TWI246719B - Low temperature deposition of silicon nitride - Google Patents

Low temperature deposition of silicon nitride Download PDF

Info

Publication number
TWI246719B
TWI246719B TW93132985A TW93132985A TWI246719B TW I246719 B TWI246719 B TW I246719B TW 93132985 A TW93132985 A TW 93132985A TW 93132985 A TW93132985 A TW 93132985A TW I246719 B TWI246719 B TW I246719B
Authority
TW
Taiwan
Prior art keywords
substituted
group
alkylamine
compound
dioxane
Prior art date
Application number
TW93132985A
Other languages
Chinese (zh)
Other versions
TW200525612A (en
Inventor
Yoshihide Senzaki
Aubrey L Helms Jr
Original Assignee
Aviza Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aviza Tech Inc filed Critical Aviza Tech Inc
Publication of TW200525612A publication Critical patent/TW200525612A/en
Application granted granted Critical
Publication of TWI246719B publication Critical patent/TWI246719B/en

Links

Abstract

A novel class of volatile liquid precursors based on amino substituted disilane compounds is used to form silicon nitride dielectric materials on the surface of substrates. This class of precursors overcomes the issues of high deposition temperatures and the formation of undesirable by-products that are inherent in the present art. In another aspect, methods of depositing silicon nitride films on substrates are provided.

Description

1246719 ⑴ 九、發明說明 【發明所屬之技術領域】 此申請案聲明2003年10月31日提出申請的 U.S.Pro visional Application Serial No.60/5 1 8,608 之內容 和優先權,此處將其中所提出者全數列入參考。 本發明一般係關於半導體,更特別是用以沉積可用於 半導體裝置和整體電路之氮化矽材料之方法。 【先前技術】 氣化砂材料因爲其介電常數高、介電衰退電壓高、機 械性質和內稟鈍性優良,所以被廣泛用於半導體工業。例 如’氮化矽材料曾被用來作爲半導體電晶體的閘極介電 物、金屬單排觸點之間的隔絕物、防止氧化反應和擴散的 阻擋物、多層光阻結構的蝕刻罩、鈍化層和電晶體的間隔 材料。 已有已知方法和先質用於氮化矽膜沉積。習慣利用低 壓化學蒸鍍法(LPCVD),使用二氯矽烷(DCS)(SiCl2H2)和 氨(N Η3)先質沉積氮化矽。高於7 5 0它的高沉積溫度基本 上用於LPCVD ’以得到合理的生長速率和均勻度及良好 膜性質。LPCVD法的缺點在於使用DCS和氨的高加工溫 度會對於熱預算造成衝擊和形成氯化銨(NH4C1)副產物(其 會造成細粒污染)。氯化銨累積於爐系統排放處、抽取管 線和抽吸系統。必須經常淸理這些沉積物,使得加工系統 的運作時間明顯縮減。 -4- (2) (2)1246719 沉積氮化矽膜的替代法包括使用矽烷(S i Η 4)和氮(N 2) 或氨(NH3)先質的電漿增進化學蒸鍍法(PECVD)。PECVD &的缺點是氮化矽膜的化學計量比控制困難及所不欲氫元 素摻入氮化矽膜中。此外,PECVD法因爲電漿損及裝置 的活性區域而不適用於線前端(fornt-end-of-line,FEOL) 應用。 隨著超大積體應用中之橫向和縱向尺寸降低,自身排 歹的金屬矽化物法用以降低閘極的片材電阻和源極/汲極 串連電阻,以提高裝置效能及降低電阻-電容遲滯。氮化 砂的低溫沉積提供此類應用數個優點。氮化矽沉積低於 6 0 0 °C可與金屬矽化物應用相配伍,低於6 〇 (TC沉積的氮 化矽作爲側壁間隔物以降低閘極和源極/汲極之間之聯接 損耗的效能優良。 已發展出數種新的矽先質用於低溫氮化矽沉積。四碘 化矽(Sil4)曾被用以於介於40(TC和5 00 °C的溫度之間沉積 氮化矽。但 Sil4先質於室溫爲固態且蒸汽壓低,因此使 得化學品輸送進入處理槽中變得複雜。此外,與sil4之化 學反應會製造副產物NH4I,其於冷表面凝結並造成細粒 污染。六氯二矽烷(HCD)(Si2Cl6)曾被用以於低於5 00 °C形 成氮化矽。但HCD先質因爲震動敏感性而有安全顧慮。 此外,在沉積期間內與HCD之化學反應會製造副產物 NH4C1,其凝結於冷表面上並會造成細粒污染。胺基砂院 化合物(如:雙(第三丁基胺基)矽烷(BTBAS)(SiC8N2H22)) 曾被用以沉積氮化矽。BTB AS是一種無鹵素的先質,其 -5- (3) 1246719 可與NH3反應以形成氮化矽,但僅可於高於約55〇t進 行。 因此有必要發展於低溫沉積氮化矽的新先質和方法, 以解決以前技術先質和沉積法的這些和其他問題。 【發明內容】 一個實施例中,本發明提出經烷基胺基取代的二矽院 化合物,其式爲:([(I^R^Nh.xHxSi-SKNWHjHy]), 其中R1、R2、R3和R4分別是任何直鏈、支鏈或環狀烷基 或經取代的烷基,X、y = 0、1或2,以於底質表面上沉積 氮化矽膜。特別佳者中,沉積法係於低溫(如··等於或低 於6 0 0 °C,或等於或低於5 0 0 °C )進行。 另一實施例中,經烷基胺基取代的二矽烷化合物與氮 來源(如,但不限於,氨、聯氨和氮)反應,以於晶圓上形 成氮化矽層或膜。另一實施例中,經胺基取代的二矽烷化 合物與氮基反應,於晶圓上形成氮化矽層。此氮基可由各 種方法(如,但不限於,原處電漿生成法、遠距電漿生成 法、下游電漿生成法和光解生成法)形成。 本發明的另一特點中,新穎之經院基胺基取代的二石夕 烷化合物表示式爲·· 其中R]、R2、R3和R4分別是任何直鏈、支鏈或環狀芳烷 基或經取代的烷基,X、y = 0、1或2。一個實施例中, R】、R2、R3和R4分別是經取代或未經取代的C】-C6烷 基。一些實施例中,R1、R2、R3和r4分別是甲基。 -6 - (4) (4)1246719 另一實施例中,經烷基胺基取代的二矽烷化合物與氮 來源(選自氨、聯氨和氮)反應’以於晶圓上形成氮化矽層 或膜。另一實施例中,經胺基取代的二矽烷化合物與氮基 反應,於晶圓上形成氮化矽層。此氮基可由各種方法 (如,但不限於,原處電漿生成法、遠距電漿生成法、下 游電漿生成法和光解生成法)形成。 【實施方式】 本發明提出一種於低溫沉積氮化矽的方法,其可用於 製造半導體裝置’如:金屬氧化物-半導體電場效應電晶 體(MOSFET)和MOS電容器。通常,本發明之方法包含使 經烷基胺基取代的二矽烷化合物與氮來源反應以形成氮化 石夕。 本發明之此經烷基胺基取代的二矽烷化合物具下列通 式: [(R】R2N)3-xHxSi-Si(NR3R4)3-yHy] 其中R1、R2、R3和R4分別是任何直鏈、支鏈或環狀 ㈣或經取代㈣基’ x、y=G、】⑤2。—個實施例中, y分別是經取代或未經取代的…-心烷 基。另—實施例中,R1、R2 ' R3和R4分別是甲基。 使用經烷基胺基取代的二矽烷,沉積的氮化矽膜展現 優良均句度。此經烷基胺基取代的二矽烷具有於低溫藉大 -7- (5) 1246719 氣壓化學蒸鍍法(APCVD)、LPCVD或原子層沉積法(ALD) 沉積氮化矽膜的性質。例如,使用經烷基胺基取代的二石夕 院’此沉積可藉APCVD、LPCVD或ALD於約3〇〇至約 6 0 0 °C的溫度範圍內進行。一些實施例中,使用經院基胺 基取代的二矽烷藉APCVD、LPCVD或ALD於等於或低於 6〇〇°C沉積。一些實施例中,此沉積藉 APCVD、LPCVD 或ALD於等於或低於5 0(TC進行。一些實施例中,此沉 積藉APCVD、LPCVD或ALD於等於或低於400 °C進行。 不欲使本發明限於特別的理論,咸信使用本發明之經 烷基胺基取代的二矽烷之低溫沉積的優點可用於經烷基胺 基取代的二矽烷化合物之相對弱的Si-Si鍵。經烷基胺基 取代的二矽烷的熱解期間內,Si-Si鍵易斷裂且烷基胺基 易消去。 本發明之經烷基胺基取代的二矽烷先質以不含任何氯 爲佳。因此,所得氮化砂膜沒有氯化錢和氯污染。相較於 以前技術的先質,如:二氯矽烷和六氯二矽烷,其中,先 質中的Si-Cl鍵導致形成氯化銨,其會凝結於冷表面上且 必須經常淸理。此外,本發明之經烷基胺基取代的二矽烷 先質不含直接Si-C鍵。因此,所得氮化矽膜無碳。 經烷基胺基取代的二矽烷的一個例子是(Me2N)3Si-Si(NMe2)3,其中,通式中的R1、R2、R3和R4分別是甲 基。此實例中,(Me2N)3Si-Si(NMe2)3可根據下列反應機 構合成得到:1246719 (1) IX. Description of the Invention [Technical Fields of the Invention] This application claims the content and priority of USPro Visional Application Serial No. 60/5 1 8,608 filed on October 31, 2003, which is hereby incorporated by reference. All are included in the reference. This invention relates generally to semiconductors, and more particularly to methods for depositing tantalum nitride materials useful in semiconductor devices and integrated circuits. [Prior Art] Gasified sand materials are widely used in the semiconductor industry because of their high dielectric constant, high dielectric decay voltage, excellent mechanical properties and intrinsic entanglement. For example, 'tantalum nitride materials have been used as gate dielectrics for semiconductor transistors, insulators between metal single-row contacts, barriers to prevent oxidation and diffusion, etching masks for multilayer photoresist structures, passivation The spacer material of the layer and the transistor. Known methods and precursors have been used for tantalum nitride film deposition. It is customary to deposit tantalum nitride by using low pressure chemical vapor deposition (LPCVD) using dichlorosilane (DCS) (SiCl2H2) and ammonia (N Η3). Its high deposition temperature above 750 is basically used for LPCVD' to achieve reasonable growth rate and uniformity and good film properties. A disadvantage of the LPCVD process is that the high processing temperatures using DCS and ammonia can impact the thermal budget and form ammonium chloride (NH4C1) by-products (which can cause fines contamination). Ammonium chloride accumulates in the furnace system discharge, extraction line and suction system. These deposits must be handled frequently, resulting in a significant reduction in the operating time of the processing system. -4- (2) (2) 1246719 Alternative methods for depositing tantalum nitride films include plasma-enhanced chemical vapor deposition (PECVD) using decane (S i Η 4) and nitrogen (N 2 ) or ammonia (NH3) precursors. ). A disadvantage of PECVD & is that the stoichiometric ratio of the tantalum nitride film is difficult to control and the hydrogen element is not incorporated into the tantalum nitride film. In addition, the PECVD method is not suitable for for-end-of-line (FEOL) applications because of the plasma damage to the active area of the device. With the reduction of lateral and longitudinal dimensions in ultra-large integrated applications, the self-draining metal telluride method is used to reduce the sheet resistance and source/drain series resistance of the gate to improve device performance and reduce resistance-capacitance. Hysteresis. The low temperature deposition of nitriding sand offers several advantages for such applications. Tantalum nitride deposition below 60 ° C can be compatible with metal telluride applications, below 6 〇 (TC deposited tantalum nitride as sidewall spacers to reduce junction loss between gate and source/drain Excellent performance. Several new precursors have been developed for low temperature tantalum nitride deposition. Silane tetraiodide (Sil4) has been used to deposit nitrogen between 40 (TC and 500 °C). But Sil4 is first solid at room temperature and has a low vapor pressure, which complicates the transport of chemicals into the treatment tank. In addition, the chemical reaction with sil4 produces a by-product NH4I, which condenses on the cold surface and causes fine Particle contamination. Hexachlorodioxane (HCD) (Si2Cl6) has been used to form tantalum nitride below 500 ° C. However, HCD precursors have safety concerns due to vibration sensitivity. In addition, during deposition and HCD The chemical reaction produces the by-product NH4C1, which condenses on the cold surface and causes fine-grain contamination. Amine-based sand compound (eg bis(tert-butylamino) decane (BTBAS) (SiC8N2H22)) has been used. To deposit tantalum nitride. BTB AS is a halogen-free precursor, which is -5- (3) 1246719 Reacting with NH3 to form tantalum nitride, but only above about 55 〇t. It is therefore necessary to develop new precursors and methods for the low temperature deposition of tantalum nitride to solve these and prior art precursors and deposition methods. Other Problems. In one embodiment, the present invention proposes a diterpenoid compound substituted with an alkylamine group, which is: ([(I^R^Nh.xHxSi-SKNWHjHy]), wherein R1, R2 And R3 and R4 are any linear, branched or cyclic alkyl or substituted alkyl group, respectively, X, y = 0, 1 or 2, for depositing a tantalum nitride film on the surface of the substrate. The deposition method is carried out at a low temperature (e.g., equal to or lower than 60 ° C, or equal to or lower than 500 ° C.) In another embodiment, the alkylamine-substituted dioxane compound and A nitrogen source (such as, but not limited to, ammonia, hydrazine, and nitrogen) is reacted to form a tantalum nitride layer or film on the wafer. In another embodiment, the amine-substituted dioxane compound reacts with the nitrogen group, Forming a tantalum nitride layer on the wafer. The nitrogen base can be formed by various methods (such as, but not limited to, in situ plasma generation, remote plasma generation). Formed by a method, a downstream plasma generation method, and a photolysis method. In another feature of the invention, the novel urethral amine-substituted diazepine compound is represented by the formula: wherein R], R2, R3 and R4 are respectively Is any linear, branched or cyclic aralkyl or substituted alkyl group, X, y = 0, 1 or 2. In one embodiment, R], R2, R3 and R4 are substituted or unsubstituted, respectively. Substituted C]-C6 alkyl. In some embodiments, R1, R2, R3 and r4 are each methyl. -6 - (4) (4) 1246719 In another embodiment, substituted by an alkylamine group The decane compound reacts with a source of nitrogen (selected from ammonia, hydrazine, and nitrogen) to form a tantalum nitride layer or film on the wafer. In another embodiment, the amine-substituted dioxane compound is reacted with a nitrogen group to form a tantalum nitride layer on the wafer. This nitrogen group can be formed by various methods such as, but not limited to, in situ plasma generation, remote plasma generation, downstream plasma generation, and photolysis. [Embodiment] The present invention proposes a method of depositing tantalum nitride at a low temperature, which can be used for manufacturing a semiconductor device such as a metal oxide-semiconductor field effect transistor (MOSFET) and a MOS capacitor. Generally, the process of the present invention comprises reacting an alkylamine-substituted dioxane compound with a nitrogen source to form a nitride. The alkylamine-substituted dioxane compound of the present invention has the following formula: [(R]R2N)3-xHxSi-Si(NR3R4)3-yHy] wherein R1, R2, R3 and R4 are any straight chain, respectively , branched or cyclic (four) or substituted (tetra) radical 'x, y=G, 】 52. In one embodiment, y is a substituted or unsubstituted ...-alkylene group, respectively. In another embodiment, R1, R2' R3 and R4 are each a methyl group. The deposited tantalum nitride film exhibits an excellent uniformity using an alkylamino substituted dioxane. The alkylamine-substituted dioxane has the property of depositing a tantalum nitride film at a low temperature by atmospheric -7-(5) 1246719 gas pressure chemical vapor deposition (APCVD), LPCVD or atomic layer deposition (ALD). For example, the use of an alkylamine-substituted sillimanite can be carried out by APCVD, LPCVD or ALD at a temperature ranging from about 3 Torr to about 6,000 °C. In some embodiments, the transsiloxane-substituted dioxane is deposited by APCVD, LPCVD, or ALD at or below 6 °C. In some embodiments, the deposition is performed by APCVD, LPCVD, or ALD at or below 50 (TC). In some embodiments, the deposition is performed by APCVD, LPCVD, or ALD at or below 400 °C. The invention is limited to a particular theory, and the advantages of low temperature deposition using the alkylamino substituted dioxane of the present invention are applicable to the relatively weak Si-Si bond of an alkylamino substituted dioxane compound. During the pyrolysis of the amino-substituted dioxane, the Si-Si bond is easily broken and the alkylamine group is easily eliminated. The alkylamine-substituted dioxane precursor of the present invention preferably does not contain any chlorine. The obtained nitrided sand film is free from chlorinated money and chlorine pollution, compared to precursors of the prior art, such as: dichloromethane and hexachlorodioxane, wherein the Si-Cl bond in the precursor causes the formation of ammonium chloride, It will condense on the cold surface and must be treated frequently. Furthermore, the alkylamine-substituted dioxane precursor of the present invention does not contain a direct Si-C bond. Therefore, the resulting tantalum nitride film is carbon-free. An example of an amine-substituted dioxane is (Me2N)3Si-Si(NMe2)3, wherein Wherein R1, R2, R3 and R4 are each a methyl group. In this example, (Me2N)3Si-Si(NMe2)3 can be synthesized according to the following reaction mechanism:

