TWI247102B - Semiconductor pressure sensor and method of making the same - Google Patents
Semiconductor pressure sensor and method of making the same Download PDFInfo
- Publication number
- TWI247102B TWI247102B TW93114599A TW93114599A TWI247102B TW I247102 B TWI247102 B TW I247102B TW 93114599 A TW93114599 A TW 93114599A TW 93114599 A TW93114599 A TW 93114599A TW I247102 B TWI247102 B TW I247102B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor
- pressure sensor
- semiconductor pressure
- substrate
- layer
- Prior art date
Links
Landscapes
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
Description
1247102 五、發明說明(1) 【發明所屬之技術領域】 本發明係有關一感測計及其製造方法,尤指一通過電 阻值之改變來測量壓力之半導體壓力感測計及其製造方 法0 【先前技術】 按,在微細加工技術所製造之元件中,壓力感測計應 用極為廣泛,壓力感測計已大量應用於汽車、醫療、工業 測量、自動控制及各種電子產品上。1247102 V. INSTRUCTION DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a sensor and a method of manufacturing the same, and more particularly to a semiconductor pressure sensor that measures pressure by changing a resistance value and a method of manufacturing the same. [Prior Art] According to the components manufactured by microfabrication technology, pressure sensors are widely used, and pressure sensors have been widely used in automobiles, medical, industrial measurement, automatic control, and various electronic products.
目前,應用於半導體中之矽質壓力感測元件最常用之 馨序法係利用擴散法或離子佈值法於單晶矽晶格中形成p_n 接面,此ρ - η接面即為壓阻元件,當該p _ n型壓阻元件受到 外界施力作用時,自身電阻會產生改變,而這個改變的電 阻值△R/R便可以用來測量壓力之變化。At present, the most commonly used method for the enamel pressure sensing element used in semiconductors is to form a p_n junction in a single crystal germanium lattice by a diffusion method or an ion cloth value method, and the ρ - η junction is a piezoresistive The component, when the p_n type piezoresistive element is subjected to external force application, its own resistance changes, and the changed resistance value ΔR/R can be used to measure the change of pressure.
請參閱第一圖所示,係為一習知之由ρ — η型壓電材料2 所製成之半導體壓力感測元件荷重規(Load cel 1 )之内部 結构視圖,當對其施加力F後,改變阻值,造成v 〇間電壓 或電流大小之改變,這是壓阻材料受到外界施力,其物理 性質改變的結果,我們利用這個特性就可以測量壓力之變 化。 ® 然而,傳統半導體壓力感測計之ρ-η型壓阻元件受到 外界施力作用時,其壓阻變化AR/ R極小,因此訊號反應 並不明顯’其靈敏度便不夠精密,對於現在之半導體封裝 等高精度技術領域已不適用。 因而需設計一新型半導體壓力感測計,以適應當今高Referring to the first figure, it is a conventional internal structure view of a semiconductor pressure sensing element load gauge (Load cel 1 ) made of a ρ-n type piezoelectric material 2, when a force F is applied thereto. Change the resistance value, causing a change in the voltage or current of the v-turn. This is the result of the change of the physical properties of the piezoresistive material by external force. We can use this characteristic to measure the change of pressure. ® However, when the ρ-η piezoresistive element of the conventional semiconductor pressure sensor is subjected to external force application, the piezoresistive change AR/R is extremely small, so the signal response is not obvious. The sensitivity is not precise enough for the current semiconductor. High-precision technology such as packaging is no longer applicable. Therefore, it is necessary to design a new semiconductor pressure sensor to adapt to today's high
第5頁 1247102 五、發明說明(2) 精在應力感測需 【發明内容】 本發明之目 的提高測量之精 為實現前述 半導體基板,該 面相反之背面, 板上產生薄膜, 從而形成半導體 t電阻變化來測 導體壓力感測計 與先前技術 基板在機械應力 而不產生斷裂, 之形變大小而有 測計所使用之P1 精度技術領域之 【實施方式】 請參閱第二 %壓力感測計S1 f e r ) 1 0,該矽基 相反之背面1 2, 方向之晶面。荷 21、金屬墊22位 求之發展。 的在於提供一半導體感測計,其矸以明顯 密度。 目的,本發明半導體壓力感測計,係包括 半導體基板具有有效表面及與所述有效表 該背面上形成凹入部分,從而於半導體基 &亥薄膜上形成氧化層及氧化層上之金層, I力感測元件,根據半導體壓力感測元件 i壓力。同時本發明還涉及一製造上述半 之方法。 相比’本發明半導體壓力感測計之超薄矽 施加時有較佳之彈性,能承受較大的形變 且其漏電流會隨著因承受機械應力而產生 顯著之增減,其敏感度遠高於傳統壓力感 η型壓電材料,可適應於半導體封裝等高 發展需求。 圖 弟二圖及第五圖所示,本發明之半導 係包括由矽制成之半導體矽基板(Si Wa-板10具有有效表面11及與所述有效表面u 且該有效表面11及背面12都具有—<u〇> 重規1即電阻Ri、&、r3和^及金屬佈線 於有放表面11上,金屬佈線21及金屬墊22Page 5 1247102 V. DESCRIPTION OF THE INVENTION (2) Precise stress sensing needs [Summary of the Invention] The object of the present invention is to improve the measurement precision. To achieve the foregoing semiconductor substrate, the opposite side of the surface, a thin film is formed on the board, thereby forming a semiconductor t The change of the resistance is used to measure the mechanical stress of the conductor pressure sensor and the prior art substrate without breaking, and the deformation size is used. The P1 precision used in the measurement technology [Embodiment] Please refer to the second % pressure sensor S1 Fer ) 1 0, the opposite side of the thiol group 1 2, the crystal plane of the direction. Load 21, metal pad 22 position to develop. It is to provide a semiconductor sensor with a significant density. The semiconductor pressure sensor of the present invention comprises a semiconductor substrate having an effective surface and a concave portion formed on the back surface of the active surface to form a gold layer on the oxide layer and the oxide layer on the semiconductor substrate and the oxide film. , I force sensing element, sensing component i pressure according to semiconductor pressure. At the same time, the invention also relates to a method of manufacturing the above-described half. Compared with the ultra-thin crucible of the semiconductor pressure sensor of the present invention, it has better elasticity, can withstand large deformation, and its leakage current is significantly increased and decreased with mechanical stress, and its sensitivity is much higher. The traditional pressure-sensing n-type piezoelectric material can be adapted to the high development needs of semiconductor packaging. As shown in the second and fifth figures, the semiconductor of the present invention comprises a semiconductor germanium substrate made of tantalum (the Si Wa-plate 10 has an active surface 11 and the active surface u and the active surface 11 and the back surface) 12 has -<u〇> heavy gauge 1, that is, resistors Ri, &, r3 and ^, and metal wiring on the discharge surface 11, metal wiring 21 and metal pad 22
第6頁 1247102 五 、發明說明(3)Page 6 1247102 V. Description of invention (3)
與佈線擴散區域1 5電連接,用於將佈線擴散區域及電阻 艮、A、R3和&電連接於一起。參閱第五圖所示,利用半導 體製程方法對矽基板1 〇之背面丨2進行異向蝕刻形成所述凹 入部分13,通過形成凹入部分13,使矽基板1〇變薄形成薄 膜14。於矽基板1〇之薄膜14上形成一二氧化矽層16,再於 所述一氧化矽1 6層上形成一金屬鋁層丨7,從而便形成所述 電阻心、R2、R3和匕。從中可以看出,所述電阻&、& '心 和 RJP 荷产規 1 係採用 M0S(Metal 〇xide Semic〇nduct〇〇 結 構。如第二圖及第三圖所示,電阻&、&、&和仏係以惠斯 肇登電橋(Wheatstone bridge)4之方式連接形成於所述矽基| 板10之薄膜14上。參閱第三圖所示,前述金屬佈線以及金 屬墊22與佈線擴散區域15電連接,將佈線擴散區域電連接 於一起,形成兩個端子la及11},在該兩個端子間施加直流 恆壓Vin,從形成於矽基板1〇上之橋電路拾取第一電位pa 及第二電位Pb間之電位差Vout。通過被連接到金屬墊22上 之焊線(未圖示),將橋電路與外部電路相連。當要被檢測 之壓力F施加於薄膜〗4上側時,電阻&、&、仏和仏之電阻 相,於薄膜1 4上產生之應變而改變,與所述電阻變化相關 g電位差Vout被輸出。通過金屬墊22將電位差v〇ut輸出到 H ^ %路中。外部電路對所述電位差進行處理,提供 用於檢測壓力之最終輸出訊號。 請參閱第三圖及第四圖所示,電阻&、^、心和匕串聯 在—起形成一封閉電路。電阻Rl、R2、R3和仏基本上沿著與 其所處之矽基板! 〇之有效表面〗丨之 < 〗丨〇 >方向之晶軸延It is electrically connected to the wiring diffusion region 15 for electrically connecting the wiring diffusion region and the resistors A, A, R3, and & Referring to Fig. 5, the back surface 丨 2 of the ruthenium substrate 1 is subjected to an isotropic etching to form the concave portion 13 by a semi-conductive method, and by forming the concave portion 13, the ruthenium substrate 1 is thinned to form a thin film 14. A ruthenium dioxide layer 16 is formed on the film 14 of the ruthenium substrate 1 and a metal aluminum layer 丨7 is formed on the ruthenium oxide layer 16. Thus, the resistor cores, R2, R3 and 匕 are formed. It can be seen that the resistors &, & 'heart and RJP load gauge 1 are made of M0S (Metal 〇xide Semic〇nduct〇〇 structure. As shown in the second and third figures, resistance & The &, & and 仏 are connected to the film 14 formed on the 矽 base plate 10 by means of a Wheatstone bridge 4. Referring to the third figure, the aforementioned metal wiring and metal pad 22 is electrically connected to the wiring diffusion region 15, electrically connecting the wiring diffusion regions together to form two terminals 1a and 11}, and applying a DC constant voltage Vin between the two terminals, from a bridge circuit formed on the substrate 1 The potential difference Vout between the first potential pa and the second potential Pb is picked up. The bridge circuit is connected to the external circuit through a bonding wire (not shown) connected to the metal pad 22. When the pressure F to be detected is applied to the film On the upper side of the fourth side, the resistance phases of the resistors &, &, 仏 and 仏 are changed by the strain generated on the film 14, and the potential difference Vout is outputted in association with the resistance change. The potential difference v〇 is passed through the metal pad 22. Ut is output to the H^% path. The external circuit pairs the potential Processing, providing the final output signal for detecting pressure. Referring to the third and fourth figures, the resistors &, ^, the heart and the 匕 are connected in series to form a closed circuit. The resistors Rl, R2, R3 and仏 basically along the substrate with which it is located! 有效 有效 有效 丨 & & 晶 晶 晶 晶
1247102 五、發明說明(4) 伸,由於沿<110〉方向之晶軸的 方向之晶軸的石夕之壓阻係數都大之/阻係, 於壓力感測計時,荷重則之電阻就田/要剛!之壓力作用 根據電阻之改變檢測壓力,其中電;":2之改變, 容易發生應變’即針對要被測量 力,:比y且W更 阻R2和R3變化更靈敏。並且如第三力一毛阻心和心比電 受壓力引起應變時,電阻R與電σ ::第”力感測計 阻R盥電阻R門夕笙 ^ κ2間之弟一電位Pa與電 阻R^、: M4間之弟二電位pb沿相反方1247102 V. INSTRUCTIONS (4) Stretching, because the piezoresistive coefficient of the crystal axis of the crystal axis along the direction of the crystal axis of the <110> direction is large/resistance, the pressure is measured and the resistance is Tian / want to be just! The pressure acts to detect the pressure according to the change of the resistance, in which the electricity; ": 2 changes, the strain is easy to occur ‘that is, for the force to be measured, it is more sensitive than y and W is more resistant to changes in R2 and R3. And if the third force and the core are less than the electrical stress caused by the strain, the resistance R and the electrical σ :: the first force sensor resistance R 盥 resistance R 笙 笙 ^ κ 2 between the brother a potential Pa and resistance R^, : The second potential pb between M4 is on the opposite side
Pb中一個增加時’另-個下降。因此第一電位p/和田第二1 •立Pb :間,電位差v〇ut相應於所施加之壓力而變化。- 碩繼續參閱第三圖所示,*斯 關係滿足下式:H斤丁一登电橋4之電阻與電麼 V〇Ut==(Ri R4'R2R3>Vi n/ 之變化產生AR之 若比#2二RfR4。r,當壓力感測計因壓力 微小變化時,(1)式可化簡如下·· V〇ut-(R + RAR_R) Vin/(2R+AR)2R ^ ARVin/4R (2) 由(2)式可看出,當壓阻變化AR/R越大時,之改變量 隨之^化也越大,則測量之精密度便越高。 清严閱第五圖所示,本發明之半導體壓力感測元件荷 規 1 採用赵薄之 Μ 〇 s ( M e t a 1 Ο X i d e S e m i c ο n d u c t o r )結構 代替傳統之由p — n型壓電材料2所製成之半導體壓力感測計 之感測元件荷重規。製造該M〇S結構第一步使用半導體製 程方法製造作為基底之超薄矽基板〗〇,並於該超薄矽基板 1 0上形成薄膜1 4,該超薄矽基板1 〇在機械應力施加時有較When one of Pb increases, another one drops. Therefore, the first potential p/Watada second 1⁄2 Pb:, the potential difference v〇ut changes corresponding to the applied pressure. - Master continues to refer to the third figure, the *s relationship satisfies the following formula: H jin Ding a bridge 4 resistance and electricity V 〇 Ut == (Ri R4 'R2R3 > Vi n / change produces AR if Ratio #2二RfR4.r, when the pressure sensor changes slightly due to pressure, the formula (1) can be simplified as follows: V〇ut-(R + RAR_R) Vin/(2R+AR)2R ^ ARVin/4R (2) It can be seen from equation (2) that when the piezoresistive change AR/R is larger, the amount of change is greater, and the precision of the measurement is higher. It is shown that the semiconductor pressure sensing element load gauge 1 of the present invention replaces the conventional semiconductor made of the p-n type piezoelectric material 2 by using a structure of M eta 1 Ο X ide S emic ο nductor The sensing component load gauge of the pressure sensor. The first step of fabricating the M〇S structure is to fabricate an ultrathin germanium substrate as a substrate by using a semiconductor process, and form a thin film 14 on the ultrathin germanium substrate 10, The ultra-thin germanium substrate 1 is compared when mechanical stress is applied
12471021247102
=I此承文ί大的形變而不產生斷裂;第二步於上 ll# ^超科基板1G之薄膜14上成H厚度約 導體制二广乳一化矽層16 ;第三步於上述步驟後使用半 私方法於前述二氧化矽層16再蒸鍍上—金屬鋁層17 §作兒極使用,用於訊號檢出。=I This document has a large deformation without breaking; the second step is on the film 14 of the upper ll# ^ super-substrate 1G to form a thickness of about 14 conductors of the second layer of the galenium layer; After the step, a semi-private method is used to re-evaporate the above-mentioned ceria layer 16 - the metal aluminum layer 17 is used for signal detection.
4繼續參閱第五圖所示,當其採用本發明之m〇s (Metal Oxide Semiconductor)結構之壓力感測元件荷重 規1被施加力F後,M0S結構因承受機械應力而產生形變 時,二氧化石夕層1 6與超薄矽基板】0之接觸界面處之鍵結角 暴变發生扭轉,使一氧化秒層之能帶隙(B a n d g a p )降低,電 子穿過能障之機率大增,從而使漏電流增加數百甚至數\ 倍。根據電特性R = V/I可知,本發明之M〇s結構之電阻變化 △ R/R隨著漏電流增加而明顯改變,從而所形成之半導夂體 壓力感測計玎達到很高之測量精度。 、_ 綜上所述’本發明確已符合發明專利之要件,i 没依法 提出專利申請。惟,以上所述僅為本發明之較佳實施方 式,自不能以此限定本發明之權利範圍。舉凡所屬技術領 域中具有通常知識者袭依本發明之精神所作之等效修飾 變化,皆仍涵蓋於後附之申請專利範圍内。 $4, as shown in the fifth figure, when the pressure sensing element load gauge 1 of the m〇s (Metal Oxide Semiconductor) structure of the present invention is applied with a force F, the MOS structure is deformed by mechanical stress, The bond angle of the oxidized stone layer 16 and the ultra-thin ruthenium substrate is reversed, and the band gap (B andgap) of the oxidized second layer is reduced, and the probability of electron passing through the energy barrier is greatly increased. , so that the leakage current is increased by hundreds or even several times. According to the electrical characteristic R = V / I, the resistance change Δ R / R of the M 〇 s structure of the present invention changes significantly as the leakage current increases, so that the formed semi-conductive body pressure sensor 玎 reaches a high level. measurement accuracy. _ In summary, the invention has indeed met the requirements of the invention patent, and i has not filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. Equivalent modifications made by those skilled in the art in the spirit of the present invention are still within the scope of the appended claims. $
第9頁 1247102 圖式簡單說明 第一圖係一習知 感測計之 第二圖係符合本 性平面視 第三圖係與第二 等效之電 第四圖係位於被 有效表面 第五圖係本發明 之内部結 之由ρ-η型壓電材料所製成之半導體壓力 感測元件荷重規之内部結构視圖。 發明一實施例之半導體壓力感測計之示意 圖。 圖所示之半導體壓力感測計内之惠斯登橋 路圖。 包括於第二圖所示之石夕基板(Si Wafer) 上之晶轴視圖。 之半導體壓力感測計之感測元件荷重規 构視圖。Page 9 1247102 Schematic description of the first diagram The second diagram of a conventional sensor is in accordance with the nature of the third view of the plane and the second equivalent of the fourth figure is located on the effective surface of the fifth system The internal structure view of the semiconductor pressure sensing element load gauge made of the p-n type piezoelectric material of the internal junction of the present invention. A schematic diagram of a semiconductor pressure sensor of an embodiment of the invention. The Wheatstone bridge road map in the semiconductor pressure sensor shown in the figure. A view of the crystal axis included on the Si Wafer shown in the second figure. A sensing element load profile view of a semiconductor pressure sensor.
【元件符號說明】 半導體壓力感測計 S1 荷重規 1 惠斯登電橋 4 矽基板 10 有效表面 11 背面 12 凹入部分 13 薄膜 14 佈線擴散區域 15 二氧化石夕層 16 金屬鋁層 17 金屬佈線 21 金屬墊 22 電阻 R1 、R2 R3 、R4 1 ii· iiil 1 I 1 ϋ 119 I , 第10頁[Description of component symbols] Semiconductor pressure sensor S1 Load gauge 1 Wheatstone bridge 4 矽 Substrate 10 Effective surface 11 Back surface 12 Recessed portion 13 Film 14 Wiring diffusion area 15 Dioxide layer 16 Metal aluminum layer 17 Metal wiring 21 Metal pad 22 Resistor R1, R2 R3, R4 1 ii· iiil 1 I 1 ϋ 119 I , page 10
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93114599A TWI247102B (en) | 2004-05-24 | 2004-05-24 | Semiconductor pressure sensor and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93114599A TWI247102B (en) | 2004-05-24 | 2004-05-24 | Semiconductor pressure sensor and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200538711A TW200538711A (en) | 2005-12-01 |
TWI247102B true TWI247102B (en) | 2006-01-11 |
Family
ID=37399764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93114599A TWI247102B (en) | 2004-05-24 | 2004-05-24 | Semiconductor pressure sensor and method of making the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI247102B (en) |
-
2004
- 2004-05-24 TW TW93114599A patent/TWI247102B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200538711A (en) | 2005-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2517467B2 (en) | Capacitive pressure sensor | |
TWI648527B (en) | An improved pressure sensor structure | |
US7563692B2 (en) | Microelectromechanical system pressure sensor and method for making and using | |
JP4421511B2 (en) | Semiconductor pressure sensor | |
WO2012080811A1 (en) | Semiconductor pressure sensor | |
JPS60128673A (en) | Semiconductor pressure-sensing device | |
JP2008102069A (en) | Semiconductor strain-sensitive sensor | |
CN106946211A (en) | A kind of pressure sensor for micro electro-mechanical system chip of Liang Mo mechanisms and preparation method thereof | |
JP4452526B2 (en) | Strain detecting element and pressure sensor | |
EP2796844B1 (en) | Mems capacitive pressure sensor | |
JP2000340805A (en) | Electronic part and manufacture | |
JP4773630B2 (en) | Diaphragm type semiconductor device and manufacturing method thereof | |
CN101068032B (en) | Semiconductor strain gauge and the manufacturing method | |
TWI247102B (en) | Semiconductor pressure sensor and method of making the same | |
WO2011149331A1 (en) | Capacitive humidity sensor and method of fabricating thereof | |
US7004029B2 (en) | Semiconductor dynamic quantity sensor | |
JP3938199B1 (en) | Wafer level package structure and sensor device | |
US11156520B2 (en) | Physical quantity sensor having a wall including first and second protrusion arrangements | |
JP3328707B2 (en) | Capacitance type semiconductor acceleration sensor and semiconductor pressure sensor | |
JPH10256565A (en) | Manufacture of semiconductor device having micromechanical structure | |
JP4466344B2 (en) | Acceleration sensor | |
JPS6318272A (en) | Piezoelectric type acceleration detector | |
JP2004028746A (en) | Pressure sensor and manufacturing method for pressure sensor | |
JP2004125417A (en) | Semiconductor type pressure sensor | |
JP2009257916A (en) | Capacitive pressure sensor and method of providing capacitance compensation signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |