200525612 (1) 九、發明說明 【發明所屬之技術領域】 此申請案聲明2 003年10月31日提出申請的 U.S.Provisional Application Serial No.6 0/5 1 8,60 8 之內容 和優先權,此處將其中所提出者全數列入參考。 本發明一般係關於半導體,更特別是用以沉積可用於 半導體裝置和整體電路之氮化矽材料之方法。 【先前技術】 氮化矽材料因爲其介電常數高、介電衰退電壓高、機 械性質和內禀鈍性優良,所以被廣泛用於半導體工業。例 如’氮化矽材料曾被用來作爲半導體電晶體的閘極介電 物' 金屬單排觸點之間的隔絕物、防止氧化反應和擴散的 阻擋物、多層光阻結構的蝕刻罩、鈍化層和電晶體的間隔 材料。 已有已知方法和先質用於氮化矽膜沉積。習慣利用低 壓化學蒸鍍法(LPCVD),使用二氯矽烷(DCS)(SiCl2H2)和 氨(NH3)先質沉積氮化矽。高於7 5 0 °C的高沉積溫度基本 上用於LPCVD,以得到合理的生長速率和均勻度及良好 膜性質。LPCVD法的缺點在於使用DCS和氨的高加工溫 度會對於熱預算造成衝擊和形成氯化銨(NH4C1)副產物(其 會造成細粒污染)。氯化銨累積於爐系統排放處、抽取管 線和抽吸系統。必須經常淸理這些沉積物,使得加工系統 的運作時間明顯縮減。 4- 200525612 (2) 沉積氮化矽膜的替代法包括使用矽烷(SiH4)和氮(N2) 或氨(NH3)先質的電漿增進化學蒸鍍法(PECVD)。PECVd 法的缺點是氮化矽膜的化學計量比控制困難及所不欲氫元 素摻入氮化矽膜中。此外,PECVD法因爲電漿損及裝置 的活性區域而不適用於線前端(f 〇 r n t - e n d - 〇 f -1 i n e,F Ε Ο L ) 應用。 隨著超大積體應用中之橫向和縱向尺寸降低,自身排 列的金屬矽化物法用以降低閘極的片材電阻和源極/汲極 串連電阻,以提高裝置效能及降低電阻-電容遲滯。氮化 矽的低溫沉積提供此類應用數個優點。氮化矽沉積低於 6 0 0 °C可與金屬矽化物應用相配伍,低於6 0 0 °C沉積的氮 化矽作爲側壁間隔物以降低閘極和源極/汲極之間之聯接 損耗的效能優良。 已發展出數種新的矽先質用於低溫氮化矽沉積。四碘 化矽(Sil4)曾被用以於介於40CTC和50(TC的溫度之間沉積 氮化矽。但 Sil4先質於室溫爲固態且蒸汽壓低,因此使 得化學品輸送進入處理槽中變得複雜。此外,與Sil4之化 學反應會製造副產物NH4I,其於冷表面凝結並造成細粒 污染。六氯二矽烷(HCD)(Si2Cl6)曾被用以於低於5 00 °C形 成氮化矽。但HCD先質因爲震動敏感性而有安全顧慮。 此外,在沉積期間內與HCD之化學反應會製造副產物 N Η 4 C1,其凝結於冷表面上並會造成細粒污染。胺基矽院 化合物(如:雙(第三丁基胺基)矽烷(BTBAS)(SiC8N2H22)) 曾被用以沉積氮化矽。BTB As是一種無鹵素的先質’其 200525612 (3) 可與nh3反應以形成氮化矽,但僅可於高於約55〇°c進 行。 因此有必要發展於低溫沉積氮化矽的新先質和方法, 以解決以前技術先質和沉積法的這些和其他問題。 【發明內容】 一個實施例中,本發明提出經烷基胺基取代的二矽烷 化合物,其式爲:([(Wl^Nh.xHxSi-SKNWh-yHy]), 其中R1、R2、R3和R4分別是任何直鏈、支鏈或環狀烷基 或經取代的烷基,X、y = 〇、1或2,以於底質表面上沉積 氮化矽膜。特別佳者中,沉積法係於低溫(如:等於或低 於6 0 〇 °C,或等於或低於5 0 0 °C )進行。 另一實施例中,經烷基胺基取代的二矽烷化合物與氮 來源(如,但不限於,氨、聯氨和氮)反應,以於晶圓上形 成氮化矽層或膜。另一實施例中,經胺基取代的二矽烷化 合物與氮基反應,於晶圓上形成氮化矽層。此氮基可由各 種方法(如,但不限於,原處電漿生成法、遠距電漿生成 法、下游電漿生成法和光解生成法)形成。 本發明的另一特點中,新穎之經烷基胺基取代的二矽 院化合物表示式爲: 其中R1、R2、R3和R4分別是任何直鏈、支鏈或環狀芳烷 基或經取代的烷基,x、y = 〇、1或2。一個實施例中, R 、R 、R3和R4分別是經取代或未經取代的Cl-c6烷 基。—些實施例中,R1、R2、R3和R4分別是甲基。 -6 - 200525612 (4) 另一實施例中,經院基胺基取代的一砂丨兀化口物與氮 來源(選自氨、聯氨和氮)反應,以於晶圓上形成氮化矽層 或膜。另一實施例中,經胺基取代的二矽烷化合物與氮基 反應,於晶圓上形成氮化矽層。此氮基可由各種方法 (如,但不限於,原處電漿生成法、遠距電漿生成法、下 游電漿生成法和光解生成法)形成。 【實施方式】 本發明提出一種於低溫沉積氮化矽的方法,其可用於 製造半導體裝置,如:金屬氧化物-半導體電場效應電晶 體(MOSFET)和MOS電容器。通常,本發明之方法包含使 經烷基胺基取代的二矽烷化合物與氮來源反應以形成氮化 石夕。 本發明之此經院基胺基取代的二砂院化合物具下列通 式: [(R】R2N)3.xHxSi-Si(NR3R4)3”,Hy] 其中R 、R2、R3和R4分別是任何直鏈、支鏈或環狀 烷基或經取代的烷基,X、y=。、i $ 2。—個實施例中, W、R2、V和R4分別是經取代或未經取代的匕-匕院 r4分別是甲基。 ’沉積的氮化矽膜展現 二矽烷具有於低溫藉大 基。另一實施例中,R1、R2、R3和 使用經烷基胺基取代的二砂太完 優良均勻度。此經烷基胺基取代的 200525612 (5) 氣壓化學蒸鍍法(APCVD)、LPCVD或原子層沉積法(ALD) 沉積氮化矽膜的性質。例如,使用經烷基胺基取代的二石夕 烷,此沉積可藉APCVD、LPCVD或ALD於約3 0 0至約 6 0 ◦ °C的溫度範圍內進行。一些實施例中,使用經院基胺 基取代的二矽烷藉APCVD、LPCVD或ALD於等於或低於 6 0 0 t沉積。一些實施例中,此沉積藉 A P C V D、l P C V D 或ALD於等於或低於5 00 °C進行。一些實施例中,此沉 積藉APCVD、LPCVD或ALD於等於或低於400 °C進行。 不欲使本發明限於特別的理論,咸信使用本發明之糸至 烷基胺基取代的二矽烷之低溫沉積的優點可用於經院基胺 基取代的二矽烷化合物之相對弱的s i - S i鍵。經院基胺基 取代的二矽烷的熱解期間內,Si-Si鍵易斷裂且烷基胺基 易消去。 本發明之經烷基胺基取代的二矽烷先質以不含任何氯 爲佳。因此,所得氮化矽膜沒有氯化銨和氯污染。相較於 以前技術的先質,如:二氯矽烷和六氯二矽烷,其中,先 質中的Si-Cl鍵導致形成氯化銨,其會凝結於冷表面上且 必須經常淸理。此外,本發明之經烷基胺基取代的二矽烷 先質不含直接Si-C鍵。因此,所得氮化矽膜無碳。 經烷基胺基取代的二矽烷的一個例子是(Me2N)3Si-Si(NMe2)3,其中,通式中的 R1、R2、R3和 R4分別是甲 基。此實例中,(Me2N)3Si-Si(NMe2)3可根據下列反應機 構合成得到: 步驟 1 : Me2NH + nBuLi Me2NLi + C4H】〇 -8- 200525612 (6) 步驟 2: C 13 S i - S i C 13 + 6Me2NLi -> (Me2N)3Si-200525612 (1) IX. Description of the invention [Technical field to which the invention belongs] This application declares the contents and priority of USProvisional Application Serial No. 6 0/5 1 8,60 8 filed on October 31, 003, All of them proposed here are incorporated by reference. This invention relates generally to semiconductors, and more particularly to methods for depositing silicon nitride materials that can be used in semiconductor devices and integrated circuits. [Previous Technology] Silicon nitride materials are widely used in the semiconductor industry because of their high dielectric constant, high dielectric decay voltage, and excellent mechanical properties and intrinsic dullness. For example, 'Silicon nitride materials have been used as gate dielectrics for semiconductor transistors'. Barriers between single rows of metal contacts, barriers to prevent oxidation reactions and diffusion, etching masks for multilayer photoresist structures, passivation Layer and transistor spacer material. There are known methods and precursors for silicon nitride film deposition. It is customary to use low pressure chemical vapor deposition (LPCVD) to deposit silicon nitride using dichlorosilane (DCS) (SiCl2H2) and ammonia (NH3) precursors. High deposition temperatures above 750 ° C are basically used for LPCVD to obtain reasonable growth rates and uniformity and good film properties. The disadvantages of the LPCVD method are that the high processing temperatures using DCS and ammonia can impact the thermal budget and form ammonium chloride (NH4C1) by-products (which can cause fine particle contamination). Ammonium chloride accumulates in the furnace system discharge, extraction lines and suction system. These deposits must be regularly managed so that the operating time of the processing system is significantly reduced. 4- 200525612 (2) Alternative methods of depositing silicon nitride films include plasma enhanced chemical vapor deposition (PECVD) using silane (SiH4) and nitrogen (N2) or ammonia (NH3) precursors. The disadvantages of the PECVd method are the difficulty in controlling the stoichiometric ratio of the silicon nitride film and the incorporation of unwanted hydrogen elements into the silicon nitride film. In addition, the PECVD method is not suitable for the front end of the line (f 〇 r n t-e n d-0 f -1 i n e, F Ε Ο L) because of the plasma damage and the active area of the device. As the horizontal and vertical dimensions are reduced in supermass applications, the self-aligned metal silicide method is used to reduce the gate sheet resistance and source / drain series resistance to improve device performance and reduce resistance-capacitance hysteresis. . The low temperature deposition of silicon nitride offers several advantages for such applications. Silicon nitride deposition below 600 ° C is compatible with metal silicide applications. Silicon nitride deposited below 600 ° C is used as a side wall spacer to reduce the connection between gate and source / drain. The loss efficiency is excellent. Several new silicon precursors have been developed for low temperature silicon nitride deposition. Silicon iodide (Sil4) was used to deposit silicon nitride between 40CTC and 50 ° C. However, Sil4 is a solid at room temperature and the vapor pressure is low, so that the chemical is transported into the treatment tank. It becomes complicated. In addition, the chemical reaction with Sil4 produces NH4I as a by-product, which condenses on the cold surface and causes fine particle contamination. Hexachlorodisilazane (HCD) (Si2Cl6) has been used to form below 500 Silicon nitride. However, HCD precursors have safety concerns due to vibration sensitivity. In addition, the chemical reaction with HCD during the deposition period will create a byproduct N Η 4 C1, which condenses on the cold surface and will cause fine particle contamination. Amino silicon compounds (such as bis (third butylamino) silane (BTBAS) (SiC8N2H22)) have been used to deposit silicon nitride. BTB As is a halogen-free precursor 'its 200525612 (3) can It reacts with nh3 to form silicon nitride, but it can only be carried out above about 55 ° C. Therefore, it is necessary to develop new precursors and methods for low temperature deposition of silicon nitride in order to solve these problems of the prior art precursors and deposition methods. And other issues. [Summary] In one embodiment, the present invention Dialkyl compounds substituted with alkylamine groups are given by the following formula: Alkyl or substituted alkyl, X, y = 0, 1 or 2 to deposit a silicon nitride film on the surface of the substrate. Particularly preferred, the deposition method is at low temperature (eg, equal to or lower than 60) 0 ° C, or 500 ° C or lower). In another embodiment, an alkylamine-substituted disilane compound and a nitrogen source (such as, but not limited to, ammonia, hydrazine, and nitrogen) Reaction to form a silicon nitride layer or film on the wafer. In another embodiment, a disilane compound substituted with an amine group reacts with a nitrogen group to form a silicon nitride layer on the wafer. The nitrogen group can be formed by various methods. (Such as, but not limited to, in-situ plasma generation method, remote plasma generation method, downstream plasma generation method, and photolysis generation method). In another feature of the present invention, novel alkylamine-substituted The two silicon compounds are represented by the formula: where R1, R2, R3, and R4 are any linear, branched, or cyclic aralkyl or substituted alkyl, respectively, x y = 0, 1 or 2. In one embodiment, R, R, R3, and R4 are substituted or unsubstituted Cl-c6 alkyl, respectively. In some embodiments, R1, R2, R3, and R4 are Methyl. -6-200525612 (4) In another embodiment, a chemical compound substituted with a amine group is reacted with a nitrogen source (selected from ammonia, hydrazine, and nitrogen) to form on a wafer. A silicon nitride layer or film. In another embodiment, a disilane compound substituted with an amine group reacts with a nitrogen group to form a silicon nitride layer on a wafer. This nitrogen group can be formed by various methods (such as, but not limited to, the original Plasma generation method, remote plasma generation method, downstream plasma generation method and photolysis generation method) are formed. [Embodiment] The present invention provides a method for depositing silicon nitride at a low temperature, which can be used for manufacturing semiconductor devices, such as: metal oxide-semiconductor field effect transistor (MOSFET) and MOS capacitor. Generally, the method of the present invention comprises reacting an alkylamine-substituted disilane compound with a nitrogen source to form a nitride. The compound of this invention, which is substituted with a amine group, has the following general formula: [(R] R2N) 3.xHxSi-Si (NR3R4) 3 ”, Hy] wherein R, R2, R3 and R4 are any Chain, branched or cyclic alkyl, or substituted alkyl, X, y =., I $ 2. In one embodiment, W, R2, V, and R4 are substituted or unsubstituted, respectively- R4 is methyl, respectively. 'The deposited silicon nitride film shows that the disilane has a large base at low temperature. In another embodiment, R1, R2, R3, and the use of alkyl amine-substituted disha are too good. Uniformity. This is 200525612 substituted with alkylamino group (5) Properties of silicon nitride film deposited by atmospheric pressure chemical vapor deposition (APCVD), LPCVD or atomic layer deposition (ALD). For example, using alkylamine group substitution The dioxaxane can be deposited by APCVD, LPCVD, or ALD at a temperature range of about 300 to about 60 ° C. In some embodiments, a diamine substituted with an amino group is used to borrow APCVD, LPCVD or ALD is deposited at or below 600 t. In some embodiments, this deposition is performed by APCVD, 1 PCVD, or ALD at or below 500 ° C.- In the embodiment, this deposition is performed by APCVD, LPCVD, or ALD at 400 ° C or lower. Without intending to limit the present invention to a specific theory, it is believed that the low temperature of the fluorene to alkylamine-substituted disilanes of the present invention is used. The advantages of deposition can be used for the relatively weak si-S i bond of the disyl compound substituted with an amino group. During the pyrolysis period of the disyl compound substituted with an amino group, the Si-Si bond is easily broken and the alkyl amino group is easily Elimination. The alkylamine-substituted disilane precursor of the present invention is preferably free of any chlorine. Therefore, the obtained silicon nitride film is free of ammonium chloride and chlorine pollution. Compared to the precursors of the prior art, such as: Dichlorosilanes and hexachlorodisilanes, in which the Si-Cl bond in the precursor leads to the formation of ammonium chloride, which will condense on the cold surface and must be regularly treated. In addition, the alkylamine-substituted The disilane precursor does not contain a direct Si-C bond. Therefore, the resulting silicon nitride film is free of carbon. An example of an alkylamine-substituted disilane is (Me2N) 3Si-Si (NMe2) 3, where R1, R2, R3 and R4 are methyl groups respectively. In this example, (Me2N) 3Si-Si (NMe2) 3 The following reaction mechanism to obtain the synthesis: Step 1: Me2NH + nBuLi Me2NLi + C4H square -8-200525612] (6) Step 2: C 13 S i - S i C 13 + 6Me2NLi - > (Me2N) 3Si-
Si(NMe2)3 + 6LiCl 例如’ n-BuLi(6莫耳)可逐滴加至HNR2(6莫耳)的己 烷溶液中’以形成LiNR2於己烷中。之後,六氯二矽烷 (Cl3Si-SiCl3)(l莫耳)的己烷溶液逐滴添加至所得溶液 中,以形成(NMe2)3Si-Si(NMe2)3。固態副產物LiCl可藉 過濾移除。己烷溶劑可藉蒸餾移除。最終產物(NR2)3 Si-Si(NR2)3可藉真空蒸餾純化。 較佳情況中,經烷基胺基取代的二矽烷可藉各種系統 (如:低壓化學蒸鍍沉積(LPCVD)系統、大氣壓化學蒸鍍 (APCVD)和原子層沉積(ALD))沉積氮化矽。LPCVD包含 在約50毫托耳至約10托耳壓力範圍內發生的化學反應。 本發明之經烷基胺基取代的二矽烷先質得以於約3 00至 600 °C的低溫範圍內藉LPCVD沉積氮化矽。藉LPCVD沉 積的期間內,經烷基胺基取代的二矽烷先質和氮來源被引 至處理槽中並擴散至底質。此先質被吸附於底質表面上並 驅動化學反應,於表面上形成膜。反應的氣態副產物被去 吸附並自處理槽移出。此LPCVD系統可爲單晶圓系統或 批次系統(如:水平或直立爐)。這些系統類型爲半導體工 業所知。PCT Application Serial NO.PCT/US 03 /2 1 5 7 5,標 題爲”Thermal Processing System and Configurable Vertical Chamber”,描述一種熱處理設備,其可用於 LPCVD,茲將其中所述者全數歹IJ入參考。 氮化矽之沉積可於大氣壓蒸鍍(A PC VD)系統中進行。 -9- 200525612 (7) APCVD包含在約600托耳至大氣壓的壓力範圍內進行之 化學反應。本發明之經烷基胺基取代的二矽烷先質使得得 以於低溫藉 A P C V D於約3 0 0至6 0 0 °C範圍內沉積氮化 矽。藉APCVD沉積的期間內,此經烷基胺基取代的二矽 烷和氮來源被引至處理槽中並擴散至底質。此先質被吸附 於底質表面上並驅動化學反應,於表面上形成膜。反應的 氣態副產物被去吸附並自處理槽移出。 氮化矽膜之沉積亦可藉原子層沉積法,使用本發明之 經烷基胺基取代的二矽烷先質於低溫進行。溫度基本上在 約1〇〇至60〇t:範圍內。此系統的壓力基本上在約50毫 托耳至約1 〇托耳範圍內。較佳情況中,此ALD法可於相 對低溫進行,此可與工業的較低溫趨·、勢相配伍。ALD的 先質利用效能高,可製得形狀確實的薄膜層並控制膜厚度 至原子規格,並可用於”奈米工程”複合薄膜。ALD法沉積 循環中,第一種反應物單層物理或化學吸附於底質表面 上。過量的第一種反應物自反應槽抽出(以藉惰性滌氣氣 體之助爲佳)。之後,第二種反應物引至反應槽中,並與 第一種反應物反應,經由自身限制表面反應而形成所欲薄 膜單層。一旦初時吸附的第一種反應物與第二種反應物完 全反應,此自身限制反應中止。過量的第二種反應物被抽 除’以藉惰性滌氣氣體之助爲佳。視情況須要地重複沉積 循環’得到所欲厚度。藉簡單的計算沉積循環數,所欲膜 厚度可控制至原子層準確度。本發明的一些實施例中,經 烷基胺基取代的二矽烷先質引至反應槽中,此以經由所謂 -10- 200525612 (8) 的噴灑頭爲佳,以使氣體均勻分佈。各式各樣反應槽可供 利用並爲此技術所知者。 一些實施例中,經烷基胺基取代的二矽烷先質和氮來 源可交替引至ALD槽中,以藉原子層沉積形成氮化矽 膜。重複循環以提供具所欲厚度的氮化矽膜。 本發明所用適當氮來源包括含氮化合物,如,但不限 於氮、NH3和聯氨(N2H2)、氮原子之類。沉積溫度約400 °C或以下,可視較佳情況地提供額外能源,以活化氮來 源,以形成氮基,以有助於沉積。可藉任何習知方法 (如’但不限於,原處電漿生成法、遠距電漿生成法、下 游電漿生成法和光解生成法之類)達到能量活化作用。 一些實施例中,含氧的來源亦可傳送至處理槽,以形 成氮氧化矽膜。適當含氧來源包括〇2、N20和NO,其與 NH3倂存。 使用經烷基胺基取代的二矽烷沉積的氮化矽膜具多種 應用。它們可作爲閘極介電物(因爲其介電常數高)、金屬 單排觸點之間的隔絕物、防止氧化反應和擴散的阻擋物、 多層光阻結構的蝕刻罩、鈍化層和電晶體的間隔材料。於 低溫沉積的此氮化矽膜特別適合作爲間隔材料。側壁間隔 物是晶圓上之用以於自身排列接觸蝕刻法期間內,保護層 疊構造(如:閘極層疊物)的保護層。於超大積體應用、自 身排列金屬氮化物法中之橫向和縱向尺寸降低,可降低閘 極的片材電阻和源極/汲極串連電阻,藉此提高裝置效能 及降低電阻-電容遲滯。例如,由至少一個介電層和上覆 -11 - 200525612 (9) 的傳導層(如:經摻雜的多元矽)形成的閘極層疊物形成於 底質上且彼此分隔。形成隔絕用保護層(如:氮化矽層)以 提供此類結構數個優點。於低於5 00 °C沉積氮化矽可與自 身排列的金屬矽化物法相配伍,且降低閘極和源極/汲極 之間之聯接損耗的效能優良。 下列實例用以說明本發明,但不欲對本發明之範圍造 成任何限制。 實例1 此實例說明氮化矽之低壓化學蒸鍍法,其使用經烷基 胺基取代的二矽烷和氨。 經烷基胺基取代的二矽烷(NR2)3S:i-Si(NR2)3和氨作爲 藉LPCVD之氮化矽沉積的先質。使用分配管,此先質氣 體被引至直立式50晶圓批次爐中。5 00 seem惰性氣流(N2) 含括於此氣體混合物中。先質流率是5〇SCcm,氨與先質 流率比是10 : 1(總氨流是500sccm)。沉積溫度(晶圓溫度) 是45 0°C,爐中的壓力是2 5 0mTorr。 實例2 此實例說明氮化矽之大氣壓化學蒸鍍法,其使用經烷 基胺基取代的二矽烷和氨。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和氨作爲 APCVD之先質。每次注射的氣體總流率是25slm。先質流 率是126sccm,氨與先質流率比是 20 : 1(總氨流是 -12- 200525612 (10) 2 5 0 〇SCcm)。沉積溫度(晶圓溫度)是4 5 0 °C,爐中的壓力是 7 6 0 T 〇 r r 〇 實例3 此實例說明氮化矽之原子層沉積法,其使用經烷基胺 基取代的—*砂院和氨。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和氨作爲 藉ALD之氮化矽沉積的先質。先質氣體經由具有分別用 於經烷基胺基取代的二矽烷和氨之分離管線的噴灑頭引至 單一晶圓ALD系統中。500sccm惰性氣流(Ar)含括於氣體 混合物中。經烷基胺基取代的二矽烷流率是50sccm,氨 與二矽烷流率比是 10 : 1(總氨流是、5 00sccm)。使用交替 脈衝序列(化學品脈衝,惰性氣體滌氣,氨脈衝,惰性氣 體滌氣)完成原子層沉積。脈衝時間分別是0.5/2/2/4秒 鐘。沉積溫度(晶圓溫度)是4 0(TC,壓力是1托耳。 實例4 此實例說明氧化矽之低壓化學蒸鍍法,其使用經烷基 胺基取代的二矽烷和臭氧。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和臭氧作 爲藉LPCVD之氧化矽沉積的先質。使用分配管,此先質 氣體被引至直立式50晶圓批次爐中。50〇SCcm惰性氣流 (N 2)含括於此氣體混合物中。先質流率是]〇 s c c nl,臭氧與 先質流率比是25 :](總〇2/〇3流是2. 1 slm,臭氧濃度是 -13- 200525612 (11) 2 5 0克/平方米)。沉積溫度(晶圓溫度)是5 0 0 °C,壓力是 5 Ο 0 m T o r r 〇 實例5 此實例說明氧化矽之大氣壓化學蒸鍍法,其使用經烷 基胺基取代的二矽烷和臭氧。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和臭氧作 爲藉APCVD之氧化矽沉積之先質。每次注射的氣體總流 率是25slm (約15slm N2)。二砂垸先質流率是42sccm,氣 與先質流率比是21 : 1(總02/03流是l〇slm,臭氧濃度是 180克/平方米)。沉積溫度(晶圓溫度)是5 00 ,壓力是 7 6 Ο T 〇 r r 〇 實例6 此實例說明氧化矽之原子層沉積法,其使用經烷基胺 基取代的二矽烷和臭氧。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3和臭氧作 爲藉ALD之氮化矽沉積的先質。氣體經由具有分別用於 經烷基胺基取代的二矽烷和臭氧之分離管線的噴灑頭引至 單一晶圓ALD系統中。5 00 seem惰性氣流(Ar)含括於氣體 混合物中。先質流率是5 0 s c c m,總0 2 / 0 3流是5 0 0 s 1 m, 臭氧濃度是2 00克/平方米。使用交替脈衝序列(化學品 脈衝,惰性氣體滌氣,氧化劑脈衝,惰性氣體滌氣)完成 原子層沉積。脈衝時間分別是0.5/2/2/3秒鐘。沉積溫度 -14- 200525612 (12) (晶圓溫度)是4 5 0 °C,壓力是1托耳。 實例7 此實例說明氮氧化矽之低氣壓化學蒸鍍法,其使用經 烷基胺基取代的二矽烷、氨、一氧化二氮或一氧化氮。 經院基胺基取代的二矽烷(NR2)3Si-Si(NR2)3、氨(作 爲氮來源)和一氧化二氮或一氧化氮(作爲氧來源)用於藉 L P C V D法沉積氮氧化矽。使用分配管,此氣體被引至直 立式50晶圓批次爐中。5〇〇sccm惰性氣流(n2)含括於此氣 體混合物中。先質流率是50s ccm,氨與先質流率比是8 : 1 (總氨流是40〇sccm)。使用N20作爲氧化劑,此氧化劑 與先質流率是 1 〇 : 1 (總一氧化二氮流是 5 00sccm)。沉積 溫度(晶圓溫度)是45(TC,壓力是400mTorr。 實例8 此實例說明氮氧化矽之大氣壓化學蒸鍍法,其使用經 烷基胺基取代的二矽烷、氨、一氧化二氮或一氧化氮。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3、氨(作 爲氮來源)和一氧化二氮或一氧化氮(作爲氧來源)用於藉 APCVD之氮氧化矽沉積。每次注射的氣體總流率是 2 5 s 1 m。先質流率是1 2 5 s c c m,氨與先質流率比是2 0 : 1(總氨流是25 0〇SCCm)。使用N20作爲氧化劑’此氧化劑 與先質流率是25 : 1(總一氧化二氮流是3125 seem)。沉積 溫度(晶圓溫度)是4 5 0°C,壓力是7 60TO1*!*。 -15- 200525612 (13) 實例9 此實例說明氮氧化矽之原子層沉積法,其使用經烷基 胺基取代的二矽烷、氨、一氧化二氮或一氧化氮。 經烷基胺基取代的二矽烷(NR2)3Si-Si(NR2)3、氨(作 爲氮來源)和一氧化二氮或一氧化氮(作爲氧來源)用於藉 ALD之氮氧化矽沉積。氣體經由具有分別用於先質之分 離管線的噴灑頭引至單一晶圓ALD系統中。5 00 seem惰 性氣流(Ar)含括於氣體混合物中。二矽烷先質流率是 5 0 s c c m,氨與先質流率比是8 : 1 (總氨流是4 0 0 s c c m)。使 用N 2 Ο作爲氧化劑,此氧化劑與先質流率是1 〇 :丨(總一 氧化二氮流是5 00sccm)。使用交替脈衝序列(化學品脈 衝’惰性氣體滌氣,氨脈衝,惰性氣體滌氣,氧化劑脈 衝’惰性氣體滌氣)完成原子層沉積。脈衝時間分別是 0.5 / 2 / 2 / 3 / 3秒鐘。沉積溫度(晶圓溫度)是4 0 0 °C,壓力是 1托耳。 已經以本發明之特定實施例和實例作說明和描述,雖 然已經以前述的某些實例描述和說明本發明,本發明不在 此限。不欲以這些實例作爲本發明之範圍或將本發明限制 於所揭示的精確形式,由前述經驗,可瞭解屬於本發明範 圍內的許多修飾、改善和變化。希望本發明之範圍含括此 處所揭示者之廣義及所附申請專利範圍和其對等情況。Si (NMe2) 3 + 6LiCl, for example, 'n-BuLi (6 mol) can be added dropwise to HNR2 (6 mol) in hexane solution to form LiNR2 in hexane. Thereafter, a hexane solution of hexachlorodisilazane (Cl3Si-SiCl3) (1 mole) was added dropwise to the obtained solution to form (NMe2) 3Si-Si (NMe2) 3. The solid by-product LiCl can be removed by filtration. The hexane solvent can be removed by distillation. The final product (NR2) 3 Si-Si (NR2) 3 can be purified by vacuum distillation. In a preferred case, the alkylsilane-substituted disilane can be used to deposit silicon nitride by various systems such as low pressure chemical vapor deposition (LPCVD) systems, atmospheric pressure chemical vapor deposition (APCVD), and atomic layer deposition (ALD). . LPCVD involves chemical reactions that occur within a pressure range of about 50 millitorr to about 10 Torr. The alkylamine-substituted disilane precursor of the present invention can deposit silicon nitride by LPCVD in a low temperature range of about 300 to 600 ° C. During the deposition by LPCVD, the alkylamine-substituted disilanes precursor and nitrogen source are introduced into the treatment tank and diffused to the substrate. This precursor is adsorbed on the surface of the substrate and drives a chemical reaction to form a film on the surface. Gaseous by-products of the reaction are desorbed and removed from the treatment tank. This LPCVD system can be a single wafer system or a batch system (such as a horizontal or vertical furnace). These system types are known to the semiconductor industry. PCT Application Serial NO.PCT / US 03/2 1 5 7 5 and titled "Thermal Processing System and Configurable Vertical Chamber" describes a heat treatment equipment that can be used in LPCVD, and all of them are referred to IJ. The deposition of silicon nitride can be performed in an atmospheric pressure vapor deposition (A PC VD) system. -9- 200525612 (7) APCVD involves chemical reactions performed at pressures ranging from about 600 Torr to atmospheric pressure. The alkylamine-substituted disilane precursors of the present invention allow silicon nitride to be deposited at low temperatures by A P C V D in the range of about 300 to 600 ° C. During the deposition by APCVD, this alkylamine-substituted disilane and nitrogen source was introduced into the treatment tank and diffused to the substrate. This precursor is adsorbed on the surface of the substrate and drives a chemical reaction to form a film on the surface. The reacted gaseous by-products are desorbed and removed from the treatment tank. The silicon nitride film can also be deposited by atomic layer deposition using the alkylamine-substituted disilanes precursor of the present invention at a low temperature. The temperature is substantially in the range of about 100 to 60 t :. The pressure of this system is basically in the range of about 50 mTorr to about 10 Torr. Preferably, the ALD method can be performed at a relatively low temperature, which is compatible with the lower temperature trend and potential of the industry. ALD's precursors have high utilization efficiency, which can produce thin film layers with exact shape and control film thickness to atomic specifications, and can be used in "nano engineering" composite films. During the ALD deposition cycle, the first reactant monolayer is physically or chemically adsorbed on the substrate surface. The excess of the first reactant is withdrawn from the reaction tank (preferably with the help of inert scrubbing gas). After that, the second reactant is introduced into the reaction tank and reacts with the first reactant to form a desired thin film monolayer by limiting the surface reaction by itself. Once the first reactant adsorbed completely reacts with the second reactant, this limits the reaction to stop. An excess of the second reactant is removed ', preferably with the aid of an inert scrubbing gas. If necessary, repeat the deposition cycle 'to obtain the desired thickness. By simply calculating the number of deposition cycles, the desired film thickness can be controlled to the accuracy of the atomic layer. In some embodiments of the present invention, the alkylamine-substituted disilane precursor is introduced into the reaction tank, and it is preferable to use a so-called -10-200525612 (8) spray head to uniformly distribute the gas. A wide variety of reaction tanks are available and known to those skilled in the art. In some embodiments, an alkylamine-substituted disilane precursor and a nitrogen source may be alternately introduced into the ALD tank to form a silicon nitride film by atomic layer deposition. The cycle is repeated to provide a silicon nitride film with a desired thickness. Suitable nitrogen sources for use in the present invention include nitrogen-containing compounds such as, but not limited to, nitrogen, NH3 and hydrazine (N2H2), nitrogen atoms and the like. The deposition temperature is about 400 ° C or below, and it may be better to provide additional energy to activate the nitrogen source to form a nitrogen group to help the deposition. Energy activation can be achieved by any conventional method (such as, but not limited to, in-situ plasma generation, remote plasma generation, downstream plasma generation, and photolysis generation). In some embodiments, the source containing oxygen may also be transferred to the processing tank to form a silicon oxynitride film. Suitable sources of oxygen include 02, N20, and NO, which coexist with NH3. There are many applications for silicon nitride films deposited using alkylamine-substituted disilanes. They can be used as gate dielectrics (because of their high dielectric constant), as barriers between single rows of metal contacts, as barriers to prevent oxidation reactions and diffusion, as etched masks for multilayer photoresist structures, passivation layers and transistors Spacer material. This silicon nitride film deposited at a low temperature is particularly suitable as a spacer material. The sidewall spacer is a protective layer on the wafer to protect the stacked structure (such as a gate stack) during the self-aligning contact etching process. In the application of supermassive ceramics, the horizontal and vertical size reduction in the self-aligned metal nitride method can reduce the sheet resistance and source / drain series resistance of the gate, thereby improving device performance and reducing resistance-capacitance hysteresis. For example, a gate stack formed of at least one dielectric layer and a conductive layer (eg, doped polysilicon) overlying -11-200525612 (9) is formed on the substrate and separated from each other. Forming a protective layer (eg, a silicon nitride layer) to provide several advantages of such a structure. Depositing silicon nitride below 500 ° C is compatible with the self-aligned metal silicide method, and has excellent performance in reducing the connection loss between the gate and source / drain. The following examples are provided to illustrate the invention, but are not intended to limit the scope of the invention in any way. Example 1 This example illustrates a low-pressure chemical vapor deposition method of silicon nitride, which uses a disilane and ammonia substituted with an alkylamine group. Alkylamine substituted disilane (NR2) 3S: i-Si (NR2) 3 and ammonia were used as precursors for silicon nitride deposition by LPCVD. Using a distributor tube, this precursor gas is directed into a vertical 50-wafer batch furnace. 5 00 seemingly inert gas flow (N2) is contained in this gas mixture. The precursor flow rate is 50 SCcm, and the ratio of ammonia to precursor flow rate is 10: 1 (total ammonia flow is 500 sccm). The deposition temperature (wafer temperature) is 45 0 ° C, and the pressure in the furnace is 250 mTorr. Example 2 This example illustrates an atmospheric pressure chemical vapor deposition method of silicon nitride using an alkylamino-substituted disilane and ammonia. Alkylamine-substituted disilanes (NR2) 3Si-Si (NR2) 3 and ammonia were used as precursors of APCVD. The total gas flow rate per injection was 25 slm. The precursor flow rate is 126 sccm, and the ratio of ammonia to precursor flow rate is 20: 1 (total ammonia flow is -12- 200525612 (10) 2 5 0 SCcm). The deposition temperature (wafer temperature) is 450 ° C, and the pressure in the furnace is 760 T 〇rr 〇 Example 3 This example illustrates the atomic layer deposition method of silicon nitride, which uses alkylamine substituted- * Sand yard and ammonia. Alkylamine substituted disilane (NR2) 3Si-Si (NR2) 3 and ammonia were used as precursors for silicon nitride deposition by ALD. The precursor gas is directed into a single wafer ALD system via a spray head having separate lines for alkylsilane substituted disilane and ammonia, respectively. A 500 sccm inert gas stream (Ar) is included in the gas mixture. The alkylamine-substituted disilane flow rate is 50 sccm, and the ratio of ammonia to disilane flow rate is 10: 1 (total ammonia flow is 500 sccm). Atomic layer deposition is accomplished using alternating pulse sequences (chemical pulses, inert gas scrubbing, ammonia pulses, inert gas scrubbing). The pulse times are 0.5 / 2/2/4 seconds. The deposition temperature (wafer temperature) is 40 ° C, and the pressure is 1 Torr. Example 4 This example illustrates the low-pressure chemical vapor deposition of silicon oxide, which uses alkylsilane-substituted disilane and ozone. Via alkyl Amine-substituted disilane (NR2) 3Si-Si (NR2) 3 and ozone were used as precursors for silicon oxide deposition by LPCVD. Using a distributor tube, this precursor gas was introduced into a vertical 50-wafer batch furnace. An inert gas stream of 50 ° C (N 2) is included in this gas mixture. The precursor flow rate is] 0 scc nl, and the ratio of ozone to precursor flow rate is 25:] (total flow of 〇 2/03 is 2.1 slm, ozone concentration is -13- 200525612 (11) 2 50 g / m2). Deposition temperature (wafer temperature) is 5 0 ° C, pressure is 5 0 0 m T orr 〇 Example 5 This example illustrates oxidation Atmospheric pressure chemical vapor deposition of silicon using alkylamine-substituted disilanes and ozone. Alkylamine-substituted disilanes (NR2) 3Si-Si (NR2) 3 and ozone are deposited as silicon oxide by APCVD Precursor. The total gas flow rate of each injection is 25 slm (approximately 15 slm N2). The precursor flow rate of Ershayu is 42sccm, and the ratio of gas to precursor flow rate is 21: 1 (total 02/0 The 3 stream is 10 slm and the ozone concentration is 180 g / m2. The deposition temperature (wafer temperature) is 5 00 and the pressure is 7 6 0 T 〇rr 〇 Example 6 This example illustrates the atomic layer deposition method of silicon oxide, It uses alkylamine-substituted disilanes and ozone. Alkylamine-substituted disilanes (NR2) 3Si-Si (NR2) 3 and ozone are used as precursors for silicon nitride deposition by ALD. The spray heads for the separation lines of the alkylamine-substituted disilane and ozone were introduced into a single wafer ALD system. The 5,000 seem inert gas stream (Ar) was included in the gas mixture. The precursor flow rate was 5 0 sccm, total 0 2/0 3 flow is 5 0 0 s 1 m, ozone concentration is 200 g / m 2. Use alternating pulse sequence (chemical pulse, inert gas scrubbing, oxidant pulse, inert gas scrubbing) Atomic layer deposition is completed. The pulse times are 0.5 / 2/2/3 seconds. The deposition temperature is -14- 200525612 (12) (wafer temperature) is 4 50 ° C and the pressure is 1 Torr. Example 7 This example Describe the low-pressure chemical vapor deposition method of silicon oxynitride, which uses disilane and ammonia substituted with alkylamine groups Dinitrogen monoxide or nitric oxide. Disilane (NR2) 3Si-Si (NR2) 3 substituted with amino groups, ammonia (as nitrogen source), and nitrous oxide or nitric oxide (as oxygen source) The silicon oxynitride was deposited by LPCVD. Using a distribution tube, this gas was introduced into a vertical 50-wafer batch furnace. A 500 sccm inert gas stream (n2) is included in this gas mixture. The precursor flow rate is 50 s ccm, and the ratio of ammonia to precursor flow rate is 8: 1 (total ammonia flow is 40 Sccm). N20 was used as the oxidant, and the oxidant and precursor flow rates were 10: 1 (the total nitrous oxide flow was 500 sccm). The deposition temperature (wafer temperature) is 45 ° C, and the pressure is 400 mTorr. Example 8 This example illustrates the atmospheric pressure chemical vapor deposition method of silicon oxynitride, which uses an alkylamine substituted disilane, ammonia, nitrous oxide, or Nitric oxide. Alkylamine-substituted disilanes (NR2) 3Si-Si (NR2) 3, ammonia (as a nitrogen source), and nitrous oxide or nitric oxide (as an oxygen source) are used to borrow nitrogen from APCVD Silicon oxide deposition. The total gas flow rate per injection is 2 5 s 1 m. The precursor flow rate is 1 2 5 sccm, and the ratio of ammonia to precursor flow rate is 20: 1 (total ammonia flow is 250,000 SCCm ). Use N20 as the oxidant 'This oxidant and precursor flow rate is 25: 1 (total nitrous oxide flow is 3125 seem). Deposition temperature (wafer temperature) is 4 5 0 ° C, pressure is 7 60TO1 *! *. -15- 200525612 (13) Example 9 This example illustrates the atomic layer deposition method of silicon oxynitride, which uses alkylsilane substituted disilane, ammonia, nitrous oxide or nitric oxide. Via alkylamine -Substituted disilanes (NR2) 3Si-Si (NR2) 3, ammonia (as a nitrogen source), and nitrous oxide or nitric oxide (as an oxygen source) are used Deposition of silicon oxynitride in ALD. Gas is directed into a single wafer ALD system via sprinklers with separate lines for precursors. 5000 seem inert gas stream (Ar) is contained in the gas mixture. Disilane precursor stream The rate is 50 sccm, and the ratio of ammonia to precursor flow rate is 8: 1 (total ammonia flow is 4 0 sccm). N 2 0 is used as the oxidant, and the oxidant and precursor flow rate are 1 0: 丨 (total 1 Nitrous oxide flow is 500 sccm). Atomic layer deposition is accomplished using alternating pulse sequences (chemical pulses 'inert gas scrubbing, ammonia pulses, inert gas scrubbing, oxidant pulses' inert gas scrubbing). The pulse times are 0.5 / 2/2/3/3 seconds. The deposition temperature (wafer temperature) is 400 ° C and the pressure is 1 Torr. Specific embodiments and examples of the present invention have been described and described, although the aforementioned Certain examples describe and illustrate the invention, and the invention is not limited thereto. It is not intended that these examples be used as the scope of the invention or to limit the invention to the precise form disclosed. From the foregoing experience, one can understand that many belong to the scope of the invention Modification And variations hope scope of the invention disclosed herein encompasses this generalized by the appended patent and its scope, and so on.