Me2NLi + C4Hi〇 步驟 1: Me2NH + nBuLi — -8- 1246719 ⑹ 步驟 2: Cl3Si-SiCl3 Si(NMe2)3 + 6LiCl 6Me2NLi (Me2N)3Si- 例如,n-BuLl(6莫耳)可逐滴加至hnR2(6莫耳)的己 烷溶液中,以形成LiNR2於己烷中。之後,六氯二矽烷 (ChM-SKWU莫耳)的己烷溶液逐滴添加至所得溶液 中,以形成(NMe2)3Si-Si(NMe2)3。固態副產物LiC1可藉 過濾移除。己丨元溶劑可藉蒸餾移除。最終產物(NR2)3Si_ Si(NR2)3可藉真空蒸餾純化。 較佳情況中,經烷基胺基取代的二矽烷可藉各種系統 (如··低壓化學蒸鍍沉積(LPCVD)系統、大氣壓化學蒸鍍 (APCVD)和原子層沉積(ALD))沉積氮化矽。LPCvd包含 在約5 0鼋托耳至約1 〇托耳壓力範圍內發生的化學反應。 本發明之經烷基胺基取代的二矽烷先質得以於約3 〇 0至 6 0 0 °C的低溫範圔內藉L P C V D沉積氮化矽。藉l P C V D沉 積的期間內’經烷基胺基取代的二矽烷先質和氮來源被引 至處理槽中並擴散至底質。此先質被吸附於底質表面上並 驅動化學反應,於表面上形成膜。反應的氣態副產物被去 吸附並自處理槽移出。此LPCVD系統可爲單晶圓系統或 批次系統(如:水平或直立爐)。這些系統類型爲半導體工 業所知。PCT Application Serial No.PCT/US 0 3 /2 1 5 7 5,標 題爲’’Thermal Processing System and Configurable V e r t i c a 1 C h a m b e r",描述一種熱處理設備,其可用於 LPCVD,茲將其中所述者全數歹U入參考。 氮化矽之沉積可於大氣壓蒸鍍(APCVD)系統中進行。 -9- (7) (7)1246719 APCVD包含在約6 0 0托耳至大氣壓的壓力範圍內進行之 化學反應。本發明之經烷基胺基取代的二矽烷先質使得得 以於低溫藉 APCVD於約3 0 0至 600 °C範圍內沉積氮化 矽。藉APCVD沉積的期間內,此經烷基胺基取代的二矽 烷和氮來源被引至處理槽中並擴散至底質。此先質被吸附 於底質表面上並驅動化學反應,於表面上形成膜。反應的 氣態副產物被去吸附並自處理槽移出。 氮化矽膜之沉積亦可藉原子層沉積法,使用本發明之 經烷基胺基取代的二矽烷先質於低溫進行。溫度基本上在 約100至600 °C範圍內。此系統的壓力基本上在約50毫 托耳至約1 〇托耳範圍內。較佳情況中,此ALD法可於相 對低溫進行,此可與工業的較低溫趨勢相配伍。ALD的 先質利用效能高,可製得形狀確實的薄膜層並控制膜厚度 至原子規格,並可用於”奈米工程”複合薄膜。ALD法沉積 循環中,第一種反應物單層物理或化學吸附於底質表面 上。過量的第一種反應物自反應槽抽出(以藉惰性滌氣氣 體之助爲佳)。之後,第二種反應物引至反應槽中,並與 第一種反應物反應,經由自身限制表面反應而形成所欲薄 膜單層。一旦初時吸附的第一種反應物與第二種反應物完 全反應,此自身限制反應中止。過量的第二種反應物被抽 除,以藉惰性滌氣氣體之助爲佳。視情況須要地重複沉積 循環,得到所欲厚度。藉簡單的計算沉積循環數,所欲膜 厚度可控制至原子層準確度。本發明的一些實施例中,經 烷基胺基取代的二矽烷先質引至反應槽中,此以經由所謂 -10- (8) (8)1246719 的噴灑頭爲佳,以使氣體均勻分佈。各式各樣反應槽可供 利用並爲此技術所知者。 一些實施例中,經烷基胺基取代的二矽烷先質和氮來 源可交替引至ALD槽中,以藉原子層沉積形成氮化矽 膜。重複循環以提供具所欲厚度的氮化矽膜。 本發明所用適當氮來源包括含氮化合物,如,但不限 於氮、NH3和聯氨(N2H2)、氮原子之類。沉積溫度約400 t或以下,可視較佳情況地提供額外能源,以活化氮來 源,以形成氮基,以有助於沉積。可藉任何習知方法 (如,但不限於,原處電漿生成法、遠距電漿生成法、下 游電漿生成法和光解生成法之類)達到能量活化作用。 一些實施例中,含氧的來源亦可傳送至處理槽,以形 成氮氧化矽膜。適當含氧來源包括〇2、N20和NO,其與 NH3倂存。 使用經烷基胺基取代的二矽烷沉積的氮化矽膜具多種 應用。它們可作爲閘極介電物(因爲其介電常數高)、金屬 單排觸點之間的隔絕物、防止氧化反應和擴散的阻擋物、 多層光阻結構的蝕刻罩、鈍化層和電晶體的間隔材料。於 低溫沉積的此氮化矽膜特別適合作爲間隔材料。側壁間隔 物是晶圓上之用以於自身排列接觸蝕刻法期間內,保護層 疊構造(如:閘極層疊物)的保護層。於超大積體應用、自 身排列金屬氮化物法中之橫向和縱向尺寸降低,可降低鬧 極的片材電阻和源極/汲極串連電阻,藉此提高裝置效能 及降低電阻一電容遲滯。例如,由至少一個介電層和上覆 -11 - (9) (9)1246719 的傳導層(如:經摻雜的多元矽)形成的閘極層疊物形成於 底質上且彼此分隔。形成隔絕用保護層(如:氮化矽層)以 提供此類結構數個優點。於低於5 Q 0 °C沉積氮化矽可與自 身排列的金屬矽化物法相配伍,且降低閘極和源極/汲極 之間之聯接損耗的效能優良。 下列實例用以說明本發明,但不欲對本發明之範圍造 成任何限制。 實例1 此實例說明氮化矽之低壓化學蒸鍍法,其使用經烷基 胺基取代的二矽烷和氨。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和氨作爲 藉LPCVD之氮化矽沉積的先質。使用分配管,此先質氣 體被引至直立式5 0晶圓批次爐中。5 0 0 s c c m惰性氣流(N 2) 含括於此氣體混合物中。先質流率是5〇SCcm,氨與先質 流率比是1〇 : 1(總氨流是5 00 seem)。沉積溫度(晶圓溫度) 是45 0°C,爐中的壓力是2 5 0mTorr。 實例2 此實例說明氮化矽之大氣壓化學蒸鍍法,其使用經烷 基胺基取代的二矽烷和氨。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和氨作爲 A P C V D之先質。每次注射的氣體總流率是2 5 s I m。先質流 率是 ]26sccm,氨與先質流率比是 20 : 1(總氨流是 -12- (10) (10)1246719 2 5 0 0 s c c m )。沉積溫度(晶圓溫度)是4 5 0 °C,爐中的壓力是 7 6 0 丁 〇 r r。 實例3 此實例說明氮化矽之原子層沉積法,其使用經烷基胺 基取代的二矽烷和氨。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和氨作爲 藉 ALD之氮化矽沉積的先質。先質氣體經由具有分別用 於經烷基胺基取代的二矽烷和氨之分離管線的噴灑頭引至 單一晶圓ALD系統中。5 00scCm惰性氣流(Ar)含括於氣體 混合物中。經烷基胺基取代的二矽烷流率是50 seem,氨 與二矽烷流率比是10 : 1(總氨流是5 00 seem)。使用交替 脈衝序列(化學品脈衝,惰性氣體滌氣,氨脈衝’惰性氣 體滌氣)完成原子層沉積。脈衝時間分別是〇· 5/2/2/4秒 鐘。沉積溫度(晶圓溫度)是400 °C,壓力是1托耳。 實例4 此實例說明氧化矽之低壓化學蒸鍍法’其使用經院基 胺基取代的二矽烷和臭氧。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和臭氧作 爲藉LPCVD之氧化矽沉積的先質。使用分配管,此先質 氣體被引至直立式50晶圓批次爐中。5〇〇sccm惰性氣流 (N2)含括於此氣體混合物中。先質流率是I0sccm ’臭氧與 先質流率比是25 :】(總02/〇3流是2.lslm,臭氧濃度是 -13- (11) (11)1246719 250克/平方米)。沉積溫度(晶圓溫度)是500 t;,壓力是 5 0 0 m T 〇 r r 〇 實例5 lit賃:例i兌明氧化矽之大氣壓化學蒸鍍法,其使用經烷 基胺基取代的二矽烷和臭氧。 經院基胺基取代的二矽烷(NR2)3Si_Si(NR2)3和臭氧作 爲藉APCVD之氧化矽沉積之先質。每次注射的氣體總流 率疋25slm (約15slm N2)。二砂院先質流率是42sccm’氨 與先質流率比是2 1 : 1 (總〇2/〇3流是丨〇slm,臭氧濃度是 180克/平方米)。沉積溫度(晶圓溫度)是5〇(TC,壓力是 7 60Torr。 實例6 此實例說明氧化矽之原子層沉積法,其使用經烷基胺 基取代的二矽烷和臭氧。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和臭氧作 爲藉A LD之氮化矽沉積的先質。氣體經由具有分別用於 經烷基胺基取代的二矽烷和臭氧之分離管線的噴灑頭引至 單一晶圓A L D系統中。5 0 0 s c c m惰性氣流(A r)含括於氣體 混合物中。先質流率是5〇SCCm,總〇2/〇3流是5 00 slm, 臭氧濃度是2 00克/平方米。使用交替脈衝序列(化學品 脈衝’惰性氣體滌氣,氧化劑脈衝,惰性氣體滌氣)完成 原子層沉積。脈衝時間分別是0.5/2/2/3秒鐘。沉積溫度 -14- (12) (12)1246719 (晶圓溫度)是450°c,壓力是1托耳。 實例7 此實例說明氮氧化矽之低氣壓化學蒸鍍法,其使用經 烷基胺基取代的二矽烷、氨、一氧化二氮或一氧化氮。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3、氨(作 爲氮來源)和一氧化二氮或一氧化氮(作爲氧來源)用於藉 LPCVD法沉積氮氧化矽。使用分配管,此氣體被引至直 立式50晶圓批次爐中。50〇SCcm惰性氣流(N2)含括於此氣 體混合物中。先質流率是5 0 s c c m,氨與先質流率比是8 : 1 (總氨流是4 〇 〇 s c c m)。使用N 2 Ο作爲氧化劑,此氧化劑 與先質流率是1 0 : 1 (總一氧化二氮流是 5 0 0 sccm)。沉積 溫度(晶圓溫度)是4 5 0°C,壓力是400mT〇rr。 實例8 此實例說明氮氧化矽之大氣壓化學蒸鍍法,其使用經 院基胺基取代的二砂院、氛、一'氧化一氮或一氧化氮。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3、氨(作 爲氮來源)和一氧化二氮或一氧化氮(作爲氧來源)用於藉 APCVD之氮氧化矽沉積。每次注射的氣體總流率是 2 5 s 1 m。先質流率是1 2 5 s c c m,氨與先質流率比是 2 0 : 1(總氨流是2 5 0 〇SCCm)。使用N2〇作爲氧化劑,此氧化劑 與先質流率是2 5 : 1 (總一氧化二氮流是3 1 2 5 s c. c m)。沉積 溫度(晶圓溫度)是45 0°C,壓力是760Torr。 -15- (13) (13)1246719 實例9 此實例說明氮氧化矽之原子層沉積法,其使用經烷基 胺基取代的二矽烷、氨、一氧化二氮或一氧化氮。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3、氨(作 爲氮來源)和一氧化二氮或一氧化氮(作爲氧來源)用於藉 ALD之氮氧化矽沉積。氣體經由具有分別用於先質之分 離管線的噴灑頭引至單一晶圓 A L D系統中。5 0 0 s c c m惰 性氣流(Ar)含括於氣體混合物中。二矽院先質流率是 5 0 seem,氨與先質流率比是8 : 1 (總氨流是400s c cm)。使 用N2〇作爲氧化劑,此氧化劑與先質流率是1 0 : 1 (總一 氧化二氮流是5 00sCcm)。使用交替脈衝序列(化學品脈 衝’惰性氣體滌氣,氨脈衝,惰性氣體滌氣,氧化劑脈 衝’惰性氣體滌氣)完成原子層沉積。脈衝時間分別是 〇·5/2/2/3/3秒鐘。沉積溫度(晶圓溫度)是4〇0°C,壓力是 1托耳。 已經以本發明之特定實施例和實例作說明和描述,雖 然已經以則述的某些貫例描述和說明本發明,本發明不在 此限。不欲以這些實例作爲本發明之範圍或將本發明限制 方 < 所揭不的精確形式’由則述經驗,可瞭解屬於本發明範 圍內的許多修飾、改善和變化。希望本發明之範圍含括此 處所揭示者之廣義及所附申請專利範圍和其對等情況。Me2NLi + C4Hi〇 Step 1: Me2NH + nBuLi — -8- 1246719 (6) Step 2: Cl3Si-SiCl3 Si(NMe2)3 + 6LiCl 6Me2NLi (Me2N)3Si- For example, n-BuLl (6 mol) can be added dropwise hnR2 (6 mol) in hexanes to form LiNR2 in hexane. Thereafter, a hexane solution of hexachlorodioxane (ChM-SKWU Mo) was added dropwise to the resulting solution to form (NMe2)3Si-Si(NMe2)3. The solid by-product LiC1 can be removed by filtration. The hexanone solvent can be removed by distillation. The final product (NR2)3Si_Si(NR2)3 can be purified by vacuum distillation. Preferably, the alkylamine-substituted dioxane can be deposited by various systems (eg, low pressure chemical vapor deposition (LPCVD) system, atmospheric pressure chemical vapor deposition (APCVD), and atomic layer deposition (ALD)). Hey. LPCvd contains chemical reactions that occur over a pressure range of from about 50 Torr to about 1 Torr. The alkylamine-substituted dioxane precursor of the present invention is capable of depositing tantalum nitride by L P C V D in a low temperature range of about 3 6 0 to 600 °C. The alkylamine-substituted dioxane precursor and nitrogen source are introduced into the treatment tank and diffused to the substrate during the period of the deposition of l P C V D . This precursor is adsorbed on the surface of the substrate and drives a chemical reaction to form a film on the surface. The gaseous by-products of the reaction are desorbed and removed from the processing tank. This LPCVD system can be a single wafer system or a batch system (eg, a horizontal or vertical furnace). These system types are known to the semiconductor industry. PCT Application Serial No. PCT/US 0 3 /2 1 5 7 5, entitled ''Thermal Processing System and Configurable V ertica 1 C hambe r", describes a heat treatment apparatus that can be used for LPCVD, which will be described therein All 歹U into the reference. The deposition of tantalum nitride can be carried out in an atmospheric pressure vapor deposition (APCVD) system. -9- (7) (7) 1246719 APCVD contains a chemical reaction carried out at a pressure ranging from about 600 Torr to atmospheric pressure. The alkylamine-substituted dioxane precursor of the present invention allows the deposition of tantalum nitride at a low temperature by APCVD in the range of about 300 to 600 °C. During the deposition by APCVD, the alkylamine-substituted dioxane and nitrogen source are introduced into the treatment tank and diffused to the substrate. This precursor is adsorbed on the surface of the substrate and drives a chemical reaction to form a film on the surface. The gaseous by-products of the reaction are desorbed and removed from the processing tank. The deposition of the tantalum nitride film can also be carried out by atomic layer deposition using the alkylamine-substituted dioxane of the present invention at a low temperature. The temperature is substantially in the range of about 100 to 600 °C. The pressure of this system is substantially in the range of from about 50 millitorr to about 1 Torr. Preferably, the ALD process can be carried out at relatively low temperatures, which is compatible with the lower temperature trend of the industry. ALD's advanced properties are high, and it can produce a film with a correct shape and control the film thickness to atomic specifications. It can also be used in "nano engineering" composite films. In the ALD deposition cycle, the first reactant monolayer is physically or chemically adsorbed onto the surface of the substrate. Excessive first reactant is withdrawn from the reaction tank (preferably with inert scrubbing gas). Thereafter, the second reactant is introduced into the reaction vessel and reacted with the first reactant to form a desired monolayer of the film by limiting the surface reaction by itself. Once the first reactant adsorbed initially reacts completely with the second reactant, this self-limiting reaction is terminated. An excess of the second reactant is withdrawn, preferably with the aid of an inert scrubbing gas. The deposition cycle is repeated as needed to obtain the desired thickness. By simply calculating the number of deposition cycles, the desired film thickness can be controlled to the atomic layer accuracy. In some embodiments of the invention, the alkylamine-substituted dioxane precursor is introduced into the reaction vessel, preferably via a so-called 10-(8)(8)1246719 sprinkler to evenly distribute the gas. . A wide variety of reaction tanks are available and known to the art. In some embodiments, the alkylamine-substituted dioxane precursor and nitrogen source are alternately introduced into the ALD cell to form a tantalum nitride film by atomic layer deposition. The cycle is repeated to provide a tantalum nitride film having a desired thickness. Suitable nitrogen sources for use in the present invention include nitrogen containing compounds such as, but not limited to, nitrogen, NH3 and hydrazine (N2H2), nitrogen atoms and the like. The deposition temperature is about 400 t or less, and additional energy sources may be provided as needed to activate the nitrogen source to form a nitrogen group to aid deposition. Energy activation can be achieved by any conventional method (e.g., but not limited to, in situ plasma generation, remote plasma generation, downstream plasma generation, and photolysis). In some embodiments, the oxygen-containing source can also be passed to a treatment tank to form a ruthenium oxynitride film. Suitable sources of oxygen include ruthenium 2, N20 and NO, which are in storage with NH3. Tantalum nitride films deposited using alkylamine substituted dioxane have a variety of applications. They can be used as gate dielectrics (because of their high dielectric constant), insulators between metal single-row contacts, barriers to prevent oxidation and diffusion, etching masks for multilayer photoresist structures, passivation layers and transistors Space material. This tantalum nitride film deposited at a low temperature is particularly suitable as a spacer material. The sidewall spacers are protective layers on the wafer for protecting the lamination configuration (e.g., gate stack) during the self-alignment contact etching process. The reduction in lateral and longitudinal dimensions in the super-large integrated application and self-aligned metal nitride method reduces the sheet resistance and source/drain connection resistance of the anode, thereby improving device performance and reducing resistance-capacitance hysteresis. For example, a gate stack formed of at least one dielectric layer and a conductive layer overlying -11 - (9) (9) 1246719 (e.g., doped polysilicon) is formed on the substrate and separated from each other. A protective layer for isolation (e.g., a tantalum nitride layer) is formed to provide several advantages of such a structure. The deposition of tantalum nitride below 5 Q 0 °C is compatible with the self-aligned metal telluride method and is excellent in reducing the connection loss between the gate and the source/drain. The following examples are intended to illustrate the invention, but are not intended to limit the scope of the invention. Example 1 This example illustrates a low pressure chemical vapor deposition method of tantalum nitride using dialkylane substituted with an alkylamine group and ammonia. The alkylamine-substituted dioxane (NR2)3Si-Si(NR2)3 and ammonia are precursors for the deposition of tantalum nitride by LPCVD. Using a distribution tube, this precursor gas is introduced into an upright 50 wafer batch furnace. The 5 0 s c c m inert gas stream (N 2 ) is included in the gas mixture. The first mass flow rate is 5 〇 SCcm, and the ammonia to precursor flow rate ratio is 1 〇 : 1 (the total ammonia flow is 500 00 seem). The deposition temperature (wafer temperature) was 45 ° C and the pressure in the furnace was 250 Torr. Example 2 This example illustrates an atmospheric pressure chemical vapor deposition method using tantalum nitride using dialkylamine substituted with an alkylamino group and ammonia. The alkylamino substituted dioxane (NR2)3Si-Si(NR2)3 and ammonia are precursors of A P C V D . The total gas flow rate per injection is 2 5 s I m . The precursor flow rate is 26 sccm, and the ratio of ammonia to precursor flow rate is 20:1 (total ammonia flow is -12-(10) (10) 1246719 2 5 0 0 s c c m ). The deposition temperature (wafer temperature) is 405 °C and the pressure in the furnace is 760 丁 〇 r r. Example 3 This example illustrates an atomic layer deposition method of tantalum nitride using dialkylane substituted with an alkylamine group and ammonia. The alkylamine-substituted dioxane (NR2)3Si-Si(NR2)3 and ammonia are precursors for the deposition of tantalum nitride by ALD. The precursor gas is introduced into a single wafer ALD system via a showerhead having separate lines for the alkylamine-substituted dioxane and ammonia, respectively. The 00 scCm inert gas stream (Ar) is included in the gas mixture. The alkylamine-substituted dioxane flow rate is 50 seem and the ammonia to dioxane flow rate ratio is 10:1 (total ammonia flow is 500 seem). Atomic layer deposition is accomplished using alternating pulse trains (chemical pulse, inert gas scrubbing, ammonia pulse 'inert gas scrubbing). The pulse time is 〇·5/2/2/4 seconds. The deposition temperature (wafer temperature) is 400 ° C and the pressure is 1 Torr. Example 4 This example illustrates a low pressure chemical vapor deposition method of cerium oxide, which uses a transalkylamine-substituted dioxane and ozone. The alkylamino substituted dioxane (NR2)3Si-Si(NR2)3 and ozone serve as precursors for the deposition of cerium oxide by LPCVD. Using a dispensing tube, this precursor gas is directed to an upright 50 wafer batch furnace. A 5 〇〇 sccm inert gas stream (N2) is included in the gas mixture. The first mass flow rate is I0sccm ‘the ratio of ozone to precursor flow rate is 25:】 (total 02/〇3 flow is 2.lslm, ozone concentration is -13- (11) (11) 1246719 250 g/m2). The deposition temperature (wafer temperature) is 500 t; the pressure is 500 m T 〇rr 〇 Example 5 lit lease: an atmospheric pressure chemical vapor deposition method of iridium oxide, which uses an alkylamine group substituted Oxane and ozone. The transalkylamine-substituted dioxane (NR2)3Si_Si(NR2)3 and ozone are used as precursors for the deposition of cerium oxide by APCVD. The total gas flow rate per injection is s25 slm (approximately 15 slm N2). The first mass flow rate of the Ershayuan is 42sccm'. The ratio of ammonia to precursor flow rate is 2 1 : 1 (total 〇 2 / 〇 3 flow is 丨〇slm, ozone concentration is 180 g / square meter). The deposition temperature (wafer temperature) was 5 Torr (TC, and the pressure was 7 60 Torr. Example 6 This example illustrates the atomic layer deposition method of yttrium oxide using an alkylamine-substituted dioxane and ozone. Substituted dioxane (NR2)3Si-Si(NR2)3 and ozone as precursors for the deposition of tantalum nitride by A LD. The gas is passed through a separation line having dioxane and ozone respectively substituted with an alkylamine group. The sprinkler head is introduced into a single-wafer ALD system. The 500 cc sccm inert gas stream (A r) is included in the gas mixture. The first mass flow rate is 5 〇 SCCm, and the total 〇 2 / 〇 3 flow is 500 s sl, ozone The concentration was 200 g/m2. Atomic layer deposition was performed using alternating pulse trains (chemical pulse 'inert gas scrubbing, oxidant pulse, inert gas scrubbing.) The pulse time was 0.5/2/2/3 seconds, respectively. The deposition temperature -14 - (12) (12) 1246719 (wafer temperature) is 450 ° C and the pressure is 1 Torr. Example 7 This example illustrates a low pressure chemical vapor deposition of bismuth oxynitride using an alkylamine. Substituted dioxane, ammonia, nitrous oxide or nitric oxide. substituted by alkylamine group Dioxane (NR2) 3Si-Si(NR2)3, ammonia (as a source of nitrogen), and nitrous oxide or nitric oxide (as a source of oxygen) are used to deposit ruthenium oxyhydroxide by LPCVD. Using a distribution tube, this gas is Introduced into a vertical 50-wafer batch furnace. The 50 〇SCcm inert gas stream (N2) is included in the gas mixture. The first mass flow rate is 50 sccm and the ammonia to precursor flow rate ratio is 8:1 (total The ammonia flow is 4 〇〇sccm). Using N 2 Ο as the oxidant, the oxidant and precursor flow rate is 10:1 (the total nitrous oxide stream is 50,000 sccm). The deposition temperature (wafer temperature) is 4 5 0 ° C, the pressure is 400 mT 〇 rr. Example 8 This example illustrates the atmospheric pressure chemical vapor deposition of yttrium oxynitride, which uses a urethral amine-substituted shale, atmosphere, mono-nitrogen monoxide or nitric oxide. Alkenylamino substituted dioxane (NR2)3Si-Si(NR2)3, ammonia (as nitrogen source) and nitrous oxide or nitric oxide (as oxygen source) for arsenic oxynitride deposition by APCVD The total gas flow rate per injection is 2 5 s 1 m. The first mass flow rate is 1 2 5 sccm, and the ammonia to precursor flow rate ratio is 2 0 : 1 (the total ammonia flow is 2 5 0 〇SCCm). Using N2〇 as the oxidant, the oxidant and precursor flow rate is 2 5 : 1 (the total nitrous oxide stream is 3 1 2 5 s c. cm). The deposition temperature (wafer temperature) is 45. 0 ° C, the pressure is 760 Torr. -15- (13) (13) 1246719 Example 9 This example illustrates the atomic layer deposition of bismuth oxynitride using dialkyl, amino, and nitrous oxide substituted with an alkylamine group. Or nitric oxide. The alkylamino substituted dioxane (NR2)3Si-Si(NR2)3, ammonia (as a nitrogen source) and nitrous oxide or nitric oxide (as a source of oxygen) are used for arsenic oxyhydroxide deposition by ALD. The gas is directed to a single wafer A L D system via a showerhead having separate separation lines for the precursors. The 5 0 s c c m inert gas stream (Ar) is included in the gas mixture. The rate of precursor flow in the second brothel is 50, and the ratio of ammonia to precursor flow rate is 8:1 (total ammonia flow is 400s c cm). N2 hydrazine was used as the oxidant, and the oxidant and precursor flow rate was 10:1 (the total nitrous oxide stream was 500 sCcm). Atomic layer deposition is accomplished using alternating pulse trains (chemical pulse 'inert gas scrub, ammonia pulse, inert gas scrub, oxidant pulse' inert gas purge). The pulse time is 〇·5/2/2/3/3 seconds. The deposition temperature (wafer temperature) is 4 〇 0 ° C and the pressure is 1 Torr. The present invention has been described and illustrated by way of specific examples and embodiments of the invention, and the invention is not limited thereto. Many modifications, improvements and variations are possible within the scope of the invention, and the invention is not intended to be limited to the scope of the invention. It is intended that the scope of the invention should be

Claims (1)

1246719 ⑴ 十、申請專利範圍 1 * 一種將氮化矽材料沉積於底質 在於下式表示之經烷胺基取代的二矽烷 [(R1R2N)3_xHxSi-Si(NR3R4)3.yHy] 其中R1、R2、R3和R4獨立地爲任 狀丨兀基或經取代的院基,X、y = 〇、1或 而形成氮化矽材料。 2 · 如申請專利範圍第1項之方法 代的二矽烷化合物係與選自氨、聯氨、 成群的氮來源反應。 3 · 如申請專利範圍第1項之方法 代的二矽烷化合物係與一氮基團反應, 原處電漿生成法、遠距電漿生成法、下 解生成法所組成群之方法所形成。 4 · 如申請專利範圍第1項之方法 積溫度等於或低於60(TC實施。 5 · 如申請專利範圍第1項之方法 積溫度等於或低於5 00 °C實施。 6 · 如申請專利範圍第1項之方法 積溫度等於或低於4 00 °C實施。 7 · 如申請專利範圍第4至6項中 中此方法於低壓化學氣相沈積系統中實 上之方法,其特徵 化合物: 何直鏈、支鏈或環 2,與氮來源反應 ,其中經烷胺基取 氮和其混合物所組 ,其中經烷胺基取 該氮基團係由選自 游電漿生成法和光 ’其中此方法於沉 ’其中此方法於沉 ,其中此方法於沉 任一項之方法,其 施。 -17- (2) (2)1246719 8 · 如申請專利範圍第4至6項中任一項之方法,其 中此方法於大氣壓化學氣相沈積系統中實施。 9 · 如申請專利軔圍第4至6項中任一'項之方法,宜 中此方法於原子層沉積系統中實施。 1〇·如申S靑專利範圍第1項之方法,其中經院胺基取 代的二矽烷化合物是(Me2N)3Si-Si(NMe2)3,Me是甲基。 11·如申請專利範圍第1項之方法,其進一步包含跑 含氧來源反應以形成氣氧化砂膜。 12· —*種下式之經院胺基取代的一^砂院化合物: [(R】R2N)3.xHxSi-Si(NR3R4)3‘yHy] 其中R1、R2、R3和R4獨立地爲任何經取代或未經取 代的直鏈、支鏈或環狀烷基,X、y = 0 ' 1或2。 13. 如申請專利範圍第1 2項之經烷胺基取代的二石夕 烷化合物,其中R1、R2、R3和R4是任何經取代或未經取 代之具1-6個碳原子的烷基。 14. 如申請專利範圍第1 3項之經烷胺基取代的〜 」〜石夕 烷化合物,其中R1、R2、R3和R4分別是甲基。 1 5 · —種合成二矽烷化合物之方法,包含下列步,驟. 步驟 1: Me2NH + nBuLi — Me2NLi + C4H】()和 步驟 2: Cl3Si-SiCl3 + 6Me2NLi — (Me2N)3S· Si(NMe2)3 + 6LiClo 16.如申請專利範圍第〗5項之方法,其進一步包$ -18- (3) 1246719 下列步驟··藉真空蒸餾而純化產物(Me2N)3Si-Si(NMe2)3。 17.如申請專利範圍第1 1項之方法,其中該含氧來 源包括〇 2、N 2 〇和N 0。 -19-1246719 (1) X. Patent Application No. 1 * A method for depositing a tantalum nitride material on a substrate is an alkylamine-substituted dioxane represented by the following formula [(R1R2N)3_xHxSi-Si(NR3R4)3.yHy] wherein R1, R2 And R3 and R4 are independently a fluorenyl or substituted group, X, y = 〇, 1 or form a tantalum nitride material. 2 · The dioxane compound of the method of claim 1 is reacted with a nitrogen source selected from the group consisting of ammonia, hydrazine, and a group. 3 · As in the method of claim 1, the dioxane compound is formed by reacting with a nitrogen group, a method of forming a group consisting of a plasma generation method, a remote plasma generation method, and a lower solution generation method. 4 · If the method temperature of the first application of the patent scope is equal to or lower than 60 (TC implementation. 5) If the method temperature of the first application of the patent scope is equal to or lower than 500 ° C. 6 · If applying for a patent The method method of the first item of the range is equal to or lower than 400 ° C. 7 · The method of the method in the low-pressure chemical vapor deposition system as in the fourth to sixth patent application, the characteristic compound: a straight chain, a branched chain or a ring 2, which is reacted with a nitrogen source, wherein the alkylamine group is nitrogen and a mixture thereof, wherein the nitrogen group is selected from the group consisting of a plasma generation method and a light method. In the case of Yu Shen, in which the method is applied to the method of sinking one of the methods, -17- (2) (2) 1246719 8 · The method of any one of claims 4 to 6 , wherein the method is carried out in an atmospheric pressure chemical vapor deposition system. 9 · If the method of any one of items 4 to 6 of the patent application is applied, the method is preferably implemented in an atomic layer deposition system. The method of claim 1, wherein the ceramide amine group The substituted dioxane compound is (Me2N)3Si-Si(NMe2)3, and Me is a methyl group. 11. The method of claim 1, further comprising reacting an oxygen-containing source to form a gas-oxidized sand film. · - * A compound of the urethral amine substituted by a compound of the formula: [(R]R2N)3.xHxSi-Si(NR3R4)3'yHy] wherein R1, R2, R3 and R4 are independently substituted Or an unsubstituted linear, branched or cyclic alkyl group, X, y = 0 '1 or 2. 13. The alkylamine-substituted dioxane compound of claim 12, wherein R1, R2, R3 and R4 are any substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. 14. Alkylamine-substituted ~"~stone" as described in claim 13 A compound wherein R1, R2, R3 and R4 are each a methyl group. The method for synthesizing a dioxane compound comprises the following steps: Step 1: Me2NH + nBuLi — Me2NLi + C4H () and Step 2: Cl3Si-SiCl3 + 6Me2NLi — (Me2N)3S· Si(NMe2)3 + 6LiClo 16. The method of claim 5, further comprising $ -18- (3) 1246719 The step of purifying the product (Me2N) 3Si-Si(NMe2)3 by vacuum distillation. 17. The method of claim 1, wherein the oxygen-containing source comprises ruthenium 2, N 2 〇, and N 0 . -19-
TW93132985A 2003-10-31 2004-10-29 Low temperature deposition of silicon nitride TWI246719B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51860803P 2003-10-31 2003-10-31

Publications (2)

Publication Number Publication Date
TW200525612A TW200525612A (en) 2005-08-01
TWI246719B true TWI246719B (en) 2006-01-01

Family

ID=37193810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93132985A TWI246719B (en) 2003-10-31 2004-10-29 Low temperature deposition of silicon nitride

Country Status (1)

Country Link
TW (1) TWI246719B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735359B2 (en) * 2014-04-23 2017-08-15 Micron Technology, Inc. Methods of forming a memory cell material, and related methods of forming a semiconductor device structure, memory cell materials, and semiconductor device structures
JP7286780B2 (en) * 2019-02-14 2023-06-05 インテグリス・インコーポレーテッド Selective deposition of silicon nitride
CN114634364B (en) * 2022-03-08 2023-08-11 中国科学院过程工程研究所 Pure phase Si 2 N 2 Synthesis method of O powder

Also Published As

Publication number Publication date
TW200525612A (en) 2005-08-01

Similar Documents

Publication Publication Date Title
TWI757922B (en) Vapor deposition processes for forming silicon- and oxygen-containing thin films
US20050227017A1 (en) Low temperature deposition of silicon nitride
US8906455B2 (en) Low temperature deposition of silicon-containing films
US9905415B2 (en) Methods for depositing silicon nitride films
JP5890386B2 (en) Low temperature deposition of silicon-containing films
WO2005080628A2 (en) Method for producing silicon nitride films and silicon oxynitride films by chemical vapor deposition
TW202035430A (en) Compositions and methods using same for silicon containing films
US20070190768A1 (en) Manufacturing method of semiconductor device
EP3307744B1 (en) Vapor deposition processes for forming silicon- and oxygen-containing thin films
TWI246719B (en) Low temperature deposition of silicon nitride
JP7164789B2 (en) Precursors and processes for depositing Si-containing films using ALD at temperatures above 550°C
US6759346B1 (en) Method of forming dielectric layers
EP3307745B1 (en) Vapor deposition processes for forming silicon- and nitrogen-containing thin films

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees