 401 can execute various logic instructions in accordance with embodiments of the present invention. Computer system 400 can include random access memory (raM) 403, which can be SRAM, DRAM, SDRAM, or the like. Computer system 400 may also include read only memory (r〇m) 404, which may be a prom, EPROM, EEPROM, or the like. RAM 403 and ROM 404 maintain user and system data and programs as is known in the art. The computer system 400 can also include an input/output (1/〇) adapter 4〇5, a communication adapter 411, a user interface adapter 408, and a display adapter 409. In some embodiments, the I/O adapter 405, the user interface adapter 408, and/or the communication adapter 411 can motivate the user to interact with the computer system 14 1247235 for input related to Information about the switch (for example, the mouse button). Communication to state 411 can also provide communication to network 412. The I/O adapter 405 can be coupled to a storage device 4, such as one or more sets of hard disk drives, compact disk (CD) drives, floppy disk drives, cassette 5 drives, and the like, to the computer system 400. Such storage devices may be employed when RAM 403 is insufficient for use with memory associated with stored material for tracking object actions. The user interface adapter 4〇8 couples the user input device to the computer system 4〇〇, such as the keyboard 413, the position determination system 407 (for example, the system embodiment shown in FIG. 1), and the wheat 10 grams of wind 4 丨 4 and / or output device (for example, amplifier 415). The display adapter 409 is driven by the CPU 401 to control the display on the display device 41, and displays, for example, the user interface of the embodiment of the present invention. The present invention is not limited to the structure of the system. For example, any suitable processor-based device can be employed, including, without limitation, a personal computer, a laptop, a computer workstation, and a multi-processor server. Moreover, embodiments in accordance with the present invention can be fabricated on application specific integrated circuit (ASIC) or very large integrated (VLSI) circuits. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of an embodiment for determining a position in accordance with the present invention; 20 FIG. 2 is a flow chart showing a position determination and motion tracking method according to an embodiment of the present invention; A graphic of an embodiment configured to determine the location and tracking action of a computer input device in accordance with the present invention is shown; and FIG. 4 shows an example of a computer system suitable for use in accordance with an embodiment of the present invention. 15 1247235 [Description of main component symbols] 101··· Objects 102···Brake reflector 103...Angle 104··· Distance 110···Light source 111...Light source beam 112··· Calibrator 120···Splitter 12 Bu··control beam 122···reflector 130··· redirector 13 b.·searching beam 132··· pivot point 13 3...5 melon shape 140···search area 141...position beam 150··· Detector 15 Bu Detector Channel 160 Logic 300...System 301...System 302···Drawing Pin 3 0 3...Light Source 304···Splitter 305···Detector 306···Redirector 307· · Brake reflector 308...map 309···Graphic user interface 400···Computer system 401···Central processing unit (CPU) 402···System bus 403... Random access memory (RAM 404···Read only memory (ROM) 405···Ι/Ο adapter 406···Storage device 407···Location determination system 408···User interface adapter 409···Display Adapter 410···Display device 411···Communication adapter 412···Network 413···Keyboard 414···Microphone 415...Amplifier 16

Claims (1)

1247235 ,94. 〇. l〇 ; F月 Θ修(f..)正本丨 10 15 20 4 十、申請專利範圍: 第93121594號申請案申請專利範圍修正本94 〇818· 1. 一種用以判定用於處理器為主系統之一輸入物件位置 的方法,該方法包含下列步驟: 利用移動搜尋光束經由一搜尋區域而判定該物件 之至少—位置角度’其中當該搜尋光束是在該至少-位 置角度時,該搜尋光束被反射偏離該物件而產生一位置 光束,並且 藉由分析利用結合該位置光束和一控制光束而被 產生之-干涉圖型以自一參考點而判定該物件之一距 離:其中該距離和該至少-位置角度說明供該處理器為 主系統使用之該位置。 2·如申請專利範圍第1頊 負之方法,其進一步地包含下列步 驟: H由h判定該物件位置而追縱該物件之動作。 • 請翻範㈣1奴方法,其巾該搜尋光束經由至 弟、、且弧形區和乐二組弧形區被掃攝,其中該第-弧 形區和第二弧形區對庫 ^ 了應至弟一組球形座標和第二組球 开&gt;座標。 一種用以判定輸入5声 ., 处里态為主應用之位置的系統,該 糸統包含:1247235 , 94. 〇 〇 F F F f f f f f 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 931 931 931 931 931 931 931 931 931 931 931 A method for inputting an object position of a processor as one of the main systems, the method comprising the steps of: determining, by the mobile search beam, at least a position angle of the object via a search area, wherein when the search beam is at the at least At an angle, the search beam is reflected off the object to produce a position beam, and the interference pattern generated by combining the position beam and a control beam is used to determine a distance from the reference point from a reference point. : wherein the distance and the at least - position angle indicate the location for the processor to use for the primary system. 2. The method of claim 1, wherein the method further comprises the step of: H determining the position of the object by h and tracking the action of the object. • Please turn the Fan (4) 1 slave method, the search beam is scanned through the eldest, and the curved area and the arc 2 arc area, wherein the first arc area and the second arc area are opposite. Should be a set of spherical coordinates and a second set of ball open &gt; coordinates. A system for determining the position of the input 5 sounds, where the state is the main application, the system includes: 動; 組改向器’其對於-固定點在至少 維方向而移 組物件,其用以指示一位置以提供用於該應用之 17 1247235 _ 輸入,該物件可操作以反射一搜尋光束作為位置光束; 可操作以自該改向器一方位而判定至少一位置角 度的邏輯裝置;以及 可操作以判定該物件與該固定點之距離的邏輯裝 5 置。 5.如申請專利範圍第4項之系統,其進一步地包含: 一組分割器,其可操作以分割一光源光束成為一控 制光束以及該搜尋光束;The group redirector 'the pair of fixed points move the object in at least the dimension direction to indicate a position to provide a 17 1247235 _ input for the application, the object being operable to reflect a search beam as a position a logic device operable to determine at least one position angle from an orientation of the redirector; and a logic device operable to determine a distance of the object from the fixed point. 5. The system of claim 4, further comprising: a set of dividers operable to split a source beam into a control beam and the search beam; 光學器,其被配置以組合該位置光束和該控制光 10 束; 一組檢測器,其反應於利用該組合被產生之一組干 涉圖型;以及 其中可操作以判定距離的該邏輯裝置會分析該干 涉圖型而判定該距離。 15 6.如申請專利範圍第4項之系統,其進一步地包含:An optical device configured to combine the position beam and the control light beam 10; a set of detectors responsive to generating a set of interference patterns using the combination; and wherein the logic device operable to determine the distance The interference pattern is analyzed to determine the distance. 15 6. The system of claim 4, further comprising: 可操作以利用重複地判定該物件之位置而追蹤該 物件之動作的邏輯裝置。 7. —種用以判定物件位置之系統,其包含: 一第一光學通道,其用以指引一第一組光束朝向至 20 少一組光感知器; 一第二光學通道,用以指引藉由一可移動物件被反 射的第二組光束朝向該至少一組光感知器; 用以判定該物件之一角座標的裝置; 用以接收該至少一組光感知器產生的資料之一界 18 1247235 面;以及 一組處理器,其可操作以分析該至少一組感知器產 生且經由該界面接收的資料以辨識一組干涉圖型,其中 該干涉圖型之尺度被量測,其中該物件之距離座標使用 5 該量測尺度被判定,並且其中該角座標和該距離座標被 使用以定義用以輸進入處理器為主系統的該物件位置。 8.如申請專利範圍第7項之系統,其中該角座標是相關於 該第二光學通道,並且其中該處理器是可操作以使用該 角度和該量測尺度而判定該物件位置。 10 9. 一種用以判定物件位置之系統,該系統包含: 第一光束和第二光束之一組光源; 一掃攝裝置,其掃攝該第二光束經由至少一角座 標,其中該第二光束被反射偏離該物件;以及 一分析裝置,其以干涉技術分析該第一束和該第二 15 光束產生的一組干涉圖型。 10.如申請專利範圍第9項之系統,其中該光源產生在一範 圍之内的電磁輻射,其中該範圍被使用以建立該被判定 位置之幾何圖形限制。 19A logic device operable to track the motion of the object by repeatedly determining the position of the object. 7. A system for determining the position of an object, comprising: a first optical channel for directing a first set of beams toward a set of less than 20 sets of light sensors; and a second optical channel for directing a second set of light beams reflected by a movable object toward the at least one set of light sensors; means for determining an angular coordinate of the object; and a field for receiving the data generated by the at least one set of light sensors 18 1247235 And a set of processors operable to analyze data generated by the at least one set of perceptrons and received via the interface to identify a set of interferograms, wherein the scale of the interferogram is measured, wherein the object is The distance coordinate is determined using the scale, and wherein the angular coordinate and the distance coordinate are used to define the location of the object for input into the processor as the primary system. 8. The system of claim 7, wherein the angular coordinate is associated with the second optical channel, and wherein the processor is operative to determine the object position using the angle and the measurement dimension. 10 9. A system for determining the position of an object, the system comprising: a first light source and a second light source; a scanning device that scans the second light beam via at least one angular coordinate, wherein the second light beam is The reflection is offset from the object; and an analysis device analyzes a set of interference patterns produced by the first beam and the second 15 beam by an interference technique. 10. The system of claim 9, wherein the light source produces electromagnetic radiation within a range, wherein the range is used to establish a geometrical limit of the determined position. 19
TW93121594A 2004-01-16 2004-07-20 Position determination and motion tracking TWI247235B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/758,981 US7078672B2 (en) 2004-01-16 2004-01-16 Method and system for optically tracking a target using interferometric technique
US10/759,646 US7184022B2 (en) 2004-01-16 2004-01-16 Position determination and motion tracking

Publications (2)

Publication Number Publication Date
TW200525412A TW200525412A (en) 2005-08-01
TWI247235B true TWI247235B (en) 2006-01-11

Family

ID=37399813

Family Applications (2)

Application Number Title Priority Date Filing Date
TW93121594A TWI247235B (en) 2004-01-16 2004-07-20 Position determination and motion tracking
TW93121590A TWI258704B (en) 2004-01-16 2004-07-20 Method and system for optically tracking a target using an interferometric technique

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW93121590A TWI258704B (en) 2004-01-16 2004-07-20 Method and system for optically tracking a target using an interferometric technique

Country Status (1)

Country Link
TW (2) TWI247235B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241000B1 (en) * 2005-08-30 2013-03-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Method of measuring relative movement in two dimensions of an object and an optical input device using a single self-mixing laser
US7737959B2 (en) * 2005-09-08 2010-06-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Position detection system using laser speckle
TWI399677B (en) * 2009-03-31 2013-06-21 Arima Lasers Corp Optical detection apparatus and method
TWI439905B (en) 2011-01-10 2014-06-01 Young Lighting Technology Corp Touch module and touch detecting method
TWI641858B (en) * 2018-01-15 2018-11-21 宏碁股份有限公司 Motion capture system

Also Published As

Publication number Publication date
TW200525433A (en) 2005-08-01
TWI258704B (en) 2006-07-21
TW200525412A (en) 2005-08-01

Similar Documents

Publication Publication Date Title
US7184022B2 (en) Position determination and motion tracking
TWI244618B (en) Tracking motion using an interference pattern
US7126586B2 (en) Data input devices and methods for detecting movement of a tracking surface by detecting laser doppler self-mixing effects of a frequency modulated laser light beam
US7023536B2 (en) Apparatus and method for determining orientation parameters of an elongate object
KR101192909B1 (en) Position detection system using laser speckle
US7088440B2 (en) Method and apparatus for determining absolute position of a tip of an elongate object on a plane surface with invariant features
JP4879471B2 (en) Method and apparatus for determining position in response to retroreflective objects
US8345003B1 (en) Optical positioning device using telecentric imaging
TW200426665A (en) Interferometer based navigation device
US11874110B2 (en) Self-mixing interferometry device configured for non-reciprocal sensing
US20070109527A1 (en) System and method for generating position information
US6934037B2 (en) System and method for optical navigation using a projected fringe technique
JP2005050350A (en) Optical navigation method and system
JP2006276012A (en) Measuring system for obtaining six degrees of freedom of object
KR100905382B1 (en) Method for processing optical signals in a computer mouse
US8243288B2 (en) Object detection system and object detection method
TWI247235B (en) Position determination and motion tracking
US10060728B2 (en) Three-dimensional object-measurement device, medium, and control method
JPWO2014076993A1 (en) Interface device and input receiving method
US11781855B2 (en) Surface sensing probe and methods of use
KR101019173B1 (en) Large area undistorted imaging apparatus for optical speckles and method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees